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Resumo

A segmentação de malhas é um tópico importante de investigação em computação grá-

fica, em particular em modelação geométrica. Isto deve-se ao facto de as técnicas de
segmentação de malhas terem várias aplicações, nomeadamente na produção de filmes,

animação por computador, realidade virtual, compressão de malhas, assim como em jo-
gos digitais. Em concreto, as malhas triangulares são amplamente usadas em aplicações

interativas, visto que sua segmentação em partes significativas (também designada por
segmentação significativa, segmentação perceptiva ou segmentação perceptualmente

significativa ) é muitas vezes vista como uma forma de acelerar a interação com o uti-
lizador ou a deteção de colisões entre esses objetos 3D definidos por uma malha, bem

como animar uma ou mais partes significativas (por exemplo, a cabeça de uma person-
agem) de um dado objeto, independentemente das restantes partes.

Acontece que não se conhece nenhuma técnica capaz de segmentar correctamente
malhas arbitrárias −ainda que restritas aos domínios de formas livres e não-livres−
em partes significativas. Algumas técnicas são mais adequadas para objetos de forma
não-livre (por exemplo, peças mecânicas definidas geometricamente por quádricas),

enquanto outras são mais talhadas para o domínio dos objectos de forma livre. Só na
literatura recente surgem umas poucas técnicas que se aplicam a todo o universo de

objetos de forma livre e não-livre. Pior ainda é o facto de que a maioria das técnicas
de segmentação não serem totalmente automáticas, no sentido de que quase todas elas

exigem algum tipo de pré-requisitos e assistência do utilizador. Resumindo, estes três
desafios relacionados com a proximidade perceptual, generalidade e automação estão

no cerne do trabalho descrito nesta tese.

Para enfrentar estes desafios, esta tese introduz o primeiro algoritmo de segmentação
baseada nos contornos ou fronteiras dos segmentos, cuja técnica se inspira nas técni-

cas de segmentação baseada em arestas, tão comuns em análise e processamento de
imagem, por contraposição às técnicas e segmentação baseada em regiões. A ideia prin-

cipal é a de encontrar em primeiro lugar a fronteira de cada região para, em seguida,
identificar e agrupar todos os seus triângulos internos. As regiões da malha encontradas

correspondem a saliências e reentrâncias, que não precisam de ser estritamente con-

vexas, nem estritamente côncavas, respectivamente. Estas regiões, designadas regiões
relaxadamente convexas (ou saliências) e regiões relaxadamente côncavas (ou reentrân-

cias), produzem segmentações que são menos sensíveis ao ruído e, ao mesmo tempo,
são mais intuitivas do ponto de vista da perceção humana; por isso, é designada por

segmentação orientada à perceção humana (ou, human perception- oriented (HPO), do
inglês). Além disso, e ao contrário do atual estado-da-arte da segmentação de malhas,

a existência destas regiões relaxadas torna o algoritmo capaz de segmentar de maneira
bastante plausível tanto objectos de forma não-livre como objectos de forma livre.

Nesta tese, enfrentou-se também um quarto desafio, que está relacionado com a fusão
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de segmentação e multi-resolução de malhas. Em boa verdade, já existe na literatura
uma variedade grande de técnicas de segmentação, bem como um número significa-

tivo de técnicas de multi-resolução, para malhas triangulares. No entanto, não é as-
sim tão comum encontrar estruturas de dados e algoritmos que façam a fusão ou a

simbiose destes dois conceitos, multi-resolução e segmentação, num único esquema
multi-resolução que sirva os propósitos das aplicações que lidam com malhas simples

e segmentadas, sendo que neste contexto se entende que uma malha simples é uma
malha com um único segmento. Sendo assim, nesta tese descreve-se um novo esquema

(entenda-se estruturas de dados e algoritmos) de multi-resolução e segmentação, desig-
nado por extended Ghost Cell (xGC). Este esquema preserva a forma das malhas, tanto

em termos globais como locais, ou seja, os segmentos da malha e as suas fronteiras,
bem como os seus vincos e ápices são preservados, não importa o nível de resolução

que usamos durante a/o simplificação/refinamento da malha. Além disso, ao contrário
de outros esquemas de segmentação, tornou-se possível ter segmentos adjacentes com

dois ou mais níveis de resolução de diferença. Isto é particularmente útil em animação
por computador, compressão e transmissão de malhas, operações de modelação ge-

ométrica, visualização científica e computação gráfica.

Em suma, esta tese apresenta um esquema genérico, automático, e orientado à per-

cepção humana, que torna possível a simbiose dos conceitos de segmentação e multi-
resolução de malhas trianguladas que sejam representativas de objectos 3D.

Palavras-chave

Segmentação de malhas
Convexidade relaxada

Perceção humana
Malhas multiresolução
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Abstract

The mesh segmentation is an important topic in computer graphics, in particular in

geometric computing. This is so because mesh segmentation techniques find many
applications in movies, computer animation, virtual reality, mesh compression, and

games. In fact, triangle meshes are widely used in interactive applications, so that their
segmentation in meaningful parts (i.e., human-perceptually segmentation, perceptive

segmentation or meaningful segmentation) is often seen as a way of speeding up the user
interaction, detecting collisions between these mesh-covered objects in a 3D scene,

as well as animating one or more meaningful parts (e.g., the head of a humanoid)
independently of the other parts of a given object.

It happens that there is no known technique capable of correctly segmenting any mesh

into meaningful parts. Some techniques are more adequate for non-freeform objects

(e.g., quadric mechanical parts), while others perform better in the domain of freeform
objects. Only recently, some techniques have been developed for the entire universe

of objects and shapes. Even worse it is the fact that most segmentation techniques
are not entirely automated in the sense that almost all techniques require some sort

of pre-requisites and user assistance. Summing up, these three challenges related to
perceptual proximity, generality and automation are at the core of the work described

in this thesis.

In order to face these challenges, we have developed the first contour-based mesh seg-
mentation algorithm that we may find in the literature, which is inspired in the edge-

based segmentation techniques used in image analysis, as opposite to region-based seg-
mentation techniques. Its leading idea is to firstly find the contour of each region, and

then to identify and collect all of its inner triangles. The encountered mesh regions
correspond to ups and downs, which do not need to be strictly convex nor strictly con-

cave, respectively. These regions, called relaxedly convex regions (or saliences) and
relaxedly concave regions (or recesses), produce segmentations that are less-sensitive

to noise and, at the same time, are more intuitive from the human point of view; hence
it is called human perception- oriented (HPO) segmentation. Besides, and unlike the

current state-of-the-art in mesh segmentation, the existence of these relaxed regions

makes the algorithm suited to both non-freeform and freeform objects.

In this thesis, we have also tackled a fourth challenge, which is related with the fusion

of mesh segmentation and multi-resolution. Truly speaking, a plethora of segmenta-

tion techniques, as well as a number of multiresolution techniques, for triangle meshes
already exist in the literature. However, it is not so common to find algorithms and

data structures that fuse these two concepts, multiresolution and segmentation, into
a symbiotic multi-resolution scheme for both plain and segmented meshes, in which a

plain mesh is understood as a mesh with a single segment. So, we introduce such a novel
multiresolution segmentation scheme, called extended Ghost Cell (xGC) scheme. This
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scheme preserves the shape of the meshes in both global and local terms, i.e., mesh
segments and their boundaries, as well as creases and apices are preserved, no matter

the level of resolution we use for simplification/refinement of the mesh. Moreover,
unlike other segmentation schemes, it was made possible to have adjacent segments

with two or more resolution levels of difference. This is particularly useful in com-
puter animation, mesh compression and transmission, geometric computing, scientific

visualization, and computer graphics.

In short, this thesis presents a fully automatic, general, and human perception-oriented
scheme that symbiotically integrates the concepts of mesh segmentation and multires-

olution.

Keywords

Mesh segmentation

Relaxed convexity
Human perception

Multiresolution meshes
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Chapter 1

Introduction

The mesh segmentation is an important topic in geometric computing and computer
graphics, largely because of its applications in movies, computer animation, virtual

reality, mesh compression, and games. In fact, triangle meshes are widely used in
interactive applications, so that their segmentation in meaningful parts (i.e., human-

perceptually segmentation, perceptive segmentation or meaningful segmentation) is a
way of speeding up the interaction, detecting collisions between these mesh-covered

objects in a 3D scene, as well as animating one or more meaningful parts (e.g., the head
of a humanoid) independently of the other parts of a given object. It happens that there

is no known technique capable of correctly segmenting any mesh into meaningful parts.
Some techniques are more adequate for non-freeform objects (e.g., quadric mechanical

parts), while others perform better in the domain of freeform objects. Only recently,
some techniques have been developed for the entire universe of objects and shapes.

Even worse it is the fact that most segmentation techniques are not entirely automated
in the sense that almost all techniques require some sort of pre-requisites and user assis-

tance. Summing up, these three challenges related to perceptual proximity, generality
and automation are at the core of the work described in this thesis.

1.1 Thesis Statement

In general, mesh segmentation falls into two major categories: perceptive segmenta-

tion and non-perceptive segmentation. Perceptive segmentation, also called human
perception-based segmentation, divides a mesh into meaningful regions (e.g., the legs

of a human body). On the other hand, non-perceptive segmentation divides a mesh
into charts sharing a common set of geometric features. Additionally, the process of

segmentation may involve interaction by the user, and may take advantage of prior
knowledge we have about the objects modelled by such meshes. In addition, the seg-

mentation often depends on the geometry of objects coated by mesh triangles, i.e.,
non-freeform and freeform objects.

In this work, we aim at segmentation techniques that satisfy the following criteria:

• Meaningful segmentation;

• Without user interaction;

• Only use of information available on the mesh itself;
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• Apply to the largest possible number of objects.

Taking into consideration the requirements mentioned above, we can formulate the
thesis statement as follows:

Is it feasible to segment different categories of meshes in a single, auto-

mated manner as the humans perceptually do, regardless of their level of

detail?

As shown throughout this thesis, we intend to prove that this statement is true in prac-

tice, in particular using the concept of relaxed convexity, which has much to do with
how humans perceive the ups and downs of real-world objects, and mentally organize

their shapes in a hierarchical manner, the so-called meaningful or perceptive segmen-
tation.

1.2 Research Questions

In order to validate the thesis statement above, it is necessary to answer to the following
research questions:

Is it possible to segment a given object into meaningful parts as they are perceived
by the human being?

The principal objective of the meaningful or perceptive segmentation is to divide a mesh

into meaningful segments, i.e., segments that match the way how humans perceive
objects and their parts in a hierarchical manner. According to Hoffman’s assertion

[HS97], humans normally identify a given object as a set of its convex regions, which
look separate from each other along concave boundaries. The third chapter of this

thesis describes an algorithm that outputs a perceptive segmentation of 2D meshes in
3D space.

Is it possible to segment both freeform and non-freeform objects into meaningful
parts through a single segmentation algorithm?

Usually, a segmentation algorithm is designed for a particular category of objects, e.g.,

mechanical parts, humanoids, animals, handicraft, and so forth. That is, the geomet-

ric coverage of a segmentation algorithm is limited. In third chapter of this thesis,
and following recent trends in mesh segmentation techniques, we describe a segmen-

tation algorithm that applies to both freeform and non-freeform objects, though their
geometries have been previously triangulated. Therefore, we use triangle meshes as

piecewise-linear approximations for any sort of geometric object.

Is it possible to design and implement an algorithm to automatically extract segments
without requiring user interaction?
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One of the problems with many segmentation algorithms is that they are dependent
upon some form of user interaction or assistance; in particular, it is often necessary

to indicate the final number of segments, to pick up at least a point of each region by
direct interaction, of even to provide some training set of mesh segmentations of the

same object (i.e., the so-called co-segmentation). In third chapter of this thesis, an
automated mesh segmentation algorithm is proposed, which is capable of calculating

the number of segments beforehand in an automatic manner.

Is it possible to use mesh segmentation within a multiresolution scheme that pre-
serves the segments?

Usually, mesh segmentation is designed and implemented on plain meshes, i.e., meshes
without multiresolution. In the fourth chapter of this thesis, the concept of multireso-

lution mesh segmentation was taken to a point such that we can say that the concepts
of segmentation and multiresolution seem to be merged. Additionally, this scheme

preserves the shape of the mesh by preserving its segments, as well as its apices and
creases.

