672 research outputs found

    An improved moth flame optimization algorithm based on rough sets for tomato diseases detection

    Get PDF
    Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time

    Neighborhood search methods with Moth Optimization algorithm as a wrapper method for feature selection problems

    Get PDF
    Feature selection methods are used to select a subset of features from data, therefore only the useful information can be mined from the samples to get better accuracy and improves the computational efficiency of the learning model. Moth-flam Optimization (MFO) algorithm is a population-based approach, that simulates the behavior of real moth in nature, one drawback of the MFO algorithm is that the solutions move toward the best solution, and it easily can be stuck in local optima as we investigated in this paper, therefore, we proposed a MFO Algorithm combined with a neighborhood search method for feature selection problems, in order to avoid the MFO algorithm getting trapped in a local optima, and helps in avoiding the premature convergence, the neighborhood search method is applied after a predefined number of unimproved iterations (the number of tries fail to improve the current solution). As a result, the proposed algorithm shows good performance when compared with the original MFO algorithm and with state-of-the-art approaches

    Comparative Analysis of MFO, GWO and GSO for Classification of Covid-19 Chest X-Ray Images

    Get PDF
    تلعب الصور الطبية دورًا حاسمًا في تصنيف الأمراض والحالات المختلفة. إحدى طرق التصوير هي الأشعة السينية التي توفر معلومات بصرية قيمة تساعد في تحديد وتوصيف مختلف الحالات الطبية. لطالما استخدمت الصور الشعاعية للصدر (CXR) لفحص ومراقبة العديد من اضطرابات الرئة، مثل السل والالتهاب الرئوي وانخماص الرئة والفتق. يمكن الكشف عن COVID-19 باستخدام صور CXR أيضًا. تم اكتشاف COVID-19، وهو فيروس يسبب التهابات في الرئتين والممرات الهوائية في الجهاز التنفسي العلوي، لأول مرة في عام 2019 في مقاطعة ووهان بالصين، ومنذ ذلك الحين يُعتقد أنه يتسبب في تلف كبير في مجرى الهواء، مما يؤثر بشدة على رئة الأشخاص المصابين. انتشر الفيروس بسرعة في جميع أنحاء العالم، وتم تسجيل الكثير من الوفيات والحالات المتزايدة بشكل يومي. يمكن استخدام CXR لمراقبة آثار COVID-19 على أنسجة الرئة. تبحث هذه الدراسة في تحليل مقارنة لأقرب جيران k (KNN)، و Extreme Gradient Boosting (XGboost)، و Support-Vector Machine (SVM)، وهي بعض مناهج التصنيف لاختيار الميزات في هذا المجال باستخدام خوارزمية Moth-Flame Optimization (MFO)، وخوارزمية Gray Wolf Optimizer (GWO)، وخوارزمية Glowworm Swarm Optimization (GSO). في هذه الدراسة، استخدم الباحثون مجموعة بيانات تتكون من مجموعتين على النحو التالي: 9544 صورة بالأشعة السينية ثنائية الأبعاد، والتي تم تصنيفها إلى مجموعتين باستخدام اختبارات التحقق من صحتها: 5500 صورة لرئتين سليمتين و4044 صورة للرئتين مع COVID-19. تتضمن المجموعة الثانية 800 صورة و400 صورة لرئتين سليمتين و400 رئة مصابة بـ COVID-19. تم تغيير حجم كل صورة إلى 200 × 200 بكسل. كانت الدقة والاستدعاء ودرجة F1 من بين معايير التقييم الكمي المستخدمة في هذه الدراسة.Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons. The virus was swiftly gone viral around the world and a lot of fatalities and cases growing were recorded on a daily basis. CXR can be used to monitor the effects of COVID-19 on lung tissue. This study examines a comparison analysis of k-nearest neighbors (KNN), Extreme Gradient Boosting (XGboost), and Support-Vector Machine (SVM) are some classification approaches for feature selection in this domain using The Moth-Flame Optimization algorithm (MFO), The Grey Wolf Optimizer algorithm (GWO), and The Glowworm Swarm Optimization algorithm (GSO). For this study, researchers employed a data set consisting of two sets as follows: 9,544 2D X-ray images, which were classified into two sets utilizing validated tests: 5,500 images of healthy lungs and 4,044 images of lungs with COVID-19. The second set includes 800 images, 400 of healthy lungs and 400 of lungs affected with COVID-19. Each image has been resized to 200x200 pixels. Precision, recall, and the F1-score were among the quantitative evaluation criteria used in this study

