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Abstract

Freezing of gait (FoG) is a common motor dysfunction in individuals with Parkinson’s

disease (PD). FoG impairs walking and is associated with increased fall risk. Although

pharmacological treatments have shown promise during ON–medication periods, FoG

remains difficult to treat during medication OFF state and in advanced stages of the disease.

External cueing therapy in the forms of visual, auditory, and vibrotactile, has been effective

in treating gait deviations. Intelligent (or on–demand) cueing devices are novel systems

that analyze gait patterns in real–time and activate cues only at moments when specific gait

alterations are detected. In this study we developed methods to analyze gait signals collected

through wearable sensors and accurately identify FoG episodes. We also investigated the

potential of predicting the symptoms before their actual occurrence.

We collected data from seven participants with PD using two Inertial Measurement Units

(IMUs) on ankles. In our first study, we extracted engineered features from the signals and

used machine learning (ML) methods to identify FoG episodes. We tested the performance

of models using patient–dependent and patient–independent paradigms. The former models

achieved 92.5% and 89.0% for average sensitivity and specificity, respectively. However, the

conventional binary classification methods fail to accurately classify data if only data from

normal gait periods are available. In order to identify FoG episodes in participants who

did not freeze during data collection sessions, we developed a Deep Gait Anomaly Detector

(DGAD) to identify anomalies (i.e., FoG) in the signals. DGAD was formed of convolutional

layers and trained to automatically learn features from signals. The convolutional layers

are followed by fully connected layers to reduce the dimensions of the features. A k-nearest

neighbors (kNN) classifier is then used to classify the data as normal or FoG. The models

identified 87.4% of FoG onsets, with 21.9% being predicted on average for each participant.
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This study demonstrates our algorithm’s potential for delivery of preventive cues. The

DGAD algorithm was then implemented in an Android application to monitor gait patterns

of PD patients in ambient environments. The phone triggered vibrotactile and auditory

cues on a connected smartwatch if an FoG episode was identified. A 6–week in–home study

showed the potentials for effective treatment of FoG severity in ambient environments using

intelligent cueing devices.
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Chapter 1

Introduction

Parkinson’s disease (PD) affects nerve cells in a part of the brain that controls muscle

movement. Among the neurological disorders, PD is the most common disorder leading

to gait disturbance and falls [1]. Injuries related to such impairments impose heavy costs

on both individual and healthcare systems, increase dependency and social isolation, and

result in reduced quality of life [2–4]. Despite advances in pharmaceutical treatments and

surgical techniques, impaired gait still persists, therefore the development of novel non–

invasive rehabilitation approaches that work in conjunction with current treatments is a

necessary step to address these difficulties [5–7].

Freezing of gait (FoG) is a paroxysmal symptom commonly seen among patients in

advanced stages of the disease. There are three different sub–types of FoG: 1) suddenly

becoming incapable to start walking or continue moving forward; 2) a complete absence of

movement; and, 3) shuffling forward with very short steps [8]. FoG is a common cause of

falls in patients with PD and the associated physical and psychosocial consequences have a

great impact on the patients’ quality of life. The FoG episodes are transient and generally

last for a few seconds [9], but the frequency and duration tend to increase with the disease

progression [10]. The episodic and paroxysmal nature of the symptom makes it an extremely

difficult task to measure and manage the FoG events. Standard clinical subjective measures

rely on the patients’ or caregivers’ responses to questionnaires, such as Unified Parkinson’s

Disease Rating Scale (UPDRS), Activities of Daily Living (ADL) part 14, and, freezing of

gait questionnaire (FOG–Q). During the past decade, objective detection and quantitative
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evaluation of the FoG events have become feasible due to the development of wearable sensors

and signal processing methods [11, 12].

Exercise has shown positive effects on PD motor impairments in the short term [13, 14].

Increased cognitive engagement during the exercise through provision of cueing can also

enhance the effects [15, 16]. External cueing refers to the provision of stimuli repeatedly

regardless of the patients state or immediately after the detection of FoG. Cues, in the form

of temporal or spatial stimuli, regulate and facilitate repetitive movements (e.g. walking)

by providing a discrete motor target. Cueing have shown immediate positive effects on gait

parameters (e.g. velocity, stride, and cadence) and FoG severity [17, 18], and the effects

were consolidated after a follow–up period [19]. In Chapter 2 we discuss the FoG symptom,

pharmacological treatments, and novel external cueing interventions in more detail.

Administration of externally cued exercise by specialized healthcare professionals usually

requires cumbersome clinical setups [20]. Considering the increasing prevalence of PD [21]

and the predicted shortage of physiotherapists [22], development of new ways to deliver

cueing seems essential. Recent studies have been focused on using wearable sensors to

capture gait signals and identify FoG episodes, which enables provision of cueing immediately

after recognition of FoG. In this study we aimed to design an intelligent cueing device that

monitors the gait pattern using wearable sensors and triggers cueing when an episode of

freezing is detected. The cueing parameters will be set for each participant by an expert

clinician to match their normal gait. The device will then be evaluated in the participants’

homes to investigate the effectiveness of the intervention on FoG symptom. This study is

one of the first to evaluate the effectiveness of a personalized intelligent on–demand cueing

system in ambient environments.

Recent studies have shown encouraging results for detection of FoG events using machine

learning techniques [8, 23–25]. However, it is hard to capture intrinsic properties embedded

in time series data due to the random onset and duration of FoG events [26]. In addition,

classification of biomedical signals raises some additional challenges; e.g., each individual

has a unique normal gait pattern, variations from which may be due to freezing or just

deviations from their optimal normal pattern. Recently, deep learning (DL) techniques

and in particular convolutional neural networks (CNN) have obtained impressive success in
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many time–series analysis due to their strong capabilities for automatically learning features

[27, 28]. Using convolutional kernels with different sizes at different layers, the CNN can

learn most fundamental features that needed to be designed manually otherwise.

In this study we aimed to extract features from signals collected via accelerometers placed

on ankles, thighs, and waist, and to identify the best combination of sensor location and

features to detect FoG occurrence (Chapter 3). Next, we aimed to improve the classification

accuracy using ensemble classifiers and oversampling methods to address the imbalance

in the dataset. We also investigated the performance of patient–dependent and patient–

independent models in classifying gait signals (Chapter 4). However, these methods required

data from both normal gait and freezing of gait classes, while half of the participants in our

study did not exhibit freezing and only normal gait data was available for model training.

To address the one–class issue, we introduced a new deep gait anomaly detection algorithm

to identify FoG episodes. We also investigated the ability of the models to predict FoG onset

before actual occurrence of the symptom (Chapter 5). This study demonstrates the potential

of our algorithm to accurately identify FoG episodes and deliver of preemptive cueing to help

patients prevent or overcome FoG.
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Chapter 2

Background and Motivation

2.1 Parkinson’s disease

Parkinson’s disease (PD) results from degeneration of the dopamine–synthesizing neurons

and is the second most common neurodegenerative disease among elders, preceded by

Alzheimer’s [29]. PD is clinically characterized by motor symptoms, including resting

tremor, slowness of movement (bradykinesia), hastening of the gait (festination), paucity of

spontaneous movements (akinesia), reduced arm swing, and poor postural stability, as well

as non–motor features, including cognitive impairment, hallucination and depression. Gait

impairment is the most incapacitating symptom among patients with PD [30], as it negatively

affects mobility and independence, and may result in emotional stresses and reduced quality

of life [2–4]. The prevalence of PD in individuals over age of 50 is estimated to double by

2030 [21], which underlines the need for development of treatments for gait impairment in

this relatively large population.

2.2 Freezing of Gait

Freezing of gait (FoG) is described as brief episodes of inability to step forward or as taking

extremely short steps when initiating gait or turning [31]. FoG is commonly regarded as

a feature of akinesia, an extreme form of bradykinesia [32]. The majority of FoG episodes

last less than 30 seconds [9] (Figure 2.1a). This incapacitating motor dysfunction is highly
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affected by environmental stimuli, cognitive input, medication and anxiety [33, 34]. As

a result, FoG occurs more frequently at home than in the clinic, in complete darkness,

and in other settings that require greater cognitive load like dual–tasking situations [35–

38]. Schaafsma et al. described five subtypes of freezing when: initiating gait, turning,

walking through tight hallways, terminating gait, and open space hesitation [39]. Figure 2.1b

compares the number FoG episodes in three categories of initiation, turning, and walking

through obstacles [9]. Clinical assessment of FoG severity is usually done using scales such

as Unified Parkinson’s Disease Rating Scale (UPDRS) and FoG questionnaire (FoG–Q) [40].

However, these subjective scales lack validation of the frequency (i.e. number of events per

day), time onset and the duration of the FoG events.

Levodopa (LD) and dopamine agonist (DA) are the most common pharmacological

treatments for PD patients in early stages of the disease and suffering from impaired activities

of daily living. LD provides the greatest benefit for patients with PD+FoG by improving

stride length and gait velocity, and reducing FoG duration [41, 42], whereas DA may provoke

more FoG episodes in early stages of disease [43]. Patients are considered to be “ON” when

medication is working and “OFF” when it is no longer effective. ON and OFF phases can

be quite distinct from each other, with an individual feeling energetic and able to move with

reduced tremor and stiffness in the ON state, and unable to arise from a chair unassisted

in the OFF state. Although LD is quite effective in early stages of the disease, its effect

on parkinsonian symptoms wears off over time, as the disease progresses and treatment

continues, and the effective duration may shorten to 2 hours [5]. Furthermore, long-term

administrations of LD may induce involuntary, erratic movements, called dyskinesia [44]. On

the other hand, drugs for non–motor symptoms could interfere with the effectiveness of LD

and aggravate motor symptoms [45]. FoG happens more frequently during the OFF state

[12] (Figure 2.1b).

For many patients with concurrent FoG symptoms and cognitive disorder, the efficacy

of medication therapy is poor and deep brain stimulation (DBS) is often prescribed [7].

Non–randomized studies with low sample sizes have shown that DBS can improve FoG and

the effect can last for at least 1 year, however, the risk of aggravating other symptoms still
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(a)

(b)

Figure 2.1: (a) Distribution of FoG duration; (b) Number and category of FoG events
(initiation, turning, or obstacle) relative to time after LD administration [9].
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exists [6, 7]. Therefore, effective non–pharmacologic treatments are also required to relieve

symptoms and improve mobility and quality of life.

2.3 External Cueing

Automaticity in gait of individuals with PD is hampered when dual tasking, and even more

during FoG [46]. It is thought that motor dysfunctions in PD result from limited resources

and less automaticity of motor plans due to the damage to the basal ganglia [47]. Although

rates of motor learning in PD patients can be slower than their age–matched individuals,

their motor performance can be improved with rehabilitation using motor learning principles

[48]. To improve automaticity, behavioral self–management strategies are conducted to shift

patients’ habitual motor control to a target–specific tasks [49, 50]. Patients are instructed to

allocate their attention to gait by specific self–prompting instructions (internal cues) or make

use of devices (external cues) or a combination of these. External cues circumvent the use of

the defective internal trigger originating in the basal ganglia and enable planned movements

[51]. External spatial cues (e.g., strips placed or laser beams projected on the floor) can

be customized for each patient based on their stride length and show patients where to put

their next step (Figure 2.2a). On the other hand, temporal cues (e.g., auditory metronome or

vibrotactile feedback) are customized based on cadence and inform users when a step should

be taken (Figure 2.2b and 2.2c). Such non–invasive, non–pharmacological interventions

provide patients with discrete targets for execution of movement to preserve normal gait and

prevent FoG, or implement rescue instructions once FoG has occurred [52, 53]. Studies have

shown that rehabilitation with external cueing resulted in overall positive effects on FoG

severity as well as improved gait velocity and stride length [49, 54–56].

Frazzitta et al. investigated the effects of visual and auditory external cueing on PD

participants with FoG symptoms [58]. Participants received cueing therapy daily for 20

minutes and demonstrated statistically significant improvements in FOG–Q score after four

weeks. Nieuwboer et al. delivered cueing training in the home of 153 individuals with PD [1].

Cueing was provided through three modalities: (1) auditory (a beep triggered through an

earpiece); (2) visual (light flashes triggered through a light–emitting diode attached to a pair
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(a) Visual cueing: parallel lines marked on the floor at a fixed distance apart

(b) Auditory cueing: beeps set at the normal walking cadence

(c) Somatosensory cueing: taps or vibrations set at the normal walking cadence

Figure 2.2: Three external cueing modalities. Information may be perceived and processed
through multiple brain regions (BG–basal gangalia, SMA–supplementary motor area, and
cerebellum [57].
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of glasses); and (3) somatosensory (pulsed vibrations triggered by a miniature cylinder worn

under a wristband). The results showed that severity of freezing was reduced by 5.5% in

participants with FoG symptoms. Kadivar et al. compared a battery of clinical assessments

after a 6–week training session and 4 weeks follow–up in two groups of eight participants

practicing with rhythmic auditory stimulation stepping (RAS group) and no–cue stepping

(no RAS group) [48]. Results suggested that the RAS group significantly improved FoG

symptoms (as measured by FOG–Q) and maintained improvements above baseline values

for at least 4 weeks after practice termination.

2.4 FoG Detection

“Always–on” cueing is defined as a paradigm in which stimulus is delivered repeatedly to the

user regardless of any prior or imminent FoG episodes. However, individuals with PD are

known to adapt to interventions provided continuously, thus reducing the effect of cueing

[49, 59]. Therefore, it is ideal to deliver an external stimulus only when it is contingent

on symptom onset. This requires the development of an integrative system capable of

automatically detecting FoG episodes. A variety of methods for such an approach include

using data captured from electrocardiography (ECG) systems [60], electromyography (EMG)

systems [61, 62], 3D motion systems [63, 64], foot pressure sensors [65, 66], and Inertial

Measurement Units (IMUs) [8, 9]. FoG detection methods using the last category mainly

employ spectral analysis of accelerometer signals collected by wearable sensors placed on

lower parts of the body (ankle and knee). Moore et al. used an IMU mounted around shank,

and defined a freeze index (FI) using power spectrum analysis of accelerometer signals [9].

Applying an individually calibrated threshold to the FI indices, they could recognize 89%

of FoG events, while classifying 10% of events incorrectly as FoG. Bächlin et al. obtained

higher sensitivity (88.6%) and specificity (92.4%) in detecting FoG using FI and a second

power threshold to discriminate volitional standing from recognized FoG [12].

Tripolitia et al. calculated the entropy of signals captured from six accelerometers and

two gyroscopes placed on wrists, ankles, waist and chest of sixteen participants to train four

classification algorithms (Näıve Bayes, Random Forests, Decision Trees and Random Tree)
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to detect FoG events [8]. They compared different configurations of sensors in order to find

a set of sensors optimal for FoG episode detection. Their proposed methodology was able to

detect FoG events with 81.94% sensitivity and 98.74% specificity with the Random Forests

classification algorithm using signals from all sensors.

Mart́ın et al. distinguished FoG from normal gait using data collected from 21 PD

participants wearing a single waist–worn triaxial accelerometer [24]. A total of 55 features

were extracted from windows of 3.2 seconds with 50% overlap, and used to train and test

generic and personalized SVM classifiers. The results showed sensitivity and specificity of

74.7% and 79.0% for generic, and 88.1% and 80.1% for personalized models. Tahafchi et

al. used temporal, spatial, and physiological features to train a SVM classifier to identify

freezing episodes [25]. Data were collected using inertial sensors attached to the thigh, shank,

and foot, and non–invasive surface EMG sensors attached to quadriceps/tibialis muscles of

PD participants. They detected 90% of the FoG events correctly, while identifying 8% of

the non–FoG data incorrectly as FoG.

Mazilu et al., tested different supervised machine learning algorithms on detecting

FoG events using 3–D acceleration signals collected from the ankle, knee, and hip of

10 PD participants [23]. A correlation–based feature subset selection was used to

choose only the most discriminative features. They compared results from two different

approaches: “patient–dependent”, in which both training and testing data were from

the same participant, and “patient–independent” utilizing leave–one–out cross validation

(LOOCV). Their results for patient–dependent models showed average sensitivity, specificity,

and F1 (see section 3.3.6) of 99.54%, 99.96% and 99.75%, respectively, using Random Forest

classifiers. However, the average performance for patient–independent models resulted in

much lower sensitivity and specificity (66.25% and 95.38%, respectively).

Using more recent techniques, Camps et al. applied a deep learning method to

detect FoG episodes in home environments [27]. Their algorithm employed an eight–

layered one–dimensional convolutional neural network and spectral window stacking as data

representation to combine information from both the prior and current signal windows. They

used data from a single IMU placed on the waist of thirteen participants to train the model

and tested the model on data from four other participants (not included in the training
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set). The model detected FoG episodes with sensitivity and specificity of 91.9% and of

89.5%, respectively. Finally, Xia et al. implemented a deep convolutional neural network

to detect FoG events [28]. The system segmented one–dimensional acceleration signals into

windows of 4 seconds and realized automatic feature learning in order to discriminate FoG

from normal gait, thus, removing the need for extracting hand–crafted features and time–

consuming feature selection. They reached average sensitivity and specificity of 99.64%

and 99.99%, respectively, using patient–dependent, and 74.43% and 90.60% using patient–

independent models.

2.5 FoG Prediction

Although activation of cues after “detection” of FoG onset can help patients overcome

freezing, it may result in cognitive overload by superimposing an external stepping rhythm

and aggravate the FoG. Ginis et al. suggested that an optimal timing for delivering intelligent

cues is before the actual onset of a potential FoG episode [49]. Such “predictions” would

enable preemptive cueing and potentially reduce the likelihood of FoG occurrence [1].

Palmerini et al. removed FoG labeled samples and formed a binary dataset of 2–second

pre–FoG and normal gait [67]. The linear discriminant analysis classifier identified 83% of

the pre–FoG episodes on average in patient–dependent model, although only 67% of normal

gait samples were correctly identified. Torvi et al. studied the performance of a deep domain

adaptation algorithm to address variability in gait data and developed a prediction model

for a particular patient by leveraging data from different subjects [68]. Their model reached

88% prediction accuracy within 1 second before FoG onset in patient–dependent mode.

The prediction accuracy improved to 93% with the addition of transfer learning techniques.

However, it is not clear if the prediction accuracy in this study was equivalent to sensitivity

metric, or the accuracy of classification for both classes combined. Thus, no comparison

with the other studies can be made.
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2.6 Research Design

In this study, high–resolution, quantitative data obtained by wearable sensors will be used

to identify the event onset and provide effective intervention. There are therefore three

associated research objectives: (1) development of algorithms to predict FoG symptom onset;

(2) implement the developed methods into an Android application for real–time prediction

of FoG and provision of cueing; and, (3) evaluation of the cueing impact on frequency and

severity of FoG. In the following we describe these objectives in detail.

The described studies above achieved high classification accuracy for FoG detection,

especially with patient–dependent models which reduces the effect of heterogeneity in data

from different participants. However, these studies seldom reported the detection latency

(i.e., time associated with classification after FoG onset) and prediction capability (i.e.,

time associated with classification prior to FoG onset). This study aimed to evaluate the

classification performance of different machine learning and deep learning methods to identify

FoG. In Chapter 3, a new algorithm was employed to define the best combination of sensor

position, axis, sampling window length and features to recognize FoG. We hypothesized that

gait deterioration before FoG onsets can be discriminated from normal gait using statistical

analysis of features extracted from successive windows of lower–limb acceleration signals.

We defined a new performance measure, “predictivity”, to compare the number of correctly

predicted FoG events among different combinations [69]. In Chapter 4, we investigated

the ability of individual and ensemble classifiers to predict FoG. We also studied the effect

of imbalanced class ratio (i.e., the relative infrequency of FoG occurrence when compared

to normal gait behaviors) and classification cost on classifier performance [70, 71]. Using

all these techniques, the detection and prediction remained challenging particularly for

individuals who did not exhibit sufficient instances of freezing episodes for model training.

In Chapter 5 we introduced a Deep Gait Anomaly Detector (DGAD) to predict FoG. The

algorithm implements a transfer learning–based approach to train a reference model using

FoG and normal gait samples of participants who experienced FoG during the clinical data

collection sessions. The model is then re–trained using only normal gait data from a new

participant to form a patient–specific model. We also evaluated the effect of augmenting
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training data and adding pre–FoG segments (data occurring prior to the freezing onset) to

the FoG training data on model performance.

With the encouraging results obtained in the experiments, we developed Android

applications to collect and analyze data in real–time and provide vibrotactile and auditory

cueing for patients (Chapter 6). We hope this technology can provide an effective intervention

to accurately predict FoG events using wearable inertial sensor data, and ultimately help

patients prevent FoG through external preemptive cueing. Finally, the effect of the

intervention on FoG symptom will be evaluated by PD participants during a 6–week in–

home study.
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Chapter 3

Prediction of Freezing of Gait Using

Statistical Inference and Lower–Limb

Acceleration Data

3.1 Introduction

In this chapter we discuss feature extraction from the signals collected through sensors placed

on ankles, thighs, and waist of participants with PD. First, we introduce features capable of

discriminating FoG from normal gait. Previous studies have shown that using thresholds for

these features can reveal FoG. Next, we discuss our new approach using feature values from

successive segments of data to predict FoG before its occurrence. We expected that, using

a statistical analysis, the feature values from pre–FoG periods can be distinguished from

those of normal gait periods. Finally, we will discuss the results and ability of the proposed

algorithm to accurately identify FoG.