1.3 Research Context

Segmented meshes have multiple applications in computer graphics, namely morphing,

texture mapping, shape reconstruction, collision detection, 3D shape retrieval, and so
forth. For example, in collisions detection, using segmented meshes allows us to speed

up the computation of collisions between objects in motion because its is easier to
construct a bounding volume hierarchy (BVH) for a segmented mesh than for a plain

mesh.

It is clear that many geometric operations−including the segmentation of a plain mesh−
can be performed manually or with the user assistance. But, truly speaking, most −not
to say all− segmentation algorithms fail to divide one or more meshes into meaningful
parts from the human perception point of view. The rationale behind this issue relative

to the perceptive correctness, or at least the perceptual proximity, lies in fact that it
is rather difficult to know in advance the exact number of segments of a mesh. This is

so in spite of being consensually accepted that humans perceive objects as hierarchi-

cal collections of parts [Bie87], with boundaries of parts perceived along the negative

minima of principal curvatures [HS97]; hence the so-called Hofman’s assertion, which

implies that the meaningful parts are essentially convex.

The a priori unknown number of segments or parts also means that most mesh segmenta-
tion algorithms do not work in an automated manner. In fact, most of these algorithms

require the user to enter the number of segments beforehand. In this respect, we found
that mesh segmentation in computer graphics ranks behind image segmentation tech-

niques (e.g., histogram techniques) −commonly found in the field of image analysis and
processing− in terms of innovative cutting-edge solutions. One of the leading ideas of
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this thesis is thus to elaborate new image analysis-inspired techniques to determine the
number of meaningful mesh segments.

Furthermore, mesh segmentation algorithms suffer from the lack of generality. Some

algorithms readily apply to freeform objects like humanoids, animals, handicraft, and
the like. Some algorithms are more adequate for the segmentation of non-freeform

objects like mechanical parts and engineering artifacts. We rarely find an algorithm that
works equally well for both categories of objects, freeform and non-freeform objects.

In this thesis, we were also motivated by this generality issue, which shows us that this
research topic is far from its complete resolution.

Moreover, with the increasing complexity of the geometric models, largely propelled
by the new data acquisition devices (e.g., laser scanners), modern geometric schemes

capable of symbiotically combining segmentation and multiresolution in triangle meshes
have become a need to be satisfied by geometric modeling tools and systems at the

disposal of common users and industrial designers.

1.4 The Course of the Research Work

The work that resulted in this document involved a number of tasks, as listed in sequel:

1. Literature review. This stage took so long because the entire literature on mesh

segmentation has been reviewed carefully. This review focused on meaningful
segmentation, but chart segmentation was also briefly approached. Besides, some

literature related to cognitive sciences was also approached and studied in order
to better understand how humans perceive objects and the surrounding world.

2. Implementation of a few state-of-the-art segmentation algorithms. Four clas-

sical segmentation algorithms were implemented, more specifically those region

growing and watershed algorithms introduced by Mangan and Whitaker [MW99]
and Zuckerberger et al. [ZTS02]. This stage was important to grasp the mathe-

matics behind mesh segmentation, namely the notions of curvature and convexity.
Additionally, it was also relevant to realize the limitations and open issues of the

current segmentation methods.

3. Design and implementation of our perceptive mesh segmentation algorithm.
Likely, this was the most time-consuming task of the entire doctoral programme.

This was so because we took some time to come up to the concept of relaxed
convexity, which −we believe− better translates the way how humans perceive

the ups and downs of a mesh. Another difficulty of the algorithm was to come up
to the number of segments in an automated manner. For that, we ended up using

histogram techniques so common in image analysis and processing.

4. Testing of our perceptive mesh segmentation algorithm. Our algorithm was
extensively tested and compared to standard mesh segmentations of the Princeton
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benchmark [CGF09]. The corresponding quantitative evaluation has shown that
our algorithm outperforms the state-of-the-art segmentation algorithms in the

sense that the resulting segmentations are closer to those of the ground truth
(i.e., human segmentation).

5. Design and implementation of a multiresolution scheme for perceptive meshes.
The challenge here was how to combine the concepts of mesh segmentation and
multiresolution mesh, with the particularity of preserving the shape of the mesh

in terms of its segments, creases, and apices. Besides, it was made possible to
have segments with distinct resolutions or levels of detail.

6. Writing of the thesis. The thesis was being written whilst the papers were being

submitted to conferences and journals. Therefore, each core chapter of this thesis
corresponds to a separate paper.

1.5 Contributions

The contributions of this thesis are the following:

• To our best knowledge, we here propose the first contour-based segmentation
in the domain of mesh segmentation in 3D. For this purpose, we use the point

membership test (PMT) as a convexity classifier, i.e., we use PMT to classify edges
as convex, concave or flat. PMT is a particular case of the SMC (set membership

classification) test, which is very popular in CSG (constructive solid geometry)
modeling, and has been around for the last three to four decades [Til80].

• Nevertheless, recesses and saliences on the mesh are not classified in a so strict

manner in terms of convexity. We introduce the notion of relaxed convexity to

classify those shape features of the mesh. A salience is a relaxedly convex region,
while a recess is a relaxedly concave region. A relaxedly convex region is not

strictly convex, i.e., it admits small concavities. On the other hand, a relaxedly
concave region is not strictly concave, i.e., it admits small convexities. This shape

relaxation allows us to minimize the effects of noise related to over-segmentation,
and makes it suited to the segmentation of freeform objects.

• The computation of the number of segments of a mesh is performed in an au-

tomated manner using a histogram-based technique, i.e., without the common
user assistance or interaction. This histogram-based technique was inspired in

the histogram-based segmentation used in image analysis and processing, but it
has never been used in mesh segmentation.

• At our best knowledge, this thesis introduces the first general data structure for

multi-resolution segmented meshes. The generality comes from the fact that two
adjacent segments may possess quite distinct levels of detail. It is true that in the
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literature we also find multiresolution progressive meshes, but they only admit
adjacent segments with one level of detail of difference.

• We also introduce shape-preserving simplification and refinement operators for

multiresolution segmented meshes. This requires that the boundaries that sepa-

rate mesh segments from each other must hold after all. Moreover, creases and
apices are also preserved after finding them through the covariance matrix norm.

Also, simplification and refinement operators can be applied to the entire mesh
or to any number of segments in an independent manner. This is so because the

segments may have distinct levels of detail.

1.6 Publications

Rui S.V. Rodrigues, José F.M. Morgado, and Abel J.P. Gomes. 2016. Mesh Segmen-
tation: A Literature Review. ACM Computing Surveys (submitted), 2016.

Abstract. Mesh segmentation is a fundamental research topic in geometry process-

ing and computer graphics. This paper presents an exhaustive literature review of
mesh segmentation techniques and algorithms, with a focus on meaningful segmen-

tation, i.e., segmentation that divides a mesh into perceptually meaningful regions.
Such perceptually meaningful segmentation is also called perceptive segmentation (or

human perception-orientation segmentation) because it attempts to mimic how hu-
mans perceive the surrounding world and organize its constituent objects into parts.

This means that we do not consider here mesh segmentation into non-meaningful parts
(i.e., charts). Additionally, we only consider segmentation techniques with reference

to a single mesh at a time, so that no co-segmentation techniques are considered ei-
ther. Finally, the taxonomy followed in this paper is new in the sense that several mesh

segmentation algorithms are classified in terms of the structural dimension (i.e., 1D,
2D, and 3D) at the heart of each technique. The leading idea behind this literature re-

view is to identify the properties and limitations of state-of-the-art algorithms in order
to shed light on the challenges for future work.

Rui S.V. Rodrigues, José F.M. Morgado, and Abel J.P. Gomes. 2015. A contour-based
segmentation algorithm for triangle meshes in 3D space. Computers & Graphics 49
(2015), pp. 24-35.

Abstract. This paper introduces the first contour-based mesh segmentation algorithm
that we may find in the literature, which is inspired in the edge-based segmentation

techniques used in image analysis, as opposite to region-based segmentation tech-
niques. Its leading idea is to firstly find the contour of each region, and then to iden-

tify and collect all of its inner triangles. The encountered mesh regions correspond
to ups and downs, which do not need to be strictly convex nor strictly concave, re-

spectively. These regions, called relaxedly convex regions (or saliences) and relaxedly
concave regions (or recesses), produce segmentations that are less-sensitive to noise
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and, at the same time, are more intuitive from the human point of view; hence it is
called human perception-oriented (HPO) segmentation. Besides, and unlike current

state-of-the-art in mesh segmentation, the existence of these relaxed regions makes
the algorithm suited to both non-freeform and freeform objects.

Rui S.V. Rodrigues, José F.M. Morgado, and Abel J.P. Gomes. 2016. A Shape-
Preserving Multiresolution Segmentation Scheme for Triangle Meshes with Creases
and Apices. Computers & Graphics (submitted), 2016.

Abstract. A plethora of segmentation techniques, as well as a number of multireso-
lution techniques, for triangle meshes already exist in the literature. However, it is

not so common to find algorithms and data structures that fuse these two concepts,
multiresolution and segmentation, into a symbiotic multi-resolution scheme for both

plain and segmented meshes, in which a plain mesh is understood as a mesh with a
single segment. In this paper, we introduce such a novel multiresolution segmentation

scheme, called extended Ghost Cell (xGC) scheme. This scheme preserves the shape of
the meshes in both global and local terms, i.e., mesh segments and their boundaries, as

well as creases and apices are preserved, no matter the level of resolution we use for
simplification/refinement of the mesh. Moreover, unlike other segmentation schemes,

it was made possible to have adjacent segments with two or more resolution levels of
difference. This is particularly useful in computer animation, mesh compression and

transmission, geometric computing, scientific visualization, and computer graphics.

1.7 Software and Hardware Tools

In this work, all algorithms were designed and implemented on an Intel Core Duo 2.4

computer running a Mac OS X operating system, and using the OpenGL User Interface

Library (GLUI), which is a C++ user interface library based on the OpenGL Utility Toolkit
(GLUT). In testing of the our segmentation algorithm, we compared the mesh segmenta-

tions produced by our algorithm with those made available by the Princeton benchmark
[CGF09], in order to better evaluate how close they were to human ground truth.

1.8 Thesis Outline

Chapter 1. The thesis statement, the principal research questions, the main contribu-
tions, the main publications and software, as well as the motivation that has led to the

writing of this thesis, are presented in a brief manner.

Chapter 2. This chapter makes an exhaustive literature review on mesh segmentation,

with a focus on perceptive mesh segmentation algorithms and techniques.

Chapter 3. This chapter describes the first contour-based mesh segmentation algo-
rithm. Starting from the region boundaries or contours, the algorithm iteratively builds
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the relaxedly convex regions (or saliences) and relaxedly concave regions (or recesses),
which are less-sensitive to the noise, allowing at the same time to create perceptually

meaningful regions from the human point of view.

Chapter 4. This chapter presents a multi-resolution scheme for segmentation of trian-
gle meshes, which preserves the shape of the meshes in both global and local terms, no

matter the level of resolution we use for simplification/refinement of the mesh. Fur-
thermore, and unlike other schemes, it was made possible to have adjacent segments

with two or more resolution levels of difference.

Chapter 5. This chapter presents the main conclusions of the research work behind this

thesis, advancing with some open issues for future work.
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Chapter 2

Meaningful Mesh Segmentation: a Survey

Mesh segmentation is a fundamental research topic in geometry processing and com-
puter graphics. This chapter presents an exhaustive literature review of mesh segmen-

tation techniques and algorithms, with a focus on meaningful segmentation, i.e., seg-
mentation that divides a mesh into perceptually meaningful regions. Such perceptually

meaningful segmentation is also called perceptive segmentation (or human perception-
orientation segmentation) because it attempts to mimic how humans perceive the sur-

rounding world and organize its constituent objects into parts. This means that we do
not consider here mesh segmentation into non-meaningful parts (i.e., charts). Addi-

tionally, we only consider segmentation techniques with reference to a single mesh at
a time, so that no co-segmentation techniques are considered either. Finally, the tax-

onomy followed in this thesis is new in the sense that the several mesh segmentation
algorithms are classified in terms of the structural dimension (i.e., 1D, 2D, and 3D) at

the heart of each technique. The leading idea behind this literature review is to identify
the properties and limitations of the state-of-the-art algorithms in order to shed light

on the challenges for future work.