    An estimation of distribution algorithm for combinatorial optimization problems

    Get PDF
    This paper considers solving more than one combinatorial problem considered some of the most difficult to solve in the combinatorial optimization field, such as the job shop scheduling problem (JSSP), the vehicle routing problem with time windows (VRPTW), and the quay crane scheduling problem (QCSP). A hybrid metaheuristic algorithm that integrates the Mallows model and the Moth-flame algorithm solves these problems. Through an exponential function, the Mallows model emulates the solution space distribution for the problems; meanwhile, the Moth-flame algorithm is in charge of determining how to produce the offspring by a geometric function that helps identify the new solutions. The proposed metaheuristic, called HEDAMMF (Hybrid Estimation of Distribution Algorithm with Mallows model and Moth-Flame algorithm), improves the performance of recent algorithms. Although knowing the algebra of permutations is required to understand the proposed metaheuristic, utilizing the HEDAMMF is justified because certain problems are fixed differently under different circumstances. These problems do not share the same objective function (fitness) and/or the same constraints. Therefore, it is not possible to use a single model problem. The aforementioned approach is able to outperform recent algorithms under different metrics for these three combinatorial problems. Finally, it is possible to conclude that the hybrid metaheuristics have a better performance, or equal in effectiveness than recent algorithms

    Breast Cancer Classification by Gene Expression Analysis using Hybrid Feature Selection and Hyper-heuristic Adaptive Universum Support Vector Machine

    Get PDF
    Comprehensive assessments of the molecular characteristics of breast cancer from gene expression patterns can aid in the early identification and treatment of tumor patients. The enormous scale of gene expression data obtained through microarray sequencing increases the difficulty of training the classifier due to large-scale features. Selecting pivotal gene features can minimize high dimensionality and the classifier complexity with improved breast cancer detection accuracy. However, traditional filter and wrapper-based selection methods have scalability and adaptability issues in handling complex gene features. This paper presents a hybrid feature selection method of Mutual Information Maximization - Improved Moth Flame Optimization (MIM-IMFO) for gene selection along with an advanced Hyper-heuristic Adaptive Universum Support classification model Vector Machine (HH-AUSVM) to improve cancer detection rates. The hybrid gene selection method is developed by performing filter-based selection using MIM in the first stage followed by the wrapper method in the second stage, to obtain the pivotal features and remove the inappropriate ones. This method improves standard MFO by a hybrid exploration/exploitation phase to accomplish a better trade-off between exploration and exploitation phases. The classifier HH-AUSVM is formulated by integrating the Adaptive Universum learning approach to the hyper- heuristics-based parameter optimized SVM to tackle the class samples imbalance problem. Evaluated on breast cancer gene expression datasets from Mendeley Data Repository, this proposed MIM-IMFO gene selection-based HH-AUSVM classification approach provided better breast cancer detection with high accuracies of 95.67%, 96.52%, 97.97% and 95.5% and less processing time of 4.28, 3.17, 9.45 and 6.31 seconds, respectively

    Grey Scale Image Multi-Thresholding Using Moth-Flame Algorithm and Tsallis Entropy

    Get PDF
    In the current era, image evaluations play a foremost role in a variety of domains, where the processing of digital images is essential to identify vital information. The image multi-thresholding is a vital image pre-processing field in which the available digital image is enhanced by grouping similar pixel values. Normally, the digital test images are available in RGB/greyscale format and the appropriate processing methodology is essential to treat the images with a chosen methodology. In the proposed approach, Tsallis Entropy (TE) supported multi-level thresholding is planned for the benchmark greyscale imagery of dimension 512x512x1 pixels using a chosen threshold values (T=2,3,4,5). This work suggests the possible Cost Value (CV) that can be considered during the optimization search and the proposed work is executed by considering the maximization of the TE as the CV. The entire thresholding task is executed using Moth-Flame Algorithm (MFA) and the accomplished results are validated based on the image quality measures of various thresholds. The attained result with MFO is better compared to the result of CS, BFO, PSO, and GA

    Phishing Web Page Detection using Optimised Machine Learning

    Get PDF
    Phishing is a type of social engineering attack that can affect any company or anyone. This paper explores the effect that different features and optimisation techniques have on the accuracy of intelligent phishing detection using machine learning algorithms. This paper explores both hyperparameter optimisation as well as feature selection optimisation. For hyperparameter tuning, both TPE (Tree-structured Parzen Estimator) and GA (Genetic Algorithm) were tested, with the best option being model dependent. For feature selection, GA, MFO (Moth Flame Optimisation) and PSO (Particle Swarm Optimisation) were used with PSO working best with a Random Forest model. This work used URL (Uniform Resource Locator), DOM (Document Object Model) structure, page rank and page information related features. This research found that the best combination was Random Forest using PSO for feature selection and TPE for hyperparameter optimisation, giving an accuracy of 99.33%
    corecore