3.2 Background and Approach

Moore et al. used an shank–worn Inertial Measurement Unit (IMU) and defined a freeze

index (FI) using power spectrum analysis of accelerometer signals [9]. They Applied an

individually calibrated threshold to the FI values and obtained 89% sensitivity and 90%
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specificity (see section 3.3.6). Although the sensitivity was relatively high, the algorithm was

highly patient–dependent and a global threshold value reduced the accuracy. Bächlin et al.

proposed an FoG detection algorithm based on the freeze index and a second power threshold

to discriminate standing events from recognized FoG, and achieved higher sensitivity (88.6%)

and specificity (92.4%) [12]. Rezvanian and Lockhart used continuous wavelet transform

(CWT) to define an index for identifying FoG events using a single accelerometer on the

shank [72]. They defined an optimal threshold as the value that showed minimal false

negative and false positive results among all ten PD participants, and achieved 82.1% and

77.1% sensitivity and specificity, respectively.

Freeze index has been widely used in different studies aimed to detect FoG episodes.

Compared with features extracted from wavelet coefficients (WT), freeze index requires less

memory and computation which makes it easier to implement in portable devices, with

less computational processing power, used for real–time FoG detection. Sample entropy

(SampEn), a complexity measure developed by Richman et al. [73], on the other hand, has

not been used in studies with the PD population. Yentes et al. used SampEn to investigate

gait characteristics of younger and older groups [74]. Riva et al. also used SampEn to assess

fall risk using trunk acceleration data of healthy participants. In this study, we used FI,

WT and SampEn features from lower limb accelerations to validate our hypothesis about

identifying FoG episodes before they actually occur.

Some wearable systems including motion sensors have been developed for the automatic

detection of FoG, and the subsequent provision of cues during FoG episodes to help the

patients overcome motor block. However, these systems must wait for the patient to freeze

and then, if detected, take proper actions. Predicting FoG, on the other hand, enables

preventive cueing and potentially reduces the likelihood of FoG occurrence [1]. In this

work we go a step further and propose a methodology for the automated prediction of

FoG events using wearable inertial sensors. The hypothesis of this study is based on the

statistical analysis of feature vectors during normal gait and before FoG onset to identify

the premonitory state, i.e. when the normal gait is about to transform into freezing. In cases

where there is a statistically significant difference between the feature values of successive

windows, FoG is about to occur. We selected various feature vectors on which we performed
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statistical analyses in an effort to predict FoG. In addition to common sensitivity and

specificity measures, we defined predictivity as an evaluation of the predictor performance

using different combinations of sensor position, sensor axis, sampling window length and

features.

3.3 Methods

3.3.1 Dataset

The data set used in our analyses was derived from the DAPHNet project dataset, which

consists of sensor data extracted from seven male and three female advanced PD participants

(66.±4.8 years, Hoehn and Yahr score in ON 2.6±0.65) [12]. Three tri–axial accelerometers

were placed at the shank (just above the ankle), thigh (just above the knee), and lower back

to collect acceleration in three axes of horizontal forward (perpendicular to the frontal plane),

vertical (perpendicular to the transverse plane), and horizontal lateral (perpendicular to the

sagittal plane). Data from these custom sensors were sampled at 64 Hz and transmitted to

a wearable computer via Bluetooth.

Participants were tested in OFF medication state (at least 12 hours after taking anti–

Parkinsonian medication), except two participants who had frequent FoG episode during the

ON state. The participants were asked to perform three walking tasks (10–15 minutes each):

1) walking in a straight line in the laboratory hallway including 180◦ turns; 2) random walking

including stops and 360◦ turns in a larger hall; and, 3) tasks simulating activities of daily

living including walking through doorways to enter and leave rooms and the kitchen, fetching

coffee, and walking with the cup of water in hand as a dual tasking activity. Participants

walked at their own natural pace while a therapist walked closely for safety reasons. The

experiments were video–taped and the files were used by physiotherapists to determine onset

and duration of FoG episodes.

A total of five hundred minutes of data were collected, among which a total of 237 freezing

events from eight participants (0–66 per subject, 23.7±20.7, ranging from 0.5 to 40.5 seconds

long, 7.3± 6.7 s) were recognized by the physiotherapists. Fifty percent of the FoG episodes
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lasted less than 5.4 seconds, and 93.2% were less than 20 seconds long. The labeled data

were used as the ground truth in our FoG performance evaluations.

3.3.2 Feature Extraction

In this study, a battery of literature–based features were extracted from the lower body

acceleration data to identify FoG incidents. We compared results obtained from three

features: freeze index, wavelet mean, and sample entropy. In order to extract features,

we used sliding windows of duration 2, 2.5, 3, 3.5, and 4 seconds, and a delay between

windows of 0.5 second (Figure 3.1). Bächlin et al. also used sampling size of 4 seconds with

the same step size in the original DAPHNet study to calculate FI of acceleration [12].

Freeze Index

Moore et al. discovered components in the 3–8 Hz band of power spectra from shank’s

movement during FoG, which were not present during normal walking [9]. In order to

discriminate FoG from normal walking, they defined a freeze index (FI) as the power in 3–8

Hz (“freeze” band) divided by the power in 0.5–3 Hz (“locomotor” band) of the Fast Fourier

Transform (FFT) of the acceleration signals. They identified windows of data with FI values

above a freeze threshold as FoG events. FI has been widely used to detect freezing events

because it reflects the high–frequency components in the freeze band related to trembling of

the lower limb that are not apparent when standing or walking (Figure 3.2). In this study,

we used the same frequency bands as [9] to find FI for each segment of signals.

Wavelet Mean

wavelet transform is a standard tool that shows how the power amplitude of a specific

frequency in a signal changes over time. This detailed time–frequency analysis enables

localization of the transient states of a signal in time, e.g. from normal gait to freezing.

Rezvanian and Lockhart used the sum of wavelet coefficients in freeze and locomotion bands

over a sampled window of acceleration data to discriminate FoG from non–FoG events [72].
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Figure 3.1: Windowing approach to segment acceleration data into windows of equal length.
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(a) Standing

(b) FoG (gait initiation)

(c) FoG (turning)

(d) normal walking

Figure 3.2: Vertical acceleration collected from a shank–worn sensor and corresponding
power spectra in a participant with advanced PD. (a) Minimal activity was observed during
volitional standing; (b) and (c) High–frequency components in the 2–6 Hz band were observed
during FoG; (d) Highly tuned components at the stride (∼1 Hz) and step (∼2 Hz) frequencies
(with higher frequency harmonics) were observed during normal walking [9].
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Sneha Baby et al. also used mean of absolute values of the detail coefficients in each

sub–band as a feature to train different classifiers to distinguish PD patients from controls

[75]. In this study, we used mean of detail coefficients of Discrete Wavelet Transform (DWT)

decomposition from level three (with mid–pseudo–frequency of fs=8 Hz) which includes the

freeze band discussed earlier. We chose the Daubechies wavelet of order four (db4) as the

mother wavelet due to its simplicity and continuous first–order derivative [72, 76, 77].

Sample Entropy

Tripoliti et al. used entropy values of acceleration signals to train different classifiers to

detect FoG events [8]. They suggested that because FoG is a symptom happening with a

non–linear pattern, a non–linear feature such as entropy may more effectively distinguish

FoG from normal gait. In this study, we used Sample Entropy (SampEn), a modification

of entropy, which has been used to analyze physiological variability in human gait [78].

SampEn(m,r,N ) is a measure of repeatability or predictability within a time series and is

derived from approaches developed by Richman and Moorman [73]. SampEn(m,r,N ) is the

negative natural logarithm of the conditional probability that if two sequences of m points

have distance < r, then two sequences of m + 1 points also have distance < r. Let’s define

Bm(r) as the probability that two sequences will match for m points, and Am(r) as the

probability that two sequences will match for m + 1 points:

Bm(r) =
1

N −m

N−m∑
i=1

Bm
i (r) (3.1)

Am(r) =
1

N −m

N−m∑
i=1

Am
i (r) (3.2)

where Bm
i (r) is 1

N−m−1 times the number of vectors xm(j) within r of xm(i), and Am
i (r) is

1
N−m−1 times the number of vectors xm+1(j) within r of xm+1(i), where j ranges from 1 to

N −m, and j 6= i to exclude self–matches. Then:

SampEn(m, r,N) = − ln
Am(r)

Bm(r)
(3.3)
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In this study, we used suggestions of Tochigi et al. for entropy analysis of tri–axial leg

acceleration signal waveforms, and set the parameters as: m = 2 and r = 0.2 × σ, where σ

is the standard deviation [78].

3.3.3 FoG Detection Algorithm

Various studies have used FI thresholding methods to identify FoG episodes [9, 11, 12, 79].

Using this method, when the FI value during a window of time becomes greater than a

set threshold, it is identified as an FoG event. In this study we investigate the accuracy of

FoG detection using different features over multiple windows of data. Figure 3.3 shows the

acceleration and corresponding FI for three axes of the sensor located on the shank of one

participant. It suggests that FI remains almost constant during normal walking, but starts

to grow before FoG occurrence (labeled as “pre–FoG”). Thus, we hypothesized that changes

in FI values over successive windows of time not only can reflect FoG occurrence, but also

can be used to predict FoG before its actual occurrence. This section describes how we used

feature values of consecutive windows to predict FoG episode before, or detect FoG onset

after, the actual FoG occurrence.

In this method, we calculate feature values from the most recent 2n windows. We then

refer to the first n windows as Group1 and the second n as Group2. Figure 3.4 shows the

acceleration and FI values corresponding to each window as well as Group1 and Group2

windows used at time T1 and its successive time step, T2. In this study we used a set

of three consecutive windows per group (n=3). We chose this period having in mind

that it is a parameter that could be variable with the context where each FoG occurs.

However, six windows were assumed to represent an appropriate period of time to identify

gait deterioration before an FoG episode.

In order to reduce false positives (incorrectly identified FoG events), gait windows that

may represent stops were marked as “no–FoG”. Stop periods were identified using a method

similar to one described in [80]. Inactive periods regarding the activities unrelated to the

experimental protocol are labeled in the DAPHNet dataset. Here, we found a stop threshold

for each participant equal to the maximum amplitude of acceleration during one of the

labeled inactive periods. If acceleration data remained within the threshold for 1 second, the
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Figure 3.3: Acceleration data and corresponding freeze index for each axis of the shank
sensor. Areas labeled as pre–FoG are three seconds before FoG onset.
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(a)

(b)

Figure 3.4: Grouping windows of data to predict/detect FoG (T is the starting point of
any arbitrary window, W is the window length, and S is the step size). (a) Windows of data
used to identify FoG/preFoG at point T1; (b) Windows of data used to identify FoG/preFoG
at the next window, point T2.
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data were marked as “Stop.” Then, consecutive periods that were less than 1 second apart

were merged together. This thresholding and merging method has been used by El–Gohary

et al. to detect turns during gait in PD participants [81].

For each participant, sets of Group1 and Group2 windows were part of the statistical

analysis. The starting point of a window (T1 and T2 in Figure 3.4) is marked as FoG

onset if there is a statistically significant difference in the selected feature value between

the Group1 and Group2 windows. The non–parametric Kruskal–Wallis test is chosen for

statistical analysis, as the normally distributed assumption of parametric tests is violated

when comparing groups of small samples. MATLAB (Release 2018a, The Math Works,

Inc., Natick, MA, USA) was used for data preprocessing, feature extraction, and statistical

analyses.

3.3.4 Annotation of Ground Truth

In this study our main objective was to predict FoG. This would potentially allow for applying

preventing cues, reducing the likelihood of FoG occurrence [67, 82]. Figure 3.5a shows

how the original labeled FoG signal (S1) is post–processed to create the ground truth for

assessment of the FoG detection algorithm. The FoG onset is shifted to left to the starting

point of the last window with no FoG labeled sample (Fs). The end point (Fe) is the

beginning of the first window with no FoG labeled sample (signal S2). In the next step, only

the FoG onset is kept and the other windows corresponding to FoG plus one window of data

following the FoG end point are discarded (signal S3). This part of data is discarded to make

sure the comparison of post–FoG data with the following normal gait does not yield false

positives. FoG events among the discarded data were also ignored as in Figure 3.5b.

Tp and Td are the prediction and detection periods, respectively. The system was required

to detect FoG onset in the range of 2 seconds before/after the actual FoG onset in order to

report it as a correctly recognized predicted/detected freezing episode (Tp = Td = 2). The

same time range was used in [12] to calculate the accuracy of the FoG identification method.

We considered 2 seconds to be the appropriate window length because it is long enough to

capture data from two strides before the onset of freezing.
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Figure 3.5: Post–processing of the labeled FoG signal to annotate the ground truth (Fs

and Fe are the start and end of the FoG episode; Tp and Td are prediction and detection
duration; and Pis are the identified FoG episodes).
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In Figure 3.5a, signal S4 is the detected FoG signal. P1 is identified as a False Positive,

while P2 is a True Positive (a correctly predicted FoG). In this particular case, because the

system has already predicted freezing, P3 is ignored, otherwise it would be counted as a True

Positive (correctly detected FoG). P4 is discarded and P5 is a False Positive.

3.3.5 Online vs. Offline FoG Detection

The proposed algorithm can be implemented in an online FoG prediction/detection system

with minimal modifications. The flow chart of the online and offline FoG detection

algorithms, including the parameters at each step, is depicted in Figure 3.6. The online

FoG detection includes a cueing system to help patients overcome the freezing episodes

[1, 83].

3.3.6 Performance Evaluation

In order to compare FoG detection performance between different combinations of sensor

positions, sensor axes, window length, and feature, we calculated predictivity, sensitivity,

specificity, and F-score for each case. We defined predictivity as the ratio of correctly

predicted FoG events to all correctly identified events. In this case, the product of predictivity

and sensitivity shows the ratio of correctly predicted events to all FoG events.

TP = TPpre + TPdet (3.4a)

Predictivity = 100× TPpre

TP
(3.4b)

Sensitivity = 100× TP

TP + FN
(3.4c)

Specificity = 100× TN

TN + FP
(3.4d)

F − score = 100× 2TP

2TP + FP + FN
(3.4e)

where TPpre and TPdet are the number of correctly predicted and detected FoG events,

respectively, TP is the total True Positives, TN is the total True Negatives, FP is the total

False Positives and FN is the total False Negatives (Table 3.1).
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Figure 3.6: Flow chart comparing the online and offline FoG prediction algorithms including
all parameters.
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Table 3.1: Confusion matrix (NG: normal gait, FoG: freezing of gait).

Predicted

NG FoG

NG True Negative (TN) False Positive (FP)
Actual

FoG False Negative (FN) True Positive (TP)
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3.4 Results

We used 120 combinations of sensor locations (shank, thigh, waist, and majority voting), axes

(F: perpendicular to frontal plane, V: perpendicular to transverse plane), window lengths,

and features to find the best FoG prediction performance. The majority vote (MV) method

identified FoG using all three accelerometers; at each window of data the combined result

was set to “FoG” if at least two of the three sensors indicated a freeze event, and “NG” if

only one or none of the sensors identified FoG. The preliminary results using the acceleration

in the lateral axis were not comparable to the other axes, thus were excluded. Figure 3.7

shows the FoG identification results for all combinations of sensors, axes, window lengths,

and features, averaged across participants. In the following, we refer to each combination

using the array of [sensor,axis,window length,feature].

3.4.1 Predictivity

[Thigh,V,4,FI] and [Shank,V,3,FI] showed the highest rate of predictivity (96.7 ± 5.6%

and 95.7 ± 3.9%, respectively). Additionally, using [Waist,F,2.5,FI], 95.4 ± 5.1% of the

recognized FoG events were predicted prior to occurring.

3.4.2 Sensitivity

[Thigh,F,4,SampEn] and [Thigh,V,[2,2.5,3],FI] showed the highest sensitivity (99.7 ±

0.7% and 99.5± 1.5%, respectively). The results also suggest that WT is the least sensitive

feature to FoG events.

3.4.3 Specificity

The specificity of the algorithm to FoG events was inversely related to sampling window

length. With a small window (2 or 2.5 seconds) most of the sensor/feature combinations

exhibited specificity above 85%. Among all combinations, using majority voting of both

horizontal forward and vertical axes showed highest specificity, with SampEn and window
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Figure 3.7: Predictivity, sensitivity, and specificity versus window length for the three
selected features (MV refers to majority voting as using all the three sensors; (F) and (V)
refer to forward and vertical axes of the sensors).
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length of 2 seconds (92.0±2.5% and 91.6±2.1% using [MV,F,2,SampEn] and [MV,V,2,SampEn],

respectively).

The waist sensor was very sensitive to FoG using FI (96.0–98.5%) and SampEn (96.6–

99.2%) with a robust predictivity (88.6–95.4%), but had the lowest specificity (<85%) among

the selected combinations. Thus, waist is not a suitable sensor position for FoG detection

applications.

All cases with specificity higher than 85% are listed in Table 3.2. Here, we selected 85% as

a performance criterion which seems a relatively fair threshold compared with other studies.

3.5 Discussion

Using wearable inertial sensors, we found evidence that the pre–FoG periods can be separated

from normal walking in patients with PD who suffer from freezing of gait. We tested the

features that are usually used for FoG detection (i.e., after the FoG onset) to see how they

can be used to predict FoG before its occurrence. At least four independent variables must be

considered: the location and number of sensors, the sensor axes, the length of the sampling

window, and the extracted feature. These choices represent tradeoffs between predictivity,

sensitivity, and specificity; the longer the sampling window, the higher the predictivity and

sensitivity at the expense of lower specificity (more false positives).

The best results were achieved when using majority voting (at least two sensors

identifying FoG) from horizontal forward axis and FI feature with window length of 2

seconds. Two comparably performing combinations include the forward axis of the thigh

and shank accelerometers, respectively, which suggests that the dysrhythmicity associated

with FoG can be detected from forward motion of the thigh and shank. The performance for

the other sensor positions, axes, window lengths and features are nevertheless quite good,

suggesting that sensors can be placed at a variety of body locations without significant loss

of performance.

As a recommendation, a single shank sensor makes for an ideal location as the

accelerometer can be easily placed in the insole or on the lateral heel of a shoe to detect

gait abnormalities [84, 85]. Among all combinations of the shank sensor listed in Table 3.2,
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Table 3.2: Highest performing (> 85% specificity) combinations of sensor position, axis,
window length, and feature sorted by descending specificity.

Sensor
(axis)

Window
Length [s]

Feature
Predictivity

[%]
Sensitivity

[%]
Specificity

[%]

MV (F) 2.0 SampEn 83.8± 6.1 93.8± 4.6 92.0± 2.5
MV (F) 2.0 FI 91.2± 5.0 97.0± 4.4 89.7± 2.4
MV (F) 2.5 SampEn 85.8± 3.7 96.3± 4.3 89.6± 2.8

Thigh (F) 2.0 FI 92.0± 6.2 97.9± 2.0 89.5± 2.7
MV (V) 2.5 SampEn 87.8± 6.1 94.1± 4.5 89.1± 2.2

Shank (F) 2.5 SampEn 88.8± 7.5 92.5± 5.8 89.0± 4.1
Shank (F) 2.0 WT 86.9± 8.3 93.4± 3.0 89.0± 13.3
Thigh (F) 2.0 SampEn 88.7± 6.7 94.8± 3.4 88.8± 3.0
Shank (F) 2.5 WT 91.4± 5.5 92.1± 8.8 88.6± 3.2
Thigh (V) 2.0 SampEn 84.9± 12.9 95.8± 3.8 88.3± 2.9
MV (F) 2.5 FI 92.2± 4.0 98.6± 2.1 88.1± 3.0

Thigh (F) 2.5 FI 93.3± 4.7 97.6± 2.1 88.0± 3.2
Shank (V) 2.0 WT 89.9± 7.8 93.4± 3.2 87.7± 3.1
MV (V) 2.5 FI 93.6± 5.2 98.5± 1.8 87.6± 2.5
MV (F) 3.0 SampEn 90.4± 9.6 95.5± 5.0 87.6± 3.2

Shank (F) 3.0 WT 90.1± 6.4 94.2± 8.0 87.1± 3.6
Shank (V) 2.5 WT 86.1± 7.9 95.5± 5.3 87.0± 4.0
Shank (V) 2.5 SampEn 89.3± 6.7 97.4± 3.2 86.8± 3.3
Waist (V) 2.0 SampEn 90.4± 10.2 96.4± 3.5 86.8± 3.4
Waist (V) 2.5 SampEn 90.2± 6.9 97.2± 4.1 85.5± 3.8
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[Shank,F,2.5,SampEn] demonstrated the highest mean and lowest standard deviation (less

patient–dependency) in performance. Our results for the forward axis of the shank sensor

(sensitivity of 92.5 ± 5.8%, specificity of 89.0 ± 4.1%) demonstrated improved performance

as compared to [12] (sensitivity of 88.6%, specificity of 92.4%), which used the same

dataset and optimized patient–dependent freeze index thresholds to detect FoG. Their

method also included FoG prediction using the same time threshold (2 seconds before actual

FoG occurrence) but no results were reported for predictivity. Moore et al. also used

individually calibrated freeze thresholds and obtained sensitivity and specificity of 89% and

90%, respectively [9]. We believe that post–processing of the results can help reduce the

false positive incidents and improve the specificity of the proposed FoG detection method.

