
Phishing Web Page Detection Using Optimised
Machine Learning

Jordan Stobbs and Biju Issac
Computer and Information Sciences

Northumbria University

Newcastle-upon-Tyne, UK
{jordan.stobbs, biju.issac}@northumbria.ac.uk

Seibu Mary Jacob
Computing, Engineering and Digital Technology

Teesside University

Middlesbrough, UK
s.jacob@tees.ac.uk

Seibu Mary Jacob
, Engineering and Digital Technology

Teesside University

Middlesbrough, UK
s.jacob@tees.ac.uk

Abstract - Phishing is a type of social engineering attack that can
affect any company or anyone. This paper explores the effect that
different features and optimisation techniques have on the
accuracy of intelligent phishing detection using machine learning
algorithms. This paper explores both hyperparameter
optimisation as well as feature selection optimisation. For
hyperparameter tuning, both TPE (Tree-structured Parzen
Estimator) and GA (Genetic Algorithm) were tested, with the
best option being model dependent. For feature selection, GA,
MFO (Moth Flame Optimisation) and PSO (Particle Swarm
Optimisation) were used with PSO working best with a Random

Forest model. This work used URL (Uniform Resource Locator),
DOM (Document Object Model) structure, page rank and page
information related features. This research found that the best
combination was Random Forest using PSO for feature selection
and TPE for hyperparameter optimisation, giving an accuracy of
99.33%.

Keywords: Phishing detection; Bio-inspired optimisation; Anti-

Phishing; Optimisation

I. INTRODUCTION
Phishing is a social engineering attack which attempts to

gather personal information or sensitive data such as
usernames and passwords. using unsolicited e-mails with
questionable web links that could direct users to fake websites.
It is important for users to be aware of lookalike pages that are
harvesting their information. Reference [1] found that 1 in 25
branded emails are phishing emails which shows how
prevalent phishing can be. 76% of large enterprises
experienced some kind of phishing attack in 2017 [2].
Universities have also been targeted within the last year with
phishing campaigns specifically targeting students [3].

This paper explores meta data, URL structure and DOM
structure features with both feature and hyper parameter bio-
inspired optimisation. This is tested using two datasets taken
ten months apart to check for robustness and the effects time
has on the model. This paper also attempts to create a database
with a large and adaptable feature set to ensure comparisons
can be done in the future. This is an important area of research
that could be implemented to recognise phishing pages and
alert users or companies about them.

II. RELATED WORKS
 There has been a lot of research work on phishing

detection including content-based approaches to phishing

detection [6], this is things such as looking at all the URLs on
the page and determining if they are suspicious and checking
if there are forms on the page and if they are looking for
personal information. There are URL feature-based
approaches [5] which look at items that are suspicious in the
URL such as potential emails in a URL, number of sub
domains, or the length of the URL. Page rank features [4] are
another set of features that are used, this will be features
which look at how search engines view the page, and if it
appears on the front page or not. Alexa page rank is another
popular feature in this area. Finally, data about the page such
as certificate information [5], or the ASN (Autonomous
System Number) of the page.

This paper combines features that have worked out well
for others with the aim of getting higher accuracy rates. There
are currently few that combines page information with URL,
DOM structure and page rank features. There are no phishing
detection algorithms that also optimise their model, at the time
of writing this paper. Also, to the best of our knowledge there
is no phishing URL database that stores data, and that allows
for tests on different features.

III. ANALYSIS

A. Features

The right phishing page features are to be used for the
phishing detection to work well. Table I gives a quick
overview of the features that are used and analysed in this
paper. In order to work out which features are likely to be
significant; Z tests are run on numerical items using data from
the dataset this paper uses. The null hypothesis will be that the
feature has no impact on phishing detection and the alternate
hypothesis will be that the feature does have an impact. This
will return a Z score which is the number of standard
deviations from the mean. This can be equated to a p-value
which is the probability of the result assuming the null
hypothesis is true. Typically, a null hypothesis is rejected if
the p value < 0.05 as this shows the result is statistically
significant. Table II shows the results of this analysis. Genuine
mean is the average value of the feature for genuine URLs and
phishing mean is the average value of the feature for phishing
URLs

 For the results to be statistically significant (and so worth
being a feature) the P value should be less than 0.05. From the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/349363335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

results in table II, it is shown that five features can be dropped.
Four of which are due to having too high P values, the other
due to none of the URLs in the dataset containing the word
dispatch.

