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Abstract - Phishing is a type of social engineering attack that can 
affect any company or anyone. This paper explores the effect that 
different features and optimisation techniques have on the 
accuracy of intelligent phishing detection using machine learning 
algorithms. This paper explores both hyperparameter 
optimisation as well as feature selection optimisation. For 
hyperparameter tuning, both TPE (Tree-structured Parzen 
Estimator) and GA (Genetic Algorithm) were tested, with the 
best option being model dependent. For feature selection, GA, 
MFO (Moth Flame Optimisation) and PSO (Particle Swarm 
Optimisation) were used with PSO working best with a Random 

Forest model.  This work used URL (Uniform Resource Locator), 
DOM (Document Object Model) structure, page rank and page 
information related features. This research found that the best 
combination was Random Forest using PSO for feature selection 
and TPE for hyperparameter optimisation, giving an accuracy of 
99.33%. 

Keywords: Phishing detection; Bio-inspired optimisation; Anti-

Phishing; Optimisation 

I. INTRODUCTION 
Phishing is a social engineering attack which attempts to 

gather personal information or sensitive data such as 
usernames and passwords. using unsolicited e-mails with 
questionable web links that could direct users to fake websites. 
It is important for users to be aware of lookalike pages that are 
harvesting their information. Reference [1] found that 1 in 25 
branded emails are phishing emails which shows how 
prevalent phishing can be. 76% of large enterprises 
experienced some kind of phishing attack in 2017 [2]. 
Universities have also been targeted within the last year with 
phishing campaigns specifically targeting students [3]. 

This paper explores meta data, URL structure and DOM 
structure features with both feature and hyper parameter bio-
inspired optimisation. This is tested using two datasets taken 
ten months apart to check for robustness and the effects time 
has on the model. This paper also attempts to create a database 
with a large and adaptable feature set to ensure comparisons 
can be done in the future. This is an important area of research 
that could be implemented to recognise phishing pages and 
alert users or companies about them. 

II. RELATED WORKS 
 There has been a lot of research work on phishing 

detection including content-based approaches to phishing 

detection [6], this is things such as looking at all the URLs on 
the page and determining if they are suspicious and checking 
if there are forms on the page and if they are looking for 
personal information. There are URL feature-based 
approaches [5] which look at items that are suspicious in the 
URL such as potential emails in a URL, number of sub 
domains, or the length of the URL. Page rank features [4] are 
another set of features that are used, this will be features 
which look at how search engines view the page, and if it 
appears on the front page or not. Alexa page rank is another 
popular feature in this area. Finally, data about the page such 
as certificate information [5], or the ASN (Autonomous 
System Number) of the page.  

This paper combines features that have worked out well 
for others with the aim of getting higher accuracy rates. There 
are currently few that combines page information with URL, 
DOM structure and page rank features. There are no phishing 
detection algorithms that also optimise their model, at the time 
of writing this paper. Also, to the best of our knowledge there 
is no phishing URL database that stores data, and that allows 
for tests on different features. 

III. ANALYSIS 

A. Features 

The right phishing page features are to be used for the 
phishing detection to work well. Table I gives a quick 
overview of the features that are used and analysed in this 
paper. In order to work out which features are likely to be 
significant; Z tests are run on numerical items using data from 
the dataset this paper uses. The null hypothesis will be that the 
feature has no impact on phishing detection and the alternate 
hypothesis will be that the feature does have an impact. This 
will return a Z score which is the number of standard 
deviations from the mean. This can be equated to a p-value 
which is the probability of the result assuming the null 
hypothesis is true. Typically, a null hypothesis is rejected if 
the p value < 0.05 as this shows the result is statistically 
significant. Table II shows the results of this analysis. Genuine 
mean is the average value of the feature for genuine URLs and 
phishing mean is the average value of the feature for phishing 
URLs 

 For the results to be statistically significant (and so worth 
being a feature) the P value should be less than 0.05. From the 
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results in table II, it is shown that five features can be dropped. 
Four of which are due to having too high P values, the other 
due to none of the URLs in the dataset containing the word 
dispatch. 