Rezvanian and Lockhart computed summation of wavelet components in locomotor and

freeze bands and defined an FoG index as the ratio of the two values [72]. They achieved

82.1% and 77.1% for the sensitivity and specificity, respectively, using a single shank sensor.

Tripolitia et al. calculated entropy of signals from six accelerometers (on ankles, wrists, chest

and waist) and two gyroscopes (chest and waist) and tested four classification algorithms to

detect FoG [8]. Using Random Forests classification algorithm, FoG events were detected

with 81.94% sensitivity and 98.74% specificity. These results show higher specificity and

lower sensitivity compared to [MV,F,2,SampEn] combination in this study. However, the

results for a single ankle sensor cannot be compared as was not reported in their study.

Pham et al. used anomaly score detector technique to identify patterns of gait that are

not similar to previous windows of data. Their method achieved 94 ± 23% and 84 ± 36%

sensitivity and specificity, respectively, using vertical acceleration of a sensor located at the

ankle [86]. Their method resulted in higher sensitivity and lower specificity than that of this

study. However, the standard deviation of both measures is an order of magnitude higher,

which shows higher degrees of performance variability compared to our algorithm.

Palmerini et al. trained a linear discriminant analysis classifier to discriminate pre–FoG

episodes from normal gait using a wearable multisensory setup [67]. They divided the data

into 2–second windows of normal gait and pre–FoG, and discarded the windows overlapping

with FoG events. This classifier was able to identify 83% of the pre–FoG episodes, i.e. 83%

of the FoG event were predicted. Our selected combination of [Shank,F,2.5,SampEn] was
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able to correctly predict 82.1% (product of predictivity and sensitivity) of total events, while

[MV,F,2,SampEn] showed even higher rate of 88.5%.

The limitations of this study were the short data length for each participant (24.6± 6.6

minutes), the limited number of participants (10), the number who experienced FoG during

the test (8), as well as lacking actual daily life environments. Furthermore, different stimuli

trigger motor fluctuations in patients with PD (e.g., turns, walking in narrow spaces, and

stops) [33, 87, 88]. These were included in the DAPHNet experiment but were not labeled

[12]. Thus, we planned to conduct a similar experiment including activities of daily living

and different real–world stimuli to examine the applicability of this technique for home–based

rescue strategies and therapies.

For implementing the proposed method in an online FoG detection system, the complexity

of the feature extraction method and computation time may be another element of interest.

Future research needs to address the latency inherent to the feature extraction algorithms

and statistical analyses with corresponding window size.

3.6 Conclusion

This work indicated prediction of FoG before its occurrence using freeze index, wavelet

transform, and sample entropy features of lower limb acceleration is attainable by statistical

analysis of successive windows of data. The analysis of 120 different combinations of sensor

positions, sensor axis, sampling window length, and feature showed that all combinations of

freeze index and sample entropy features with 2–2.5 seconds window length could be used for

FoG prediction, although there were minor differences in performance. Since a single shank

sensor interferes less with walking and can be integrated easily into a shoe, it is especially

promising for real–time FoG prediction. A sensor at the waist could also be integrated into

a belt. However, the waist sensor showed low specificity and, therefore, is less preferable

for FoG cueing applications. The results suggested that the performance, especially the

specificity, increased by using majority voting.
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Chapter 4

Addressing the Class Imbalance

Problem in FoG Identification

4.1 Introduction

The main issue regarding data–driven modeling of FoG detection may be raised by learning

from an inherent imbalanced dataset, i.e., the duration of captured freezing of gait is almost

always a small percentage of the entire dataset. Most of the conventional classification

techniques assume balanced data distribution in data classes, which may lead to bias towards

the majority class. To tackle the imbalance in FoG and normal gait instances, ensemble

classifiers have been used to improve FoG detection [8, 23]. However, no study has been

done on data oversampling methods that create artificial new sample of the minority class

to improve classification performance. In this chapter we employed one of the most common

data synthesis methods to create a balanced training dataset for different classifiers and

compared the results with those of classifiers trained with the original dataset.

Previous studies achieved high classification accuracy for FoG detection, especially with

patient–dependent models which reduces the effect of heterogeneity in data from different

participants. However, these studies seldom reported the detection latency (i.e., time

associated with classification after FoG onset) and prediction capability (i.e., time associated

with classification prior to FoG onset). In this chapter we also investigated the ability of
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the models to predict FoG events using wearable inertial sensor data, which ultimately may

help patients prevent FoG through external preemptive cueing.

4.2 Background and Approach

Different methodologies have been suggested to face the imbalance challenge. Synthetic

Minority Oversampling TEchnique (SMOTE) is a method that attempts to address the class–

imbalance in the dataset by generating synthetic instances [89]. Using Euclidean distance

to measure vicinity in feature space, the algorithm synthesizes artificial data among the

minority data class. This oversampling method has also shown effectiveness when applied

to data with low–dimensional feature sets [90]. The vanilla SMOTE algorithm randomly

synthesizes data in the minority class without considering neighboring examples from other

classes, which causes deviance in data variance and over–generalization. Different variants

of the SMOTE algorithm have been proposed to combat this limitation. Among those,

we have selected the ADAptive SYNthetic (ADASYN) sampling algorithm [91]. ADASYN

has demonstrated performance improvements in various applications, including classification

of physiological data. For instance, analysis of electroencephalogram (EEG) signals is a

noninvasive brain imaging technique capable of automatically detecting various infrequent

conditions. Applying ADASYN to augment the rare–class instances has been a promising

alternative solution to address the possible biased performance of rare condition detectors

such as automatic seizure detection [92], emotion detection [93], classifying sleep stages

[94, 95], and driver behaviors [96]. This method has also been successfully evaluated on

other modalities including uterine electromyogram (EMG) or electrohysterogram (EHG) to

determine preterm birth and reduce the risk of preterm delivery [97, 98].

Recently, ADASYN has also been applied in the pre–processing pipeline for recognizing

individuals with PD using variants of physiological signal modalities. Wu et al. investigated

the capacity of voice–extracted features to manifest PD symptoms [99]. Mel–spectrogram as

a nonlinear time–frequency representation of acoustics was consumed to train a convolutional

neural network (CNN) model to automatically extract discriminative features of PD and

healthy control participants. ADASYN was employed to augment PD data samples in the
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CNN–synthesized feature space. Taleb et al. developed a clinical decision support system

for early detection and monitoring the progression of PD stages using ADASYN [100].

Participants’ handwriting portrayed the motor symptoms of PD in different stages, and

oversampling with ADASYN demonstrated the best accuracy of PD diagnosis and prediction

of PD stages when compared to other methods. In short, ADASYN has been successfully

applied to enhance the detection of rare phenomena, particularly to detect people with PD

impairments, but not yet to the detection of FoG onset.

Existing literature reported wide ranges of FoG detection and prediction accuracy for

participants using primarily patient–dependent approaches. This is partly due to the fact

that participants reacted differently to the FoG stimuli included in the experiments, which

caused wide ranges of FoG to non–FoG data ratios. Oftentimes, high levels of class imbalance

in data set aggravated model performance. Therefore, new techniques are needed to address

this issue, particularly when patient–dependent models are to be developed and implemented

in cueing intervention devices. This chapter compares the performance of different classifiers

in detecting FoG using an imbalanced binary training dataset in tandem with ADASYN

synthesized training sets. We also investigate how different data oversampling rates may

jointly affect the performance of patient–dependent and patient–independent models. We

applied three common approaches: using ensemble classifiers [101], adding new synthetic

FoG samples to the training dataset to improve balance [91], and increasing misclassification

cost for the minority class, i.e., FoG [102]. The selected classifier must have high performance

in discriminating FoG from normal gait within an appropriate time period before or after

FoG occurrence. The results of the study would serve to develop a therapeutic intervention

tailored to the patients, a real–time FoG detection system to identify FoG episodes and

provide stimuli to the patients to prevent and overcome freezing.
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4.3 Methods

4.3.1 Experiment Protocol

Schaafsma et al. described five subtypes of freezing triggered by gait initiation, turning,

walking through tight hallways, terminating gait, and open space hesitation [39]. In order

to trigger FoG symptoms, our experiment protocol included turns within wide and narrow

turning areas at either end of a hallway, varied path widths using shelves in the middle of the

hallway (Object Area), expected stops before turns and unexpected stops instructed vocally

when walking straight (Figure 4.1). The participants walked at a self–selected speed five

times across the 38ft. long × 5ft. wide walkway. Acceleration data in two axes of horizontal

forward (perpendicular to the frontal plane) and vertical (perpendicular to the transverse

plane) were captured using two accelerometers (APDM Inc. Opal Sensors, www.apdm.com)

placed on left and right ankles superior to the tibia/talus joint. Data were sampled at 128

Hz and stored on the sensors’ internal memory. As the algorithm will be implemented in an

online cueing device, we tested the feature extraction methods on an Android phone using a

researcher developed application. The results suggested that, due to the limited computation

power of cellphones compared with PCs, the data should be down–sampled to reduce the

computation time for feature extraction. Thus, the sampling rate of the collected data was

then reduced to 64 Hz using linear resampling.

4.3.2 Dataset

Eighteen participants with PD (12M/6F, 70.0±8.7 years, Hoehn and Yahr score between 2

and 4) walked in a narrow hallway for 29.1±8.2 minutes (524 minutes in total). 196 FoG

episodes over 16.9 minutes (5.1±5.5 seconds) were captured from nine participants. Figure

4.2 shows the distribution of FoG duration for all participants. 64% and 26% of the events

took less than 5 and 10 seconds, respectively.

An experienced clinician determined FoG episodes and labeled acceleration signals using

captured videos. The rest, included normal gait, stops and no activity periods. As for the

pre–processing of the data, first, we excluded the data associated with stops and no activity
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Figure 4.1: Experiment setting. Number of obstacles in the object area varied between 0,
1, and 2. The width of the walking path in the object area (w) varied between 150% and
100% of participant shoulder width.
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Figure 4.2: Distribution of FoG events duration.
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periods to create a binary class dataset of normal gait and FoG. Data from one second pre–

FoG periods were also included in the FoG class in order to enable the system to predict

FoG before its actual occurrence.

In order to extract quantitative features from continuous sensor data, we used sliding

windows of 2 seconds with 75% overlap to extract four features from acceleration data

(Table 4.1). These four features indicated best performance on classification of gait using

the collected data from the participants.

In Chapter 3 we showed that FoG is a dynamic process and using features from multiple

successive windows can improve FoG detection. In this study, sample sT in the dataset was

formed by feature values from the current window (t=T ) and five previous windows. Figure

4.3a demonstrates how an array of 24 elements is formed for vertical acceleration of left

ankle (four features extracted from each of the six successive windows). For each sensor–axis

combination, the array of 24 elements is created and concatenated to form a sample with

96 elements at time T (Figure 4.3b). For the next time step (t=T + 1), the six windows

are shifted forward one step (0.5 seconds) and the same process is followed to form sample

sT+1. The sample is labeled as FoG if at least one FoG labeled timestamp is included in the

window nearest to the current time (the right most window). In Figure 4.3a, sample sT is

an example of normal gait, while sT+1 is an instance of FoG. Finally, the dataset was formed

by samples from all participants and normalized so each feature set had zero mean and unit

standard deviation. FoG labeled samples formed only 13.0% of the original dataset and the

rest belonged to normal gait.

4.3.3 Data Synthesis

ADASYN uses a density distribution function Γ to determine the number of synthetic

samples that need to be generated for each sample in the minority class. In order to create

synthetic data sample for the minority class, first the number of synthetic data samples must

be specified [103]:

G = (|Smaj| − |Smin|)× β (4.1)
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Table 4.1: Feature set extracted from each window of data.

Feature Description

Freeze Index The power in freeze band (3–8 Hz) divided by the power in
locomotion band (0.5–3 Hz) using FFT of the acceleration signal
[9]

Sample Entropy The negative logarithm of the ratio of conditional probability of
data subsets of length m matching point–wise within a tolerance
r, to conditional probability of data subsets of length m + 1 being
within the same tolerance [78]

Power Total power in the freeze and locomotion bands (0.5–8 Hz) of the
signal

Standard Deviation Mean deviation of data points compared to the average
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Figure 4.3: The process of creating samples from acceleration signals. (a) Extracting
features from six successive windows at time t=T (left) and the next time step, t=T + 1
(right). The red highlighted area shows the FoG labeled period using recorded videos and
the green boxes show segments of data used to extract features from acceleration signal. (b)
Aggregating arrays of features from different combinations of sensor–axis.
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where |Smaj| and |Smin| are the number of samples in the majority and minority groups,

respectively, and β ∈ [0, 1] specifies the desired balance level after the synthetic data

generation process. β = 0 means no new data will be created, and β = 1 creates a balanced

dataset where both classes form 50% of the entire dataset.

Next, for each sample xi ∈ Smin, the ratio of new synthetic data samples Γi in the

vicinity of each sample xi is calculated:

Γi =
∆i

K1

(4.2)

where K1 is the K–nearest neighbors according to Euclidean distance, and ∆i is the number

of samples from Smaj in the K–nearest neighbors of xi.

Then, the number of synthetic data samples to be generated for each xi ∈ Smin is

determined as:

gi =
Γi ×G
Z

(4.3)

where Z =
|Smin|∑
i=1

Γi.

Finally, new data samples for the minority class will be generated in the vicinity of

xi ∈ Smin:

xnew = xi + (x̂i − xi)× δ (4.4)

where x̂i is one of the K–nearest neighbors (K2) for xi ∈ Smin, and δ ∈ (0, 1] is a random

number.

Figure 4.4 shows the t–distributed Stochastic Neighbor Embedding (t–SNE) visualization

of the original data and synthesized data from all participants in this study. The algorithm

projects original and synthesized data samples onto a 2–D map [104]. Unlike linear mapping

methods such as principal component analysis (PCA) that uses the same linear mapping to

all data samples, t–SNE learns embedded data characteristics in high dimensional feature

space and preserve the distribution of data similarities in the 2D map. The similarities are

measured with Euclidean distance, i.e., the same metric for generating synthesized data in

ADASYN. The figure shows that FoG samples are scattered in the space, thus using SMOTE

to generate random new instances for FoG class may not improve the FoG detection. On
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the contrary, ADASYN creates samples on the boundaries which may potentially suggest a

higher classification accuracy.

The value of β was changed from zero to one with steps of 0.2 to investigate the effect

of dataset imbalance on classifiers performance. For the original dataset, all classifiers were

trained and tested using 60% and 40% of all data, respectively. For the ADASYN synthesized

dataset, the same training data were used to generate new synthetic samples which were then

added to the training set. The same testing set was used to evaluate model performance,

i.e. no synthetic samples was included in the testing set.

4.3.4 Classifiers

We compared the performance of three classifiers on identification of FoG events: Support

Vector Machine (SVM), k–Nearest Neighbors (kNN) and Multilayer Perceptron (MLP):

• SVM: A C–SVC classifier using radial basis kernel function with γ = 1/N was trained

and tested, where N is the number of features (equal to 96).

• kNN: k = 3 showed the best performance on the original dataset and we used the same

parameter to train the classifier using synthesized dataset. We used the Euclidean

distance metric to find the nearest neighbors.

• MLP: We trained a network with two hidden layers with 20 and 15 nodes over 50

training epochs. These parameters showed best performance using the original dataset.

Ensemble analysis is a method which is commonly used in many data mining problems

such as classification [105], clustering [106], and anomaly detection [107] in order to reduce

the dependence of the model on the specific data set or data locality. This greatly increases

the robustness of the data mining process. In this study, we also used boosting and bagging

methods to train ensemble classifiers to distinguish between normal gait and freezing episodes

(ClsfBoosting and ClsfBagging, respectively). Finally, we trained ensemble classifiers of

decision trees: AdaBoost, TreeBaggers, and RandomForest.
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Figure 4.4: t–SNE visualization of the original dataset and new synthesized data using
ADASYN (β = 1). FoG–ADASYN : new synthesized samples for FoG class, FoG–original :
FoG samples from all participants, NG : normal gait.
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4.3.5 Cost Sensitive Classification

We investigated the misclassification cost, C, which quantifies the importance of incorrectly

classifying samples from one class as the other. Cost–sensitive classification incorporates

fixed and unequal misclassification costs between classes in decision–making and can be

performed in two different ways: cost sensitive training and cost dependent classification.

The first approach is to train a model with a parameter updating function that incorporates

the costs (Figure 4.5a). In this case we need to provide the function with the costs associated

with each of the four cases (True Negatives, False Negatives, False Positives, and True

Positives) so that the model can learn to make optimal predictions accordingly. The second

approach trains a regular model, but incorporates the costs when calculating the adjusted

probabilities to make predictions for each sample (Figure 4.5b). This approach only works

for models that predict a probability which can then be used to calculate the adjusted

probabilities. Thus, we used cost sensitive training approach for training SVM and kNN

models, and cost dependent classification for MLP models.

We set the cost associated with True Negative and True Positive cases equal to zero,

meaning correct classification has no cost. However, as it is of essential importance to detect

as many FoG episodes as possible, the misclassification cost of FoG class (False Negative

cases) was set equal or greater than one (CFoG = 1, 2, 3), while keeping the cost for normal

gait class (False Positive cases) equal to one in all cases (CNG = 1). CFoG > 3 showed poor

performance in preliminary results and was excluded from further analysis.

4.3.6 Patient–Dependent and Patient–Independent Settings

Although the FoG instances formed only 13% of the original dataset, using β = 1 to create

new synthesized samples made a balanced dataset in which both normal gait and FoG classes

formed 50% of the entire dataset. Figure 4.4 shows that the normal gait data corresponding

to each participant formed a cluster that is separated from other participants. This could

be due to the large variability in motor performance when performing the required tasks

(i.e. walking, turning, initiation and termination), which may impair the generalizability of

models to discriminate FoG from normal gait when tested on new participants. On the other
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Figure 4.5: Cost sensitive classification approaches.
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hand, the FoG samples from the entire population are dispersed and cannot be grouped in

such distinguishable clusters as normal gait. It is partly due to the fact that FoG episodes

happened during different tasks (i.e. walking in a straight line, turning and gait initiation)

and participants had their own unique strategy to overcome freezing during any of these

tasks. In order to investigate generalizability, we characterized the classifier performance on

patient–dependent and patient–independent models using data from seven participants who

froze more frequently during the experiments (22± 12.6 events). The other two participants

who experienced FoG during the experiments, froze only once and, as the episodes were

relatively short, were excluded from further analysis. In patient–dependent models, both

training and testing data were from the same participant, while patient–independent models

utilized leave–one–out cross validation (LOOCV).

In the next section, we presented the results for the three performance measures of

selected classifiers for patient–dependent and -independent models. The sensitivity and

specificity demonstrate the accuracy of the models in classifying FoG and normal gait classes,

respectively. F–score, on the other hand, shows the overall performance of the models in

classifying both classes and is used as the main performance measure to select the model

with highest performance. Finally, we investigated FoG detection latency and prediction

capability for the classifier with highest F–score in patient–dependent experiments.

4.4 Results

4.4.1 ADASYN Synthesized Datasets

Figure 4.6 shows results of SVM classifier trained with the ADASYN synthesized dataset

and demonstrates how β, K1 and K2 can affect classifier performance. The results suggest

that using higher K1 resulted in higher sensitivity, but lower specificity and F-score. Also

reducing K2 would improve all three performance measures. For the following results we

used K1 = K1 = 5 which showed best results in most cases.

Figure 4.7 compares the average performance of the SVM classifier in patient–dependent

and patient–independent models for the original (β = 0) and synthesized datasets. The
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Figure 4.6: Sensitivity, specificity, and F–score of SVM classifier using synthesized dataset.
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Figure 4.7: Violin plot of SVM classifier using original and synthesized datasets for patient–
dependent and -independent models. Solid black lines and white circles show average and
median of performance, respectively.
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results suggest that adding synthesized samples to the minority class increases average F–

score for patient–dependent models (from 90.6% for the original dataset to 91.2% for the

balanced dataset) and diminishes average F–score for patient–independent models (from

83.4% for the original dataset to 79.8% for the balanced dataset). On the other hand, both

approaches showed increased sensitivity using the balanced dataset (from 91.5% to 95.8%

for patient–dependent, and 86.5% to 93.1% for patient–independent).

4.4.2 Patient–Dependent Models

Table 4.2 shows the average performance of patient–dependent models using the original

imbalanced dataset. Among all the individual and ensemble classifiers, SVM showed highest

Sensitivity (85.6%), and ClsfBagging demonstrated highest Specificity and F–score (95.8%

and 87.7%, respectively). The results suggest that using ensemble classifiers led to improved

FoG detection, measured by F–score as the overall performance measurement.