2.1 Introduction

The mesh segmentation consists in dividing a mesh into parts. Mesh segmentation in the

3D space is a challenging problem in geometry processing and computer graphics, which
has been around for two to three decades. Online repositories like AIMSHAPE (http://
visionair.ge.imati.cnr.it/ontologies/shapes/) and benchmarks like Princeton’s
[CGF09] were created to mainly sustain the mesh segmentations research, yet they

have been instrumental in object retrieval techniques [FMA+10] .

In general, there are three major categories of mesh segmentation algorithms (Fig-

ure 2.1):

• Chart segmentation. In this case, a given mesh is decomposed into charts, with
the geometric entities (i.e., vertices, edges and facets) of each chart satisfying

the same geometric property (e.g., planarity, convexity, and curvature) within a
specific threshold or range. The resulting charts do not necessarily match the ones

produced by humans through their vision, i.e., they are not necessarily meaningful
from the human point of view.

• Meaningful segmentation. The main objective of the meaningful segmentation is
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to decompose a given mesh into submeshes or patches that correspond to mean-
ingful parts (e.g., the fingers of a hand) as perceived by humans. Therefore, the

cognitive science plays here an important role [HS97] [Bie87].

• Co-segmentation. Unlike other segmentation algorithms, co-segmentation algo-

rithms makes usage of two or more mesh segmentations of the same object, with
each segmentation featuring a distinct object pose. Nevertheless, the leading

idea is to produce a meaningful segmentation of a mesh, yet with reference to a
set of already known co-segmentations.

(a) (b) (c)

Figure 2.1: Different types of segmentation: (a) chart segmentation [SSGH01]; (b) meaningful
segmentation [WLAT14]; (c) co-segmentation [SvKK+11].

In a word, mesh parts can bemeaningful from the human perception point of view or not.

This chapter focuses on meaningful segmentation techniques, though co-segmentation
techniques are not at all considered. One of the contributions of this chapter has to

do with a new way of classifying meaningful mesh segmentation algorithms, which is
carried out with reference to the structural dimension of the segments or regions. With

this in mind, we have identified three main categories of meaningful mesh segmentation
techniques:

1. Volume-based segmentation. In this case, the segments are volumes. The input
is a 3D volumetric mesh, which is then partitioned into 3D volumetric submeshes

in the attempt of matching human perception in a particular context. In fact, as
argued by Hoffman and Richards [HR84], the volumetric convexity is often related

to the human perception about shape and, consequently, shape segmentation.

2. Surface-based segmentation. In this technique, the segments are 2D submeshes
or regions of a 2D triangle mesh. Each region consists of a number of connected

facets that have similar geometric properties (e.g., convexity, curvature, etc.).

3. Skeleton-based segmentation. In this technique, also known as skeletonization,
the segments are line segments. The input is either a 3D volumetric mesh or a 2D
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surface mesh, but the output is a 1D skeleton that represents the structural shape
of the mesh.

Note that meaningful segmentations have a number of applications in computer graph-

ics, computer animation, computational cinematography, games, and so forth, namely:

• Shape modeling [JLCW06] − to be able to model the object parts in a separate
manner;

• Multiresolution and mesh compression [MGH11] − to be able to simplify/refine
each object part separately in the mesh;

• Morphing [STK02] − to be able to transform an object into another by morphing
homologous parts separately;

• Texture mapping [SWG+03] − to be able to mapping textures onto object parts
or regions separately;

• Shape reconstruction [KFK+14] − to be able to recover the object shape from its

significant parts;

• Collision detection [LWTH01]− to be able to decompose an object into parts in or-

der to more easily to compute bounding-volume hierarchies for collision detection
purposes;

• 3D shape retrieval [FMA+10] − to be able to retrieve a 3D model from a mesh
repository or database through its shape decomposition into parts.

• Character animation [dGGV08]− to be able to animate the human parts separately
or in a combined manner.

Summing up, the above three meaningful mesh segmentation categories are all based

on geometry, because they deal with concepts such as convexity, topology, homology,
etc. Nevertheless, the ultimate objective is always to meet a mesh segmentation that

matches the human perception about the shape of an object in a particular context,
regardless of whether eventual ambiguities exist or not. In this sense, we can say that

geometry-based segmentation precedes perception-based segmentation. For example,

in 3D shape retrieval, it may be relevant to be able to identify arms and legs in a mesh
that represents the human body. Thus, geometry pervades the entire shape segmenta-

tion pipeline. Figure 2.2 shows the proposed taxonomy of the meaningful segmentation
algorithms.
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Figure 2.2: Taxonomy of mesh segmentation algorithms (pictures taken from [LA06][dGGV08][TVD07]).

2.2 Volume-Based Segmentation

Volume-based segmentation algorithms can be considered as the former category of

shape segmentation algorithms. These algorithms divide a 3D volumetric object into
a set of (approximately) convex sub-objects or volumes, but they may also divide the

3D space into 3D regions. This family of algorithms originated in the seminal work
of Chazelle [Cha84], in the context of computational geometry. The leading idea is

to partition complex structures into simpler convex components, as needed in other
geometric algorithms such as, for example, the computation of intersection of solids,

collision detection, and geometric point location.

There are four main classes of volume-based segmentation methods:

Exact Convex Decomposition (ECD). In this case, the sub-meshes represent exact con-

vex volumes. Chazelle [Cha84] was not concerned with mesh segmentation at the time,
so that the partition of an object into convex sub-objects does not necessarily results

in a meaningful segmentation. Therefore, this class of algorithms is here included only
for historical reasons.

Approximate Convex Decomposition (ACD). As the name on it says, the sub-meshes
represent approximate convex volumes. In fact, and unlike ECD methods, these meth-

ods have been introduced for approaching the problem of mesh segmentation.

Volumetric Meshes (VM). The distinctive feature of volumetric meshes is that they are
made up of a set of small volumetric elements such as tetrahedra, hexahedra, or voxels
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(3D cubical cells with volume). This means that VM-based methods take advantage
of this distinctive feature to carry out the segmentation of a volumetric mesh into

volumetric sub-meshes.

Space Partitioning (SP). In this case, the 3D domain itself that contains the mesh is
divided into 3D regions, inducing somehow the decomposition of the mesh into sub-

meshes or sub-volumes.

2.2.1 Exact Convex Decomposition

The problem of convex decomposition of polyhedra was firstly addressed by Chazel-

le [Cha81] [CP90] [CP94]. The partition of a polyhedron into sub-polyhedra follows
the notch cutting principle, i.e., the cutting is performed along concave edges of the

surface. It is noteworthy that a notch of a manifold polyhedron is an edge with a dihedral
angle less than 180 degrees, as shown in Figure 2.3(a). Later, Bajaj and Dey [BD92] and

Hershberger and Snoeyink in [HS98] extended this technique to more complex objects,
including non-manifold objects, as shown in Figure 2.3(b).

(a) (b)

Figure 2.3: ECD based on notch cutting (pictures taken from [Cha81] and [BD92]): (a) manifold objects;
(b) non-manifold objects.

More recent works in this class of algorithms have been presented by Juttler et al.
[JKP13] and Nguyen et. al [NPJ14], which recursively decompose a three-dimensional

solid into a small number of topological hexahedra, i.e., components with a decreasing
number of notches. In the end, the resulting topological hexahedra likely are devoid

of notches, but they are not necessarily convex. These methods search for a cutting
loop in an edge graph, which can be used to decompose the solid into two smaller solids

with fewer non-convex edges. The cutting loop is selected with reference to values of

planarity and geodesic curvature.

However, the ECD methods usually generate an unmanageable number of components
or sub-polyhedra, particularly in the case of objects with a significant number of con-

vexity/concavity changes, which is costly in terms of time performance and storage. In
addition to this performance drawback, the most important downside of the ECD tech-

nique is that it does not necessarily generates meaningful parts from the segmentation
point of view.
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2.2.2 Approximate Convex Decomposition

The partitioning of an object into approximately convex components is more efficient
than to compute exact convex components, in the sense that it results in a less num-

ber of components. The approximate convex decomposition (ACD) has the further ad-
vantage that it generates more meaningful components, i.e., it is closer to what we

understand as a meaningful segmentation (Figure 2.4).

Figure 2.4: ACD based on a measure of concavity (picture taken from [LA06]).

Seemingly, the first ACDmethod was proposed by Lien and Amato [LA04]. This technique

consists in cutting a polyhedron into approximately convex pieces. Lien and Amato’s
method builds on a measure of concavity of each notch. Essentially, they measure

the distance from each notch to the convex hull that encloses the original polyhedron,
i.e., a longer distance means deeper concavity. This means that we end up having a

concavity measure for each notch, as well for the polyhedron itself as a sum of concavity
values for all notches found on the polyhedron surface. The polyhedron it then divided

so that the concavity values of the identified features are reduced [LA06]. This process
is repeated until the decomposition achieves an acceptable overall concavity value. If

necessary a merge step is applied to remove some redundant parts.

Unlike Lien and Amato [LA06], Kraevoy et al. [KJS06] [KJS07] use a measure of con-

vexity instead of concavity (Figure 2.5). For that purpose, one measures the average
distance from each triangle to the convex hull of its hosting object. Furthermore, they

use a supplementary criterion, called compactness, in order to correctly delineate the
boundary of each segment or part, even when there is no cycle of concave edges (e.g.,

non-concave cycle that separates index finger from hand palm). With these two cri-
teria at hand, each segment grows from a seed triangle according to a region-growing

approach that selects the best vertex to attach and update the segment; hence, the
convex hull of the segment needs to be updated accordingly.

Figure 2.5: ACD based on a measure of convexity (picture taken from [KJS07]).

In 2010, Liu et al. [LLL10] introduced a new segmentation technique, called convex
shape decomposition (CSD), as shown in Figure 2.6(a). In formal terms, the problem of
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the convex decomposition of an object is formulated as an integer linear programming
problem, i.e., an object is decomposed into nearly convex parts at minimal cost. It is

noteworthy that one uses Morse functions in the process of transforming the problem of
the convex decomposition into an integer linear programming problem. The resulting

approximate optimal decomposition is thus obtained through the minimization of its
total cost under some concavity constraints. Therefore, the number of parts (and also

cuts) of the decomposition tends to be minimal, and, similar to Lien and Amato [LA06],
it uses a concavity measure.

(a) (b)

Figure 2.6: ACD based on a measure of (pictures taken from [LLL10] and [RYLL11]): (a) concavity (CSD);
(b) near-convexity (MNCD).

Similar to CSD, Ren et al. [RYLL11] developed another approximate convex decom-

position method called minimum near-convex decomposition (MNCD), as illustrated in
Figure 2.6(b). This method has been put forward to solve two major drawbacks of the

methods above, namely redundancy and lack of naturalness of the nearly convex parts

of the decomposition. Consequently, the decomposition problem is formulated as a
discrete optimization problem in the sense that one intends to minimize the number

of non-intersecting cuts and, at the same time, to meet the requirement of high visual
naturalness. The naturalness of the decomposition into nearly convex parts is what we

call here meaningful segmentation, which is reinforced using two perception rules: the
minima rule [HS97] and the short cut rule [SSH99].

Figure 2.7: ACD based on a measure of relative concavity (picture taken from [GALL13]).

Similarly, Ghosh et al. [GALL13] proposed a fast approximate convex decomposition

(FACD) in order to comply with the quality of the partitioning of an object into ap-
proximately convex components (Figure 2.7). The quality is related to the increasing

of naturalness and the minimization of redundancy of components (i.e., reducing over-
segmentation), as in MNCD segmentation. The novelty of the FACD segmentation lies in
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the dynamic programming-based strategy followed to speed up the decomposition of the
original object into components, i.e., its efficiency. To achieve this goal, the decom-

position of components is accomplished in parallel as a n-ary decomposition instead of
using a binary decomposition so common in the previous decomposition schemes. Such

a n-ary decomposition sustains on the relative concavity measure, instead of the abso-
lute concavity measure, for each cut in order to better quantify the impact of a given

cut on the neighborhood of a given concavity in the object.