TABLE I. LIST OF FEATURES EXPLORED

Feature type Feature

URL

Domain length [5]

Number of dashes (-) in the URL [4]

Number of underscores (_) in the URL

Number of at symbols (@) in the URL [4]

Number of equals (=) in the URL

Number of forward slashes (/) in the URL

Number of dots (.) in the domain [4]

Number of digits (0-9) in the domain)

Uses HTTPS (true/false) [5]

URL contains “http” after the protocol (true/false)

URL contains an IP address (true/false) [4]

Domain contains “www” (true/false)
Domain contains common file extensions (css, php,
html) (true/false for each)
URL contains certain key words (e.g. log, pay)
(true/false for each) [7]
URL contains a certain TLD (top level domain)
(true/false for each)

DOM structure
Percentage of links that do not lead to another page
(link leads to “” or “#”) [8]
Percentage of links that lead to an external page. [4]

Page rank Domain of page appears on the front page of Google
(true/false) [4]

Page
information

Country of origin of the page

Number of requests

Percentage of external requests

Percentage of internal requests (same domain)

Percentage of dead requests (4XX status code)

ASN of the page

Certificate issuer [9]

Certificate duration [4]
Hash of page appears on googles safe browsing
blacklist

B. Machine Learning Techniques

This sub-section will look at 5 different machine learning
techniques: linear regression, SVM (support vector machine),
decision trees, random forest and neural networks. This paper
looks at binary classification, either phishing or genuine.

 Linear regression works by attempting to find a straight
line that separates the two classifications using all the
variables available. Everything above the line would be given
one classification, everything below the line would be given

the other. This sort of model works well where there is a linear
correlation between the dependent variables and the
independent variable. This means this would not work well for
certificate issuers, TLDs and ASNs without adding a true or
false condition for each ASN. This is something that can be
automated.

TABLE II. ANALYSIS OF FEATURE SIGNIFICANCE

Feature
Genuine mean

(2 s. f.)

Phishing mean

(2 s. f.)

P value

(2 s. f.) a

Domain length 8.2 11 ~0

Dashes 0.087 0.88 ~0

Underscores 0.021 0.36 ~0

At symbols 0.039 0.00010 ~0

Equals 0.034 0.57 ~0

Slashes 0.99 3.1 ~0

Dots 1.1 1.4 0.0000000010

Digits 0.13 0.37 ~0
Http in domain (1=true,
0=false) 0.0021 0.023 ~0

IP in URL
(1=true, 0=false) 0.000050 0.020 ~0

Www in domain
(1=true, 0=false) 0.0035 0.18 ~0

Css in domain
(1=true, 0=false) 0.00040 0.00061 0.43

Php in domain
(1=true, 0=false) 0.00030 0.00020 0.63

HTML in domain
(1=true, 0=false) 0.00035 0.00071 0.17

Log in URL
(1=true, 0=false) 0.0080 0.032 ~0

Pay in URL
(1=true, 0=false) 0.0034 0.0088 0.

0000000085
Web in URL
(1=true, 0=false) 0.0067 0.065 ~0

Cmd in URL
(1=true, 0=false) 0.000050 0.00071 0.001

Contains account
(1=true, 0=false) 0.00015 0.0023 0.0000000017

Contains dispatch
(1=true, 0=false) 0 0 N/A

Contains free
(1=true, 0=false) 0.0061 0.0077 0.093

Percentage of links to
same page 0.030 0.19 ~0

Percentage of links to
external sites 0.49 0.36 ~0

Certificate duration 200 9.2 ~0

a. ~0 means the result is less than 1e-10

SVM is similar in that a line is used to separate the data
into both classifications. However, with SVM if a single line
can be drawn to separate all the data, the target is to use the
line with the maximum distance from the closest data point for
each classification rather than using a line of best fit. SVM
uses hinge loss to try and optimise the line drawn which
essentially sums up the distance of incorrect classification data
points to the drawn line. The lower the sum the better.
Whether linear regression is better than SVM or not will

depend on the distribution of the data points as well as if any
loss algorithms are used with linear regression or not. Both
can also use polynomial lines rather than straight lines which
may improve accuracy. A decision tree is simply a large
amount of true or false statements. The machine learning
comes in with how the true or false are organised as well as
the value to split on. The nodes are calculated using
information gain. The advantage of decision trees over the
statistical models is that categorical data can be used meaning
all ASN, certificate issuers and TLDs could be used as
features without altering them to be all true or false answers
during pre-processing, as this is done automatically by the
decision tree algorithm. Less relevant features are also not
used as much, so optimisation in this area is less relevant for
accuracy reasons. The disadvantage is that decision trees are
more susceptible to overfitting.