TABLE I.  LIST OF FEATURES EXPLORED 

Feature type Feature 

URL 

Domain length [5] 

Number of dashes (-) in the URL [4] 

Number of underscores (_) in the URL 

Number of at symbols (@) in the URL [4] 

Number of equals (=) in the URL 

Number of forward slashes (/) in the URL 

Number of dots (.) in the domain [4] 

Number of digits (0-9) in the domain) 

Uses HTTPS (true/false) [5] 

URL contains “http” after the protocol (true/false) 

URL contains an IP address (true/false) [4] 

Domain contains “www” (true/false) 
Domain contains common file extensions (css, php, 
html) (true/false for each) 
URL contains certain key words (e.g. log, pay) 
(true/false for each) [7] 
URL contains a certain TLD (top level domain) 
(true/false for each) 

DOM structure 
Percentage of links that do not lead to another page 
(link leads to “” or “#”) [8] 
Percentage of links that lead to an external page. [4] 

Page rank Domain of page appears on the front page of Google 
(true/false) [4] 

Page 
information 

Country of origin of the page 

Number of requests 

Percentage of external requests 

Percentage of internal requests (same domain) 

Percentage of dead requests (4XX status code) 

ASN of the page 

Certificate issuer [9] 

Certificate duration [4] 
Hash of page appears on googles safe browsing 
blacklist 

 

B. Machine Learning Techniques 

This sub-section will look at 5 different machine learning 
techniques: linear regression, SVM (support vector machine), 
decision trees, random forest and neural networks. This paper 
looks at binary classification, either phishing or genuine. 

 Linear regression works by attempting to find a straight 
line that separates the two classifications using all the 
variables available. Everything above the line would be given 
one classification, everything below the line would be given 

the other. This sort of model works well where there is a linear 
correlation between the dependent variables and the 
independent variable. This means this would not work well for 
certificate issuers, TLDs and ASNs without adding a true or 
false condition for each ASN. This is something that can be 
automated. 

TABLE II.  ANALYSIS OF FEATURE SIGNIFICANCE 

Feature 
Genuine mean 

(2 s. f.) 

Phishing mean 

(2 s. f.) 

P value  

(2 s. f.) a 

Domain length 8.2 11 ~0 

Dashes 0.087 0.88 ~0 

Underscores 0.021 0.36 ~0 

At symbols 0.039 0.00010 ~0 

Equals 0.034 0.57 ~0 

Slashes 0.99 3.1 ~0 

Dots 1.1 1.4 0.0000000010 

Digits 0.13 0.37 ~0 
Http in domain (1=true, 
0=false) 0.0021 0.023 ~0 

IP in URL 
(1=true, 0=false) 0.000050 0.020 ~0 

Www in domain 
(1=true, 0=false) 0.0035 0.18 ~0 

Css in domain 
(1=true, 0=false) 0.00040 0.00061 0.43 

Php in domain 
(1=true, 0=false) 0.00030 0.00020 0.63 

HTML in domain 
(1=true, 0=false) 0.00035 0.00071 0.17 

Log in URL 
(1=true, 0=false) 0.0080 0.032 ~0 

Pay in URL 
(1=true, 0=false) 0.0034 0.0088 0. 

0000000085 
Web in URL 
(1=true, 0=false) 0.0067 0.065 ~0 

Cmd in URL 
(1=true, 0=false) 0.000050 0.00071 0.001 

Contains account 
(1=true, 0=false) 0.00015 0.0023 0.0000000017 

Contains dispatch 
(1=true, 0=false) 0 0 N/A 

Contains free 
(1=true, 0=false) 0.0061 0.0077 0.093 

Percentage of links to 
same page 0.030 0.19 ~0 

Percentage of links to 
external sites 0.49 0.36 ~0 

Certificate duration 200 9.2 ~0 

a. ~0 means the result is less than 1e-10 

SVM is similar in that a line is used to separate the data 
into both classifications. However, with SVM if a single line 
can be drawn to separate all the data, the target is to use the 
line with the maximum distance from the closest data point for 
each classification rather than using a line of best fit. SVM 
uses hinge loss to try and optimise the line drawn which 
essentially sums up the distance of incorrect classification data 
points to the drawn line. The lower the sum the better. 
Whether linear regression is better than SVM or not will 



depend on the distribution of the data points as well as if any 
loss algorithms are used with linear regression or not. Both 
can also use polynomial lines rather than straight lines which 
may improve accuracy. A decision tree is simply a large 
amount of true or false statements. The machine learning 
comes in with how the true or false are organised as well as 
the value to split on. The nodes are calculated using 
information gain. The advantage of decision trees over the 
statistical models is that categorical data can be used meaning 
all ASN, certificate issuers and TLDs could be used as 
features without altering them to be all true or false answers 
during pre-processing, as this is done automatically by the 
decision tree algorithm. Less relevant features are also not 
used as much, so optimisation in this area is less relevant for 
accuracy reasons. The disadvantage is that decision trees are 
more susceptible to overfitting. 