Using a spectral method, Asafi et al. [AGCO13] decomposes a shape into weakly convex
regions. A weakly convex region basically is an approximate convex region as above.

This method is based on the notion of weak convexity, which is nothing more than
the classical definition of convexity, though relaxed by the notion of inner visibility

between points on the surface of a given shape. Interestingly, this method does not
use an explicit measure of convexity, hence avoiding any complex operations aiming

at measuring the concavity/convexity of regions or parts. The resulting meaningful
segmentation consists of regions/parts with high mutual visibility of pairs of points, i.e.,

the so-called weakly convex regions. As a consequence of its simplicity, this method
has the advantage of being also applied to incomplete shapes (i.e., with missing parts),

and eventually to point clouds.

Figure 2.8: ACD based on a measure of weakly convexity (picture taken from [KFK+14]).

Finally, Kaick et al. [KFK+14] improved on the work of Asafi et al. [AGCO13]. Basi-

cally, their work describes an algorithm especially designed for the segmentation of

point clouds into weakly convex parts, but its also works for meshes and incomplete
shapes. In order to cope with over-segmentation, the algorithm includes an additional

step to merge neighboring weakly convex segments with similar properties (Figure 2.8).
This merging step assumes that identifying similarities between parts is straightforward

when such parts are weakly convex. It is clear that the merging step aims at getting a
meaningful or natural segmentation of a given shape.

2.2.3 Volumetric Meshes

A volumetric mesh of an object consists of a number of volumetric elements of the
same type: cubes (or voxels), tetahedra, hexahedra, or, in general, regular polyhedra.

One of the first methods of this category of methods is due to Kim et al. [KYL05].
A preliminary step consists in performing the voxelization of the object, as shown in
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Figure 2.9. Then, one proceeds to the constrained morphological decomposition (CMD)
of the voxelized mesh into voxelized parts [Xu96]. This splitting process is repeated

recursively for each part, and is based on a morphological operation, called the opening
operation with the ball-shaped structuring element. Finally, one merges adjacent parts

if the resulting part/cluster of voxels does not change its weighted convexity relative
to their original parts. Once again, this split-and-merge approach aims at obtaining a

natural or meaningful decomposition as much as possible.

Figure 2.9: VM-based decomposition into voxels (picture taken from [KYL05]).

Instead of using a cubical mesh, Attene et al. [AMSF08] decompose a tetrahedral mesh
filling an object into a number of convex parts made up of tetrahedra. As in the CMD

process above, the decomposition is accomplished recursively, so that we end up creat-
ing a tree of convex polyhedra, whose tree leaves are tetrahedra, intermediate nodes

are approximate convex sub-meshes, and its root is the convex hull of the whole mesh.
This method automatically stops when the minimum value of concavity is reached in all

parts or segments, as illustrated in Figure 2.10.

Figure 2.10: VM-based decomposition into tetrahedra (picture taken from [AMSF08]).

Finally, Xian et al. [XGZ11] used a different approach to automatically segment a (tetra-

hedral and hexahedral) volumetric mesh into semantic parts. First, the 2D boundary sur-
face mesh is decomposed using an improved watershed segmentation algorithm. The

resulting 2D segments are used to construct an adjacent graph of the regions or sur-
face features. Second, since the inner side of the surface features occupy some volume

space, the interior of the object is also partitioned using the graph cut algorithm, being
the partition thus guided by the surface mesh segmentation into semantic features.
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2.2.4 Space Partitioning

Unlike the previous partitioning schemes for objects, the space partitioning schemes
subdivide the space where the object lies, instead of partitioning the object directly.

But, it is object’s shape that determines how the surrounding space is divided. Space
subdivision means here recursive division of the space into 3D regions. Typically, the

stopping criterion of the subdivision usually satisfies one of the following conditions:
(i) each object part obtained from decomposition must be within a predefined volume

threshold relative to its enclosing 3D region; (ii) the level of decomposition attained a
pre-defined value; (iii) the number of parts attained a pre-defined value.

Huebner et al. [HRK08] proposed a space partitioning solution that is based on the

computation of minimum volume bounding box (MVBB) due to Barequet and Har-Peled
[BHP01]. Then, the initial MVBB is recursively split into two parts by a plane that con-

tains the barycenter of the corners and is perpendicular to the longest axis of such box,
i.e., we have a binary space partitioning approach. The method stops as soon as the

difference of volume between boxes of consecutive levels of the binary tree is negli-
gible. At the end of the hierarchical process, all the 3D segments of the object have

a box representation, which can be a good solution to collision detection or even to

establish neighborhood relations as needed in geometric reasoning (Figure 2.11). The
main drawback of the binary space partitioning technique is that it does not necessarily

lead to a meaningful segmentation of the original object. For that purpose, it would be
necessary to design a merging procedure of neighbor boxes with the same convexity,

somehow.

Figure 2.11: Space partitioning-based decomposition using minimum volume bounding boxes (picture
taken from [HRK08]).

On the other hand, Simari et al. [SNKS09] introduced a weighted Voronoi partitioning
to implicitly create a mesh segmentation. The mesh segmentation is created with a

k-means algorithm (k is defined by the user) using the Voronoi centers and weights
to define each segment. In the case of articulated shapes, to optimize the Voronoi

partitioning, a multi-dimensional scaling (MDS) of the object is created by embedding
geodesic distances into Euclidean space. Since a traditional Voronoi region is delimited

by planar regions, they apply a distance scaling weight to increase the influence of each
region center, so allowing for curved boundaries and non-convex regions (Figure 2.12).
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Figure 2.12: Shape partitioning-based decomposition using weighted Voronoi partitioning (picture taken
from [SNKS09]).

2.2.5 Volume-Based Segmentation: a Discussion

Looking at the timeline in Figure 2.13, we see that most volume-based segmentation
algorithms were proposed after 2000. Furthermore, most of them belong to the cate-

gory of ACD algorithms, which are closer to the theory of human vision. That is, in a
way they follow the minima rule. Thus, ACD methods tend to retrieve segmentations

that approximate those generated by human perception.

1981$ 2015$1981$ 1986$ 1991$ 1996$ 2001$ 2006$ 2011$

[Lien$and$Amato$$
2004]$

$[Lien$and$Amato$$
2006]$

$[Kraevoy$et$al.$$
2007]$$

[Liu$et$al.$
$2010]$$

[Ren$et$al.$$
2011]$$

[Ghosh$et$al.$$
2013]$

$[Asafi$et$al.$$
2013]$

$[Kaick$et$al.$$
2014]$

ACD$ SP$ECD$ VM$

[Chazelle$$
1981]$$

[Bajaj$and$Dey$$
1992]$$

VOLUME$BASED$$CLASSES$

[Kim$et$al.$$
2005]$$

[Huebner$et$al.$
$2008]$$

[ATene$et$al.$$
2008]$$

[Simari$et$al.$
$2009]$$

[Xian$et$al.$$
2011]$$

[JuTler$et$al.$$
2013]$

Figure 2.13: Timeline of the volume based algorithms.

Also, a brief glance at Table 2.1 shows the following. The input is mostly a 2-dimensional
polygonal mesh, but some methods use solid polyhedra, and more rarely point clouds

and tetrahedral/hexahedral meshes. Interestingly, there are several methods appli-

cable to both non-freeform and freeform objects, including articulated objects. In
general, the segmentation criterion is based on the concept of convexity, directly or

indirectly, because the notion of concavity is a variant of the notion of convexity, yet
some methods were elaborated on the basis of the notion of curvature.

Moreover, with the exception of the ECD methods, the segmentations produced by

volume-based methods tend to be meaningful. Those ECD methods suffer from over-
segmentation. Alias, many other volume-based methods tend to suffer from over-
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segmentation, but they are able to overcome this problem using a further step that
merges neighboring volumes.

Surprisingly, with the exception of ECD methods, most volume-based methods are not

automated. This means that a method is not capable of finding the number of segments
beforehand or, alternatively, it requires user assistance in terms of input parameters

(i.e., a threshold tied to a given stopping condition), or still some sort of user interaction
during the process of volume decomposition.

In fact, ACD methods require the user specification of a threshold for the global concav-
ity value of the set of sub-volumes resulting from the object decomposition, and this

may have impact on the naturalness of the final segmentation. In the case of VM-based
methods, the user specification of the resolution of the lattice of voxels (or, alterna-

tively, tetrahedra or hexahedra) may also influence the course of the decomposition
process and, consequently, the naturalness of the final segmentation. In regard to

SD-based methods, they are scarce in the literature, but those based on the weighted
Voronoi partitioning are potentially automatic, but this needs further research in the

near future.

Finally, let us refer that VM-based methods are in general very time-consuming because

of the geometric computations incurred in convexity analysis and slicing the input object
into sub-objects (or sub-volumes) in a recursive manner.

Table 2.1: Volume-based segmentation methods.

Method Reference
Input Object type Class Criterion Feature

M PC S THM Ff NFf ECD ACD VM SP Cv Cc CH O N OS A
Chazelle [Cha81] • • • • • •
Bajaj and Dey [BD92] • • • • • •
Lien and Amato [LA04] • • • • • • •
Kim et al. [KYL05] • • • • • • •
Lien and Amato [LA06] • • • • • • • •
Kraevoy V. [KJS06] • • • • • • •
Attene et al. [AMSF08] • • • • • •
Huebner et al. [HRK08] • • • • • •
Simari et al. [SNKS09] • • • • • •
Liu et al. [LLL10] • • • • •
Ren et al. [RYLL11] • • • • •
Xian et al. [XGZ11] • • • • •
Juttler et al. [JKP13] • • • • • •
Ghosh et al. [GALL13] • • • • •
Asafi et al. [AGCO13] • • • • • • •
Kaick et al. [KFK+14] • • • • • • • •

Abbreviations:
M: Mesh; PC: Point Cloud ; S: Solid/Polyhedron; THM: Tetrahedral/Hexahedral Mesh;
Ff: Freeform; NFf: Non-Freeform or CAD;
ECD: Exact Convex Decomposition; ACD: Approximate Convex Decomposition; VM: Volumetric Meshes; SP: Space Partitioning;
Cv: Convexity; Cc: Concavity; CH: Convex Hull; O: Other Criterion;
N: Naturalness; OS: Over-Segmentation; A: Automatic;

2.3 Surface-Based Segmentation

Surface-based algorithms use 2D meshes as input. Therefore, segments are 2D sub-

meshes or regions of a polygonal mesh. There are five main classes of surface-based
algorithms, namely:
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Region Growing (RG). These methods decompose a mesh into convex polygonal re-
gions. Each region starts with a seed vertex or polygon and grows in the number of

clustered polygons until a pre-defined condition or stopping criterion is satisfied. That
is, the region keeps growing while a pre-defined condition holds. In other words, if a

convexity-related condition is used, the stopping criterion has to do with the violation
of such condition (see [CDST95] and [KT96] for further details). What makes a method

different from any other one is the criterion used to select the element to be added to
a given region. But, there are other features that vary from one algorithm to another;

for example, the way how the seed elements are selected, as well as the number of
seed elements (multiple region are created in parallel), a seed element per region.

This category usually originates over-segmentation, so that almost all region-growing
methods consist of two steps, region growing and region merging. The region merging

step aims at eliminating the redundancy of segments as much as possible.

Watershed Segmentation (WS). These methods are inspired in the watershed segmen-
tation algorithms first proposed in the field of image segmentation and analysis [Ser82],

which in turn are based on the concept watershed of the real world. Watershed segmen-
tation algorithms decompose a given mesh into “catchment basins” or “watersheds”.

Traditionally, there are two possible watershed approaches: bottom-up and top-down.

The bottom-up approach (also called flooding) aims at finding catchment basins as fol-
lows. It starts the flooding process at a local minimum and incrementally floods the

region, stopping it as soon as the flooding overflows its catchment basin. The second
approach, the top-down approach, concerns to the placement of a token at a certain

point and move the token along a steepest descent until it reaches a minimum or a
point which has already been associated with a minimum. In this class of algorithms,

the process consists in first computing a height function (usually based in the curva-
ture value [PRF01]) at every element (vertices or edges or faces of a mesh) and second

identifying the local minima, with each minimum as the seed element of each region
or segment. Then, starting from the highest points, the algorithm follows a downward

path down the slope, until one of the regions (or its seed element) already formed is
found. All elements found along the path are associated to this region. This process is

repeated until all elements are associated to a region. Like region growing methods,
the watershed algorithms also have a region merging step due to over-segmentation of

the mesh.

