3,151 research outputs found

    Hierarchical morphological segmentation for image sequence coding

    Get PDF
    This paper deals with a hierarchical morphological segmentation algorithm for image sequence coding. Mathematical morphology is very attractive for this purpose because it efficiently deals with geometrical features such as size, shape, contrast, or connectivity that can be considered as segmentation-oriented features. The algorithm follows a top-down procedure. It first takes into account the global information and produces a coarse segmentation, that is, with a small number of regions. Then, the segmentation quality is improved by introducing regions corresponding to more local information. The algorithm, considering sequences as being functions on a 3-D space, directly segments 3-D regions. A 3-D approach is used to get a segmentation that is stable in time and to directly solve the region correspondence problem. Each segmentation stage relies on four basic steps: simplification, marker extraction, decision, and quality estimation. The simplification removes information from the sequence to make it easier to segment. Morphological filters based on partial reconstruction are proven to be very efficient for this purpose, especially in the case of sequences. The marker extraction identifies the presence of homogeneous 3-D regions. It is based on constrained flat region labeling and morphological contrast extraction. The goal of the decision is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a modified watershed algorithm. Finally, the quality estimation concentrates on the coding residue, all the information about the 3-D regions that have not been properly segmented and therefore coded. The procedure allows the introduction of the texture and contour coding schemes within the segmentation algorithm. The coding residue is transmitted to the next segmentation stage to improve the segmentation and coding quality. Finally, segmentation and coding examples are presented to show the validity and interest of the coding approach.Peer ReviewedPostprint (published version