Random forests try and resolve the overfitting of decision
trees. They do this by creating multiple decision trees that
have random subsets of features. So, decision tree 1 could
have number of dots and number of dashes, decision tree 2
could have number of digits in the domain and length of the
URL, and decision tree 3 could have number of dots and
length of the URL. The data used for prediction is passed to
these trees, and a simple vote is done based on the output. So,
if decision tree 1 and 2 classified the URL as genuine, whilst
decision tree classifies it as phishing, the resulting prediction
would be genuine. This lowers the chance of overfitting but
does takes longer to classify than a single decision tree. The
number of features supplied to each decision tree as well as
the number of decision trees created are variables that can be
changed and so could be optimised.

Neural networks are made up of many neurons. These are
neurons are split into layers. There are three types of layers:
the input layer, the hidden layer and the output layer. A neural
network will have one input layer, one output layer, and one
or more hidden layers. Generally, each neuron in the hidden
and output layer is connected to every neuron in the layer next
to it. This is called a fully connected network. Each
connection has a weight, which can be positive if it has a
positive impact on the result, or negative, meaning the impact
is detrimental to the result.

Information flows through the network starting from the
input layer, flowing through the hidden layer(s) and ending at
the output layer. When an input is supplied to the network, it
is multiplied by the weight of the connection it followed. This
value is compared to the activation function. If the result is 0,
the neuron is not activated. This can be common when using
the rectified linear unit (ReLU) activation function, resulting
in many neurons that are never activated. If at the end it is
deemed to be a positive result (determined by the guess at the
end) then each weight that contributed to the result is
improved, relative to how confident of the correct result the
network was, and how much the weight contributed. If it is
deemed to be a negative result, then the opposite occurs. This
effect is called backpropagation. This process is repeated
multiple times, with weights adjusted as needed. This can be
done with multiple epochs, which means running the data
through the network again, but with the newly adjusted
weights.

Neural networks are very different to the previously
mentioned algorithms. The complexity can make it more
intelligent; they are able to model non-linear and more
complex relationships, but also make optimisation very
difficult due to the large amounts of parameters that can be
changed. When compared to random forests and decision
trees, the process is very different. Whilst the trees calculate
the best features at the beginning, the neural network
gradually adjusts weights to try and find the optimal solution.
The easiest way to compare them is through experimentation.
The discussion in paper [10] shows that a neural network had
the lowest error rate with a 7.50% error rate, with random
forest and SVM being level at an 8.50% error rate. The
random forest classifier resulted in a higher accuracy over a
decision tree and a logistic regression classifier on their
dataset [11]. RF was also found to have a higher accuracy than
a decision tree by 3.05% using URL and hyperlink-based
features [12]. RF works best when compared to linear
regression, decision trees and SVMs using URL based
features, beating decision trees by 2.14%, linear regression by
4.02% and SVMs by 5.18% [13].

This paper will investigate how well a neural network
performs using a combination of the features defined in
section II. This paper will also investigate SVMs and random
forests, as well as optimised linear regression to see if it can
achieve similar results to the other algorithms. An optimised
approach will also be used for the neural network, SVM and
random forest to see how they compare to their non-optimised
versions as well as each other.

C. Optimisation Techniques

There are two forms of optimisation that will be useful
within this project namely, feature optimisation and hyper
parameter tuning. Feature optimisation simply removes the
weaker features, leaving behind the strongest and as a result
hopefully improving accuracy. Feature optimisation will be
more useful for the non-tree algorithms. This is because, by
design, trees focus on feature importance when they are
created. It will, however, have an impact on random forests as
there is less of a chance that any sub tree created is made up
mostly/fully of weaker features. This will have more of an
impact on SVM and linear regression as they both look at all
available features which can sometimes be to their detriment if
a feature is particularly weak.

 Hyper parameter tuning makes changes to the machine
learning algorithms themselves. Each algorithm has
parameters passed to it that changes slightly how it works. For
Random forests, this could be the number of features each tree
has, and how many trees to create. For SVM and linear
regression this could be the choice between a linear or
polynomial function. This is mostly useful for getting minor
increases in accuracy towards the end of the development
cycle. There have been a few papers comparing algorithms for
feature optimisation. From these papers three algorithms stand
out. Genetic algorithm (GA), Particle swarm optimisation
(PSO) and Moth flame optimisation (MFO).