Iterative Clustering (IC). These methods are based on the well-known k-means algo-
rithm due to Loyd [Llo82]. Basically, one starts from a set of k representatives seeds

to generate k regions. The segmentation is repeated while at least a new or updated

representative seed of a region is calculated in a sequence of iterations. In a way, the
segmentation follows a convergence process to an end segmentation.

Hierarchical Clustering (HC). This category includes two types of hierarchical clus-

tering approaches: bottom-up and top-down. In the bottom-up approach, each face is
initialized with its own separate cluster. To each cluster is assigned a cost that is used to
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select the regions to be merged (lowest cost pair). This strategy allows the creation of
a hierarchal structure of clusters, with each cluster representing a single region. There

are several ways to define a cost associated to each cluster; for example, Garland et al
[GWH01] use the planarity as clustering criterion, which can be expressed using a dual

form of the quadric error metric, while Attene et al. [AFS06] use a minimum approxima-
tion error calculated from a set of of fitting primitives. In the top-down approach, the

models are hierarchically and recursively decomposed until one of the following three
conditions is reached: (i) each part attained a certain threshold; (ii) a given simplifica-

tion level is achieved; (iii) a given number of parts is achieved. Note that, as in other
categories of methods, the number of resulting clusters is usually unknown beforehand.

Boundary Segmentation (BS). These methods aim at locating the boundary (i.e., a

connected sequence of edges and vertices) of each segment, instead of any of its in-
terior elements or seeds (i.e., vertex, edge or face). They normally follow the Hoff-

man’s assertion [HS97], i.e., the human vision delineates the boundaries of object’s
regions along the negative minima of principal curvatures. However, finding these re-

gion boundaries is not an easy task because not always they are not closed contours in
the mesh.

2.3.1 Region Growing

Seemingly, region-growing algorithms originated in the field of computational geome-
try; more specifically, they have evolved from the idea of polyhedral surface decompo-

sition, which is due to Chazelle et al. [CDST95]. They proposed a flooding heuristic to
decompose a polygonal surface into convex regions. The idea of this convex decompo-

sition algorithm consists in traversing the dual graph (whose nodes represent triangles
and edges represent adjacency relationships between facets) of the mesh from a seed

facet, collecting facets along the way while a convexity-based condition is not violated.

Another flooding algorithm was proposed by Zuckerber et al. [ZTS02], which in a way
extends the method of Chazelle et al. [CDST95]. The algorithm adds new faces to a

given region while two convexity-based conditions are not violated, the local condition
and the global condition. The local condition is violated when an edge on which a face

is attached is concave; one uses the computation of the dihedral angle to determine
the local convexity of each edge. The global condition is violated if the triangles of

the region do not belong to its convex hull, even though the region is locally convex

everywhere. The small regions are merged into their neighboring larger regions.

In the algorithm proposed by Zhou and Huang [ZH04], the leading idea is to leverage
critical points (i.e., extrema and saddles) of the mesh to decompose it into meaningful

parts or regions. After determining such critical points, the algorithm uses a sort of
backwards flooding from maxima to saddles −though using Dijkstra’s finder to calculate

the geodesic distance− to aggregate triangles into regions, as illustrated in Figure 2.14.
Similar algorithms were proposed by Katz et al. [KLT05] and Aghatos et al. [APPS10].
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Figure 2.14: Region-growing segmentation using critical points (picture taken from [ZH04]).

(a) (b) (c)

Figure 2.15: Region-growing using Markov random fields (picture taken from [LW08]): (a) curvature
scalar field with geodesic radius of 6%; (b) 2-clustering using K-means and the resulting region-growing

segmentation; (c) 2-clustering using MRF and the resulting region-growing segmentation.

Lavoue and Wolf [LW08] proposed a segmentation algorithm based on Markov Random

Fields (MRF). The MRF is a graphical probabilistic model that allows for the integration
of different attributes like curvature (computed as the mean curvature integrated over

a large geodesic radius), roughness and geometry in the k-means clustering step. It is
clear that mesh triangles of the same cluster have similar attribute values. After the

clustering step, the region-growing segmentation takes place in order to create regions
enjoying similar attribute values and smooth boundaries (Figure 2.15).

Another region-growing algorithm was proposed by Zhang et al. [ZLXH08], which con-

sists of five steps, as illustrated in Figure 2.16. The algorithm starts with a preprocessing
step to enhance the perception of the mesh feature parts; in practice, this enhance-

ment operator works as a low-pass filter in order to smooth the mesh at hand. Then, one
estimates the mean curvature or combined curvature at each vertex. Next, the vertex

curvature is mean-shifted iteratively while the inherent error is greater than a given
threshold (i.e., stop condition). By using the region-growing approach, the vertices are

grouped together with reference to proximity and similar curvature values, with each

region growing from a vertex with maximal curvature. In addition, region boundaries
are rectified using a minimum-cut algorithm, and thin regions are removed by merging

them with adjacent regions.

Bergamasco et al. [BAT11] [BAT12] introduced a semi-supervised region-growing algo-
rithm. The regions grow from an initial set of user-defined seeds. The region growing

takes place by propagating region labels over a weighted dual graph of the mesh. The
weight associated to each graph edge is calculated using the dot product between the
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(a) (b) (c) (d) (e) (f)

Figure 2.16: Region-growing segmentation using mean-shifted curvature (picture taken from [ZLXH08]:
(a) the original mesh; (b) mesh after applying the enhancement filter; (c) enhanced mesh with the

curvature map; (d) original mesh after mapping the curvature; (e) region-growing segmentation using
proximity and curvature criteria; (f) segmented mesh after boundary rectification.

normals of its incident faces. The labelling follows a greedy approach that takes into

consideration the curvature measured between triangles incident on each edge.

The algorithm due to Fan et al. [FL+11] also produces an interactive (user-assisted)
mesh segmentation, which is obtained using a progressive painting-based mesh cutting

tool, called Paint Mesh Cutting. For that purpose, the user has only to draw a single
stroke on the mesh to get the corresponding region on screen in real-time. Furthermore,

the user may paint any region of interest using a brush, as is usual in 2D painting tools.
This is achieved by means of an efficient local graph-cut based optimization, which is

based on Gaussian mixture models (GMM) on the shape diameter function (SDF) as shape
metric.

Xiao et al. [XLXG11] proposed a mesh segmentation algorithm specifically designed for
CAD mesh models. It makes usage of a clustering approach to firstly divide a given

mesh into a dense triangle region and a sparse triangle region. In addition, the sparse
triangle region is partitioned into planar, cylindrical, and conical sub-regions, using for

this purpose the Gauss map and randomized Hough transformation. In regard to the
dense region, its segmentation is carried out applying the mean shift operation on the

mean curvature field defined on the mesh.

2.3.2 Watershed-Based Segmentation

Thewatershed decomposition algorithms for 3D mesh segmentation was first introduced

by Mangan and Whitaker [MW98] [MW99]. This is considered by many the first mean-
ingful segmentation algorithm for 2-dimensional meshes in 3D. This algorithm computes

the total curvature at every vertex in order to identify the local curvature minima, each
one of which is associated to a watershed. Interestingly, this work was also the first to

include the merging step as a way of solving the problem of mesh over-segmentation.
Following the same line of research, Zuckerber et al. [ZTS02] proposed a second method

that improved the watershed decomposition algorithm due to Mangan and Whitaker
[MW98]. But, instead of defining the height function at each vertex of the mesh, they

proposed the height function h = 1 − cos(α) over the edges of the mesh. In this case,
the over-segmentation is mitigated by merging small regions with their neighbours.
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Page et al. [PKA03] also proposed a flooding algorithm, called Fast Marching Watersheds
(FMW). This algorithm takes advantage of the human vision theory, more specifically the

minima rule. Basically, FMW algorithm calculates the principal curvatures and principal
directions at each vertex of a mesh, after which one uses a hill-climbing watershed

procedure to identify and aggregate triangles into regions delimited by contours of
negative curvature minima. In order to avoid the over-segmentation, the algorithm

uses morphology operators to clean up small holes and gaps.

Chen and Geoganas [CG06] proposed another watershed-based segmentation algorithm.
In this case, the mesh segmentation requires the preliminary computation of Gaus-

sian curvature and concaveness estimation at each vertex, which altogether determine
whether a vertex is convex or concave. In order to get a more accurate computation

of the convexity of each vertex, the aforementioned computation is extended beyond
the normal 1-ring neighborhood of each vertex, i.e., it is performed for an eXtended

Multi-Ring (XMR) neighborhood of each vertex. After this computation for each vertex,
the algorithm is ready to go a step forward in order to form the watershed regions, as

well as to merge some of those if needed. Indeed, the over-segmentation is mitigated
by merging small segments with neighbours possessing the longest boundaries.

(a) (b) (c) (d)

Figure 2.17: Heat diffusion mesh segmentation (picture team from [BPVR11]): (a) heat kernel signature
(HKS) function; (b) KL divergence of the points from the uniform distribution; (c) KL divergence of the

points from the cluster mean; (d) the final result of the heat diffusion mesh segmentation.

Benjamin et al. [BPVR11] introduced a sort of watershed algorithm, with the difference

that one generates a heat flow on the mesh, instead of a water flow. The leading idea
is that high curvature points tend to attract heat, and are called heat accumulators,

while points in flat regions tend to dissipate heat faster than they receive, being for this
called heat dissipators. This heat diffusion algorithm is called Heat Walk, and aims at

identifying salient regions in first instance. In fact, the algorithm starts by finding the
regions of heat accumulation. The second stage separates dissipative regions −which
correspond to approximately planar regions− from those accumulative regions by using a
Kullback-Liebler divergence (KL-divergence) based criterion. These two types of regions

originates the segmentation of the input triangle mesh (Figure 2.17). Interestingly, this
algorithm produces a segmentation that is not noise-sensitive, neither pose-sensitive.
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2.3.3 Iterative Clustering

Iterative clustering algorithms allow for the creation of k segments from k initial seeds,
iteratively. One of the first methods of this class was introduced by Shlafman et al.

[STK02]. This algorithm comprises four steps. First, in a preprocessing step, one cal-
culates the distances between all adjacent faces. Second, although a representative

face of each region may be chosen randomly, one opted by selecting the initial k rep-
resentative faces of k clusters or regions, one per region, in order to speed up the

convergence to local minima. This aims at maximizing distances between the initial
representative faces. Third, each face is assigned to the cluster whose representative

is the closest, with the distance between each face and each representative calculated
using Dijkstra’s algorithm. This originates a segmentation over the mesh. Fourth, new

representatives are chosen by minimizing the sum of distances between the faces and
their representatives. In a way, this clustering is similar to the k-means clustering

algorithm.

Seemingly, Liu and Zhang [LZ04] were the first to use spectral clustering techniques

in mesh segmentation. This iterative clustering algorithm tends to favor segmentation
along minima (i.e., concave boundaries of convex regions). A symmetric affinity matrix

(i.e., adjacency matrix of a weighted graph whose nodes are the faces) allows us to
encode the probability of a pair of faces being in the same cluster. Besides, one uses

the distance matrix put forward by Katz et al. [KT03] to avoid that faces separated
by deep concave regions from belonging to same cluster (minima rule). Then, one

computes the first k largest eigenvectors of the affinity matrix. These eigenvectors
are used to calculate an embedding on a k-dimensional unit sphere, which allows us to

cluster faces via k-means.

Later, Lai el al. [LHMR08] presented segmentation method based on random walks, a
concept borrowed from image segmentation [Gra06]. Based on the observation that

segments are in general insensitive to the precise location of cluster seeds (representa-
tive faces), the algorithm uses a sort of k-means clustering algorithm for segmentation.

The non-representative faces are then clustered into the previously created regions
in function of a similarity criterion. This criterion is based on edge concavity weight

cost and edge length, and measures the probability that a random walk starting at each
non-representative face reaches each seed face. Furthermore, the algorithm includes a

second step, called merging step, that merges neighboring regions sharing similarities.