Random forests try and resolve the overfitting of decision 
trees. They do this by creating multiple decision trees that 
have random subsets of features. So, decision tree 1 could 
have number of dots and number of dashes, decision tree 2 
could have number of digits in the domain and length of the 
URL, and decision tree 3 could have number of dots and 
length of the URL. The data used for prediction is passed to 
these trees, and a simple vote is done based on the output. So, 
if decision tree 1 and 2 classified the URL as genuine, whilst 
decision tree classifies it as phishing, the resulting prediction 
would be genuine. This lowers the chance of overfitting but 
does takes longer to classify than a single decision tree. The 
number of features supplied to each decision tree as well as 
the number of decision trees created are variables that can be 
changed and so could be optimised.  

Neural networks are made up of many neurons. These are 
neurons are split into layers. There are three types of layers: 
the input layer, the hidden layer and the output layer. A neural 
network will have one input layer, one output layer, and one 
or more hidden layers. Generally, each neuron in the hidden 
and output layer is connected to every neuron in the layer next 
to it. This is called a fully connected network. Each 
connection has a weight, which can be positive if it has a 
positive impact on the result, or negative, meaning the impact 
is detrimental to the result.  

Information flows through the network starting from the 
input layer, flowing through the hidden layer(s) and ending at 
the output layer. When an input is supplied to the network, it 
is multiplied by the weight of the connection it followed. This 
value is compared to the activation function. If the result is 0, 
the neuron is not activated. This can be common when using 
the rectified linear unit (ReLU) activation function, resulting 
in many neurons that are never activated. If at the end it is 
deemed to be a positive result (determined by the guess at the 
end) then each weight that contributed to the result is 
improved, relative to how confident of the correct result the 
network was, and how much the weight contributed. If it is 
deemed to be a negative result, then the opposite occurs. This 
effect is called backpropagation. This process is repeated 
multiple times, with weights adjusted as needed. This can be 
done with multiple epochs, which means running the data 
through the network again, but with the newly adjusted 
weights.  

Neural networks are very different to the previously 
mentioned algorithms. The complexity can make it more 
intelligent; they are able to model non-linear and more 
complex relationships, but also make optimisation very 
difficult due to the large amounts of parameters that can be 
changed. When compared to random forests and decision 
trees, the process is very different. Whilst the trees calculate 
the best features at the beginning, the neural network 
gradually adjusts weights to try and find the optimal solution. 
The easiest way to compare them is through experimentation. 
The discussion in paper [10] shows that a neural network had 
the lowest error rate with a 7.50% error rate, with random 
forest and SVM being level at an 8.50% error rate. The 
random forest classifier resulted in a higher accuracy over a 
decision tree and a logistic regression classifier on their 
dataset [11]. RF was also found to have a higher accuracy than 
a decision tree by 3.05% using URL and hyperlink-based 
features [12]. RF works best when compared to linear 
regression, decision trees and SVMs using URL based 
features, beating decision trees by 2.14%, linear regression by 
4.02% and SVMs by 5.18% [13].  

This paper will investigate how well a neural network 
performs using a combination of the features defined in 
section II. This paper will also investigate SVMs and random 
forests, as well as optimised linear regression to see if it can 
achieve similar results to the other algorithms. An optimised 
approach will also be used for the neural network, SVM and 
random forest to see how they compare to their non-optimised 
versions as well as each other.     

C. Optimisation Techniques 

There are two forms of optimisation that will be useful 
within this project namely, feature optimisation and hyper 
parameter tuning. Feature optimisation simply removes the 
weaker features, leaving behind the strongest and as a result 
hopefully improving accuracy. Feature optimisation will be 
more useful for the non-tree algorithms. This is because, by 
design, trees focus on feature importance when they are 
created. It will, however, have an impact on random forests as 
there is less of a chance that any sub tree created is made up 
mostly/fully of weaker features. This will have more of an 
impact on SVM and linear regression as they both look at all 
available features which can sometimes be to their detriment if 
a feature is particularly weak. 

