470 research outputs found

    Image compression techniques using vector quantization

    Get PDF

    Multi-image classification and compression using vector quantization

    Get PDF
    Vector Quantization (VQ) is an image processing technique based on statistical clustering, and designed originally for image compression. In this dissertation, several methods for multi-image classification and compression based on a VQ design are presented. It is demonstrated that VQ can perform joint multi-image classification and compression by associating a class identifier with each multi-spectral signature codevector. We extend the Weighted Bayes Risk VQ (WBRVQ) method, previously used for single-component images, that explicitly incorporates a Bayes risk component into the distortion measure used in the VQ quantizer design and thereby permits a flexible trade-off between classification and compression priorities. In the specific case of multi-spectral images, we investigate the application of the Multi-scale Retinex algorithm as a preprocessing stage, before classification and compression, that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The goals of this research are four-fold: (1) to study the interrelationship between statistical clustering, classification and compression in a multi-image VQ context; (2) to study mixed-pixel classification and combined classification and compression for simulated and actual, multispectral and hyperspectral multi-images; (3) to study the effects of multi-image enhancement on class spectral signatures; and (4) to study the preservation of scientific data integrity as a function of compression. In this research, a key issue is not just the subjective quality of the resulting images after classification and compression but also the effect of multi-image dimensionality on the complexity of the optimal coder design

    Methods for fast and reliable clustering

    Get PDF

    Seeing things

    Get PDF
    This paper is concerned with the problem of attaching meaningful symbols to aspects of the visible environment in machine and biological vision. It begins with a review of some of the arguments commonly used to support either the 'symbolic' or the 'behaviourist' approach to vision. Having explored these avenues without arriving at a satisfactory conclusion, we then present a novel argument, which starts from the question : given a functional description of a vision system, when could it be said to support a symbolic interpretation? We argue that to attach symbols to a system, its behaviour must exhibit certain well defined regularities in its response to its visual input and these are best described in terms of invariance and equivariance to transformations which act in the world and induce corresponding changes of the vision system state. This approach is illustrated with a brief exploration of the problem of identifying and acquiring visual representations having these symmetry properties, which also highlights the advantages of using an 'active' model of vision

    Regularized Vector Quantization for Tokenized Image Synthesis

    Full text link
    Quantizing images into discrete representations has been a fundamental problem in unified generative modeling. Predominant approaches learn the discrete representation either in a deterministic manner by selecting the best-matching token or in a stochastic manner by sampling from a predicted distribution. However, deterministic quantization suffers from severe codebook collapse and misalignment with inference stage while stochastic quantization suffers from low codebook utilization and perturbed reconstruction objective. This paper presents a regularized vector quantization framework that allows to mitigate above issues effectively by applying regularization from two perspectives. The first is a prior distribution regularization which measures the discrepancy between a prior token distribution and the predicted token distribution to avoid codebook collapse and low codebook utilization. The second is a stochastic mask regularization that introduces stochasticity during quantization to strike a good balance between inference stage misalignment and unperturbed reconstruction objective. In addition, we design a probabilistic contrastive loss which serves as a calibrated metric to further mitigate the perturbed reconstruction objective. Extensive experiments show that the proposed quantization framework outperforms prevailing vector quantization methods consistently across different generative models including auto-regressive models and diffusion models.Comment: Accepted to CVPR 202

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    A Tutorial on Radiation Oncology and Optimization

    Get PDF
    Designing radiotherapy treatments is a complicated and important task that affects patient care, and modern delivery systems enable a physician more flexibility than can be considered. Consequently, treatment design is increasingly automated by techniques of optimization, and many of the advances in the design process are accomplished by a collaboration among medical physicists, radiation oncologists, and experts in optimization. This tutorial is meant to aid those with a background in optimization in learning about treatment design. Besides discussing several optimization models, we include a clinical perspective so that readers understand the clinical issues that are often ignored in the optimization literature. Moreover, we discuss many new challenges so that new researchers can quickly begin to work on meaningful problems
    • …
    corecore