    Human perception-oriented segmentation for triangle meshes

    Get PDF
    A segmentação de malhas é um tópico importante de investigação em computação gráfica, em particular em modelação geométrica. Isto deve-se ao facto de as técnicas de segmentaçãodemalhasteremváriasaplicações,nomeadamentenaproduçãodefilmes, animaçãoporcomputador, realidadevirtual, compressãodemalhas, assimcomoemjogosdigitais. Emconcreto, asmalhastriangularessãoamplamenteusadasemaplicações interativas, visto que sua segmentação em partes significativas (também designada por segmentação significativa, segmentação perceptiva ou segmentação perceptualmente significativa ) é muitas vezes vista como uma forma de acelerar a interação com o utilizador ou a deteção de colisões entre esses objetos 3D definidos por uma malha, bem como animar uma ou mais partes significativas (por exemplo, a cabeça de uma personagem) de um dado objeto, independentemente das restantes partes. Acontece que não se conhece nenhuma técnica capaz de segmentar correctamente malhas arbitrárias −ainda que restritas aos domínios de formas livres e não-livres− em partes significativas. Algumas técnicas são mais adequadas para objetos de forma não-livre (por exemplo, peças mecânicas definidas geometricamente por quádricas), enquanto outras são mais talhadas para o domínio dos objectos de forma livre. Só na literatura recente surgem umas poucas técnicas que se aplicam a todo o universo de objetos de forma livre e não-livre. Pior ainda é o facto de que a maioria das técnicas de segmentação não serem totalmente automáticas, no sentido de que quase todas elas exigem algum tipo de pré-requisitos e assistência do utilizador. Resumindo, estes três desafios relacionados com a proximidade perceptual, generalidade e automação estão no cerne do trabalho descrito nesta tese. Para enfrentar estes desafios, esta tese introduz o primeiro algoritmo de segmentação baseada nos contornos ou fronteiras dos segmentos, cuja técnica se inspira nas técnicas de segmentação baseada em arestas, tão comuns em análise e processamento de imagem,porcontraposiçãoàstécnicasesegmentaçãobaseadaemregiões. Aideiaprincipal é a de encontrar em primeiro lugar a fronteira de cada região para, em seguida, identificar e agrupar todos os seus triângulos internos. As regiões da malha encontradas correspondem a saliências e reentrâncias, que não precisam de ser estritamente convexas, nem estritamente côncavas, respectivamente. Estas regiões, designadas regiões relaxadamenteconvexas(ousaliências)eregiõesrelaxadamentecôncavas(oureentrâncias), produzem segmentações que são menos sensíveis ao ruído e, ao mesmo tempo, são mais intuitivas do ponto de vista da perceção humana; por isso, é designada por segmentação orientada à perceção humana (ou, human perception- oriented (HPO), do inglês). Além disso, e ao contrário do atual estado-da-arte da segmentação de malhas, a existência destas regiões relaxadas torna o algoritmo capaz de segmentar de maneira bastante plausível tanto objectos de forma não-livre como objectos de forma livre. Nesta tese, enfrentou-se também um quarto desafio, que está relacionado com a fusão de segmentação e multi-resolução de malhas. Em boa verdade, já existe na literatura uma variedade grande de técnicas de segmentação, bem como um número significativo de técnicas de multi-resolução, para malhas triangulares. No entanto, não é assim tão comum encontrar estruturas de dados e algoritmos que façam a fusão ou a simbiose destes dois conceitos, multi-resolução e segmentação, num único esquema multi-resolução que sirva os propósitos das aplicações que lidam com malhas simples e segmentadas, sendo que neste contexto se entende que uma malha simples é uma malha com um único segmento. Sendo assim, nesta tese descreve-se um novo esquema (entenda-seestruturasdedadosealgoritmos)demulti-resoluçãoesegmentação,designado por extended Ghost Cell (xGC). Este esquema preserva a forma das malhas, tanto em termos globais como locais, ou seja, os segmentos da malha e as suas fronteiras, bem como os seus vincos e ápices são preservados, não importa o nível de resolução que usamos durante a/o simplificação/refinamento da malha. Além disso, ao contrário de outros esquemas de segmentação, tornou-se possível ter segmentos adjacentes com dois ou mais níveis de resolução de diferença. Isto é particularmente útil em animação por computador, compressão e transmissão de malhas, operações de modelação geométrica, visualização científica e computação gráfica. Em suma, esta tese apresenta um esquema genérico, automático, e orientado à percepção humana, que torna possível a simbiose dos conceitos de segmentação e multiresolução de malhas trianguladas que sejam representativas de objectos 3D.The mesh segmentation is an important topic in computer graphics, in particular in geometric computing. This is so because mesh segmentation techniques find many applications in movies, computer animation, virtual reality, mesh compression, and games. Infact, trianglemeshesarewidelyusedininteractiveapplications, sothattheir segmentation in meaningful parts (i.e., human-perceptually segmentation, perceptive segmentationormeaningfulsegmentation)isoftenseenasawayofspeedinguptheuser interaction, detecting collisions between these mesh-covered objects in a 3D scene, as well as animating one or more meaningful parts (e.g., the head of a humanoid) independently of the other parts of a given object. It happens that there is no known technique capable of correctly segmenting any mesh into meaningful parts. Some techniques are more adequate for non-freeform objects (e.g., quadricmechanicalparts), whileothersperformbetterinthedomainoffreeform objects. Only recently, some techniques have been developed for the entire universe of objects and shapes. Even worse it is the fact that most segmentation techniques are not entirely automated in the sense that almost all techniques require some sort of pre-requisites and user assistance. Summing up, these three challenges related to perceptual proximity, generality and automation are at the core of the work described in this thesis. In order to face these challenges, we have developed the first contour-based mesh segmentation algorithm that we may find in the literature, which is inspired in the edgebased segmentation techniques used in image analysis, as opposite to region-based segmentation techniques. Its leading idea is to firstly find the contour of each region, and then to identify and collect all of its inner triangles. The encountered mesh regions correspond to ups and downs, which do not need to be strictly convex nor strictly concave, respectively. These regions, called relaxedly convex regions (or saliences) and relaxedly concave regions (or recesses), produce segmentations that are less-sensitive to noise and, at the same time, are more intuitive from the human point of view; hence it is called human perception- oriented (HPO) segmentation. Besides, and unlike the current state-of-the-art in mesh segmentation, the existence of these relaxed regions makes the algorithm suited to both non-freeform and freeform objects. In this thesis, we have also tackled a fourth challenge, which is related with the fusion of mesh segmentation and multi-resolution. Truly speaking, a plethora of segmentation techniques, as well as a number of multiresolution techniques, for triangle meshes already exist in the literature. However, it is not so common to find algorithms and data structures that fuse these two concepts, multiresolution and segmentation, into a symbiotic multi-resolution scheme for both plain and segmented meshes, in which a plainmeshisunderstoodasameshwithasinglesegment. So, weintroducesuchanovel multiresolution segmentation scheme, called extended Ghost Cell (xGC) scheme. This scheme preserves the shape of the meshes in both global and local terms, i.e., mesh segments and their boundaries, as well as creases and apices are preserved, no matter the level of resolution we use for simplification/refinement of the mesh. Moreover, unlike other segmentation schemes, it was made possible to have adjacent segments with two or more resolution levels of difference. This is particularly useful in computer animation, mesh compression and transmission, geometric computing, scientific visualization, and computer graphics. In short, this thesis presents a fully automatic, general, and human perception-oriented scheme that symbiotically integrates the concepts of mesh segmentation and multiresolution

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif

    Deformable meshes for shape recovery: models and applications

    Get PDF
    With the advance of scanning and imaging technology, more and more 3D objects become available. Among them, deformable objects have gained increasing interests. They include medical instances such as organs, a sequence of objects in motion, and objects of similar shapes where a meaningful correspondence can be established between each other. Thus, it requires tools to store, compare, and retrieve them. Many of these operations depend on successful shape recovery. Shape recovery is the task to retrieve an object from the environment where its geometry is hidden or implicitly known. As a simple and versatile tool, mesh is widely used in computer graphics for modelling and visualization. In particular, deformable meshes are meshes which can take the deformation of deformable objects. They extend the modelling ability of meshes. This dissertation focuses on using deformable meshes to approach the 3D shape recovery problem. Several models are presented to solve the challenges for shape recovery under different circumstances. When the object is hidden in an image, a PDE deformable model is designed to extract its surface shape. The algorithm uses a mesh representation so that it can model any non-smooth surface with an arbitrary precision compared to a parametric model. It is more computational efficient than a level-set approach. When the explicit geometry of the object is known but is hidden in a bank of shapes, we simplify the deformation of the model to a graph matching procedure through a hierarchical surface abstraction approach. The framework is used for shape matching and retrieval. This idea is further extended to retain the explicit geometry during the abstraction. A novel motion abstraction framework for deformable meshes is devised based on clustering of local transformations and is successfully applied to 3D motion compression
    corecore