 Hyper parameter tuning makes changes to the machine 
learning algorithms themselves. Each algorithm has 
parameters passed to it that changes slightly how it works. For 
Random forests, this could be the number of features each tree 
has, and how many trees to create. For SVM and linear 
regression this could be the choice between a linear or 
polynomial function. This is mostly useful for getting minor 
increases in accuracy towards the end of the development 
cycle. There have been a few papers comparing algorithms for 
feature optimisation. From these papers three algorithms stand 
out. Genetic algorithm (GA), Particle swarm optimisation 
(PSO) and Moth flame optimisation (MFO).  

GA works by initially creating a random population. The 
second step is to create a new population. This is done by 
computing a fitness score for each member of the population. 



These scores are scaled into expectation values. Next is the 
breeding step. A number of children are created equal to the 
initial population, which is done by randomly selecting two 
parents from the population. The higher a member’s 
expectation value, the more likely they are to be a parent. This 
means that members with higher expectation values will likely 
have more children than those with low expectation values or 
scores. The child is created by taking some values from parent 
A and some values from parent B. This is called a crossover. 
Next a slight random variation is applied called a mutation, 
which ensures that a variety of combinations are tested, rather 
than just a combination of values that were available in the 
first population. This process is repeated until there are a 
number of children and then the process starts again. This 
continues usually until a certain stopping condition is met 
which could be factors such as time or number of generations. 

PSO is influenced by the flocking and schooling of birds 
and fish rather than the passing on of genetic material. Similar 
to the Genetic algorithm the initial particles are randomised, 
and this is PSOs equivalent of a random population. Unlike 
the Genetic algorithm, each particle (member) also holds a 
velocity value and a pBest score. The pBest is the particle’s 
best accuracy. The particle with the highest pBest is also set as 
the gBest, which is the best accuracy across all particles. 
Under each epoch (generation), particles move closer to the 
particle with the current gBest. based on by how far from the 
gBest a particle is. This process is repeated until a number of 
epochs are met, or a certain threshold of movement is met, 
where movement is small enough that minimal further impact 
will be made. 

MFO again has different names that will also be compared 
to similar items from the GA. Flames (members) are randomly 
placed on the search space, and a moth is assigned to each 
flame. On the first iteration, each moth is in the same position 
as the flame. Each moth’s fitness score is calculated using a 
fitness algorithm. The flames are given the same fitness score 
as they are in the same position as the moth. Each moth will 
always follow the flame with the same fitness ranking. So, the 
moth that currently follows the best performing flame will 
always follow the best performing flame, even if that becomes 
a different flame. After the fitness score is calculated, the 
moth moves around the flame. On the second and subsequent 
iterations, the max number of flames is calculated using the 
following equation (1), where N represents the number of 
moths or the starting number of flames, i is the current 
iteration number and T is the maximum number of iterations. 

        Max flames = round (N-i*(N-1)/T)                (1) 

Whilst GA combines the best features of good fitness 
results, MFO has a movement approach. Unlike PSO, MFO 
focusses less on convergence, at least in the beginning and 
more on exploring a larger area of the search space. MFO 
focusses on converging near a solution later on. This will 
make MFO more robust than PSO as there is a greater focus 
on exploration at the beginning. But if PSO has a good start 
then PSO is likely to have a higher accuracy.  GA and MFO to 
be best across 18 datasets as in [16]. But PSO outperformed 
GA in some datasets [17]. Finally, PSO was found to have 

slightly higher accuracy over GA [18]. This paper will 
compare GA, PSO and MFO for feature selection. 

For hyper parameter optimization, the paper [19] 
compared TPE (Tree-structured Parzen Estimator), MCMC 
(Markov chain Monte Carlo) and SMAC (Sequential Model-
based Algorithm Configuration) optimisation techniques and 
found TPE to be around 4% more accurate than the other 
optimisers. There are few papers comparing different hyper 
parameter optimisation algorithms. As such, an investigation 
will be done on the algorithms that appear to be the most 
common, TPE and GA. TPE is a simpler model where the first 
defined number of iterations uses a random search. Then from 
the initial searches, the top 25% of combinations that give the 
best score are assigned to be the good parameter set. Whilst 
the bottom 75% is assigned to be a bad parameter set. Parzen-
window density estimation is used to create a probability 
distribution for both of these sets. The 2 probability 
distributions are stacked on top and a search is done for a 
hyper parameter combination that is most likely to be in the 
good parameter set, and least likely to be in the bad parameter 
set. The hyper parameter set that is found to be the best is 
tested and the probabilities are recalculated. 