GA works by initially creating a random population. The
second step is to create a new population. This is done by
computing a fitness score for each member of the population.

These scores are scaled into expectation values. Next is the
breeding step. A number of children are created equal to the
initial population, which is done by randomly selecting two
parents from the population. The higher a member’s
expectation value, the more likely they are to be a parent. This
means that members with higher expectation values will likely
have more children than those with low expectation values or
scores. The child is created by taking some values from parent
A and some values from parent B. This is called a crossover.
Next a slight random variation is applied called a mutation,
which ensures that a variety of combinations are tested, rather
than just a combination of values that were available in the
first population. This process is repeated until there are a
number of children and then the process starts again. This
continues usually until a certain stopping condition is met
which could be factors such as time or number of generations.

PSO is influenced by the flocking and schooling of birds
and fish rather than the passing on of genetic material. Similar
to the Genetic algorithm the initial particles are randomised,
and this is PSOs equivalent of a random population. Unlike
the Genetic algorithm, each particle (member) also holds a
velocity value and a pBest score. The pBest is the particle’s
best accuracy. The particle with the highest pBest is also set as
the gBest, which is the best accuracy across all particles.
Under each epoch (generation), particles move closer to the
particle with the current gBest. based on by how far from the
gBest a particle is. This process is repeated until a number of
epochs are met, or a certain threshold of movement is met,
where movement is small enough that minimal further impact
will be made.

MFO again has different names that will also be compared
to similar items from the GA. Flames (members) are randomly
placed on the search space, and a moth is assigned to each
flame. On the first iteration, each moth is in the same position
as the flame. Each moth’s fitness score is calculated using a
fitness algorithm. The flames are given the same fitness score
as they are in the same position as the moth. Each moth will
always follow the flame with the same fitness ranking. So, the
moth that currently follows the best performing flame will
always follow the best performing flame, even if that becomes
a different flame. After the fitness score is calculated, the
moth moves around the flame. On the second and subsequent
iterations, the max number of flames is calculated using the
following equation (1), where N represents the number of
moths or the starting number of flames, i is the current
iteration number and T is the maximum number of iterations.

 Max flames = round (N-i*(N-1)/T) (1)

Whilst GA combines the best features of good fitness
results, MFO has a movement approach. Unlike PSO, MFO
focusses less on convergence, at least in the beginning and
more on exploring a larger area of the search space. MFO
focusses on converging near a solution later on. This will
make MFO more robust than PSO as there is a greater focus
on exploration at the beginning. But if PSO has a good start
then PSO is likely to have a higher accuracy. GA and MFO to
be best across 18 datasets as in [16]. But PSO outperformed
GA in some datasets [17]. Finally, PSO was found to have

slightly higher accuracy over GA [18]. This paper will
compare GA, PSO and MFO for feature selection.

For hyper parameter optimization, the paper [19]
compared TPE (Tree-structured Parzen Estimator), MCMC
(Markov chain Monte Carlo) and SMAC (Sequential Model-
based Algorithm Configuration) optimisation techniques and
found TPE to be around 4% more accurate than the other
optimisers. There are few papers comparing different hyper
parameter optimisation algorithms. As such, an investigation
will be done on the algorithms that appear to be the most
common, TPE and GA. TPE is a simpler model where the first
defined number of iterations uses a random search. Then from
the initial searches, the top 25% of combinations that give the
best score are assigned to be the good parameter set. Whilst
the bottom 75% is assigned to be a bad parameter set. Parzen-
window density estimation is used to create a probability
distribution for both of these sets. The 2 probability
distributions are stacked on top and a search is done for a
hyper parameter combination that is most likely to be in the
good parameter set, and least likely to be in the bad parameter
set. The hyper parameter set that is found to be the best is
tested and the probabilities are recalculated.

IV. METHODOLOGY

A. Data collection

The data for this project was collected rather than taken
from existing datasets since phishing pages can go down
quickly. This means additional data is not able to be collected
from the website and would limit the features that are able to
be used. A larger database has been created alongside this
research work to hopefully resolve this issue and provide all
the information required for any potential phishing APIs
developed in the future.