Fang et al. [FSKR11] proposed a perceptually consistent mesh segmentation (PCMS)

that is based on the heat kernel concept. This mesh segmentation algorithm consists
of three steps. The first step estimates the number of segments based on the analysis

of the Laplacian spectrum, i.e., this is a spectral clustering algorithm. The second step
corresponds to the heat center hunting algorithm, which supposedly finds the most

representative vertices or centers of segments, one center per segment. Each heat
center is defined as a mesh vertex at which the heat mean signature (HMS) has a local
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maximum. Third, a heat center-driven segmentation scheme produces the PCMS using
a k-means clustering algorithm, in conformity with human perception, as illustrated in

Figure 2.18(a); this segmentation is not sensitive to pose and noise (Figure 2.18(b)-(c)).

(a) (b) (c)

Figure 2.18: Perceptually consistent mesh segmentation (PCMS) based on heat kernel (pictures taken
from [FSKR11]): (a) heat mean signature (HMS) of a human hand mesh with maxima at its finger tips; (b)

PCMS is not pose-sensitive; (c) PCMS is not noise-sensitive.

Zhang et al. [ZZWC12] developed a variational mesh segmentation inspired in the

Mumford-Shah model used in image segmentation, which contains a data term and a
regularization term. The data term measures the variation inside each segment, which

is evaluated using eigenvectors of the dual Laplacian matrix whose weights are in a way
determined by the dihedral angle between triangles incident on edges. The regular-

ization term measures the length of the boundary that separates segments. Therefore,

unlike other methods, this spectral method is capable of handling segmentation and
boundary smoothing simultaneously. Furthermore, in a pre-processing step, the method

estimates the number of segments of the mesh. Computing the number of segments is
carried out using a heuristic method based on the stability of the RatioCut values (see

Hagen and Khang [HK92] for further details about the RatioCut model).

2.3.4 Hierarchical Clustering

As seen above, we have two sorts of hierarchical clustering: bottom-up and top-down.

Katz and Tal [KT03] proposed a top-down hierarchical clustering-based segmentation as
a way of avoiding over-segmentation and jaggy boundaries between meaningful parts.

The hierarchical decomposition of a mesh into sub-meshes starts from an initial de-
composition generated from a criterion that combines geodesic distance and distance

angular. This allows us to build up a fuzzy decomposition by applying a k-means clus-

tering scheme as proposed by Shlafman et al. [STK02]. The fuzzy boundaries (whose
triangles may belong to more than one region) of regions are then subject to a graph

cut procedure in order to make them exact boundaries (i.e., non-jaggy boundaries), as
illustrated by the binary decomposition of a bird in Figure 2.19.

Using a top-down approach, Zhang and Liu [ZL05] proposed a mesh segmentation algo-

rithm based on recursive spectral 2-way cut and Nyström approximation. In fact, the
algorithm recursively divides a mesh into two parts using 1-dimensional embeddings in
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Figure 2.19: Hierarchical clustering-based binary segmentation using k-means and graph cut (picture
taken from [KT03]).

order to identify the most salient cut, in a way as done for normalized cuts [SM00];
if the salience is below a user defined threshold, the cut is rejected. Unlike Kay and

Tal [KT03], Zhang and Liu [ZL05] avoids calculating all pairwise face distances, using
for that the Nyström approximation. Since the user can specify a maximum number

of segments, the recursive algorithm stops when such number is reached or no more
saliences are found. The cuts are obtained without explicit boundary smoothing.

Liu and Zhang [LZ07] extended the work of Zhang and Liu [ZL05]. Their top-down mesh
segmentation algorithm also uses a recursive binary decomposition of the mesh into

salient sub-meshes. But, it uses spectral projection of the sub-meshes (3D information)
onto a plane (2D information) to extract sub-mesh contours in order to perform the seg-

mentation of a given mesh at hand, so that the mesh segmentation problem is reduced
to contour analysis. This algorithm also takes advantage of the Nyström approximation

in order to speed up the hierarchical mesh segmentation procedure.

Lai et al. [LZHM06] proposed another clustering-based top-down hierarchical segmen-

tation algorithm. Their hierarchical segmentation approach is similar to those due to
Katz and Tal [KT03] and Shlafman et al. [STK02]. It differs from those two algorithms

in regard to the distance computation, as well as to the use of feature-sensitive mul-
tiresolution remeshing, being this remeshing isotropic. The distance metric combines

normal curvature, geodesic distance, and statistical measures of local properties such
as geometric texture. As usual, the number k of clusters can be determined by the

user, or automatically calculated through an optimization technique similar to the one
introduced by Katz and Tal [KT03]. The algorithm operates from coarsest level to finer

level of mesh segmentation, so originating a hierarchy of regions into sub-regions, as
illustrated in Figure 2.20. In the end, the region boundaries are subject to a smoothing

procedure, as noticeably shown in Figure 2.20(c).

Attene et al. [AFS06] proposed one of the first bottom-up mesh segmentation algo-

rithms. It is based on the hierarchical face clustering presented by Garland et al.
[GWH01]. The leading idea of the algorithm is to initially consider each triangle a

cluster (i.e., a sub-mesh), each one of which is approximated by a quadric primitive;
for example, cylinder, sphere, and so forth. The algorithm proceeds iteratively merg-

ing adjacent clusters, which are once again approximated by the most fitting primitive.
The bottom-up approach ends up producing a hierarchy as a binary tree of clusters.

Podolak et al. [PSG+06] proposed a novel top-down hierarchical clustering algorithm
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(a) (b) (c)

Figure 2.20: Hierarchical clustering based on feature-sensitive multiresolution remeshing (picture taken
from [LZHM06]): (a) original mesh; (b) the same mesh after two distinct isotropic remeshing operations;

(c) the corresponding segmentations.

for mesh segmentation. This hierarchical clustering is similar to the one introduced by
Katz et al. [KT03], but the clustering is not based on a simplification strategy, as in

Garland et al. [GWH01], neither on geodesic distance and angular distance between
points, as in Katz and Tal [KT03]. Instead, it uses a k-means clustering (using k = 2

for each split) based on symmetry; more specifically, it is based on the values of local
maxima in the planar reflective symmetry transform (PRST). This was made possible

because PRST captures not only the global symmetry of a mesh, but also the symmetry
of its salient parts. This is so because the triangles of a mesh part or segment have

similar symmetries.

Figure 2.21: Hierarchical clustering based on shape diameter function (SDF) shows that it is not
pose-sensitive (picture taken from [SSCO08]).

Another clustering algorithm was proposed by Shapira et al. [SSCO08]. It is based on

the shape diameter function (SDF), which measures the diameter of the volume of the
object in the neighbourhood of a point of each triangle (e.g., its centroid) belonging

to a mesh. SDF is a subtle parameter because points of specific parts of the object,
like hands, legs, and so on, have similar SDF values, i.e., SDF can work as a clustering

criterion. This means that a cluster may contain multiple mesh parts. The segmenta-
tion process consists of two main steps. First, one creates k clusters of triangles with

reference to their SDF values, using Gaussian mixture model (GMM) to fit k Gaussians
to values of the SDF histogram in order to obtain a probability value for each triangle

assigned to each SDF cluster. Second, taking into consideration that a mesh may have
parts (e.g., the fingers of a hand) with similar SDF values, one has to proceed to the

actual partitioning of each cluster using k-way graph-cut to include the probabilistic
values of the previous step and local mesh geometric properties (concavity measure by
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dihedral angles). As a result of the graph cut, one obtains a smooth segmentation into
distinct parts, and this is independent of the pose of the mesh, as shown in Figure 2.21.

The algorithm due to de Goes et al. [dGGV08] is capable of constructing a coarse-to-

fine hierarchy of clusters or segments based on two concepts: diffusion distance and
medial structure. The diffusion distance functions as a multi-scale metric that enjoys

very useful properties like robustness to noise, poses, and enhancement of concavities.
Therefore, unlike geodesic distance, diffusion distance highlights mesh concavities. In

addition, the diffusion distance can be expressed in terms of Laplace-Beltrami operator
(LBO), which is known to be invariant to isometries; hence the pose-invariance. On the

other hand, a generalization of the medial structures [MPS+04] allows us to segment
a mesh by calculating a bijection between medial structures and segments. Note that

a medial structure is medial relative to the segments, and in this sense it differs from
medial axis. The media structure of a segment is calculated from the average diffusion

distance function (ADD), which takes on high values (resp., small values) for boundary
and extrema points (resp., points in the middle) of the segment. Taking into account

the properties of the diffusion distance, and consequently those of its ADD variant, we
easily realize that points with small ADD values are far away from concavities.

(a) (b)

Figure 2.22: Reuter’s method for segmentation based on eigenfunctions of LBO at different persistence
levels (picture taken from [Reu10]): (a) using only the most relevant critical points of the mesh; (b) using

the critical points (maxima at finger tips and saddles between fingers) of the hand.

A similar method was proposed by Reuter [Reu10] to hierarchically segment articulated

models using LBO eigenfunctions (whose extrema identify protrusions and saddle points
identify concavities) and topological features (level sets at saddles). It follows that

Reuter’s method is pose-invariant. Moreover, based on topological persistence, it was
made possible to build hierarchical representation for the mesh segmentation that re-

mains stable across a family of nearly isometric shapes and with regard to noise or mesh
density/quality.
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To decompose a mesh into several levels of meaningful components, Ho and Chuang
[HC12] also proposed a hierarchical segmentation, in which the salience degree is simi-

lar for all regions of the same level, with such salience degree decreasing from root node
to leaf nodes. The salience degree is determined by the gradient of the minimum slice

perimeter (MSP) function, which provides us with a zonal shape measure of the mesh. It
is noteworthy that MSP function is a surface function that represents the volume in the

neighborhood of each surface point. Therefore, neighboring surface points with similar
volumes tend to be clustered into a region; as a consequence, the gradient of the MSP

function detects the variations of volume, which denote the existence of region bound-
aries. This means that the boundaries on each hierarchical level can be calculated in an

automated manner using graph cuts [KT03], though considering measures of curvature
and MSP gradient (Figure 2.23).

(a) (b) (c) (d)

Figure 2.23: Hierarchical clustering based on MSP (picture taken from [HC12]): (a) MSP function on the
mesh; (b) MSP gradient on the mesh; (c) region boundaries; (d) mesh regions.

Yan et al. [YWLY12] put forward a mesh segmentation method using quadric surface
fitting, so that each segment is approximated by a general quadric surface. To measure

the difference between the segments and their corresponding fitting quadrics, one uses
a new error metric or function that combines geometric distance and normal derivation.

The minimization procedure is based on Loyd’s algorithm proposed by [CSAD04]. A
distortion-minimizing flooding is used to the partition of the input mesh into a set of

non-overlapping and connected regions. Given a new partition of the mesh into regions,
we have two alternative steps. The surface fitting is accepted and the mesh partition

comes to an end; alternatively, the new mesh partition further minimizes the error
function, so that faces with the smallest fitting error are selected as new seed faces

for regions. In the end, the jaggy boundary of each region or segment is smoothed in

conformity with a graph-cut method.

At last, Zhang et al. [ZLG+15] proposed a hierarchical mesh segmentation based on splat
clustering. Splats are mesh charts determined using a variational shape approximation

algorithm (VSA) regulated by a metric L2 orL2,1. Thus, the algorithm essentially consists
of two steps. First, an input mesh is decomposed into splats using an improved VSA

method based on an optimized L2,1 metric. Second, neighboring clusters exhibiting
similar metric values are hierarchically merged in order to create a hierarchy of regions.
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As in other segmentation schemes, region boundaries are smoothed using graph cuts.

2.3.5 Boundary-Based Segmentation

Boundary-based mesh segmentation methods focus on finding the contours of segments
in first instance, instead of clustering triangles into each segment. The main problem

faced by these methods is that not always it is possible to find a closed contour for
each segment that satisfies the minima rule. This open-contour problem is particularly

noticeable in free-from meshes featuring ‘natural’ models (e.g., animals). Lee et al.
[LLS+04] [LLS+05] solved this problem using the shortest path between two vertices that

satisfies a specific cost function; consequently, we find a closed contour for each open
contour (Figure 2.24). After finding a closed contour, one applies a snake movement,

as is usual in image segmentation, in order to optimize such a contour in terms of length
and smoothness.