IV. METHODOLOGY 

A. Data collection 

The data for this project was collected rather than taken 
from existing datasets since phishing pages can go down 
quickly. This means additional data is not able to be collected 
from the website and would limit the features that are able to 
be used. A larger database has been created alongside this 
research work to hopefully resolve this issue and provide all 
the information required for any potential phishing APIs 
developed in the future. 

URLs were collected from two sources: PhishTank and 
Alexa. PhishTank gives the ability to fetch all active phishing 
pages via an API, whilst Alexa allows you to download the 
top 1 million pages in a CSV format. These URLs are all 
stored in the database. Overall, the dataset consisted of 20,000 
URLs from Alexa and 10, 000 URLs from PhishTank. Extra 
information was obtained using Urlscan’s API. The 
information was extracted from the JSON file and separated 
for storage in the database. The information retrieved from 
here was used for the majority of the non-URL features. The 
only exceptions were the two Google features (i.e. checking if 
the domain appears on the front page or checking if the hash 
of the page appears on Googles safe browsing blacklist). Also 
stored in the database is the ID of the scan which can be used 
to view the results of the scan and get all the information 
fetched including data not in the database such as the DOM 
structure of the page.  In order to get the feature which checks 
if a URL is on Google’s safe browsing blacklist or not, the 
Google safe browsing API is used. Figure 1 shows the ER 
diagram of the full database. In order to get the feature which 
checks if the URL’s domain is on the front page of Google, 
first search terms are needed. The ten words used on the 
visible page (words within HTML tags, excluding script or 
stylesheet tags) with the highest count are used. This search 
term can then be used on Google and if the domain of the page 



appears on the front page, this feature is marked as true for the 
URL, otherwise, it is marked as false. 

 
Fig 1.  ER diagram of the full database 

B. Data manipulation 

Some of the features are made during run time which includes 
all the URL features, the number of requests and the 
certificate duration. The URL features are all obtained by 
either using a ‘count’ function or a ‘contains’ function, to 
count the number of times a certain character or string 
appears, or to check if the string or character does appear. A 
‘starts with’ function is also used to check if the page uses 
HTTPS. Another function is also used to extract the TLD of 
the URL so it can be used in training. The number of requests 
is retrieved using a count function on the database, and the 
certificate duration is created by finding the difference 
between the start and end times of the certificates. All other 
features can be retrieved directly from the database. 

C. Machine learning and Optimisation 

 Firstly, base models are created to see which performs the 
best with no optimisation and to ensure they work as expected. 
With no optimisation, the expected result is for Random forest 
to work best simply by observation of other experiments. As 
stated in section III, SVMs, Random forests, Linear regression 
and NNs, are all to be tested. Each is tested using 10-fold 
cross-validation and the average accuracies are recorded. After 
this hyper parameter optimisation will be used on all models 
to try and get slightly improved accuracy. Finally, feature 
selection optimisation will be used on the best performing 
models to check if certain models perform better after the 
removal of certain features. 

 
Fig 2.  Activity diagram of data manipulation and machine learning process 

This is expected to make more of a difference for the non-
tree models because the tree models do this during their 
creation due to their important value scores. The accuracy 
after feature optimisation will be compared to the base model 
to see if feature optimisation is worth keeping for that model. 
Each particle/moth/member is given a feature mask, which 
holds information on the number of features used as well as 
the right features. Fitness for each algorithm is decided by 
accuracy. As stated in section III, GA and TPE will be used in 
hyper parameter optimisation and GA, MFO and PSO will be 
used in feature selection optimisation. Figure 2 shows a 
simplified activity diagram of this process.  

V. EVALUATION 

This section shows and discusses the results obtained using 
the different machine learning algorithms. This includes 
unoptimised, optimised with hyper parameter optimisation and 
optimised with both hyper parameter optimisation and feature 
selection optimisation.  It is seen from table III, Random forest 
is by far the most accurate model for both true positives and 
true negatives. Surprisingly NN is the worst for all accuracies. 