In order to see the impact of data imbalance on classifier performance, we changed the β

value in ADASYN from zero (no synthetic data added to the training set) to one (creating a

fully balanced training dataset). We also changed the ratio of cost between two classes (cost

of FoG to normal gait) from one to three to investigate the effect of misclassification cost

on performance of classifiers. Figure 4.8 shows how sensitivity, specificity, and F–score of

classifiers changed by using different levels of imbalance and cost ratio. Table 4.3 shows the

average performance of classifiers and their best results for the three performance measures

in patient–dependent models. Among all classifiers and combinations of β and cost ratios,

kNN showed highest sensitivity (97.6%) and specificity (96.2%), and ClsfBagging had the

highest total performance measured by F–score (90.7%). The results show that using data

synthesis and increased cost of misclassification, improved sensitivity of ClsfBagging from

85.2% to 90.8%, while keeping the specificity almost untouched, which resulted in improved

F–score from 87.7% to 90.7%.
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Table 4.2: Classifiers performance in patient–dependent models using the original
imbalanced dataset and equal misclassification cost (results show average performance of
all seven participants).

Classifier Sensitivity (%) Specificity (%) F–score (%)

SVM 85.6 92.3 84.9
kNN 82.0 95.3 86.0
MLP 82.4 94.5 85.4
ClsfBagging 85.2 95.8 87.7
ClsfBoost 85.1 94.2 85.8
AdaBoost 82.0 94.6 82.8
TreeBagger 83.9 95.4 85.8
RandomForest 82.9 95.4 85.6
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Table 4.3: Best performing classifiers in patient–dependent models (results show average
performance of all seven participants).

Classifier CNG CFoG β Sensitivity (%) Specificity (%) F–score (%)

kNN 1 3 1 97.6 88.6 83.4
kNN 1 1 0 82.0 95.3 83.9
ClsfBagging 1 2 0.2 90.8 95.0 90.7
ClsfBagging 1 1 0.2 90.5 95.5 90.5
ClsfBagging 1 2 0.5 90.2 94.7 89.7
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Figure 4.8: Performance measures of classifiers for patient–dependent models using
synthetic data and misclassification cost.
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4.4.3 Patient–Independent Models

Table 4.4 shows the average performance of patient–independent models using the original

imbalanced dataset. Among all the individual and ensemble classifiers, RandomForest

showed highest Sensitivity (77.0%), and ClsfBagging demonstrated highest Specificity

(94.2%). RandomForest and ClsfBagging both demonstrated highest F–score (%74.5).

Figure 4.9 shows how the level of imbalance and ratio of cost affect sensitivity, specificity,

and F–score of classifiers. Table 4.5 shows the average performance of classifiers for the three

performance measures in patient–independent models. The kNN showed highest sensitivity

(90.6%), and ClsfBagging had the highest specificity (94.2%) and F–score (76.3%). The

results suggest that using data synthesis and increased cost of misclassification, improved

sensitivity of ClsfBagging from 72.6% to 83.3% and impaired the specificity from 94.2% to

90.1%, which in sum resulted in improved F–score from 74.5% to 76.3%.

4.4.4 FoG Detection Latency

This section presents the results for FoG detection latency in patient–dependent models as it

showed higher performance (see Tables 4.3 and 4.5). We refer to latency as the time between

a FoG episode onset and the time when the system detects it. As the system runs the FoG

detection algorithm every 0.5 second (step time in windowing the acceleration signal), the

latency is also observed in steps of 0.5 second. A negative latency represents prediction of

FoG (before its actual occurrence), whereas a positive latency represents detection (after its

occurrence). We also assumed that delays caused by sensor data transmission are small and

can be neglected.

Here we only present the results for ClsfBagging (β = 0.2, CFoG = 2) as it showed

the highest F–score among classifiers in patient–dependent models. Figure 4.10 depicts

the vertical and forward acceleration signal collected from the sensor placed on the right

ankle of one participant as well as the labeled and identified events. Figure 4.11 shows the

average detection latency of the ClsfBagging classifier for the seven selected participants.

The classifier predicted 10.3%, 7.7%, 15.4% and 33.3% (66.7% in total) of the FoG episodes

within 2, 1.5, 1, and 0.5 seconds before the actual FoG occurrence, respectively, and detected
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Table 4.4: Classifiers performance in patient–independent models using the original
imbalanced dataset and equal misclassification cost (results show average performance of
all seven participants).

Classifier Sensitivity (%) Specificity (%) F–score (%)

SVM 76.9 87.5 71.3
kNN 68.2 93.3 69.6
MLP 67.9 89.8 63.8
ClsfBagging 72.1 94.2 74.5
ClsfBoost 76.9 87.5 71.3
AdaBoost 73.8 92.6 72.2
TreeBagger 76.5 90.2 72.9
RandomForest 77.0 91.7 74.5
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Table 4.5: Best performing classifiers in patient–independent models (results show average
performance of all seven participants).

Classifier CNG CFoG β Sensitivity (%) Specificity (%) F–score (%)

kNN 1 3 1 90.6 82.2 67.0
ClsfBagging 1 1 0 72.1 94.2 74.5
ClsfBagging 1 1 0.5 83.3 90.1 76.3
RandomForest 1 2 0.2 83.8 90.2 75.6
TreeBagger 1 2 0 81.3 91.4 75.5
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Figure 4.9: Performance measures of classifiers for patient–independent models using
synthetic data and misclassification cost.

59



2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370

-20

0

20
V

er
tic

al
 A

cc
l. 

(m
/s

2
)

2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370

Time (s)

-20

0

20

F
or

w
ar

d 
A

cc
l. 

(m
/s

2
)

Accleration No-Activity / Stop FoG (true) FoG (identified)
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labeled and detected events using ClsfBagging with β = 0.2 and CFoG = 2.

60



25

50

75

100

C
um

ul
at

iv
e 

id
en

tif
ie

d 
ep

is
od

es
 (

%
)

-2
.0

-1
.5

-1
.0

-0
.5 0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Time before/after FoG occurrence (s)

10

20

30

40

Id
en

tif
ie

d 
ep

is
od

es
 (

%
)

Figure 4.11: Average FoG detection latency of ClsfBagging in patient–dependent models
with β = 0.2 and CFoG = 2. Negative values of time represent duration before FoG onset.
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30.8% of the episodes within 4 seconds after FoG onset. The results shown in Figure 4.11

suggest that ClsfBagging is capable of detecting FoG events within 0.118±1.587 second after

FoG onset.

4.5 Discussion

This study investigated the impact of adding artificial new samples to the minority class

using data synthesis methods and increased misclassification cost in favor of the minority

class on an imbalanced dataset consisting of FoG and normal walking in patients with PD.

The system takes time series signals as input and extracts features from 2–second windows;

the features from six successive windows are then fed to the classifier. Comparing results

from ADASYN synthesized dataset and the original dataset, it can be suggested that adding

more synthetic samples to the training set (higher values of β) can shift classification bias

in an imbalanced dataset toward the minority class and, thus, increase classifier sensitivity.

On the other hand, more instances will be falsely recognized as FoG, and specificity will

reduce. Hence, it depends on the patients’ preference whether to receive feedback on more

FoG events and, consequently, have more false signals, or to have a less sensitive and more

specific model and probably miss few FoG events. The other factors in ADASYN, K1 and K2,

did not have a demonstrable impact on classification results. However, using a higher K1 can

help detect minority samples closer to the boundaries and improve accuracy of classification

in the boundary regions. K2 also determines how many points in the neighborhood of each

sample must be used to create new samples, and using lower K2 will limit the algorithm

to samples closer to the initial data point. Finally, the new samples will be closer to the

boundaries. The FoG class cost also affects the performance measures in the same way

as new synthetic data ratio (i.e., higher cost classifies more instances as FoG resulting in

increased sensitivity and reduced specificity and F–score).

In this study we labeled two windows prior to each freezing onset as FoG in order to

enable the system to predict FoG before its actual occurrence. The system was able to

predict 66.7% of FoG episode within 2 seconds before FoG onset. This method improved

FoG detection latency (0.118 ± 1.587s) compared with [23], another study using ensemble
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classifiers (1.085±0.731s). Palmerini et al. also discriminated pre–FoG episodes from normal

gait after removing data corresponding to FoG and with no sufficient motion [67]. Using

patient–dependent training and testing, their method predicted 83% of the FoG episodes

within 2 seconds before their onset. This comparison suggests that using different classifiers

to discriminate FoG from prior normal gait or stop states may further improve detection

accuracy.

The ensemble ClsfBagging classifier trained in this study outperforms the weighted

SVM classifier in [25] that achieved 90% and 92% sensitivity and specificity, respectively.

ClsfBagging is also capable of detecting more FoG episodes compared with [8] using Random

Forests (90.8% vs 81.9% sensitivity), however the accuracy of classification for normal gait

class is lower (95.0% vs 98.7% specificity). ClsfBagging also performs equally with the deep

learning based model in [27] for detecting FoG episodes (90.8% vs. 91.9% sensitivity), and

shows fewer false positives (95.0% vs. 89.5% specificity). However, labeling pre–FoG samples

as FoG might have resulted in lower sensitivity and specificity when compared to [23] using

ensemble classifiers (99.54% and 99.96%, respectively) and [28] using a deep convolutional

neural network (99.64% and 99.99%, respectively).

In patient–independent models, ClsfBagging detected more FoG instances (83.3% vs.

66.3% sensitivity) but also showed more false positives (90.1% vs 95.4% specificity) compared

with [23]. ClsfBagging also outperformed the deep convolutional neural network in [28]

(74.43% and 90.60% sensitivity and specificity) which suggests that the feature set introduced

in this study can yield a more generalized model to detect FoG. Although we expect

higher predictability in patient–dependent compared to the patient–independent data, the

comparable and significantly above chance–level predictability of patient–independent data

is informative. Interestingly, the t–SNE illustration in Figure 4.4 portrays a heterogeneity

of patients’ non–freezing data. Such distribution in the patients extracted features may

lead to a new avenue to wisely benefit from collective knowledge from previously recorded

data. Instead of collecting about half an hour data from multiple sensors, a transfer learning

scheme may enhance the training/calibration protocol of the FoG detector by reducing the

data recording duration [108–110]. We may expand the study in future work by applying
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different transfer learning approaches to enhance the model calibration process. This may

ultimately help to increase the chance of user acceptance for the final device.

For clinical use, the proposed ClsfBagging model (an ensemble classifier formed by

SVM, kNN and MLP individual classifiers and trained using bagging methods) will be

integrated into an Android application which triggers vibrotactile cueing via a connected

smartwatch. The system’s ability to detect FoG episodes, as well as the effects of cueing in

ambient environments, will be investigated in future studies. However, considering that

the most accurate performance was obtained using patient–dependent models, practical

implementation will require data collection from each user in order to train an offline model

using expert–labeled signals. A pre–trained model can also be updated using the new data

and transfer learning techniques [68, 109].

There are two main limitations for the presented study: 1) Among the eighteen

participants recruited, only nine froze during the test, two of whom with low number and

duration of FoG episodes. This caused an imbalanced dataset with a small sample size to

train and test classifiers. A larger pool of participants is required for further analysis of the

results. 2) In a clinical setting and to prevent freezing, most of the participants were too

focused on walking during the experiments, while they are normally distracted by other tasks

in their homes. A set of data collected from participants performing dual–tasks in ambient

environments would represent their behavior more realistically and a model trained on such

data would be able to detect FoG episodes more effectively.

4.6 Conclusion

This work investigated the effect of synthesizing new samples and increased misclassification

cost for the minority class on classification accuracy of a binary dataset using individual

and ensemble classifiers. The results suggest that using ADASYN to create new samples

for the FoG class and increasing its cost shift classification bias from majority class towards

the distribution of the minority class data points located near the boundaries. This results

in improved recognition of actual freezing instances (sensitivity) and increased incorrectly
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identified FoG samples (false positive) and reduces specificity and F–score. The results also

demonstrated that using ensemble classifiers improved performance of individual classifiers.

In addition to the accuracy of detecting FoG episodes, the latency of detection is also

important for external cueing applications. The ideal system would be able to predict

imminent FoG episodes and trigger preemptive cueing which can potentially prevent the

episodes. The proposed model in this study was able to identify 97.4% of the FoG labeled

samples within 2 seconds before to 4 seconds after FoG onset, 66.7% of which were predicted

in the patient–dependent models.

The classifiers investigated here performed better on patient–dependent models (as

compared to patient–independent models). This implies that the future studies on real–time

FoG detection must implement an offline training process in which data will be collected

and models will be trained as a pre–processing stage. Transfer learning techniques can also

be used to update the already trained models using the data collected from a new patient.

Future studies will be focused on the implementation of the trained classifiers in a real–time

FoG prediction system to validate the results in ambient setting.

4.7 Future Works

This study demonstrated FoG prediction capability of the patient–dependent models.

However, training specific models for each individual may not be practical as each individual

freezes more frequently under certain conditions. This inter–subject variability results

in varied class imbalance in the dataset and, consequently, performance of the patient–

dependent models. To study the effect inter–subject and inter–trial variability, the models

can be trained and tested on a dataset containing more participants performing more varied

tasks.
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Chapter 5

Addressing the One–Class Problem in

FoG Identification

5.1 Introduction

In the previous chapter we studied how ensemble classifiers and oversampling methods can

improve the FoG identification accuracy for patients who showed only a few FoG episodes

during the experiments. For those who didn’t experience FoG during the data collection

sessions, we only had normal gait samples and we had to exclude them from further analysis.

In this chapter, we aim to introduce a new method to identify FoG episodes in participants

for whom no FoG data are available for model training. This method incorporates transfer

learning to train a reference model using data from a group of participants for whom FoG and

normal walking data are available. The reference model is then re–trained using only normal

walking data from a new participant. Using only one class for re–training would result in

all input samples being sorted into a single class. To address this issue, a deep one–class

classifier is introduced to detect anomalies (i.e., FoG). With the encouraging results obtained,

we expect this study to provide evidence of a novel algorithm for accurate identification of

FoG onset using wearable sensor data. This may ultimately result in interventions to prevent

FoG through the provision of preventive cues.
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5.2 Background and Approach

Figure 4.4 suggests that normal gait samples for each participant can be clustered into one

group while the FoG data is scattered in the space and can be distinguished from normal

gait. Such marked disparity from normal behavior can be defined as “anomalies”. Anomaly

detection (AD) is the task of identifying outliers (or “anomalous” samples) in data by training

a model to accurately identify characteristics of “normal” samples. Deviations from normal

behavior are then deemed to be anomalies. In AD problems it is assumed that the majority

of the training dataset consists of normal samples. Thus, anomaly detectors are also known

as one–class classifiers. Neural networks, one–class Support Vector Machine (OCSVM), and

k–Nearest Neighbors (kNN) are the most common unsupervised algorithms used to detect

anomalies in image [111–113] and time–series data [114–116]. AD algorithms have also been

used to detect gait anomalies using wearable sensor data [117, 118].

While classical AD methods require feature engineering, novel methods use Deep Learning

(DL) to learn relevant features automatically [119, 120]. A novel class of classification

algorithms are Deep Belief Networks (DBNs) proposed as an unsupervised multi–class

classifier and dimensionality reduction tool [121]. Each layer of a DBN is trained sequentially,

i.e., the extracted features of the trained layers are used as inputs to the next layer. Erfani

et al. developed a DBN-OCSVM hybrid model in which a DBN is trained to extract only

generic underlying features in the input and reduce dimensionality to transform the higher

dimensional data into a lower dimensional features space [119]. The OCSVM can then

separate normal data from anomalies in the learned feature space more effectively.

In supervised AD, the objective of feature learning is to maximize the inter–class distance

(between samples of different classes) and minimize the intra–class distance (between samples

of the same class) [122]. One approach is to pre–train a model using a dataset with large

number of classes to ensure feature “descriptiveness” (i.e., the features produce distinct

representations for samples of different classes) [123]. Then, in order to differentiate between

normal and anomalous classes, the model can be re–trained using data only from the normal

class. However, this approach may learn a trivial solution as no penalty is a assessed for

misclassification (i.e., the learned features will be “compact” but not descriptive). Perera and
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Patel proposed a one–class transfer learning method to simultaneously re–train a “reference”

model using a multi–class dataset, and a “target” model (with shared layers with the

reference model) using a single–class dataset [123]. The former minimized the descriptive

loss, while the latter minimized the compactness loss of the learned features. A kNN classifier

was then able to discriminate positive and negative classes using the features extracted from

the fine–tuned target model.

Ruff et al. trained a Deep Support Vector Data Description (Deep SVDD) network

to detect anomalies by minimizing the volume of a hypersphere enclosing the feature

representation of the normal samples [124]. The volume of the sphere represents the

variations in the features space and minimizing the volume means minimizing the intra–

class variations (or improving the compactness) in the normal class. Then, any sample

mapped to the area outside this sphere would be classified as anomaly.

These results demonstrate the potential applicability of AD and one–class classifiers to

identification of infrequent gait deviation episodes. In the following sections, first, we will

explain the data collection and data preparation steps. Then, we introduce our new deep

gait anomaly detection algorithm to identify freezing of gait in patients with PD. Finally,

we will discuss the results and select the best approach to train the models.

5.3 Methods

5.3.1 Dataset

In this study we used data from seven participants who experienced freezing during the

clinical experiments (4M/3F, 74.3±5.1 years, Hoehn and Yahr score between 2 and 4).

Experiment protocols and data collection was discussed in Section 3.3. The signals were

segmented into 2–second windows with steps of 0.25 second. The window size was chosen

based on the minimum duration of freezing episodes and the sampling rate. Using a smaller

step size results in more instances of training data, but also generates increased redundancy

between adjacent segments. Windows were labeled FoG if at least 0.25 second (equivalent
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to the step size of the sliding window) were marked as freezing. In this study, we refer to

FoG–labeled samples as anomalous, and normal gait (NG) samples as normal.

In order to investigate the performance of the trained models in predicting FoG onset

before its actual occurrence, we varied the number of pre–FoG windows included in the FoG

samples of the training dataset. We also investigated the use of data augmentation on the

accuracy of predictions (Table 5.1). Dataset D0 is formed only by windows labeled FoG and

NG. In D2 (and D4), two (and four) windows before each FoG onset were included in FoG

class (Figure 5.1); this was expected to facilitate the prediction of freezing onset. In D0-A,

D2-A, and D4-A, signals from left and right ankles were mirrored (rotated 180◦ around

the vertical axis) and added to the training set. This data augmentation compensated for

instances wherein freezing happened only on one side of the body; the trained model would

therefore be capable of detecting freezing episodes happening on right side if all training

samples included left side freezing, and vice versa. We did not add pre–FoG nor augmented

data in testing sets in order to keep the testing samples identical.

Freezing of gait is a relatively rare motor dysfunction in patients with PD, but the

frequency of events increases with disease progression [125]. FoG is also more likely to

happen towards the end of the effective medication dose periods [9]. The ratio of FoG

to NG labeled windows varied between participants (Table 5.2). After excluding windows

associated with stop and no activity, the remaining samples were split into training and

testing sets. The first 70% of the samples were randomized and used to train the models,

while the last 30% were kept with the same order to investigate the ability of the models

to predict the occurrence of freezing episodes before their actual onset. The experiments

started with easy tasks (walking back and forth in a hallway) and gradually shifted towards

tasks requiring more attention and obstacle avoidance, resulting in an increased likelihood

of freezing episodes at the end of each session, i.e. the testing datasets are likely to have

more FoG labeled samples.

In the previous chapter we showed that improving FoG class ratio can improve the

sensitivity of the models to detect more FoG samples in the testing set. However, in this

study, we aimed to examine the performance of the deep one–class classifiers (anomaly
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Table 5.1: Datasets used for model training (values in parenthesis show the number of
pre-FoG windows added to the anomalous class of training set).

Dataset
Normal
Class

Anomalous
Class

Data
Augmentation

D0 NG FoG -
D0-A NG FoG yes
D2 NG preFoG(2) + FoG -
D2-A NG preFoG(2) + FoG yes
D4 NG preFoG(4) + FoG -
D4-A NG preFoG(4) + FoG yes
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step size

True FoG signal
(D0)

Added 2 pre-FoG sample
(D2)

Added 4 pre-FoG samples
(D4)

Figure 5.1: Adding pre–FoG samples to the FoG class in the training datasets.
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Table 5.2: Distribution of labels in participants’ training and testing datasets.

Participant Dataset
FoG

Ratio (%)
Total

Samples

1
Training 3.9 2880
Testing 13.2 1234

2
Training 5.7 2076
Testing 24.9 890

3
Training 24.0 2778
Testing 44.2 1190

4
Training 45.6 1809
Testing 56.3 776

5
Training 14.4 3156
Testing 6.3 1353

6
Training 18.7 2053
Testing 16.9 880

7
Training 30.6 2171
Testing 34.5 930
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detectors) on the data with very few anomalous samples. Therefore, none of techniques in

Chapter 4 were used to address the low FoG ratio.