(a) (b) (c)

Figure 2.24: Boundary-based segmentation based on curvature and centricity (picture taken from
[LLS+05]: (a) minimal curvatures; (b) contour extraction; (c) contour completion.

To select the best boundary, a different approach was implemented by Golovinskiy and

Funkhouser [GF08]. They proposed a method called Randomized Cuts that generates
multiple segmentations of the same object, which are then combined together with the

goal of finding the optimal segmentation, as illustrated in Figure 2.25. In fact, from such
set of segmentations, one deduces a partition function that indicates the probability of

each edge belongs to a boundary (i.e., a random cut) of the final segmentation. Those
segmentations whose boundary edges have the highest scores constitute the set of what

we call the most consistent cuts. These segmentations are randomly generated using
techniques like k-means, hierarchical clustering, and min cuts, but others can be used

after all.

An interactive mesh decomposition was proposed by Zheng and Tai [ZT10], according to

which the user interacts with the segmentation process by drawing one or more strokes
across a desired cut. As a result, the algorithm performs the best cut along a closed

isoline of a harmonic field that is generated in a transverse manner relative to one or
more brush strokes. Such isolines (thin lines in red in Figure 2.26) are determined by

solving a Poisson equation that uses a Laplace operator with a cotangent weighting. It
is noteworthy that this segmentation technique is not not sensitive to noise. It is also
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(a) (b) (c)

Figure 2.25: Boundary-based segmentation based on randomized cuts (picture taken from [GF08]): (a)
input mesh; (b) randomized cuts; (c) partition function.

insensitive to pose variations, as shown in Figure 2.26.

Figure 2.26: Boundary-based segmentation based on brush strokes is insensitive to pose variations
(picture taken from [ZT10]).

Benhabilies et al. [BLVD11] presented a segmentation algorithm based on the concept

of learning boundary edges. It consists of two major steps: learning and segmentation.
The learning step is executed off-line. It uses the AdaBoost classifier that allows for

the creation of a boundary edge function from a set of training data (i.e., a set of seg-
mented models). This function operates on an input feature vector to produce a signed

scalar value that determines how an edge is classified; more specifically, if the value is
positive, the edge is considered as boundary; otherwise, it a non-boundary edge. The

edge feature vector builds upon geometric criteria such as curvature, global curvature,
dihedral angle, and shape diameter. It is necessary to bear in mind that the learning

step produces non-connected fuzzy regions. The second step, also called segmentation
step, transforms these fuzzy region boundaries into well-delineated, closed, smooth

contours. This requires specific procedures for contour thinning, contour completion,
and snake-based smoothing, as illustrated in Figure 2.27.
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(a) (b) (c)

(d) (e) (f)

Figure 2.27: Boundary-based segmentation based on learning boundary edges (picture taken from
[BLVD11]): (a) edge function; (b) interest region extraction; (c) region thinning; (d) contour completion;

(e) snake movement; (f) final segmentation.

Zhang et al. [ZZC11] proposed a constrained random walk algorithm that combines
random walks (borrowed from image segmentation [Gra06]) and user interaction (using

easy mesh cutting [JLCW06]) to come up with mesh cuts as perceived by humans. The
constraints imposed by the user divide into soft constraints and hard constraints. Soft

constrains indicate where the cuts should be made nearby, while hard constrains mark
the vertices through which the cuts must pass. These constraints are added to random

walks in order to find the best mesh cuts. In the end, one uses the shortest path graph
to smooth cut contours.

Au et al. [AZC+12] put forward with a fully automatic boundary-based mesh segmen-
tation method, which is exclusively based on shape concavity information of the mesh.

This makes usage of a set of concavity-sensitive scalar fields over a mesh in order to lo-
cate concave creases and seams, which are good candidate cuts or boundaries between

mesh regions. Computing such a scalar field (here called segmentation field) consti-
tute a variant of the surface harmonic field used by Zheng and Tai [ZT10], as described

above, requires solving the Poisson equation using the discrete Laplacian operator, as
in Desbrun et al. [DMSB99], with a new concavity-sensitive weighting scheme. All con-

cave seams are found using at least one segmentation field over the mesh, with each
segmentation field generated in a distinct direction. Interestingly, the isolines of each

segmentation field naturally gather at concave seams, so that their high density de-
notes the existence of a cut or region boundary. The best cuts are found through the

scoring of each isoline relative to their field gradient magnitudes. It is also worth noting
that the influence of mesh noise influence is mitigated aplying the Gaussian smoothing

to the normals as a pre-processing step. Finally, and based on this work, let us also
mention that Zheng et al. [ZTA12] proposed an interactive tool (called dot scissor) that
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combines user interaction with concavity-aware fields to select the best isoline cut.

Wang et al. [WLAT14] introduced a new automatic boundary-based mesh segmenta-
tion method, which can be considered as a followup of the Au et al. method [AZC+12]

described above, with the difference that the new method only uses a single segmen-
tation field. It comprises two main steps: hierarchical spectral analysis and isoline-

based boundary detection. In the hierarchical spectral analysis step, one generates a
segmentation field in order to come up with a decomposition of eigenvectors from a

Laplacian, i.e., a specific number of eigenvectors is adaptively chosen and split into
sub-eigenvectors via spectral clustering. At the sub-eigenvector level, one uses two

measures together, inner variations and part oscillations, to assess the confidence in
identifying a spectral-sensitive cut (or region contour) for each sub-eigenvector. Dur-

ing the isoline-based boundary detection step, the cuts are identified using a two-step
procedure, which consists of a divide-merge algorithm and a cut score to respectively

filters and measures isolines, with the goal of filtering and measuring the best isolines
as cuts or contours, as illustrated in Figure 2.28.

(a) (b) (c) (d) (e)

Figure 2.28: Boundary-based segmentation via hierarchical spectral analysis and segmentation field
(picture taken from [WLAT14]): (a) single segmentation field; (b) all sampled isolines; (c) isoline

grouping; (d) isoline selection; (d) final mesh segmentation.

2.3.6 Surface-Based Segmentation: a Discussion

The majority of the methods described in this chapter fit the category of surface-based

segmentation methods. The timeline of this category of methods is shown in Figure 2.29.
Two of its sub-categories made their appearance in 90’s, while the remaining three

arose after 2000. All of them use a 2-dimensional mesh as input, and it is noticeable

that in their majority apply to freeform objects, as well as to non-freeform objects.
Usually, the segmentation-guiding criterion is based on convexity or on a convexity

variant like concavity, dihedral angle, and so forth.

In terms of segmentation results, Table 2.2 (cf. last three columns on the right) shows
that generally the methods produce meaningful (or natural) segmentations of a mesh

into regions. However, a number of them suffer from over-segmentation, though this
problem can be solved, or at least mitigated, using a subsequent region merging step.
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(a) Region Growing.
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(c) Iterative Clustering.
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(e) Boundary.

Figure 2.29: Timeline of the surface-based algorithms.
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Table 2.2: Surface based segmentation methods.

Method Reference
Input Object type Class Criterion Feature
M Ff NFf RG WS HC IC BS Cv Cc GD C DA CH SDF SA O N OS A

Chazelle et al. [CDST95] • • • • • •
Mangan and Whitaker [MW98] • • • • • •
Mangan and Whitaker [MW99] • • • • • •
Zuckerberger et al. [ZTS02] • • • • • • • • •
Zuckerberger et al. [ZTS02] • • • • • •
Shlafman et al. [STK02] • • • • • • •
Katz and Tal [KT03] • • • • • • • •
Page et al. [PKA03] • • • • • • •
Zhou and Huang [ZH04] • • • • •
Liu and Zhang [LZ04] • • • • • • •
Katz et al. [KLT05] • • • • • •
Lee et al. [LLS+05] • • • • • • •
Zhang and Liu [ZL05] • • • • • • •
Ji et al. [JLCW06] • • • • • • • •
Attene et al. [AFS06] • • • • •
Chen and Georganas [CG06] • • • • • • • •
Lai et al. [LZHM06] • • • • • • •
Podolak et al. [PSG+06] • • • • •
Liu and Zhang [LZ07] • • • • • • • •
Shapira et al. [SSCO08] • • • • • • •
De Goes et al.] [dGGV08] • • • • •
Golovinskiy et al. [GF08] • • • • • • • •
Lai et al. 2008 [LHMR08] • • • • • • • •
Lavoue and Wolf [LW08] • • • • • • •
Zhang et al. [ZLXH08] • • • • • •
Agathos et al. [APPS10] • • • • •
Reuter [Reu10] • • • • • • •
Zheng and Tai [ZT10] • • • • • • •
Benhabiles et al. [BLVD11] • • • • • • • •
Benjamin et al. [BPVR11] • • • • • • •
Fan et al. [FL+11] • • • • • • •
Fang et al. [FSKR11] • • • • • • • •
Xiao et al. [XLXG11] • • • • •
Zhang et al. [ZZC11] • • • • • •
Ho and Chuang [HC12] • • • • • • •
Kin-Chung Au et al. [AZC+12] • • • • • • • • •
Bergamasco et al. [BAT12] • • • • • • •
Yan et al. [YWLY12] • • • • •
Zhang et al. [ZZWC12] • • • • • • • • •
Wang et al. [WLAT14] • • • • • • • •
Zhang et al. [ZLG+15] • • • • • •

Abbreviations:
M: Mesh;
Ff: Freeform; NFf: Non-Freeform or CAD;
RG: Region Growing; WS: Watershed Segmentation; HC: Hierarchical Clustering; IC: Iterative Clustering; BS: Boundary Segmentation;
Cv: Convexity; Cc: Concavity; GD: Geodesic Distance;C: Curvature; DA: Dihedral Angle; CH: Convex Hull; SDF: Shape Diameter Function;
SA: Spectral Analysis - Laplace-Beltrami Operator; O: Other Criterion;
N: Naturalness; OS: Over-Segmentation; A: Automatic;

Similar to volume-based methods, perhaps the main issue inherent to surface-based

methods has to do with the lack of an automated procedure to decompose a mesh
into a number of meaningful regions. In fact, knowing such a number of segments in

advance is not an easy task. The usual solution is to ask the user for such a number or,
alternatively, ask the user to interactively select the region seeds on the mesh, or still

to specify a specific threshold for the stopping condition of the mesh decomposition. A
too fine threshold may originate over-segmentation of the mesh.

Seemingly, there is not any automated region-growing method in the literature (cf.

Table 2.2) that is capable of finding the number of region seeds beforehand, as well as

their number; as a consequence, the segmentation may result unnatural. Analogously,
in general, watershed-based methods do not produce segmentations in an automated

manner; the exception is the one due to Benjamin et al. [BPVR11], who used the
concept of heat flow instead of water flow over the mesh, but their segmentations tend

to be more coarse than human segmentations, and are not adequate for non-freeform
objects.

Similarly, the main issue in iterative clustering-based methods, which are essentially
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based on some k-means clustering procedure, is indeed to determine the value of k

(i.e., the number of mesh regions) beforehand. In addition, it is necessary to well

choose the representative centroids of regions, which is not an easy task either, though
some methods use spectral information (see, for example, [FSKR11] [ZZWC12]) to guide

the iterative clustering process, while others use a user input to get the initial repre-
sentatives of each cluster or mesh region.

In regard to the hierarchical clustering class, and looking at Table 2.2, it seems that

there is no method that automatically calculates the number of regions or clusters a

priori. Recall that, there are two main approaches for hierarchical clustering: top-

down and bottom-up. In the top-down approach, an important issue to known when it
is time to stop the generation of new levels of segmentation; otherwise, there is a risk of

producing over-segmentation at the deepest level of cluster hierarchy. In the bottom-
up approach, the main difficulty lies in achieving a good merging criterion regions into

larger regions in a meaningful manner.

Finally, boundary-based methods build upon the minima rule−from the theory of human

vision−, which states that boundaries between regions are located in concave paths.
Therefore, these methods aim at finding such regions from their boundaries, not from

interior seeds. The main difficulties in using these methods are threefold. First, it
is common to have various boundaries separating two regions, so a decision has to be

taken about the most appropriate one; for example, there are various closed paths
around the neck that separates head from trunk of a mesh representing a human body.