This may simply because there are a lot more parameters that 
can be changed such as the number of neurons in each layer, 
or the percentage of neurons to drop out.  

SVM as expected performed better than linear regression 
but was not better than Random forest. It was expected that 
both SVM and linear regression would underperform whilst 
all features are included. This is because features such as 
ASN, is categorical and so may confuse the algorithms. It is 
expected that both these algorithms will improve with feature 
optimisation, whilst a lesser impact will be had on random 
forest due to the innate importance values used to create the 
various trees.  

TABLE III.   ACCURACY OF UNOPTIMISED MACHINE LEARNING MODELS 

TABLE IV.  ACCURACY OF MACHINE LEARNING MODELS WITH OPTIMISED 
HYPERPARAMETERS 

 

All the algorithms were optimised with both feature 
selection optimisation and hyper parameter optimisation, 
excluding the 1- and 2-layer neural networks (NNs) as it 
appeared that the extra complexity was helping this problem. 
It is seen from table IV that hyperparameter optimisation 
caused improvements all round, the exception being the 
Random forest combined with the GA resulted in a drop of 
accuracy. This could be because the GA had a poor start or 
because the population size was lowered in order for the 
model to be completed in a reasonable amount of time. Linear 
regression TPE had the greatest improvement, with an almost 
0.24 accuracy increase. This may suggest that the initial 
starting parameters were a poor choice and should have been 
researched more before implementation. However, when 
compared with the GA optimisation for linear regression, it is 
still a 0.11 accuracy increase. So, it could simply be that the 
hyper parameters chosen, have a large effect on linear 
regression accuracy.  On the overall TPE performed better 
than GA for hyper parameter optimisation. The exception to 
this was Neural networks which may be more suited to GA 

hyper parameter optimisation. Furthermore, TPE was much 
faster and so it would be recommended to use TPE over GA. 

TABLE V.  ACCURACY OF MACHINE LEARNING MODELS WITH OPTIMISED 
HYPERPARAMETERS AND FEATURE SELECTION 

 

It is seen from table V that with feature selection 
optimisation, accuracy was improved significantly across the 
board. Linear regression was the only exception to this with a 
minimal increase of 0.001% in accuracy meaning the features 
that were poor had minimal impact on the accuracy. Random 
forest was the only model where MFO was not the best 
optimiser. This was the case even with a second dataset made 
ten months later (10152 genuine sites, 13296 phishing sites). 
PSO outperformed the hyper parameter optimised model by 
0.0315 and MFO by 0.0005. GA performed the worst of the 
three with a 0.9882 accuracy, this being behind PSOs by 
0.9933. For Neural networks, there has been a large 
improvement over just having hyper parameters optimised. 
MFO performed with 0.9187 accuracy and it outperformed 
PSO by 0.0086 and GA 0.0069. On the overall, they did all 
improve the results quite significantly, with the worst scoring 
over the hyper parameter optimised model by 0.2195, and the 
best improving the results by 0.2281. So overall, on the 
dataset created in this project, Random forest with TPE hyper 
parameter optimisation and PSO feature selection optimisation 
worked the best. All features mentioned in section II were 
used and the main use of feature selection was to remove 
some of the features that were more split out, i.e. TLD for 
example.  

For hyper parameters, the following were found to be 
optimal values: Criterion = ‘entropy’; N_estimators = 100; 
Max_depth = 100; Max_features = ”log2”; Min_samples_leaf 
= 1; Min_samples_leaf=4. This gives a maximum operational 
complexity of (10000N), the exact number would depend on 
the actual depth of the trees. The same results should be able 
to be obtained on the created dataset using the above hyper 
parameters and the feature set. Figures 3 to 7 shows the 
comparison of LR, SVM, NN and RF with different 
optimisation techniques for feature selection. Accuracy is the 
overall accuracy of the model, accuracy genuine is the 
accuracy of the model at detecting genuine sites, accuracy 

Model Accuracy (% 4 s. f.) 

Linear regression 0.6789 

SVM 0.8004 

Random forest 0.9603 

1 layer NN 0.5491 

2 layer NN 0.6753 

3 layer NN 0.6760 

Model Accuracy (% 4 s. f.) 