URLs were collected from two sources: PhishTank and
Alexa. PhishTank gives the ability to fetch all active phishing
pages via an API, whilst Alexa allows you to download the
top 1 million pages in a CSV format. These URLs are all
stored in the database. Overall, the dataset consisted of 20,000
URLs from Alexa and 10, 000 URLs from PhishTank. Extra
information was obtained using Urlscan’s API. The
information was extracted from the JSON file and separated
for storage in the database. The information retrieved from
here was used for the majority of the non-URL features. The
only exceptions were the two Google features (i.e. checking if
the domain appears on the front page or checking if the hash
of the page appears on Googles safe browsing blacklist). Also
stored in the database is the ID of the scan which can be used
to view the results of the scan and get all the information
fetched including data not in the database such as the DOM
structure of the page. In order to get the feature which checks
if a URL is on Google’s safe browsing blacklist or not, the
Google safe browsing API is used. Figure 1 shows the ER
diagram of the full database. In order to get the feature which
checks if the URL’s domain is on the front page of Google,
first search terms are needed. The ten words used on the
visible page (words within HTML tags, excluding script or
stylesheet tags) with the highest count are used. This search
term can then be used on Google and if the domain of the page

appears on the front page, this feature is marked as true for the
URL, otherwise, it is marked as false.

Fig 1. ER diagram of the full database

B. Data manipulation

Some of the features are made during run time which includes
all the URL features, the number of requests and the
certificate duration. The URL features are all obtained by
either using a ‘count’ function or a ‘contains’ function, to
count the number of times a certain character or string
appears, or to check if the string or character does appear. A
‘starts with’ function is also used to check if the page uses
HTTPS. Another function is also used to extract the TLD of
the URL so it can be used in training. The number of requests
is retrieved using a count function on the database, and the
certificate duration is created by finding the difference
between the start and end times of the certificates. All other
features can be retrieved directly from the database.

C. Machine learning and Optimisation

 Firstly, base models are created to see which performs the
best with no optimisation and to ensure they work as expected.
With no optimisation, the expected result is for Random forest
to work best simply by observation of other experiments. As
stated in section III, SVMs, Random forests, Linear regression
and NNs, are all to be tested. Each is tested using 10-fold
cross-validation and the average accuracies are recorded. After
this hyper parameter optimisation will be used on all models
to try and get slightly improved accuracy. Finally, feature
selection optimisation will be used on the best performing
models to check if certain models perform better after the
removal of certain features.

Fig 2. Activity diagram of data manipulation and machine learning process

This is expected to make more of a difference for the non-
tree models because the tree models do this during their
creation due to their important value scores. The accuracy
after feature optimisation will be compared to the base model
to see if feature optimisation is worth keeping for that model.
Each particle/moth/member is given a feature mask, which
holds information on the number of features used as well as
the right features. Fitness for each algorithm is decided by
accuracy. As stated in section III, GA and TPE will be used in
hyper parameter optimisation and GA, MFO and PSO will be
used in feature selection optimisation. Figure 2 shows a
simplified activity diagram of this process.

V. EVALUATION

This section shows and discusses the results obtained using
the different machine learning algorithms. This includes
unoptimised, optimised with hyper parameter optimisation and
optimised with both hyper parameter optimisation and feature
selection optimisation. It is seen from table III, Random forest
is by far the most accurate model for both true positives and
true negatives. Surprisingly NN is the worst for all accuracies.

This may simply because there are a lot more parameters that
can be changed such as the number of neurons in each layer,
or the percentage of neurons to drop out.

SVM as expected performed better than linear regression
but was not better than Random forest. It was expected that
both SVM and linear regression would underperform whilst
all features are included. This is because features such as
ASN, is categorical and so may confuse the algorithms. It is
expected that both these algorithms will improve with feature
optimisation, whilst a lesser impact will be had on random
forest due to the innate importance values used to create the
various trees.

TABLE III. ACCURACY OF UNOPTIMISED MACHINE LEARNING MODELS

TABLE IV. ACCURACY OF MACHINE LEARNING MODELS WITH OPTIMISED
HYPERPARAMETERS

All the algorithms were optimised with both feature
selection optimisation and hyper parameter optimisation,
excluding the 1- and 2-layer neural networks (NNs) as it
appeared that the extra complexity was helping this problem.
It is seen from table IV that hyperparameter optimisation
caused improvements all round, the exception being the
Random forest combined with the GA resulted in a drop of
accuracy. This could be because the GA had a poor start or
because the population size was lowered in order for the
model to be completed in a reasonable amount of time. Linear
regression TPE had the greatest improvement, with an almost
0.24 accuracy increase. This may suggest that the initial
starting parameters were a poor choice and should have been
researched more before implementation. However, when
compared with the GA optimisation for linear regression, it is
still a 0.11 accuracy increase. So, it could simply be that the
hyper parameters chosen, have a large effect on linear
regression accuracy. On the overall TPE performed better
than GA for hyper parameter optimisation. The exception to
this was Neural networks which may be more suited to GA

hyper parameter optimisation. Furthermore, TPE was much
faster and so it would be recommended to use TPE over GA.