5.3.2 Deep Gait Anomaly Detection (DGAD)

We propose a supervised hybrid convolutional neural network (CNN) architecture in which

a series of convolutional layers are trained to extract relevant features, and three fully

connected layers are trained to find the best representation of features in a 2–D space. A

kNN classifier is then used to discriminate outliers (episodes of freezing of gait) from normal

gait. The main objective of this study was to examine how to fine–tune a pre–trained deep

anomaly detector for individual participants for whom only normal gait data are available. In

order to investigate the accuracy of the models, we used LOOCV, i.e. normal and anomalous

data from six participants were used to train a “reference” model which was then re–trained

using only normal data from a new (“target”) participant.

Figure 5.2a illustrates the proposed structure of the reference and target models for

the detection of gait abnormalities. The deep CNN architecture is composed of a cascade

of five batch normalization, convolutional and max-pooling layers, followed by three fully

connected. One of the main advantages of convolutional layers is that statistical features are

automatically learned through supervised training. As the network gets deeper, the number

of filters for the subsequent layer increase to capture more complex abstractions. The stride

(representative of how each filter convolves around the input) for the first convolutional layer

is set to (3,4) to capture features from all three dimensions of acceleration and rate gyro at

a single step. The stride for the remaining convolutional and max-pooling layers is set to

(1,1). Since the goal was to develop a reference model capable of extracting features from

signals collected from different participants with different gait patterns, dropout layers were

added to the network to improve model generalizability. The fully connected layers are then

used to map the features into a two–dimensional space. In order to prevent the model from

learning the trivial solution, the biases for the last two layers were fixed and set to zero [124].

The input layer of this model was fed using two channels of acceleration and angular

velocity signals recorded from two ankle–worn IMUs (Figure 5.2b). The signals, sampled at

128 Hz, were first filtered using a Butterworth band-pass filter with cut–off frequencies of 0.5
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layers or units in fully connected layers. (b) Input layer of the model (LA and RA correspond
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and 8 Hz, and then segmented into 2–second windows (resulting in samples of 256 measures)

with the steps of 32 measures.

The model was trained to map the filtered 2–second signals into a 2–D feature space.

The samples from the normal class are mapped to the point [1,1], whereas samples from the

anomaly class are mapped to [-1,-1] (see Figure 5.3). The Euclidean distance between the

model output and the desired point was used as a loss function to update model parameters:

Loss =
1

N

N∑
i=1

√√√√ 2∑
j=1

(ŷij − yij)2 (5.1)

where ŷij is the j -th output of the model for sample i, and yij is the j -th coordinate of the

desired point for that sample (i.e., yij = 1 for the normal class, and yij = −1 for the anomaly

class), and N is the number of samples.

5.3.3 Transfer Learning

The reference model is trained using data from a group of participants with samples from

both NG and FoG classes and tested with data from a new participant; similar to the

patient–independent paradigm in [23, 27, 28]. This is extremely advantageous given the rare

occurrence of FoG in PD patients. The reference model is then trained only with NG samples

of the target participant. This step differs from the conventional methods in which both NG

and FoG samples are used for training the patient–dependent models. For the methods

presented in [23, 27, 28], if FoG samples are not available for a participant they must be

excluded from the analysis and patient–independent models are used instead, resulting in

poor classification accuracy relative to patient–dependent models. In this study, we used

transfer learning approach and a one–class classifier to develop a new method to retrain the

reference models using only NG samples of the target participant.

After trained with data from six participants, the reference model was re–trained using

only samples from the normal class in the first 70% of the data from the target participant.

Training data were then randomly and equally divided into training and validation sets.

During re–training, all layers of the reference model except the last four layers were frozen
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Figure 5.3: Ideal representation of model output. All NG and FoG samples are clustered
in the NG and FoG boundary areas.
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and the learning rate was reduced from 10−3 to 10−4, as is commonly done in network fine–

tuning. Re–training was stopped when the specificity (Equations 3.4) of samples in the

validation set became equal or greater than a threshold (θspec). To find the specificity, model

outputs for training and validation sets were stored as training and validation templates,

respectively. A k–means clustering was used to find the centroid of the cluster (C) in training

templates. If the distance of a validation template from C was more than a predetermined

value R (one–tenth of the Euclidean distances between [-1,-1], [1,1] points), it was classified

as an anomaly. The training and validation templates were formed by NG samples. Then,

in order to test the models, the samples from both classes in the next 30% of the data from

the target participant were used to form testing templates. The same C and R from the

training templates were used to classify the testing templates.

Automated cueing devices are designed to identify as many FoG episodes as possible

and achieve high sensitivity. However, minimization of false positives (i.e., incorrectly

identified FoG) is also important as users may adapt to cues or respond negatively to frequent

stimuli, resulting in deteriorated intervention effectiveness. The threshold for specificity

(θspec) of the validation set varied between 99%, 98%, and 97% corresponding to 1, 2, and

3 misclassification(s) per 100 instances of NG, respectively. An additional consideration

is related to the ultimate application of this approach. DGAD will be implemented in a

real–time FoG cueing application for participants who may have limited understanding of

the underlying computational structure. Therefore, utility and a reduction of interference

with typical activities are of maximal importance. Therefore, it is critical to minimize false

positives to prevent participant adaptation to the cue.

5.3.4 Performance Measures

Sensitivity and specificity represent model classification accuracy of anomaly and normal

classes, respectively (Equations 3.4). Because this algorithm is designed to be used in a

real–time FoG detection application, the ratio of predicted and total identified (predicted

or detected) FoG onsets to the total number of FoG onsets was also used as metrics. If the

algorithm predicted the FoG onset within a 1–second epoch prior to actual FoG occurrence,

the event was correctly predicted. If the algorithm detected the FoG onset within a 2–second
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epoch after FoG onset, the event was correctly detected. The combined prediction and

detection periods is then called identification period (Figure 5.4).

Pred = 100× # of correctly predicted FoG onsets

total # FoG onsets
(5.2a)

Iden = 100× # correctly identified FoG onsets

total # FoG onsets
(5.2b)

5.4 Results

5.4.1 Effect of Transfer Learning

In Chapter 4 we showed that normal gait data of each PD patient can be clustered and

separated from the freezing data (see Figure 4.4). We also showed that patient–independent

models (equivalent with reference models in this study) cannot detect FoG accurately in new

patients due to gait variability. In this study, the reference models are trained with NG and

FoG samples of six participants. The models are then retrained only with NG samples of

the target participant, which improves the accuracy of target models in identification of the

NG samples. Table 5.3 compares the sensitivity and specificity of the models trained with

D4–A datasets.

Figure 5.5 shows how reference and target models map the NG and FoG samples in the

testing sets of participants 3, 4, and 5. In the figure, the columns correspond to individual

participants. The first and second rows show the projection of true–labeled NG and FoG

samples, and the third shows classification results. The gray circles are centered at the

centroid of the normal gait samples found using k–means clustering, and the radius depicts

the boundary area for classification of the NG class.

The reference models are not able to discriminate between NG and FoG samples and the

majority of the samples are mapped outside of the NG boundary area and, thus, incorrectly

classified as FoG (i.e., high sensitivity and low specificity). The target models, however, are

trained with NG samples of the target participant and mapped the NG samples into the NG

boundary area and achieved higher specificity and lower sensitivity.
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Table 5.3: Classification accuracy obtained using reference and target models trained with
D4–A datasets.

Model
Reference Target

Participant Sens Spec Sens Spec

1 73.2 94.4 64.8 98.3
2 97.3 97.6 65.5 100
3 99.6 10.5 69.6 96.8
4 99.1 3.6 73.5 97.6
5 97.7 1.9 41.7 99.5
6 91.9 27.9 74.5 99.0
7 100 1.3 51.5 99.1

Mean 94.1 33.9 63.0 98.6
std 9.6 43.4 12.2 1.1
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(a) Reference Models

(b) Target Models

Figure 5.5: Mapped features from testing sets using reference and target models trained
with D4–A datasets.
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5.4.2 Effects of Data Augmentation and pre–FoG Windows

Augmenting the data doubled the size of the training set, which caused more data to be

mapped to the centroid of the normal gait class, considering the higher ratio of NG instances

compared with FoG. The results presented in Table 5.4 and Figure 5.6 show that using

augmented training data improved Spec (accuracy of classification for NG samples) and

reduced Sens (accuracy of classification for FoG samples). Table 5.5 also shows that data

augmentation impaired Pred (prediction rate of the FoG onsets), although slightly improved

Iden (ratio of predicted and detected FoG onsets). Figure 5.7 shows the number of FoG

episodes predicted and detected for each participant using different datasets. The results

suggest that although sensitivity deteriorates and smaller number of FoG windows can be

identified using augmented data, more FoG episodes can be correctly identified within 2

seconds after the FoG onset, thus, cues can be provided shortly after the FoG occurrence.

Adding instances of pre–FoG (segments of signals prior to the FoG onset) to the FoG class

raised the ratio of FoG class compare with NG in the training set, although the improvement

was negligible due to the small number of FoG onsets. Therefore, Sens slightly improved using

more windows of pre–FoG, while Spec remained almost unchanged (Table 5.4). However, the

models learned to identify pre–FoG episodes and showed improved Pred and Iden compared

with D0 and D0–A (Table 5.5). Thus, the models trained with D4–A are able to predict more

FoG episodes and the following comparisons are based on the results obtained from these

models. Figure 5.8 compares the output of the target models for three participants using

D4 and D4–A approaches. For participants 2 and 3, training models using augmented data

improved compactness of the features around the NG cenroid (i.e. improved specificity), but

with the cost of lower sensitivity. For participant 4, however, augmenting data pushed more

samples outside the NG boundary area and led to higher sensitivity, but lower specificity.

5.4.3 Specificity Threshold (θspec)

Using higher specificity thresholds on the validation sets to terminate the training of the

target models, requires higher accuracy for classification of NG samples in the validation set.

Thus, the models train for larger number of epochs and, consequently, model outputs become

82



Table 5.4: Classification accuracy (θspec = 99%).

Dataset
D0 D0-A D2 D2-A D4 D4-A

P# Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

1 57.4 97.3 63.6 97.6 63.6 97.5 63.6 98.1 63.0 97.4 64.8 98.3
2 81.2 100 82.5 99.9 83.9 99.9 79.8 100 88.8 99.3 65.5 100
3 72.7 97.2 69.2 97.1 78.5 96.2 73.7 96.2 82.2 95.6 69.6 96.8
4 66.6 96.5 65.7 99.1 67.5 96.5 79.6 98.2 63.6 97.9 73.5 97.6
5 36.9 100 34.5 99.9 34.5 100 44.0 99.8 42.9 99.7 41.7 99.5
6 85.2 98.9 70.5 99.5 83.2 98.8 79.2 98.8 84.6 98.2 74.5 99.0
7 40.9 98.0 40.6 99.0 35.9 98.5 35.3 99.0 41.5 98.0 51.1 99.1

Mean 63.0 98.3 60.9 98.9 63.9 98.2 65.0 98.6 66.7 98.0 63.0 98.6
std 18.9 1.4 17.2 1.1 21.0 1.5 18.4 1.3 19.5 1.3 12.2 1.1
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Table 5.5: FoG onset prediction/detection (θspec = 99%).

Dataset
D0 D0-A D2 D2-A D4 D4-A

P# Pred Iden Pred Iden Pred Iden Pred Iden Pred Iden Pred Iden

1 0.0 57.1 0.0 85.7 0.0 85.7 0.0 85.7 14.3 71.4 0.0 85.7
2 0.0 100 12.5 100 0.0 100 0.0 100 25.0 100 0.0 100
3 38.5 61.5 38.5 61.5 46.2 76.9 46.2 69.2 53.8 100 46.2 69.2
4 14.3 100 0.0 85.7 14.3 85.7 0.0 85.7 42.9 85.7 14.3 85.7
5 0.0 71.4 0.0 71.4 0.0 71.4 0.0 71.4 0.0 85.7 0.0 71.4
6 57.1 100 42.9 100 57.1 100 42.9 100 71.4 100 42.9 100
7 37.5 87.5 25.0 100 37.5 62.5 25.0 100 37.5 50.0 50.0 100

Mean 21.1 82.5 17.0 86.3 22.2 83.2 16.3 87.4 35.0 84.7 21.9 87.4
std 21.5 17.5 17.3 14.1 22.6 13.0 19.8 12.4 22.4 17.3 21.8 12.4
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Figure 5.6: Average performance of the target models using different datasets for training
(θspec = 99%).
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D1D0-AD0 D1-A D2 D2-A

Figure 5.7: FoG detection latency (θspec = 99%). Negative and positive latency correspond
to prediction and detection of FoG, respectively.
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(a) D4

(b) D4–A

Figure 5.8: Testing templates and the classification boundary using θspec = 99%.
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more compact around the NG centroid. Figure 5.9 illustrates how increasing θspec resulted

in inclusion of more samples within the NG class boundary to reach the desired specificity.

Table 5.6 compares the average FoG identification and latency results using D4–A datasets

and different values of θspec. The results suggest that increasing the threshold from 97% to

99% improves Spec on the testing set, but cuts Sens by 16%. Higher thresholds also hamper

the ability of the models to predict and identify the freezing onsets from 48.4% to 21.9% and

98.4% to 87.4%, respectively.

5.4.4 Number of Model Outputs

The last convolutional layer in Figure 5.2a outputs 128 features extracted from the raw

signals. This layer is followed by three fully connected layers which are trained to map

the features into a lower dimensional space and minimize the loss function. Increasing the

number of output nodes will enable the model to classify data based on a larger number of

extracted features, and potentially increase the accuracy; however, a higher output dimension

increases the model complexity and increase the computation time, which will hamper the

model performance for a real–time application on a mobile device with limited computation

power.

Figure 5.3 depicts the desired model output when the last layer of the network consists

of two nodes. We also compared the results for a varied number of outputs (from 1 to

10) for both reference and target models to identify the optimized model output size. The

results presented in Table 5.7 and Figure 5.10 suggest that all models perform almost equally.

However, for the sake of model simplicity we chose two outputs for the future analysis.

5.4.5 Normal Gait Boundary Area (R)

The parameter R defines the area around the normal gait centroid (C) inside which samples

are classified as NG. Increasing R would result in more samples classified as NG and improve

specificity, although hampering FoG identification. This relationship is visualized using the

receiver operating characteristic (ROC) curve. Figure 5.11 shows the ROC curve for the

target models trained with D4–A datasets and using θspec = 99%. The results suggest that
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(a) θspec = 97% (b) θspec = 98% (c) θspec = 99%

Figure 5.9: Effect of θspec on the testing sample classification using D4–A trained models.
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Table 5.6: Average FoG identification performance using D2-A datasets for training and
varied specificity thresholds.

θspec Sens Spec Pred Iden

97 78.9 94.9 48.4 98.4
98 73.2 96.5 37.5 90.6
99 63.0 98.6 21.9 87.4
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Table 5.7: Average FoG identification performance using D4-A datasets and θspec = 99%
obtained with different number of model outputs.

Output Size Sens Spec Pred Iden

1 56.3 98.8 20.2 83.0
2 63.0 98.6 21.9 87.4
3 61.2 98.8 19.6 83.0
4 67.6 97.7 20.6 87.3
5 66.4 97.8 19.8 87.1
6 62.2 98.6 18.7 85.0
7 68.1 98.1 23.4 88.2
8 60.8 98.6 22.5 86.7
9 62.6 98.9 18.3 84.1
10 68.3 97.9 21.3 86.3
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Figure 5.10: Average performance of the target models using different number of output
nodes (models are trained using D4–A datasets and θspec = 99%).
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Figure 5.11: ROC curve using D4–A training datasets and θspec = 99% (AUC = 0.82).
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R = 0.283, equal to one–tenth of the Euclidean distances between [-1,-1], [1,1], shows the

best performance combining all four metrics; Sens, Spec, Pred, and Iden.

5.4.6 Step Size Optimization

Figure 3.1 shows the sliding window method used to segment the signals in this study.

The step size of the sliding windows (i.e., the time difference between the starting point of

adjacent segments) defines the overlap between the adjacent segments and the number of

training and testing instances available for each participant. Using lower step size values

increases the number of samples but, on the other hand, may induce redundancy between

adjacent windows. We previously used step size equal to 0.25 seconds (32 time points), while

most of the studies in the literature used step size of only one time point. We compared the

results using smaller step sizes to investigate the dependency of the model on this parameter.

In order to prevent frequent false alarms in case of smaller step sizes, the output of the model

can be median filtered, i.e. only trigger cues if at least a certain number of FoG events are

identified within a predefined number of most recent samples.

Table 5.8 compare the results for different training and testing step sizes. The median

filter (m/n) is defined by detection of at least m FoG windows among the most recent n

windows. False positive (FP) rate is also calculated by the number of FPs per 5 minutes. The

results suggest that training and testing with 0.125 and 0.5 second step sizes, respectively,

2/2 median filter on the model output improves the false positive rate to only 3.6 per 5

minutes while hampering prediction (4.2%) and identification rates (73.3%). The results

also show that training and testing with 0.5 second step size without using a median filter

enables 31.2% prediction and 91.8% identification rate with 16.2 false positives per 5 minutes.

5.4.7 Computational Complexity

All experiments were implemented with the TensorFlow library on a computer configured

with Intel® Xeon® CPU @2.30GHz, Tesla P100–PCIE 16GB GPU, and 26GB RAM. The

average training time for the reference models was 140.4± 4.4 s. The retraining and testing

for the target models took 53.5± 17.7 s and 61± 10 ms, respectively.
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Table 5.8: Model performace using different step sizes for training and testing. False
Positive (FP) rate is calculated by the number of FPs per 5 minutes.

Step Size Performance

Training Testing Median Filter Sens Spec Pred Iden FP Rate

0.5 0.5 1/1 71.5 97.3 31.2 91.8 16.2
0.5 0.5 2/2 62.7 98.6 6.4 80.7 8.4
0.5 0.5 2/3 72.1 97.7 6.4 80.7 13.8

0.25 0.25 1/1 63.0 98.6 21.9 87.4 16.8
0.25 0.25 2/2 60.9 99.1 15.4 85.4 10.8
0.25 0.25 2/3 66.1 98.8 15.4 85.4 14.4
0.25 0.5 1/1 66.1 97.6 21.1 91.7 14.4
0.25 0.5 2/2 57.2 98.7 6.3 80.7 7.8
0.25 0.5 2/3 66.9 98.0 6.3 80.7 12.0

0.125 0.125 1/1 59.6 98.5 27.3 79.4 36.0
0.125 0.125 2/2 57.0 98.9 15.5 79.4 26.4
0.125 0.125 2/3 59.8 98.7 15.5 79.4 31.2
0.125 0.125 3/3 54.8 99.1 13.5 77.3 21.6
0.125 0.125 3/4 57.5 98.9 13.5 77.3 26.4
0.125 0.125 4/4 52.6 99.3 7.4 76.2 16.8
0.125 0.25 1/1 59.8 98.4 23.2 79.4 19.2
0.125 0.25 2/2 55.4 99.0 11.5 79.4 12.0
0.125 0.25 2/3 60.2 98.7 13.5 79.4 15.6
0.125 0.5 1/1 59.8 98.5 15.3 82.2 9.0
0.125 0.5 2/2 51.3 99.4 4.2 73.3 3.6
0.125 0.5 2/3 60.3 98.9 4.2 73.3 6.6
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5.5 Discussion

This study investigated a novel recognition algorithm for freezing of gait episodes in patients

with Parkinson’s disease. Our contribution includes the use of transfer learning and addresses

the challenge of training models for new patients who provide limited freezing data. The

Deep Gait Anomaly Detection (DGAD) algorithm developed in this study uses a binary

class dataset of normal gait (NG) and freezing of gait (FoG) from a group of participants to

train a reference anomaly detector capable of differentiating infrequent FoG episodes from

NG. The reference model was then fine–tuned using only NG data from a new participant

to obtain a personalized target model for each new participant. We implemented a leave–

one–out cross validation (LOOCV) approach to investigate the performance of different

reference and target models. Although all seven participants in this study experienced FoG

during data collection, we excluded FoG samples from training and validation sets during

the retraining step to simulate the situation that the new participant had not shown FoG

symptoms. However, we used both NG and FoG samples for testing the FoG identification

accuracy. The results presented in Table 5.3 and Figure 5.5 show how retraining the models

improves the false positive rate, which is essential for a real–time FoG detection algorithm.

This study is the first to propose a new method to train patient–dependent models using

only normal gait data from the target patient. The conventional methods fail to train

models for patients with only a single class (i.e., NG) and have to use patient–independent

models, similar to the reference models in this study. Table 5.9 compares the performance

of target models developed using DGAD algorithm with three patient–independent models

in the literature. Although the sensitivity of DGAD model is lower than the others, the

specificity is higher. Considering the higher ratio of the normal gait events compared with

FoG episodes (Table 5.2) it is important to improve specificity to keep the false positive

rate low and prevent adaptation to the cues. Thus, the results suggest superiority of DGAD

algorithm for a real–time FoG cueing device for patients who do not show FoG symptom

during the data collection experiments.