Linear regression TPE 0.9128 

Linear regression GA 0.8065 

SVM TPE 0.8063 

SVM GA 0.8058 

Random forest TPE 0.9618 

Random forest GA 0.9582 

3 layer NN TPE  0.6867 

3 layer NN GA 0.6909 

Model Accuracy (% 4 s. f.) 

Linear regression GA 0.9078 

Linear regression PSO 0.9063 

Linear regression MFO 0.9129 

SVM GA 0.9026 

SVM PSO 0.9056 

SVM MFO 0.9093 

Random forest GA 0.9882 

Random forest PSO 0.9933 

Random forest MFO 0.9928 

3 layer NN GA 0.9118 

3 layer NN PSO 0.9101 

3 layer NN MFO 0.9187 



phishing is the accuracy of the model at detecting phishing 
sites. 

 
 Fig 3.  Comparing the accuracy of Linear regression with different 

optimisation techniques for feature selection. 

 
Fig 4.  Comparing the accuracy of SVM with different optimisation 

techniques for feature selection. 

 
Fig 5.  Comparing the accuracy of Neural Network with different optimisation 

techniques for feature selection 

 
Fig 6.  Comparing the accuracy of Random forest with different optimisation 

techniques for feature selection. 

 
 Fig 7.  Overall comparison of the accuracy of four machine learning 

algorithms with different optimisation techniques for feature selection 

 As can be seen from the comparison table VI, the model 
presented in this paper is the best in terms of recall and 
accuracy and second in terms of precision. 

VI. CONCLUSION AND FUTURE WORKS 
Phishing is one of the most effective threats we face in our 

day. This research explored both hyper parameter optimisation 
as well as feature selection optimisation. For hyper parameter 
tuning, both TPE (Tree-structured Parzen Estimator) and GA 
(Genetic Algorithm) were tested, with the best option being 
model dependent. For feature selection, GA, MFO and PSO 
were used with PSO working best with a Random forest 
model.  This work used URL, DOM structure, page rank and 
page information related features. We found that the best 
combination was a random forest using PSO for feature 
selection and TPE for hyper parameter optimisation, giving an 
accuracy of 99.33%. After multiple tests it was found that both 
hyperparameter and feature selection generally improve 
results. One option that was found in most successful models 
was the Alexa page rank which was not used in this work. The 
accuracy could be improved by implementing this and by 
doing more iterations of optimisations. Although it is likely 
that the increase would be rather small, any increase can make 
a large difference when the model is already at a high 
accuracy. It may also be worth investigating an optimised 
word focussed CNN combined with this feature set, as from 
other research, CNN seems to be promising. This could also 
be combined with an existing whitelist/blacklist database. The 
hash of the URL could be compared to the database, and if 
there is a match then the URL can be automatically predicted 
without having to go through a model. Finally, with the 
second dataset (collected 10 months later) it can be seen that 
phishing sites try to adapt to avoid detection.  

TABLE VI.  COMPARISON OF RESULTS WITH OTHER WORKS 

Paper Technique 
Precision 

(% 4 s. f.) 

Recall  

(% 4 s. f.) 

Accuracy 

(% 4 s. f.) 

[11] RF using 
limited features 

None given None given 0.9658 

[12] Rule based 
learning system 

0.9839 0.9819 0.9839 

[6] 
Fuzzy rough 
set feature 
selection 

None given None given ~0.9500 



Paper Technique 
Precision 

(% 4 s. f.) 

Recall  

(% 4 s. f.) 

Accuracy 

(% 4 s. f.) 

[20] 

Fuzzy logic 
using mostly 
DOM and URL 
features 

None given None given 0.9146 

[21] 

Word focussed 
feature set, as 
well as search 
engine results 

0.9844 None given 0.9491 

[13] 
RF with natural 
language 
features 

None given None given 0.9799 

[22] 

RF using 
principal 
component 
analysis and 
broad feature 
set. 

0.9770 0.9859 0.9840 

[14] 

CNN combined 
with XGBoost 
using mostly 
URL features. 

0.9941 0.9857 0.9899 

[15] 
CNN + RNN 
using word 
based features. 

0.9791 None given 0.9791 

This paper 
(first dataset) 

PSO Optimised 
RF with broad 
feature set 

0.9934 0.9932 0.9933 

This paper 
(second 
dataset - 10 
months later) 
 

PSO Optimised 
RF  with broad 
feature set 
 
 

0.9869 0.9790 0.9939 
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