TABLE V. ACCURACY OF MACHINE LEARNING MODELS WITH OPTIMISED
HYPERPARAMETERS AND FEATURE SELECTION

It is seen from table V that with feature selection
optimisation, accuracy was improved significantly across the
board. Linear regression was the only exception to this with a
minimal increase of 0.001% in accuracy meaning the features
that were poor had minimal impact on the accuracy. Random
forest was the only model where MFO was not the best
optimiser. This was the case even with a second dataset made
ten months later (10152 genuine sites, 13296 phishing sites).
PSO outperformed the hyper parameter optimised model by
0.0315 and MFO by 0.0005. GA performed the worst of the
three with a 0.9882 accuracy, this being behind PSOs by
0.9933. For Neural networks, there has been a large
improvement over just having hyper parameters optimised.
MFO performed with 0.9187 accuracy and it outperformed
PSO by 0.0086 and GA 0.0069. On the overall, they did all
improve the results quite significantly, with the worst scoring
over the hyper parameter optimised model by 0.2195, and the
best improving the results by 0.2281. So overall, on the
dataset created in this project, Random forest with TPE hyper
parameter optimisation and PSO feature selection optimisation
worked the best. All features mentioned in section II were
used and the main use of feature selection was to remove
some of the features that were more split out, i.e. TLD for
example.

For hyper parameters, the following were found to be
optimal values: Criterion = ‘entropy’; N_estimators = 100;
Max_depth = 100; Max_features = ”log2”; Min_samples_leaf
= 1; Min_samples_leaf=4. This gives a maximum operational
complexity of (10000N), the exact number would depend on
the actual depth of the trees. The same results should be able
to be obtained on the created dataset using the above hyper
parameters and the feature set. Figures 3 to 7 shows the
comparison of LR, SVM, NN and RF with different
optimisation techniques for feature selection. Accuracy is the
overall accuracy of the model, accuracy genuine is the
accuracy of the model at detecting genuine sites, accuracy

Model Accuracy (% 4 s. f.)

Linear regression 0.6789

SVM 0.8004

Random forest 0.9603

1 layer NN 0.5491

2 layer NN 0.6753

3 layer NN 0.6760

Model Accuracy (% 4 s. f.)

Linear regression TPE 0.9128

Linear regression GA 0.8065

SVM TPE 0.8063

SVM GA 0.8058

Random forest TPE 0.9618

Random forest GA 0.9582

3 layer NN TPE 0.6867

3 layer NN GA 0.6909

Model Accuracy (% 4 s. f.)

Linear regression GA 0.9078

Linear regression PSO 0.9063

Linear regression MFO 0.9129

SVM GA 0.9026

SVM PSO 0.9056

SVM MFO 0.9093

Random forest GA 0.9882

Random forest PSO 0.9933

Random forest MFO 0.9928

3 layer NN GA 0.9118

3 layer NN PSO 0.9101

3 layer NN MFO 0.9187

phishing is the accuracy of the model at detecting phishing
sites.

 Fig 3. Comparing the accuracy of Linear regression with different

optimisation techniques for feature selection.

Fig 4. Comparing the accuracy of SVM with different optimisation

techniques for feature selection.

Fig 5. Comparing the accuracy of Neural Network with different optimisation

techniques for feature selection

Fig 6. Comparing the accuracy of Random forest with different optimisation

techniques for feature selection.

 Fig 7. Overall comparison of the accuracy of four machine learning

algorithms with different optimisation techniques for feature selection

 As can be seen from the comparison table VI, the model
presented in this paper is the best in terms of recall and
accuracy and second in terms of precision.