In developing this algorithm, we manipulated two independent variables: the number of

pre–FoG windows included in the FoG class, and data augmentation. The results presented
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in Table 5.4 suggest that augmenting data and adding four windows of pre–FoG (using D4–

A dataset) can slightly improve the average specificity from 98.3% to 98.6%. The obtained

sensitivity and specificity of the models are lower than those obtained in [23] using ensemble

classifiers (99.54% and 99.96%), and [28] using a deep convolutional neural network (99.64%

and 99.99%). Figure 5.12 compares the performance of patient–dependent models with those

obtained using state–of–the–art methods. However, these studies used samples from both

NG and FoG classes to train patient–specific models, which improves the ability of the models

to discriminate between the two classes but fails to accurately discriminate FoG from NG in

individuals who do not show the symptom during the data collection sessions. The DGAD

algorithm outperforms the results achieved by Pham et al. using anomaly score detector

techniques with adaptive thresholding to identify FoG episodes (89% and 94% for sensitivity

and specificity, respectively) [86]. Although DGAD achieved lower sensitivity, the algorithm

was still able to identify 87.4% of FoG onsets.

The results demonstrate that augmenting training data impairs FoG recognition accuracy

(sensitivity), but improves classification of normal gait (specificity). The algorithm predicted

and detected 21.9% and 65.5% of FoG episode within 1 second prior and 2 seconds post FoG

onset, respectively, summing up to 87.4% total identification of FoG onsets. This method

improved the average FoG detection latency (0.1±0.1 second) compared with [23] (1.1±0.7

second). Palmerini et al. also discriminated pre–FoG episodes from normal gait and achieved

an 83% prediction rate for the FoG episodes within 2 seconds prior to onset [67]. This

comparison suggests that adding pre–FoG segments to the FoG class enables models to

discriminate pre–FoG from normal gait and improves FoG identification rate.

The results presented in Table 5.6 confirm that using a more conservative approach with

a higher specificity threshold (θspec) to terminate re–training of the reference model results

in higher specificity for the testing set. This specificity is essential in real–time FoG cueing

applications to prevent adaptation to the stimuli. A higher θspec allows more epochs for model

training; this causes features to become more compact around the normal gait centroid in

the 2D space. Thus, the model outputs will demonstrate bias towards the normal gait class

(improved specificity) and reduced ability to identify FoG episodes (lower Sens, Pred, and

Iden).
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Table 5.9: Average FoG identification performance using conventional patient–independent
models and DGAD target models.

Sens Spec

Camps et al. [27] 91.9 81.5
Xia et al. [28] 74.4 90.6
Mazilu et al. [23] 66.3 95.4
DGAD 63.0 98.6
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Figure 5.12: Circular heatmap of sensitivity and specificity obtained in FoG detection
studies using patient–dependent models (CLSF: individual classifiers, ENSM: ensemble
classifiers, CNN: convolutional neural networks, AD: anomaly detectors).
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We also compared how the number of outputs can affect the model performance. The

results did not reveal a fundamental improvement by increasing the number of outputs.

Thus, we would suggest keeping the number of outputs as low as possible (equal to 2) to

reduce the model parameters and improve the computation time on a mobile device with

limited computation power.

We also investigated how a segmentation step size and using a median filter can improve

model performance. The results suggest that using a smaller step size creates more samples

for model training and slightly improves specificity, which is beneficial for a real–time FoG

detection application. The median filter reduces the number of false positives and improves

specificity while hampering the prediction and identification rate of the models. As we tend

to limit the number of false positives to 10 per 5 minutes, we chose training and testing step

sizes equal to 0.125 and 0.5 second, resspectively, without using median filter on the output

of the model (15.3% and 82.2% prediction and identification rates with 9.0 false alarms per

5 minutes). These values were used to train reference and target models for real–time FoG

detection application described in Chapter 6.

5.6 Conclusions

The DGAD structure introduced in this study is composed of five layers of batch

normalization, convolutional and max-pooling, followed by three fully connected layers. The

deep convolutional network learns to extract relevant features from acceleration and angular

velocity signals from ankle worn sensors during the training phase. The fully connected layers

also learn how to map the data from the features space to a 2D space while reducing the

intra–class and increasing the inter–class distances between centroids of the classes. Having

such compact and distinct clusters of classes enables a kNN model to effectively classify the

samples. The reference model requires data from both classes to learn discriminative features

between normal and anomalous gait, but needs only normal gait data to refine the weights

and biases for each individual participant.

This study also investigated the effect of augmenting (mirroring) signals collected from

left and right ankles on the classification accuracy of gait data. The results suggested
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that using augmented dataset for training the models resulted in reduced incorrect FoG

identification (false positive) and improved specificity. The results also demonstrated that

labeling segments prior to the FoG onset as FoG, improved correct FoG identification (true

positive) and sensitivity.

This study demonstrated FoG prediction capability of the Deep Gait Anomaly Detection

(DGAD) algorithm for new participant without having their anomalous gait data. However,

the reference model requires data from both normal and anomalous gait states and having

a larger dataset of more participants may improve the ability of the model to learn

discriminative features and, ultimately, improve the accuracy of gait classification.
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Chapter 6

Mobile Application Development

6.1 Introduction

In Chapters 3, 4, and 5 we described the development of algorithms to identify FoG episodes

offline, i.e. as a post–process after data collection. We discussed how we improved the

accuracy of the models in classification of both freezing and normal gait classes (sensitivity

and specificity), and the ability of the model to predict FoG onset before its occurrence.

In this chapter we describe the design requirements and development steps of the real–time

FoG identification and cueing system. We implemented the FoG identification algorithm in

an Android application which collects data from sensors, analyzes the received data, and

triggers personalized cueing for the user.

6.2 Real-time PDFoG System Development

We have developed a novel system to address FoG in PD in ambient settings. The system

collects data from patients with PD, analyzes data in real–time, and provides vibrotactile

and auditory cueing through a smartwatch. The FoG detection algorithm implemented in

an Android phone segments and classifies the collected data via IMUs worn on the users’

body. If a segment is identified as FoG, the phone triggers user–specific cues on the watch.

An author–developed application installed on the watch aggregates the cueing parameters

(frequency, magnitude, and duration of the event) from the phone and triggers stimuli. The
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users are instructed to synchronize their steps with the stimuli frequency. Magnitude and

duration of the stimuli are customized to ensure participant sensitivity.

6.2.1 Design Requirements

Visual and auditory cueing interventions require patients to wear smart glasses or laser

generators to trigger the feedback. Studies using glasses have shown that smart glasses may

block the view of the lower limbs and cause an increase in FoG. In addition, blockage of

the visual field has shown to decrease step length, velocity and cadence [126]. Vibrotactile

feedback, on the other hand, can be provided via wristbands or smartwatches and easily

adopted into routine daily activities. In addition, audio–visual processing shares many

cognitive resources used for attention–dependent tasks and balance, while vibrotactile

feedback may be processed subconsciously and, thus, faster [127]. Hence, vibrotactile could

be a more efficient modality to overcome balance and gait dysfunction in PD patients by

reducing the required executive control during complex motor tasks (i.e. dual–task walking)

which require higher level of motor–cognitive integration and neuromuscular control. In this

study, we selected vibrotactile through a smartwatch as the primary cueing modality. Users

can also activate auditory cueing through the smartwatch as a secondary modality if they

are not able to feel the vibrations effectively. We expected that using a cell–phone to analyze

data and provision of cues through a watch reduces the burden for the patients to carry extra

devices as everyone is carrying a phone and wearing a watch during daily routine activities

nowadays. The usability and easiness of using the device will be evaluated at the end of the

trials by asking the participants to fill a questionnaire.

In order to realize real–time FoG identification, we used wearable non–invasive Shimmer3

IMUs (www.shimmersensing.com) with integrated 9 DoF accelerometer, gyroscope and

magnetometer, each with selectable range. The Shimmer3 IMUs support both logging data

to SD card and streaming via Bluetooth, which is essential for real–time applications. The

Android application first filters the received data from the sensors and logged the filtered

signals as a text file on the phone’s internal memory for future debugging. The application

then analyzes the data and classifies gait into Stop, NormalGait, and FoG, and stores the

results in a separate text file. The text files’ names are in yyyymmdd hhmm format so they
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can be easily sorted by date/time and cross–referenced with the logs that participants were

asked to keep in the provided notebooks.

The application for the Android watch needed to be as simple as possible with only one

button on the screen as the screen is small and clicking on buttons would not be easy for the

participants, especially for those with tremor symptoms. The application should also allow

the user to check the status of the phone application (FoG detection running or stopped).

The phone and watch applications need to remain active in background if the user turned

off the screen or left the application by pressing the home botton on either of the devices.

The Service component in Android enables the applications to perform a longer–running

operation in background while not interacting with the user. Thus, both applications need

to be written in a way that starts and stops the service when the user starts and stops the

FoG detection component of the app, respectively.

6.2.2 Android Application Development

The phone application was formed of two main components: 1) connect/disconnect

component allows the users to connect the devices to the phone when they want to start the

application, and also disconnect the devices when they want to charge the devices. 2) gait

monitoring component allows the users to start/stop the FoG detection.

The first version of the phone application was developed using the methods presented in

Chapter 4. Patient–dependent classifiers were developed for each participant using the data

collected during experiments in the clinic. We used Weka (www.cs.waikato.ac.nz/ml/weka)

to train classifiers on a Windows operating computer and, then, imported the trained

models into the Android application. We also used a publicly available filter library in

Java (github.com/berndporr/iirj) to band–pass filter the received signals. The application

was developed in IntelliJ IDEA (www.jetbrains.com/idea), an integrated development

environment (IDE) written in Java.
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6.2.3 User Interface

The buttons on the phone application menu are placed from top to down in the same order

as the user needs to click and run each component of the application following the provided

instructions. Figure 6.1 shows the phone menu when the user runs the application on the

phone. More information about the software and the menu can be found in the instructions

document provided for the participants (Appendix E). Table 6.1 lists the phone, watch and

sensors models used in the PDFoG System.

Connect to Bluetooth Devices

The phone application requires participants to, first, connect IMUs and the provided smart–

watch to the phone. Users can connect the Bluetooth device to the phone by pressing

CONNECT button on the phone screen (Figure 6.1). The sensors automatically connect to the

phone. In order to connect the watch to the phone, user needs to press the CONNECT button

on the watch screen. Color–codes are used to show the connection status of each Bluetooth

device on the phone screen (yellow: disconnected, green: connected). Red and green colors

are also used on the watch screen to show the gait monitoring component status (red: FoG

detection stopped, green: FoG detection running). The users can also activate cues manually

using the TEST WATCH button on the phone screen.

Freezing of Gait detection

When all the sensors and the watch are connected, the user can start gait monitoring

component (FoG detection) by pressing the START button. The data will then start to

stream from the sensors to the phone and also logged on the sensors’ internal memory. The

FoG detection algorithm uses data from ankle–worn sensors to detect freezing. In the first

version of the application, we used five sensors (on left and right ankles, left and right wrists,

and waist) while the data from the wrist and waist sensors were collected only for future

analyses (Figure 6.1).
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Figure 6.1: PDFoG system (version 1).
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Table 6.1: Equipment model used to realize PDFoG system.

Device Model

Phone Nokia 6.1
Watch Ticwatch E
IMU Shimmer3 IMU
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The STOP button terminates data streaming and logging, but keeps the sensors and the

watch connected to the phone so that the users can start the application again without

reconnecting the sensors. The participants are instructed to disconnect the phone (by

pressing the DISCONNECT button) from the sensors and the watch when they want to charge

the devices every night. The user manual (Appendix E explains the application menu and

options).

6.3 Computational Complexity

The DGAD algorithm was implemented into the Android application running on a Nokia 6.1

cellphone configured with Octa–core Cortex–A53 CPU @2.20GHz, Qualcomm Adreno 508

GPU, and 3GB RAM. The average processing time for the model was 16± 5 ms to classify

the state (NG or FoG) for each segment of the data.

6.4 Prototype Evaluation

We recruited two pilot participants for a 2–week investigation to evaluate the performance of

the FoG detection models and the usability of the system. We found that one participant did

not experience freezing during the tests; thus, training patient–dependent classifiers was not

possible. Classical one–class classifiers like OCSVM also showed poor specificity and were not

ideal for cueing application. For this participant, we used a patient–independent classifier

in the Android application. This showed low specificity and resulted in user complaints

regarding frequent false alarms. Another complaint from the participants was about the

number of sensors they were required to wear, which discouraged one participant from

continuing the in–home investigation. One participant also suggested adding auditory cueing

as an option as the watch needed to be worn tightly to feel the vibrations. We added one

switch key (Audio) to the menu so that the users can easily activate/deactivate auditory

cues, i.e. beeps on the watch with the same pattern as the vibrations. They have access to

this switch even when the gait monitoring component is running.
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We modified the FoG detection algorithm using the methods described in Chapter 5. The

second version of the application uses TensorFlow Lite (www.tensorflow.org/lite) an open

source deep learning framework for on–device inferences, to analyze the received signals from

accelerometer and gyroscope sensors and detect FoG in real–time. The current version also

requires only two sensors worn on the ankles to reduce the burden for the participants (Figure

6.2).

6.5 Conclusion

In this chapter we explained the Android applications developed for real–time FoG prediction

in ambient environments. The DGAD algorithm (introduced in Chapter 5) was implemented

in an Android application to monitor gait patterns of PD patients in their homes. The

computational complexity analysis showed that the phone is capable of analyzing the signals

received from wearable sensors in 16 ± 5 ms which is sufficiently less than the step size in

data segmentation algorithm, i.e. 500 ms, and ensures no delay in data analysis process. The

participants will receive vibrotactile and auditory cues through a smartwatch (connected to

the phone via Bluetooth) if an FoG episode is identified. The participants can enable/disable

auditory cues based on their preference.
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Chapter 7

Cueing System Evaluation:

In-home Testing

7.1 Introduction

In Chapter 6 we discussed the Android application developed for real–time identification

of FoG episodes. The sofware on phone collects data from two IMUs worn on the ankles

and monitors the gait patterns. When the normal pattern is violated, the phone triggers

vibrotactile and auditory cues on a connected Android watch. In this chapter we discuss the

experiment design to evaluate the effectiveness of the designed cueing system in reducing

the freezing frequency and severity in ambient environments. The system was validated by a

6–week in–home study, as FoG occurs more frequently at home than in clinical settings [35].

The results will demonstrate the extent to which an in–home intervention using automated,

on–demand, contingent cueing can affect the frequency and duration of FoG episodes.

7.2 Study Design

The conducted research consisted of a longitudinal, within–subject intervention study. Each

participant’s involvement took seven weeks, which included: an initial assessment and gait

data collection (day 0) at the University of Tennessee Brain and Spine Institute (UT–BSI);
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a 6–week in–home intervention using the PDFoG system; and, an immediate follow up

assessment. Figure 7.1 illustrates the study design.

7.2.1 Participants

A sample of 37 participants is required for a matched–pairs t–test with medium effect size

(f = 0.42) on Freezing of Gait Questionnaire [52], 80% power and type I error rate of

5%. Past experience suggested a 25% attrition rate for such participants, so 46 community

dwelling participants with PD were needed according to the standards of the UT Institutional

Review Board (IRB). Along with Michelle Brewer, MD (neurologist), the research team

oversaw the recruitment of participants with inclusion criteria: 1) a diagnosis of PD; 2) a

Hoehn & Yahr (H&Y) 1 Stage of 2–4 ; 3) FoG symptoms; and, 4) stable PD medication for

the duration of the study. Exclusion criteria included: 1) individuals receiving deep brain

stimulation; 2) sufficient pain to prevent task completion during the clinical data collection

session; 3) participation in an ongoing exercise program; and, 4) clinical diagnosis of cognitive

impairment as measured by Montreal Cognitive Assessment (MoCA score < 24, Appendices

A and B).

7.2.2 Outcomes Measures

Gait and Fall Questionnaire (GFQ)

The primary outcome measure was the mean change in the total Gait and Fall Questionnaire

(GFQ, Appendix C) pre versus post in–home cueing therapy. GFQ includes 13 questions

about FoG symptom (frequency and severity of FoG symptom when initiating gait, turning,

terminating gait, and walking through narrow spaces) and 3 questions about fall (when

walking, standing, and freezing).

1Named for its authors, H&Y is a commonly used scale for describing the severity of the symptoms in
patients with Parkinson’s disease. It was originally published in 1967 and included stages 1 through 5.
Since then, a modified H&Y scale was proposed with the addition of stages 1.5 and 2.5 to help describe the
intermediate course of the disease.
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Day 0

Assessment Data collection In-home experiment

Figure 7.1: In-home FoG cueing intervention study design.
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Usability Questionnaire (UQ)

We also asked the participants to fill a usability questionnaire (Appendix D) at the end of the

sixth week of the in–home study to evaluate the usability of the technology (hardware and

software) in ambient environments. The usability questionnaire is designed based on the

Tele–healthcare Satisfaction Questionnaire – Wearable Technology (TSQ–WT) which was

developed to measure the satisfaction of users about using wearable technologies. TSQ–WT

consists of six sections evaluating the benefit, usability, self–concept, privacy and loss of

control, quality of life, and wearing comfort. Each section includes five items rated on a

5–point scale (0–4) with higher scores indicating more positive ratings. We added 16 more

questions to the usability (4 questions) and wearing comfort (12 questions) sections to ask

for more detail about each part of the system. We also provided the participants with a

notebook and asked them to keep logs of the tests, record the start and end time of each

session, and any major issue/improvement they (or their partners) could observe/suggest.

7.2.3 Participant Recruitment

Due to complications caused by COVID–19, we were able to recruit only ten (6M/4F,

72.6 ± 8.4 years, H&Y 3-4) participants. Table 7.1 lists the demographic information of

the participants. Among the recruited participants:

• 4 participants (3M/1F, 69.3±5.1 years, H&Y 3.5±3.6, and 13.8±5.6 years of disease

diangosis) finished the 6–week in–home study and used the system for 4–6 hours every

day (except the weekends and holidays).

• 1 participant had the system for six weeks but used it for only 4 days.

• 5 participants quit shortly after the beginnig of the in–home tests as they couldn’t use

the software on the phone, or they were not able to use the system for the entire period

of six weeks.
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Table 7.1: Demographic information of the participants (bolded rows show participants
who finished the in–home study).

Participant Gender Age (year) H&Y Disease Duration (year)

1 M 70 4 22
2 M 55 3 14
3 F 79 4 10
4 M 71 3 11
5 F 80 3 9
6 M 80 3 14
7 M 62 3 12
8 F 76 3 18
9 M 79 3 10

10 F 74 4 10
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7.3 Results

7.3.1 Gait and Fall Questionnaire (GFQ)

In this section we discuss the pre–post analysis of the GFQ scores for the participants

who finished the in–home study. As we were not able to recruit the required number of

participants (46), we used a non–parametric Sign Test (an alternative to the matched–pairs

t–test) to investigate the effectiveness of the intervention using the data collected from the

GFQ. Average GFQ scores for pre and post in–home trials were 28.5 (21 to 37) and 25.5

(18 to 33), respectively, while the maximum possible score was 64. Average GFQ scores

for gait related questions (1-11, 15, and 16) were 25 (20 to 31) and 22.5 (18 to 28) with 52

being the maximum possible score. Average GFQ scores for fall related questions (12-14)

were 3.5 (1 to 6) and 3 (0 to 5), respectively. The Sign tests showed that there was not a

statistically significant difference in GFQ score pre and post using the PDFoG system for six

weeks, p = 0.125, despite the reduction in overall GFQ score for all participants. The Sign

tests also showed no statistically significant difference in gait and fall related questions pre

and post intervention, p = 0.125 and p = 0.625, respectively, despite the overall reduction

in both categories of questions.

7.3.2 Usability Questionnaire (UQ)

In this section we discuss the comments we received from the participants about the sensors,

phone, watch, and the software on the phone and watch. Table 7.2 compares the average

scores for each section of the questionnaire. The average values are divided by the maximum

possible score for each section to normalize the values between 0 (most unfavorable) and 4

(most favorable).

7.3.3 Observations

In this section we discuss our observations and suggestions on how future studies can be

designed to improve participants motivation and knowledge of the technology.
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Table 7.2: Scores for each section of the Usability Questionnaire. The scores show
normalized scores (total score divided by the number of questions in each section).

Section Average Min Max

Benefit 1.65 1.00 1.80
Usability 2.03 1.67 2.11
Self–concept 2.20 1.80 2.60
Privacy and Loss of Control 2.80 2.20 3.00
Quality of Life 2.05 1.20 2.60
Wearing Comfort 1.59 1.06 1.88
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1. The first issue with our participant recruitment was caused by the spread of COVID–19

virus. From the list of 20 potential participants that we gathered with the help of Dr.

Michelle Brewer, only 13 patients accepted to participate in the study and the others

were reluctant to participate amid the coronavirus pandemic.

2. From the recruited participants (13), one was feeling sick at the time of clinical data

collection and was sent to a hospital to test for COVID–19. He refused to come back

later and was excluded from the study.