VI. CONCLUSION AND FUTURE WORKS
Phishing is one of the most effective threats we face in our

day. This research explored both hyper parameter optimisation
as well as feature selection optimisation. For hyper parameter
tuning, both TPE (Tree-structured Parzen Estimator) and GA
(Genetic Algorithm) were tested, with the best option being
model dependent. For feature selection, GA, MFO and PSO
were used with PSO working best with a Random forest
model. This work used URL, DOM structure, page rank and
page information related features. We found that the best
combination was a random forest using PSO for feature
selection and TPE for hyper parameter optimisation, giving an
accuracy of 99.33%. After multiple tests it was found that both
hyperparameter and feature selection generally improve
results. One option that was found in most successful models
was the Alexa page rank which was not used in this work. The
accuracy could be improved by implementing this and by
doing more iterations of optimisations. Although it is likely
that the increase would be rather small, any increase can make
a large difference when the model is already at a high
accuracy. It may also be worth investigating an optimised
word focussed CNN combined with this feature set, as from
other research, CNN seems to be promising. This could also
be combined with an existing whitelist/blacklist database. The
hash of the URL could be compared to the database, and if
there is a match then the URL can be automatically predicted
without having to go through a model. Finally, with the
second dataset (collected 10 months later) it can be seen that
phishing sites try to adapt to avoid detection.

TABLE VI. COMPARISON OF RESULTS WITH OTHER WORKS

Paper Technique
Precision

(% 4 s. f.)

Recall

(% 4 s. f.)

Accuracy

(% 4 s. f.)

[11] RF using
limited features

None given None given 0.9658

[12] Rule based
learning system

0.9839 0.9819 0.9839

[6]
Fuzzy rough
set feature
selection

None given None given ~0.9500

Paper Technique
Precision

(% 4 s. f.)

Recall

(% 4 s. f.)

Accuracy

(% 4 s. f.)

[20]

Fuzzy logic
using mostly
DOM and URL
features

None given None given 0.9146

[21]

Word focussed
feature set, as
well as search
engine results

0.9844 None given 0.9491

[13]
RF with natural
language
features

None given None given 0.9799

[22]

RF using
principal
component
analysis and
broad feature
set.

0.9770 0.9859 0.9840

[14]

CNN combined
with XGBoost
using mostly
URL features.

0.9941 0.9857 0.9899

[15]
CNN + RNN
using word
based features.

0.9791 None given 0.9791

This paper
(first dataset)

PSO Optimised
RF with broad
feature set

0.9934 0.9932 0.9933

This paper
(second
dataset - 10
months later)

PSO Optimised
RF with broad
feature set

0.9869 0.9790 0.9939

REFERENCES
[1] Avanan, “How email became the weakest link,” [Online], 2019,

Available at: https://www.avanan.com/how-email-became-the-weakest-
link [Accessed 29 October 2019].

[2] Wombat, “State of the phish 2018,” [Online], 2019, Available at:
https://info.wombatsecurity.com/hubfs/2018%20State%20of%20the%20
Phish/Wombat-StateofPhish2018.pdf.

[3] C. Turner, “Universities are failing to protect themselves from cyber-
attacks, report warns,” [Online], 2019, Available at:
https://www.telegraph.co.uk/education/2019/04/03/universitiesfailing-
protect-cyber-attacks-report-warns.

[4] M. Zabihimayvan and D. Doran, "Fuzzy Rough Set Feature Selection to
Enhance Phishing Attack Detection," 2019 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA,
2019, pp. 1-6, doi: 10.1109/FUZZ-IEEE.2019.8858884.

[5] A. K. Jain and B. B. Gupta, "Comparative analysis of features-based
machine learning approaches for phishing detection," 2016 3rd
International Conference on Computing for Sustainable Global
Development (INDIACom), New Delhi, 2016, pp. 2125-2130.

[6] Y. Zhang, J. Hong, & L. Cranor, “Cantina: A Content-Based Approach
to Detecting Phishing Web Sites,” Proceedings of the 16th international
conference on World Wide Web - WWW '07, 2007, pp. 639-648.

[7] R. B. Basnet and T. Doleck, "Towards Developing a Tool to Detect
Phishing URLs: A Machine Learning Approach," 2015 IEEE
International Conference on Computational Intelligence &
Communication Technology, Ghaziabad, 2015, pp. 220-223, doi:
10.1109/CICT.2015.63.

[8] Rao, R. & Ali, S., 2015. PhishShield: A Desktop Application to Detect
Phishing Webpages through Heuristic Approach. Procedia Computer
Science, pp. 147-156.Z.

[9] Dong, A. Kapadia, J. Blythe and L. J. Camp, "Beyond the lock icon:
real-time detection of phishing websites using public key certificates,"
2015 APWG Symposium on Electronic Crime Research (eCrime),
Barcelona, 2015, pp. 1-12, doi: 10.1109/ECRIME.2015.7120795.