3. Two participants came for the initial assessment (Day 0), but quit before starting the

in–home experiments as they were not experiencing FoG frequently and thought they

may not benefit from their participation.

4. In the application user–interface design we used green and red color codes to show

the connection status of the Bluetooth devices (watch and sensors). One participant

suggested that might be a problem for color–blind users.

5. Two participants complained about false positives when they were walking up/down

the stairs. Walking on stairs was not included in our clinical data collection tasks and,

due to a different pattern with walking on a flat surface, may be detected as anomaly

(i.e., freezing of gait).

6. The main reason for stopping the participation was the lack of knowledge of the

cellphones and smartwatches. Although we explained every step in the manual

document and recorded videos on the phones, a large portion of the participants lost

their interest and motivation as they were not able to follow the instructions step by

step. Although this was predictable in the PD population who suffer from cognitive

impairment and are not used to using smartphones, the attrition rate (60%) was higher

than our expectations.

7. In one case, the participant was not able to comprehend the instructions to run

the experiments at home, but his wife, who used to work in IT sector, helped him

throughout the in–home experiments and never faced a technical issue. In another
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case, the participant had an engineering degree and was using the same type of

wearable sensors in their studies on animals. He was the most enthusiastic participant

in the study and finished the in–home experiments without any technical difficulties.

These two cases suggest that the participants at this age and with impaired cognition

require an assistant (partner, child, or caregiver) with some level of familiarity with

smartphones and wearables to help them run the experiments independently and

without researchers’ supervision.

8. Patients were taking their medication before performing the clinical data collections;

i.e., they were in their ON medication state. This would have caused less FoG

episodes and more stable walking patterns. While using the system in their home,

one participant who was showing different walking patterns when OFF medication or

when walking in their home finding their way through multiple obstacles complained

about the frequent false alarms (false positives). The issue was resolved by adding a

median filter to the output of the model to reduce the false positive rate.

7.4 Discussion

7.4.1 Gait and Fall Questionnaire

The GFQ resulsts shows that the 6–week in–home tests using the PDFoG system will improve

gait and fall symptoms, and eventually improve the overall score. However, the therapy has

not been significantly effective in treating the FoG symptom, nor the fall likelihood. A post–

hoc analysis showed that the achieved power with the sample size of 4 participants is 30%.

Thus, a larger population size is required to achieved the desired power.

7.4.2 Usability Questionnaire

The UQ results shows that the participants did not feel that they were benefiting from using

this device (average score of 1.65 from 4). The average score for the Usability and Wearing

Comfort (2.03 and 1.59, respectively) show that the participants were not facing difficulties

using the device, except for wearing the watch and the sensors. This highlights the necessity
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of a new design for the sensors as the first priority. One problem was reported to be the

bands of sensors becoming loose after a period of wearing the sensors. The other common

complaint from the participants was frequent disconnection of the sensors from the phone

which eventually caused the application to stop. The disconnection could be due a hardware

or software issue, or the participants leaving the phone in a distant location from the sensors.

The UQ results also suggest that the participants were confident about their privacy and felt

comfortable using a new technological product (2.80 and 2.20 average scores, respectively).

The participants could not agree or disagree whether using this device can improve their

quality of life (average score of 2.05).

7.4.3 Observations and Comments

The logs received from the participants show that the sensor–phone disconnection was a

frequent complaint that happened almost every day for all of the participants. It was also

reported that in many cases, the sensors failed to connect to the phone. In such cases,

the producer company (Shimmer) suggested restarting the sensors would resolve the issue,

however, it took more than one restarting in a few cases before the sensors could connect to

the phone. The participants also complained about false alarms (i.e., false positives) when

they were seating on a couch or standing still with limited movements of feet, although we

had asked them to stop the application if they are not walking for a period of 5 minutes. This

issue can be resolved in future developments of the system by adding an activity recognition

algorithm before the FoG detection model. If recognized as walking, the data is fed to the

FoG model, otherwise the FoG detection algorithm would be by–passed and the patient’s

state would be non–FoG (see Figure 6.1). This suggestion will be discussed in more detail

in Chapter 8.

One patient mentioned in his logs that the system has been helping him to prevent freezing

in the spaces where he used to freeze (like walking through doorways), which highlights the

capability of the device in predicting FoG and delivering cues before FoG occurrence. One

other patient also stated that wearing the device has informed him about his posture and

that he has been able to improve his balance using the device. This suggests that using such
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devices can remind patients of their symptoms so they can adjust their motor behavior to

improve gait and maintain balance.

Using the anomaly detection approach to identify FoG, characterizes the data segments

as normal or anomaly (i.e., FoG). Accurate classification of signals requires inclusion of

different tasks in the normal class, otherwise those incidents would be identified as anomalies

and cause false alarms. We recommend including walking on stairs (going up and down),

and walking with varied velocities (normal, lower, and higher) in the future studies.

7.5 Conclusion

In this chapter we explained the system evaluation study design to investigate the

effectiveness of the designed on–demand cueing system on the FoG severity. We used

standard clinical assessment (Gait and Fall Questionnaire) to identify the frequency and

duration of the FoG symptoms as well as fall likelihood during a set of tasks performed

routinely at home (e.g., walking through narrow spaces, initiating and terminating gait). we

also used a Usability Questionnaire, designed specifically for wearable devices, to measure

usability, wearability, and using comfort of the system (including phone, watch, and sensors).

We recruited 10 participants for a 6–week in–home study, although only 4 finished the

study. The pre–post analysis of the GFQ results showed that in–home cueing therapy using

the PDFoG system has not been significantly effective in treating the FoG symptom and fall

likelihood, although the overall score was lower post intervention for all participants. We

will discuss the suggestions for future studies in the next chapter.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

Freezing of gait (FoG) is a common motor impairment in individuals with Parkinson’s

disease (PD). FoG impairs walking and is associated with increased fall risk. Although

pharmacological interventions have shown promise during ON–medication periods, FoG

remained difficult to treat during the medication OFF state and in advanced stages of the

disease. External cueing systems are recent innovations providing stimuli that help patients

overcome freezing. Continuously cued therapy has been effective in treating gait deviations,

although it induced greater levels of fatigue in PD patients and, thus, is found unfavorable

to the majority of the patients. Intelligent cueing systems, however, analyze gait signals

through wearable sensors and deliver cues only at moments when specific gait alterations

are detected. Such on–demand external feedback does not necessarily become part of the

movement representation and may decrease the chance of development of cue–dependency.

Providing cues after detection of an FoG episode may result in cognitive overload, by

superimposing an external stepping rhythm, and aggravate FoG. On other hand, predicting

FoG before onset enables delivery of preemptive cueing and may prevent FoG. In this study

we developed methods to predict FoG and improve FoG recognition accuracy. We recruited

participants with PD and collected their gait data in a clinical environment. Using the

collected data, we trained and tested algorithms for FoG prediction. We also implemented

the algorithms into an Android application and provided the participants with a set of
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sensors, watch, and phone to tests the effectiveness of the developed FoG cueing device

in their homes. The details have been discussed in different chapters and the following

highlights the main outcomes of each chapter.

In Chapter 3 we used an online available dataset to investigate the possibility of detecting

FoG using statistical inference between multiple successive windows of signals. We extracted

features from the acceleration sensors and hypothesized that the change of pattern in the

feature values is a marker of FoG. We compared the results obtained using different sensor

position, axis, sampling window length and features. The results suggested that using sample

entropy of acceleration collected from a single sensor on the ankle enables 88.8% predictivity,

92.5% sensitivity, and 89.0% specificity.

In Chapter 4 we used machine learning algorithms to discriminate FoG episodes from

normal gait. We used the extracted features from acceleration signals to train individual

and ensemble classifiers in patient–dependent and patient–independent paradigms. We also

used ADAptive SYNthetic (ADASYN) resampling algorithm and cost sensitive classification

to improve the automatic detection of FoG episodes. The ensemble classifier using bagging

techniques demonstrated highest performance in patient–dependent mode when synthetic

FoG samples were added to the training set and FoG misclassification cost was set as twice

that of normal gait. The model identified 97.4% of the FoG onsets, with 66.7% being

predicted.

The detection and prediction still remained challenging particularly for individuals who

did not exhibit sufficient instances of freezing episodes during the clinical trials for model

training. To address this fundamental issue, a Deep Gait Anomaly Detector (DGAD) was

introduced in Chapter 5. The algorithm implements a transfer learning–based approach to

train a reference model using FoG and normal gait samples of participants who exhibited

freezing during the experiments. The convolutional neural network is trained to extract

features from acceleration and rate gyro signals and then reduce the dimensionality of the

features in a way that FoG and normal gait data have longest Euclidean distance. The

model is then retrained using only normal gait data from a new patient to form a patient–

specific model. The effect of augmenting training data and adding pre–FoG segments (data

occurring prior to the freezing onset) to the FoG training data was also investigated. The
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DGAD algorithm demonstrated average sensitivity and specificity of 63.0% and 98.6% using

augmented data and additional pre–FoG segments. The target models identified 87.4%

of FoG onsets, with 21.9% being predicted on average for each participant. This study

demonstrates our algorithm’s potential for accurate identification of anomalous gait episodes

and delivery of preventive cueing for patients for whom no FoG data is available to train

models.

In Chapter 6 we explained the Android applications developed for real–time FoG

prediction. The DGAD algorithm was implemented in an Android application to monitor

gait patterns of PD patients in their homes. The phone triggers vibrotactile and auditory

cues through a smartwatch (connected to the phone via Bluetooth) if an FoG episode is

identified.

A 6–week in–home study was designed in Chapter 7 to evaluate effectiveness of the cueing

system on FoG severity in ambient environments. The study required 18 PD participants, but

only 10 were recruited due to complications caused by the spread of COVID–19 virus. Among

the recruited participants, only 4 were able to finish the 6–week study. The nonparametric

statistical analysis revealed no significant improvement in FoG and fall at the end of the in–

home experiments. However, a larger study is still required to reach the required statistical

power to show the effectiveness of intervention. The participants’ responses to the usability

questionnaires showed that the sensors caused frequent problems for the participants, which

was the main reason for participants to quit in the middle of the study.

8.2 Future Works

8.2.1 Recurrent Neural Networks

In Chapter 5 we introduced a convolutional neural network (CNN) that was trained to

extract features from the signals. The model also had three fully connected layers to reduce

the dimensions of the features while reducing the intra–class and increasing the inter–class

distances between samples of normal gait (NG) and freezing of gait (FoG). Using data

augmentation methods, we were able to improve the FoG prediction rate. Another approach
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to further improve FoG prediction would be to use recurrent neural networks. These networks

have been widely used in text prediction and natural language processing (NLP) [128–132],

and time–series forecasting [133–135]. Long–short–term–memory (LSTM) networks have

also been used in detection of FoG episodes [68]. The suggested structure of an LSTM–

DGAD FoG predictor is shown in Figure 8.1. The first row shows the current structure

of the DGAD network and the training algorithm. The network is trained to reduce the

Mean Squared Error (MSE) between model output and the desired output ([1,1] for NG,

and [-1,-1] for FoG) for the current time point (t∗). The second and third rows show the

LSTM layers training process. The convolutional layers are fixed (non-trainable) and only

the LSTM layers are training. The features extracted from the last n time points (t∗ − n,

t∗ − n+ 1, · · · , t∗) are used as input to the first LSTM layer and the features from the next

time step (t∗+1) are used as the true output of the model. The LSTM layers will be trained

to predict the features for the next time step using the previous n steps. The last row shows

the final LSTM–DGAD structure in which all the layers are fixed. The network extracts

features from the raw signals (using convolutional layers), predicts features for the next time

step (using LSTM layers), and, finally, reduced the dimensions (using fully connected layers).

A conventional classifier (SVM or kNN) will be used to classify the reduced features as NG

or FoG. The LSTM layers can also predict features for multiple future steps, which enables

activation of cues longer before FoG occurrence.

8.2.2 Activity Recognition

Another major complaint about the PDFoG software was about frequent false alarms while

patients were seating or standing with only limited movement. Currently, an acceleration

threshold is being used to filter out the low activity motions and identify stop periods.

However, in order to better address the non–gait false alarm issue, we suggest using an

activity recognition algorithm to see if there is enough walking related motion in the received

signal. If not, the FoG detection algorithm will get bypassed, i.e., the model won’t analyze

the received data and cues won’t be activated (Figure 8.2). Although, this approach may

disable the system to accurately identify FoG at gait initiation, this may reduce false alarm

rate and keep the participants less bothered and more motivated.
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Figure 8.1: Structure of the suggested LSTM–DGAD network. First row shows training
process for the currect DGAD network. Second and third rows show training process for the
LSTM layers. The fourth row shows the suggested network structure to predict FoG. Black
solid outlines indicate that the layers are not trainable.
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Figure 8.2: An activity recognition (AR) algorithm analyzes the received data to identify
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recognized as walking.
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8.2.3 Larger Study

With the experiences obtained in this study, we aim to propose a larger study to further

investigate the effectiveness PDFoG cueing system on the FoG symptom. We have been

collaborating with a US based company that manufactures IMUs and develops software for

fall prediction in patients with Parkinson’s disease. We hope that, using their sensors, we can

address the complaints about the sensors (loose attachment, frequent disconnection, etc.).

Also, with this company’s experience in software development for elderly people, we hope to

reduce the required patients’ interaction with the software and improve user acceptance.
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POINTS

TOTAL

M E M O R Y

N A M I N G

VISUOSPATIAL / EXECUTIVE 

ATTENTION

LANGUAGE

ABSTRACTION

DELAYED RECALL

ORIENTATION

Read list of words, subject 
must repeat them. Do 2 trials. 
Do a recall after 5 minutes.

   

Subject has to repeat them in the forward order [    ]   2  1  8  5  4  
Subject has to repeat them in the backward order [    ]   7  4  2  

Read list of letters. The subject must tap with his hand at each letter A.   No points if  ≥ 2 errors

[   ]   F B A C M N A A J K L B A F A K D E A A A J A M O F A A B

Serial 7 subtraction starting at 100 [   ]  93  [   ]  86  [   ]  79  [   ]  72  [   ]  65

Repeat :  I only know that John is the one to help today.  [    ]
The cat always hid under the couch when dogs were in the room.  [    ]

Similarity between e.g. banana - orange = fruit    [    ] train – bicycle   [    ] watch - ruler 

Draw CLOCK  (Ten past eleven)Copy 
cube

__/5

__/3

No 
points

1st trial 

2nd trial 

FACE VELVET CHURCH DAISY RED 

__/5

__/2

__/1

__/3

__/2

Fluency / Name maximum number of words in one minute that begin with the letter F  _____ [     ] (N ≥ 11 words) __/1

__/2

__/6

__/30

B

Begin

End
5

E

1

A

2

4 3

C

D

Read list of digits (1 digit/ sec.).

NAME :
Education :

Sex :
Date of birth :

DATE :

© Z.Nasreddine MD   Version November 7, 2004

www.mocatest.org
Normal ≥ 26 / 30

Add 1 point if ≤ 12 yr edu

MONTREAL COGNITIVE ASSESSMENT (MOCA) 

[    ] Date [    ] Month   [    ] Year  [    ] Day       [    ] Place      [    ] City

[     ]
Contour

[     ][     ] [     ]
Numbers

[     ]
Hands

[   ] [   ] [   ]

4 or 5 correct subtractions: 3 pts, 2 or 3 correct: 2 pts, 1 correct: 1 pt, 0 correct: 0 pt

( 3 points )

Category cue

Points for 
UNCUED

recall onlyWITH NO CUE

Optional

Has to recall words

Multiple choice cue

FACE VELVET CHURCH DAISY RED 
[   ] [   ] [   ] [   ] [   ]

A Montreal Cognitive Assessment (MoCA)

,
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Montreal Cognitive Assessment  

(MoCA) 
 

Administration and Scoring Instructions 
 
The Montreal Cognitive Assessment (MoCA) was designed as a rapid screening instrument for mild cognitive 
dysfunction.  It assesses different cognitive domains: attention and concentration, executive functions, 
memory, language, visuoconstructional skills, conceptual thinking, calculations, and orientation.  Time to 
administer the MoCA is approximately 10 minutes.  The total possible score is 30 points; a score of 26 or 
above is considered normal. 
 
 
1. Alternating Trail Making:  

 Administration:   The examiner instructs the subject:  "Please draw a line, going from a 
number to a letter in ascending order.  Begin here [point to (1)] and draw a line from 1 then to A 
then to 2 and so on.  End here  [point to (E)]."  
 

Scoring: Allocate one point if the subject successfully draws the following pattern:   
1 −A- 2- B- 3- C- 4- D- 5- E, without drawing any lines that cross.  Any error that is not immediately 
self-corrected earns a score of 0.  

 
2. Visuoconstructional Skills (Cube):  

 Administration: The examiner gives the following instructions, pointing to the cube:  “Copy 
this drawing as accurately as you can, in the space below”. 

 
  Scoring: One point is allocated for a correctly executed drawing.   

• Drawing must be three-dimensional 
• All lines are drawn 
• No line is added 
• Lines are relatively parallel and their length is similar (rectangular prisms are 

accepted) 
A point is not assigned if any of the above-criteria are not met. 

   
 
3.  Visuoconstructional Skills (Clock):  

 Administration:  Indicate the right third of the space and give the following instructions: 
“Draw a clock.  Put in all the numbers and set the time to 10 after 11”. 

 
  Scoring:  One point is allocated for each of the following three criteria:   

 Contour (1 pt.):  the clock face must be a circle with only minor distortion 
acceptable (e.g., slight imperfection on closing the circle);  

 Numbers (1 pt.):  all clock numbers must be present with no additional numbers; 
numbers must be in the correct order and placed in the approximate quadrants on the 
clock face; Roman numerals are acceptable; numbers can be placed outside the 
circle contour; 

 Hands (1 pt.):  there must be two hands jointly indicating the correct time; the hour 
hand must be clearly shorter than the minute hand; hands must be centred within the 
clock face  with their junction close to the clock centre. 

A point is not assigned for a given element if any of the above-criteria are not met. 
 
 

B MoCA - Instrusctions
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4. Naming:  

 Administration:  Beginning on the left, point to each figure and say:  “Tell me the name of 
this animal”.  

 
  Scoring: One point each is given for the following responses: (1) camel or dromedary, (2) 

lion, (3) rhinoceros or rhino.   
 
 
5.       Memory:  
 

 Administration: The examiner reads a list of 5 words at a rate of one per second, giving the 
following instructions: “This is a memory test.  I am going to read a list of words that you will 
have to remember now and later on.  Listen carefully.   When I am through, tell me as many 
words as you can remember.  It doesn’t matter in what order you say them”.    Mark a check 
in the allocated space for each word the subject produces on this first trial. When the subject indicates 
that (s)he has finished (has recalled all words), or can recall no more words, read the list a second 
time with the following instructions: “I am going to read the same list for a second time. Try to 
remember and tell me as many words as you can, including words you said the first time.”  Put a 
check in the allocated space for each word the subject recalls after the second trial. 
 At the end of the second trial, inform the subject that (s)he will be asked to recall these words 
again by saying, “I will ask you to recall those words again at the end of the test.” 
 

  Scoring: No points are given for Trials One and Two. 
 
 
6. Attention:  

 Forward Digit Span:  Administration:  Give the following instruction:  “I am going to say 
some numbers and when I am through, repeat them to me exactly as I said them”.  Read the five 
number sequence at a rate of one digit per second. 
 Backward Digit Span:  Administration: Give the following instruction:  “Now I am going to 
say some more numbers, but when I am through you must repeat them to me in the backwards 
order.” Read the three number sequence at a rate of one digit per second. 

 
 Scoring:  Allocate one point for each sequence correctly repeated, (N.B.: the correct response 
for the backwards trial is 2-4-7). 
 

Vigilance:  Administration:  The examiner reads the list of letters at a rate of one per second, 
after giving the following instruction:  “I am going to read a sequence of letters.  Every time I say the 
letter A, tap your hand once.  If I say a different letter, do not tap your hand”.    
 

Scoring:  Give one point if there is zero to one errors (an error is a tap on a wrong letter or a 
failure to tap on letter A). 
 

 
 
 
 
 
 
 
 152



 
MoCA Version November 12, 2004  
© Z. Nasreddine MD 

      www.mocatest.org 

3

Serial 7s:  Administration:  The examiner gives the following instruction:  “Now, I will ask 
you to count by subtracting seven from 100, and then, keep subtracting seven from your answer until 
I tell you to stop.”     Give this instruction twice if necessary.  
 

Scoring:  This item is scored out of 3 points.  Give no (0) points for no correct 
subtractions, 1 point for one correction subtraction, 2 points for two-to-three correct subtractions, 
and 3 points if the participant successfully makes four or five correct subtractions.  Count each 
correct subtraction of 7 beginning at 100.  Each subtraction is evaluated independently; that is, if 
the participant responds with an incorrect number but continues to correctly subtract 7 from it, 
give a point for each correct subtraction.  For example, a participant may respond “92 – 85 – 78 – 
71 – 64” where the “92” is incorrect, but all subsequent numbers are subtracted correctly.  This is 
one error and the item would be given a score of 3. 