[10] N. Sanglerdsinlapachai and A. Rungsawang, "Using Domain Top-page
Similarity Feature in Machine Learning-Based Web Phishing
Detection," 2010 Third International Conference on Knowledge
Discovery and Data Mining, Phuket, 2010, pp. 187-190, doi:
10.1109/WKDD.2010.108.

[11] V. Patil, P. Thakkar, C. Shah, T. Bhat and S. P. Godse, "Detection and
Prevention of Phishing Websites Using Machine Learning Approach,"
2018 Fourth International Conference on Computing Communication
Control and Automation (ICCUBEA), Pune, India, 2018, pp. 1-5, doi:
10.1109/ICCUBEA.2018.8697412.

[12] M. M. Yadollahi, F. Shoeleh, E. Serkani, A. Madani and H. Gharaee,
"An Adaptive Machine Learning Based Approach for Phishing
Detection Using Hybrid Features," 2019 5th International Conference on
Web Research (ICWR), Tehran, Iran, 2019, pp. 281-286, doi:
10.1109/ICWR.2019.8765265.

[13] V. M. Yazhmozhi and B. Janet, "Natural language processing and
Machine learning based phishing website detection system," 2019 Third
International conference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud) (I-SMAC), Palladam, India, 2019, pp. 336-340, doi:
10.1109/I-SMAC47947.2019.9032492.

[14] P. Yang, G. Zhao and P. Zeng, "Phishing Website Detection Based on
Multidimensional Features Driven by Deep Learning," in IEEE Access,
vol. 7, pp. 15196-15209, 2019, doi: 10.1109/ACCESS.2019.2892066.

[15] Y. Huang, Q. Yang, J. Qin and W. Wen, "Phishing URL Detection via
CNN and Attention-Based Hierarchical RNN," 2019 18th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/13th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), Rotorua, New
Zealand, 2019, pp. 112-119, doi:
10.1109/TrustCom/BigDataSE.2019.00024.

[16] H. M. Zawbaa, E. Emary, B. Parv and M. Sharawi, "Feature selection
approach based on moth-flame optimization algorithm," 2016 IEEE
Congress on Evolutionary Computation (CEC), Vancouver, BC, 2016,
pp. 4612-4617, doi: 10.1109/CEC.2016.7744378.

[17] B. S. Saini, N. Kaur and K. S. Bhatia, "Performance Comparison of
Particle Swarm Optimization and Genetic Algorithm for Feature Subset
Selection in Keystroke Dynamics," 2019 International Conference on
Computational Intelligence and Knowledge Economy (ICCIKE), Dubai,
United Arab Emirates, 2019, pp. 684-689, doi:
10.1109/ICCIKE47802.2019.9004246.

[18] J. Huang, H. Li and J. Guo, "Application of PSO in the improved real-
time evolution," 2011 11th International Conference on Hybrid
Intelligent Systems (HIS), Melacca, 2011, pp. 318-323, doi:
10.1109/HIS.2011.6122125.

[19] C. Maurice, F. Madrigal and F. Lerasle, "Hyper-Optimization tools
comparison for parameter tuning applications," 2017 14th IEEE
International Conference on Advanced Video and Signal Based
Surveillance (AVSS), Lecce, 2017, pp. 1-6, doi:
10.1109/AVSS.2017.8078499.

[20] H. Chapla, R. Kotak and M. Joiser, "A Machine Learning Approach for
URL Based Web Phishing Using Fuzzy Logic as Classifier," 2019
International Conference on Communication and Electronics Systems
(ICCES), Coimbatore, India, 2019, pp. 383-388, doi:
10.1109/ICCES45898.2019.9002145.

[21] S. Marchal, J. François, R. State and T. Engel, "PhishStorm: Detecting
Phishing With Streaming Analytics," in IEEE Transactions on Network
and Service Management, vol. 11, no. 4, pp. 458-471, Dec. 2014, doi:
10.1109/TNSM.2014.2377295.

[22] I. Tyagi, J. Shad, S. Sharma, S. Gaur and G. Kaur, "A Novel Machine
Learning Approach to Detect Phishing Websites," 2018 5th International
Conference on Signal Processing and Integrated Networks (SPIN),
Noida, 2018, pp. 425-430, doi: 10.1109/SPIN.2018.8474040.