 
7. Sentence repetition:  

 Administration: The examiner gives the following instructions:  “I am going to read you a 
sentence.  Repeat it after me, exactly as I say it [pause]:  I only know that John is the one to help 
today.”   Following the response, say:  “Now I am going to read you another sentence. Repeat it after 
me, exactly as I say it [pause]:  The cat always hid under the couch when dogs were in the room.” 

 
 Scoring: Allocate 1 point for each sentence correctly repeated.  Repetition must be exact.  Be 
alert for errors that are omissions (e.g., omitting "only", "always") and substitutions/additions (e.g., 
"John is the one who helped today;" substituting "hides" for "hid", altering plurals, etc.). 
 
 

8. Verbal fluency:  
 Administration: The examiner gives the following instruction:  “Tell me as many words as 
you can think of that begin with a certain letter of the alphabet that I will tell you in a moment. You 
can say any kind of word you want, except for proper nouns (like Bob or Boston), numbers, or words 
that begin with the same sound but have a different suffix, for example, love, lover, loving.  I will tell 
you to stop after one minute. Are you ready? [Pause] Now, tell me as many words as you can think of 
that begin with the letter F. [time for 60 sec].  Stop.” 
 

Scoring: Allocate one point if the subject generates 11 words or more in 60 sec.  Record the 
subject’s response in the bottom or side margins. 

 
 
9. Abstraction: 

 Administration: The examiner asks the subject to explain what each pair of words has in 
common, starting with the example: “Tell me how an orange and a banana are alike”. If the subject 
answers in a concrete manner, then say only one additional time: “Tell me another way in which 
those items are alike”.  If the subject does not give the appropriate response (fruit), say, “Yes, and 
they are also both fruit.”  Do not give any additional instructions or clarification. 
 After the practice trial, say:  “Now, tell me how a train and a bicycle are alike”. Following 
the response, administer the second trial, saying: “Now tell me how a ruler and a watch are alike”.  
Do not give any additional instructions or prompts. 
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Scoring: Only the last two item pairs are scored. Give 1 point to each item pair correctly answered.  
The following responses are acceptable:  
 Train-bicycle = means of transportation, means of travelling, you take trips in both;  
 Ruler-watch = measuring instruments, used to measure. 
The following responses are not acceptable: Train-bicycle = they have wheels; Ruler-watch  = they 
have numbers. 

 
10. Delayed recall:  

 Administration: The examiner gives the following instruction: “I read some words to you 
earlier, which I asked you to remember. Tell me as many of those words as you can remember. Make 
a check mark ( ) for each of the words correctly recalled spontaneously without any cues, in the 
allocated space. 
 
Scoring: Allocate 1 point for each word recalled freely without any cues. 
 
Optional: 
Following the delayed free recall trial, prompt the subject with the semantic category cue provided 
below for any word not recalled. Make a check mark ( ) in the allocated space if the subject 
remembered the word with the help of a category or multiple-choice cue. Prompt all non-recalled 
words in this manner. If the subject does not recall the word after the category cue, give him/her a 
multiple choice trial, using the following example instruction, “Which of the following words do you 
think it was, NOSE, FACE, or HAND?”  
Use the following category and/or multiple-choice cues for each word, when appropriate:  
FACE:   category cue: part of the body  multiple choice: nose, face, hand  
VELVET: category cue: type of fabric  multiple choice: denim, cotton, velvet  
CHURCH:  category cue: type of building  multiple choice: church, school, hospital  
DAISY:  category cue: type of flower  multiple choice: rose, daisy, tulip  
RED:   category cue: a colour   multiple choice: red, blue, green 
Scoring: No points are allocated for words recalled with a cue. A cue is used for clinical 
information purposes only and can give the test interpreter additional information about the type of 
memory disorder. For memory deficits due to retrieval failures, performance can be improved with a 
cue. For memory deficits due to encoding failures, performance does not improve with a cue. 

 
11. Orientation:  

 Administration: The examiner gives the following instructions:  “Tell me the date today”. If 
the subject does not give a complete answer, then prompt accordingly by saying:  “Tell me the [year, 
month, exact date, and day of the week].”  Then say:  “Now, tell me the name of this place, and 
which city it is in.”  
 
 Scoring:  Give one point for each item correctly answered.  The subject must tell the exact 
date and the exact place (name of hospital, clinic, office). No points are allocated if subject makes an 
error of one day for the day and date.     
 
 
TOTAL SCORE:  Sum all subscores listed on the right-hand side.  Add one point for an individual 
who has 12 years or fewer of formal education, for a possible maximum of 30 points.  A final total 
score of 26 and above is considered normal. 
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Gait and Falls Questionnaire (GFQ)

1. During your best state—do you walk: 

0 Normally 

1 Almost normally—somewhat slow 

2 Slow but fully independent 

3 Need assistance or walking aid 

4 Unable to walk 

2. During your worst state—do you walk 

0 Normally 

1 Almost normally—somewhat slow 

2 Slow but fully independent 

3 Need assistance or walking aid 

4 Unable to walk 

3. Are your gait difficulties affecting your 

daily activities and independence? 

0 Not at all 

1 Mildly 

2 Moderately 

3 Severely 

4 Unable to walk 

4. Do you feel that your feet get glued to the 

floor while walking, making a turn or 

when trying to initiate walking (freezing)? 

0 Never 

1 Very rarely—about once a month 

2 Rarely—about once a week 

3 Often—about once a day 

4 Always—whenever walking 

5. How long is your longest freezing 

episode? 

0 Never happened 

1 1–2 s 

2 3–10 s 

3 11–30 s 

4 Unable to walk for more than 30 s 

6. How long is your typical start hesitation 

episode (freezing when initiating the first 

step)? 

0 None 

1 Takes longer than 1 s to start walking 

2 Takes longer than 3 s to start walking 

3 Takes longer than 10 s to start walking 

4 Takes longer than 30 s to start walking 

7. How long is your typical turning 

hesitation (freezing when turning) 

0 None 

1 Resume turning in 1–2 s 

2 Resume turning in 3–10 s 

3 Resume turning in 11–30 s 

4 Unable to resume turning for more than 30 s 

8. How long is your typical destination 

hesitation (freezing when approaching the 

target, such as when stepping onto a scale 

or approaching a chair to sit down)? 

0 None 

1 Resume walking in 1–2 s 

2 Resume walking in 3–10 s 

3 Resume walking in 11–30 s 

4 Unable to resume walking for more than 30 s 

C Gait and Fall Questionnaire (GFQ)
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9. How long is your typical tight quarters 

hesitation (freezing when attempting to 

get through narrow space such as a 

doorway)? 

0 None 

1 Resume walking in 1–2 s 

2 Resume walking in 3–10 s 

3 Resume walking in 11–30 s 

4 Unable to resume walking for more than 30 s 

10. How long is your typical freezing episode 

while walking on straight? 

0 None 

1 Resume walking in 1–2 s 

2 Resume walking in 3–10 s 

3 Resume walking in 11–30 s 

4 Unable to resume walking for more than 30 s 

11. How long is your typical freezing episode 

during stressful time-demanding 

situations, such as when the telephone 

rings, at elevators or street crossing? 

0 None 

1 Resume walking in 1–2 s 

2 Resume walking in 3–10 s 

3 Resume walking in 11–30 s 

4 Unable to resume walking for more than 30 s 

12. How often do you fall? 

0 Never 

1 Very rarely—about once a year 

2 Rarely—about once a month 

3 Often—about once a week 

4 Very often—once a day or more 

13. How often do you fall when standing? 

0 Never 

1 It happened once or twice 

2 It happened 3–12 times in the last 6 months 

3 More than once a week 

4 Whenever trying to walk unassisted 

14. How often do you fall because of freezing 

episodes? 

0 Never 

1 It happened once or twice 

2 It happened 3–12 times in the last 6 months 

3 More than once a week 

4 Whenever trying to walk unassisted 

15. Do you experience festinating gait? 

(Festinating gait = accelerated, short 

steps, gait) 

0 Never 

1 Very rarely—about once a month 

2 Rarely—about once a week 

3 Often—about once a day 

4 Whenever walking 

16. How often do you fall because of 

festinating gait? 

0 Never 

1 It happened once or twice 

2 It happened 3–12 times in the last 6 months 

3 More than once a week 

4 Whenever trying to walk unassisted 
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Participant ID:         Date:     

 

Use only 0, 1, 2, 3, 4 for answers, nothing else. Do not leave any blanks. 

0   strongly disagree 

1   mostly disagree 

2   neither agree nor disagree 

3   mostly agree 

4  strongly agree 

 

Area and Statement Value 

Benefit 

1.  I can benefit from this technology  

2.  The effort of using this technology/method is worthwhile for me  

3.  I am confident I am getting the most out of this technology/method  

4.  This technology/method is helping me to achieve my goals  

5.  I would recommend this technology/method to other people in my situation  

Usability 

6.  The use of this technology/method does not require effort  

7.  The technology/method is reliable according to my estimation and experience so far  

8.  This technology/method is easy to use  

9.  I feel safe when using this technology/method  

10.  I feel good while using this technology/method  

11.  I can easily sense the vibrations of the watch  

12.  I can easily hear the beeps of the watch  

13.  I am pleased with the look and design of the software on the phone  

14.  I am pleased with the look and design of the software on the watch  

Self-concept 

15.  The use of this technology/method is an interesting challenge for me  

16.  This technology/method helps me improve my independence  

17.  The use of this technology/method is making me feel younger than I am  

18.  I (would) feel comfortable using this technology/method visible around others  

19.  I like to use technologic products or systems like this technology/method  
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Area and Statement Value 

Privacy and Loss of Control 

20.  The use of this technology/method does not require supervision  

21.  I use this technology/method by request of others (e.g., physician, therapist, relatives)  

22.  I am sure that my personal data are stored or processed in an appropriate way  

23.  I am sure that the use of this technology/method may not have any unpredictable 

negative consequences for me 

 

24.  This technology/method does not require me to disclose personal facts that I prefer to 

keep to myself 

 

Quality of Life 

25.  Using this technology/method improves my physical well-being  

26.  This technology/method does not evoke unpleasant feelings  

27.  This technology/method enhances my social contacts  

28.  This technology/method helps me to maintain or increase my independence (e.g., 

regarding mobility, communication, medication) 

 

29.  The use of this technology/method has a positive effect on me  

Wearing and Carrying Comfort 

30.  Wearing this device (parts of the device) is comfortable  

31.  I am pleased with the size of the device (parts of the device)  

32.  I am pleased with the look and design of the device (parts of the device)  

33.  I am pleased with the weight of the device (parts of the device)  

34.  The body-worn parts of the device are easy to adjust (fix, fasten)  

35.  Carrying the provided phone is comfortable   

36.  I am pleased with the size of the provided phone  

37.  I am pleased with the weight of the phone  

38.  I am pleased with the design of the provided phone  

39.  Wearing the provided watch is comfortable   

40.  I am pleased with the size of the provided watch   

41.  I am pleased with the weight of the provided watch  

42.  I am pleased with the design of the provided watch  

43.  Wearing the sensors is comfortable  

44.  I am pleased with the size of the sensors  

45.  I am pleased with the weight of the sensors  

46.  I am pleased with the look and design of the sensors  
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 Beginning of the Day 

1.1 Check the battery level on the Sensors 

1. Unplug the sensors from the charging station  

2. Use the side button on the sensors to turn them on (see Figure 1). 

 

Figure 1. Turn On/Off button on the sensors 

3. Figure 2 shows LED-L (left) and LED-R (right) of the sensors. 

LED-L shows the battery level, LED-R shows the connection status. 

If the LED-L is blinking red, the battery level is low. 

If the LED-L is blinking yellow, the battery level is medium. 

If the LED-L is blinking green, the battery level is full. 

 

Figure 2. LEDs on the sensors 

4. If any of sensors are in low or medium level, connect them to the docking station and wait until all the 

sensors are fully charged and LED-L is blinking green. 
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1.2 Check the battery level on the Watch 

1. Press the side button on the watch to turn on the screen. 

2. The battery level can be seen on the screen as shown in Figure 3. 

 

Figure 3. Battery level of the watch can be seen on the home screen (red box) 

3. If the battery level is below 80%, connect the watch to the charger and wait until fully charged. 

1.3 Check the battery level on the Phone 

1. Press the side button on the Phone to turn on the screen. 

2. Scroll up using your finger from the bottom edge towards the top edge to unlock the phone (Figure 4). 

 

Figure 4. To unlock the phone, press the unlock icon on the bottom of the screen and scroll up while keeping 

your finger on the screen 

3. The battery level is shown on the top right corner of the screen. 

4. If the battery level is below 80%, connect the phone to the charger and wait until fully charged. 

161



4 
 

1.4 System Setup 

1. When all the sensors are turned on and ready to use, wait for the LED-R (Right) on all the sensors to blink 

“blue” or “blue and green” (see Figure 5). 

NOTE: If the LED-R is blinking “only green”, turn off the sensor and then turn it on after 3 seconds.  

 

Figure 5. After turning on the sensors, LED-R will rapidly blink (for 0.1 second) “blue” or “blue and green” 

2. When LED-R on all the sensors are blinking “blue” or “blue and green”, run the “FOG” application on the 

home screen of the phone (see Figure 6). 

 

Figure 6. Open "FOG" app on the home screen of the phone 
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3. A screen may prompt asking your permission to turn on the Bluetooth. Press “ALLOW” to continue (see 

Figure 7). 

 

Figure 7. On the Bluetooth activation menu, press ALLOW to continue 

4. Press the UT icon on the watch home screen to open the application (see Figure 8). 

NOTE: If the watch screen was turned off, press the side button to turn it on again. 

 

Figure 8. Press the UT icon on the watch home screen to open the application 
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1.5 “CONNECT” 

1. On the watch screen, press “CONNECT” to connect to the phone (see Figure 9). 

 

Figure 9. Press "CONNECT" to connect to the phone 

2. On the phone, press “CONNECT” and wait for 10 seconds for the watch and sensors to connect. 

a) Watch (see Figure 10): 

• If connected, it will be shown on the screen with green background color. 

• If disconnected, it will be shown on the screen with yellow background color. 

b) Sensors (see Figure 10): 

• The connected sensors will be shown on the screen with green background color. 

• The disconnected sensors will be shown on the screen with yellow background color.  

 

Figure 10. [left] The watch and sensors are disconnected (displayed by yellow), 

[right] The watch and sensors are connected (displayed by green) 

3. If the watch remained disconnected, press the “CONNECT” button on the watch (see Figure 9) and then 

press the “CONNECT” button on the phone again. 
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4. If any of the sensors remained disconnected: 

a. Make sure all the disconnected sensors are turned on and the LED-R is blinking blue and green as 

shown in Figure 5. 

b. Press the “CONNECT” button again and wait for 10 seconds. 

c. If any of the sensors still remained disconnected, turn it off and wait for 2 seconds. Then turn the 

sensor on and press “CONNECT” on the phone screen. 

d. If any of the sensors failed to connect, repeat from (b) until all the sensors are connected. 

1.6 Select “Audio” 

The watch will vibrate every time freezing is detected. You can also activate auditory feedbacks in the form of 
beeps using the “Audio” switch on the bottom of the phone screen (see Figure 11).  When the switch is red, the 
auditory feedback is activated. You can turn this switch on and off at any time. 

 

Figure 11 . When the “Audio” switch is red, the auditory feedback is activated 

1.7 “TEST WATCH” 

1. Follow the instructions in sections 1 on page 4 and to set up the devices, and section 0 on page 6 to 

connect the sensors and watch to the phone. 

2. When the watch and all the sensors are connected, press the “TEST WATCH” button on the phone screen 

to trigger vibrations (and auditory beeps, if activated) on the watch (see Figure 12). 

a. If the watch vibrates, the system is ready.  

b. If the watch doesn’t vibrate, press the “CONNECT” button on the watch (see Figure 9) and then press 

the “CONNECT” button on the phone. 

c. If the watch is shown on the phone screen with green background color but still doesn’t vibrate, 

check if the watch is charged above 80% (see section 1.2 on page 3). If the battery level is below 80%, 

connect the watch to charger and wait until it is charged. 
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Figure 12. When the all devices are connected (shown green on the screen), press “TEST WATCH” button on the 
phone screen to trigger vibrations (and auditory beeps, if activated) on the watch 

1.8 “START” 

1. Wear the sensors on the ankles. The arrow on the labels of all sensors must be upward when standing 

normally (see Figure 13). 

NOTE: Make sure that the sensors are fixed in their place and check their orientation every 30 minutes 

and adjust them if needed. 

 

Figure 13. Foot sensor location and orientaion abobe the ankle 

166



9 
 

2. Wear the watch on your dominant hand snugly. In order to for you to feel the vibrations, the watch 

should stay in place on your wrist. 

3. Check that the “STOP” button on the phone screen is red (see Figure 14), which means the automatic 

detection of freezing has not started yet. If it is not red, press “STOP” on the phone screen. 

 

Figure 14. The “STOP” button must be red before starting the automatic detection of freezing 

4. Press the “START” button on the screen to start automatic detection of freezing. This will change the 

color of “START” button to green, and the “STOP” button to gray (see Figure 15). 

 

Figure 15. The “START” button will become green after starting the automatic detection of freezing 
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5. Turn the screen off on the phone using the side power button. 

NOTE: When the screen is off, the application will remain active. 

6. When the automatic detection of freezing is started, the notification on the watch will turn into green. 

 

Figure 16 . When the application is started, the notification on the watch will turn green. 

7. If the distance between the sensors and the phone become more that 6 ft., the sensors will disconnect, 

and the application will stop. You can check the application status using either of the following methods: 

a. The “START” button on the phone screen will become gray, and the “STOP” button will turn red.  

b. The notification on the watch screen will become red. 

8. It is highly recommended to check the screen on the watch (or phone) every 15 minutes. If stopped, 

check the status of the watch and sensors on the phone screen. 

9. If any of the watch or sensors become disconnected, follow the steps from section 0 on page 6, to 

reconnect. 
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 End of the Day 

2.1 “STOP” 

1. Press the “STOP” button on the screen to stop automatic detection of freezing. This will: 

a. change the color of “START” button to gray, and the “STOP” button to red (see Figure 17). 

b. change the color of notification on the watch screen to red (see Figure 18). 

 

Figure 17. The “STOP” button on the phone will become red after stopping the automatic detection of freezing 

 

Figure 18. The notification on the watch will become red after stopping the automatic detection of freezing 

2. To store and charge the sensors, follow the instructions in section 2.2 on page 12 to disconnect devices. 

Otherwise, if you want to use the device later on the same day, keep the watch and sensors connected 

to the phone. 

NOTE: If you disconnect the watch and sensors, you need to configure them again. But if you keep them 

connected to the phone, they will be ready for the next session and you don’t have to configure them again. 

NOTE: Because the devices consume battery when connected, we strongly recommend disconnecting and 

charging them if you are not going to use the system for the rest of the day. 

169



12 
 

2.2 “DISCONNECT” 

1. Press “Disconnect” button on the phone’s screen. This will disconnect all the sensors and the watch and 

their color on the screen will turn to yellow (see Figure 19). 

 

Figure 19. The background color of the watch and the sensors become yellow when disconnected 

2. Charge the sensors (section 2.3) 

3. Connect the watch to its charger. 

4. Connect the phone to its charger. 

 

NOTE: Disconnect the sensors, watch and phone from charger as soon as they are fully charged (see instructions 

in sections 1.1, 1.2 and 1.3 to check the battery levels) as overcharging will damage the battery. Normally, two 

hours is enough for the sensors and watch. The phone will also be fully charged in three hours. 

2.3 Charging the Sensors 

1. Turn off the sensors using the side button (see Figure 20). 

 

Figure 20. Turn On/Off button on the sensors 
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2. Make sure the charging station is plugged in and the lights are on (see Figure 22) 

 

Figure 21. Orange lights on the charching station will turn on when it is plugged in 

3. Plug the sensors to the charging station and make sure the second lights on the docking station are on 

(see Figure 22). Orange means the sensors are being charged, and green shows that sensors are fully 

charged and can be disconnected. 

 

Figure 22. Green lights on the charching station will turn on when the sensors are Fully charged 

NOTE: Disconnect the sensors, watch and phone from charger as soon as they are fully charged (see instructions 

in sections 1.1, 1.2 and 1.3 to check the battery levels) as overcharging will damage the battery. Normally, two 

hours is enough for the sensors and watch. The phone will also be fully charged in three hours. 
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 List of Items 

 

Sensors Phone Watch 

Item Quantity Item Quantity Item Quantity 

Case 1 Box 1 Box 1 

Sensors with bands 2 Phone 1 Watch 1 

Charging Base 1 Adapter 1 Adapter 1 

Adapter 1 Adapter Cable 1 Adapter Cable 1 

Adapter Cable 1     

 
 
 
 
 

 Technical Support 

Nader Naghavi 
Email:     nnaghavi@utk.edu 
Phone:   (xxx) xxx – xxxx 
 
Hours:    9 AM – 5 PM 
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