Second, finding a closed boundary or loop of concave edges separating two regions is
not always feasible. Nevertheless, a few methods have overcome this problem; see, for

example, [LLS+04]. Third, with the exception of [AZC+12] [WLAT14], these methods
are not accompanied by a technique to automatically determine the number of regions.

2.4 Skeleton-Based Segmentation

Generating a skeleton (also called curve-skeleton) is a process known as skeleton ex-

traction or skeletonization [LWTH01] [CGC+02] [KT03] [LA04]. Let us first recall that
a skeleton is a 1-dimensional structure that captures the shape (i.e., geometry and

topology) of a given object in a simplified manner. This technique has been used in
several research fields and applications, in particular in reconstruction [ABK98], virtual

navigation [WDK01], animation[CGC+02], segmentation [LWTH01], etc. The reader is
referred to Cornea et al. [CSM07] for a more detailed review on this topic.

There is a number of ways of constructing skeletons from a mesh, namely:

Medial Axis (MA). The medial axis skeleton is based on medial axis transform (MAT)
[Blu67] [SP08]. The medial axis of a 2-dimensional mesh in 3D can be seen as the locus

of the centers of balls that are tangent to and maximally inscribed in the mesh, i.e.,
such balls contained in the mesh are tangential to three or more points of the mesh.
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Therefore, the MAT of a given 2-dimensional mesh can be defined as the medial axis
together with the radius function that determines those maximally inscribed balls. It

is hard to compute MAT exactly. To simplify this process, several strategies are used
to construct the skeleton based on the medial axis definition. Amenta et al. [ACK01]

computed the Voronoi diagram to approximate the medial axis skeleton. Siddiqi et al.
[SBTZ02] compute medial axis approximations across 3D voxel grids. The shock graph is

a variant of the medial axis [SSDZ98] [CK01], which is obtained by viewing the medial
axis as the locus of singularities (shocks).

Reeb Graph (RG). A Reeb graph is a 1-dimensional structure whose nodes are critical

points of a real-value function defined on a given surface. The skeleton is obtained
by embedding the Reeb graph into the geometry. Essentially, a Reeb graph tracks the

topology changes in the level set defined by a scalar function. The graph is obtained by
contracting the connected components of the level set to points. Different real-value

functions can be used such as geodesic function [HSKK01], shape convexity [LKA06],
Morse functions [ABS01] [SKK01] or harmonic functions [AHLD07].

Geometric Contraction (GC). A contraction skeleton is the result of progressively con-
tracting a given shape to its 1-dimensional skeleton. There are two main strategies

to get this 1-dimensional skeleton: mesh contraction (MC) and volumetric contraction
(VC). Mesh contraction techniques operate directly on the 2-dimensional mesh, which

is iteratively (smoothed and) contracted into a nearly zero-volume mesh that retains its
global shape in terms of geometry and topology [ATC+08] [CTO+10] [TAOZ12] [YHN14].

Volumetric contraction techniques are predominant in skeleton extraction. These vol-
umetric techniques use a volumetric discrete representation, either a voxelized rep-

resentation or a discretized distance field. The voxelized representation is produced
from the mesh, so that the sleketon is then obtained through a thinning procedure that

peels the boundary voxels though preserving the topological shape of the original mesh.
Distance-field methods make use of a distance transform (or other functions like the

radial basis functions) to get a set of interior voxels that approximate the medial axis
of the mesh.

Let us now detail the methods of each one of these categories.

2.4.1 Medial Axis-Based Segmentation

Seemingly, Mortara et al. in [MPS+04] were the first to segment a mesh into tubular
features (cylinders or cones) and bodies using a sort of medial axis; this method is called

Plumber. The skeleton is constructed by intersecting a radius-varying sphere with each
tubular part of the mesh (Figure 2.30(a)), in order to obtain two closed curves, called

medial loops (in red in Figure 2.30(b)). The barycenters of these two medial loops define
a segment of the approximate medial axis. Then, the sphere is swept backwards and

forwards to position it at each barycenter, so that further medial loops are calculated
once again. With the barycenters of the medial loops, one builds the skeleton lines,
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from which it is possible to identify the tubular features in the segmentation step; the
remaining parts are considered as bodies. This technique was latter used by Mortara

et al. [MPS06] to segment human models. This method is efficient for objects having
elongated features.

(a) (b)

Figure 2.30: Plumber method to segment tubular features (picture taken from [MPS+04]): (a)
calculating medial loops by intersection between the mesh and a radius-varying sphere; (b) medial loops

in red around tubular features.

Another medial axis-based method in mesh segmentation was proposed by Sharf et al.

[SLSK07], which produces natural segmentations of objects. Its admissible input is a

polygonal mesh or even a point cloud of articulated objects (namely human bodies).
The method is based on a deformable model evolution in a way similar to how an in-

cremental tracking triangulation (i.e., continuation-based triangulation) evolves from
a front to several fronts on a point cloud or a surface, eventually with some merging in

the meanwhile. Therefore, starting from a seed point of the cloud (or a vertex of an
extant triangulation), this deformable model includes multiple fronts that reconstruct

the fine features of the shape, as illustrated in Figure 2.31. Each front is here seen as a
connected set of vertices of the mesh moving tangentially to the mesh outwards. Even-

tually, when the front vertices move outwards on the growing mesh, the front divides
into connected sub-fronts −as those fronts concerning the hand fingers in Figure 2.31−,
so that each sub-front ends up evolving separately. In terms of skeleton, this requires
adding a new skeleton node per sub-front to the node of the original front.

2.4.2 Reeb Graph-Based Segmentation

Seemingly, Xiao et.al [XSW03] presented one of the first Reeb graph-based segmentation

methods. This method uses a discrete Reeb graph (DRG), which is a variant of the Reeb
graph as applied to unorganized point clouds, in particular unorganized point clouds

of human body scans. Essentially, this method aims at detecting the critical nodes
of the DRG concerning maxima, minima, and saddles, which identify the existence of

extremities and special points of the human body (e.g., hand tips and armtips). By using
DRG, this segmentation method is capable of extracting the six parts of the human body,

but it is only able to recognize moderate variations of the standard posture, though it
proved to be not sensitive to noise, irregular point sampling, and holes. Nevertheless,
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(a) (b) (c) (d)

Figure 2.31: On-the-fly curve-skeleton computation using mesh fronts (picture taken from [SLSK07]): (a)
mesh front expansion from a seed point; (b) a mesh front divides into two (including the front for thumb
finger); (c) a mesh front divides into five (including those concerning the index, middle, ring, and pinky

fingers); (d) the curve-skeleton for a hand.

Werghi et al. [WXS06] optimized this method using geodesic distance to build the DRG,
with the intent of making it insensitive to different human body postures.

Tierny et al. [TVD07] proposed a hierarchical segmentation method based on Reeb
graph. The method starts by determining an enhanced topological skeleton of the input

mesh, as described in [TVD06]. This enhanced skeleton requires the computation of
feature points, which amount to extremities of features (e.g., finger tips) of the mesh.

Basically, this enhanced skeleton involves the construction of the Reeb graph upon the
geodesic distance from each mesh vertex to the closest feature point. From this en-

hanced skeleton, one determines the boundary of each feature, as well as the hierarchy
of features. They also use a region merging step to create a more natural segmentation

from the human vision point of view, as shown in Figure 2.32.

(a) (b) (c) (d)

Figure 2.32: Enhanced topological skeleton-based segmentation (picture taken from [TVD07]): (a)
enhanced topological skeleton; (b) raw segmentation with each patch referring to a skeleton node,

resulting in an over-segmentation of the mesh; (c) simplified graph; (d) natural segmentation.
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Another automatic Reeb graph-based segmentation algorithm was proposed by Berretti
el al. [BDBP09], which is perceptually consistent with the human vision principles (i.e.,

minima rule). This means that the decomposition of mesh into salient regions is per-
ceptually meaningful. The Reeb graph is here used to get structural and topological

information of the input mesh, as well as to guide the decomposition process. The
boundaries of mesh regions are subject to a curvature-based refinement in conformity

to the minima rule. Thus, the mesh segmentation involves a two-step procedure in
relation to Reeb graph: construction and refinement. Unlike the method due to Tierny

et al. [TVD07], in which geodesic distances are calculated with reference to feature
points of the mesh, the average geodesic distance (AGD) is here used as the function

that induces the construction of the Reeb graph. More specifically, each mesh vertex
is assigned the value of the AGD from it to all other vertices. Then, one uses a sort

of non-uniform quantization of this function that takes into account the critical points
and the number of components of each level set of such function, in order to get a

more accurate identification of critical points, which unveil descontinuities tied to re-
gion boundaries, and at the same time to prevent over-segmentation resulting from an

excessive number of quantization levels. The refinement of the region boundaries is
performed using principal curvatures.

Finally, Aleotti and Caselli [AC12] also put forward a Reeb graph-based segmentation
method, specifically designed for robot grasping. Recall that the Reeb graph allows

us tracking the topological changes across successive level sets of a scalar function
defined over a given mesh. This graph is determined by contraction of each component

of each level set to a point. This method uses integral geodesic distances to build up
the Reeb graph (Figure 2.33), whose implementation is the one proposed by Hilaga et

al. [HSKK01]; this implementation is based on Dijkstra’s algorithm.

(a) (b) (c) (d)

Figure 2.33: Reeb graph-based method using integral geodesic distance (picture taken from [AC12]): (a)
the original mesh; (b) the level-sets of the integral geodesic distance function as curves on the mesh; (c)

the Reeb graph; (d) the segmented mesh.
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2.4.3 Mesh Contraction-Based Segmentation

Seemingly, the first skeleton-based segmentation method was proposed by Li et al.

[LWTH01], in a way inspired in the work of Tan et al. [TCL99]). In this case, the mesh
contraction is performed through an edge contraction-based simplification procedure,

i.e., an edge collapse operator, which is a variant of the edge collapse operator due
to Hope [Hop96]. The result of applying this edge collapse operator is a set of not

necessarily connected edges and vertices, which will form a connected skeleton after
adding virtual edges to it, what is done using a procedure similar to that one described

by Verroust and Lazarus [VL00]. After concluding this skeletonization step, it follows
the segmentation step.

(a) (b) (c) (d)

Figure 2.34: Mesh contraction-based segmentation using edge collapse (picture taken from [LWTH01]):
(a) the skeleton of a dinopet; (b)-(c) the resulting segmentation; (d) the loops that result from

intersecting mesh features with a sweeping plane perpendicular to skeleton branches.

This second step sweeps a plane perpendicular to each skeleton branch in order to
identify critical points of each branch, i.e., the cutting loops (or cuts) on the mesh

(Figure 2.34). The segments are implicitly created from these cuts.

Another algorithm based on mesh contraction was proposed by Au et.al. [ATC+08].
The contraction of the mesh into a zero-volume skeletal shape is performed using im-

plicit Laplacian smoothing, but with global positional constraints, so that vertices are
moved along their curvature normal directions approximately. Therefore, this inwards

smoothing procedure guarantees that the final skeleton is topologically equivalent to
the original mesh (Figure 2.35), and at the same time reduces reduces the impact of

noise. Additionally, the method is insensitive to pose and is rotation-invariant because
it operates directly on the geometry of the mesh. This iterative smoothing process stops

when the volume is nearly zero. But, unlike the method introduced Li et al. [LWTH01],
the contraction keeps the mesh connectivity, not being thus necessary to reconstruct

the sleketon.

2.4.4 Volumetric Contraction-Based Segmentation

It is noteworthy that volumetric contraction-based mesh segmentation methods require
the voxelization of their input mesh. In the particular case of Raab et al.’ method
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Figure 2.35: Mesh contraction-based segmentation using Laplacian smoothing (picture taken from
[ATC+08]).

[RGS04], the voxelization is performed for the axis-aligned bounding box that encloses

the input mesh, so that the voxels divide into outside voxels, boundary voxels, and inside
voxels. Then, one defines a distance field on the inside voxels relative to boundary

voxels, so that the medial voxels are the deepest interior voxels. These medial voxels
form the discrete medial surface (DMS); a medial voxel is assigned a distance field value

that is greater than the one of most of its 26 neighbor voxels. As a result, one obtains a
preliminary, non-connected skeleton. In order to get the connected skeleton, one uses

standard Dijkstra shortest pathfinder between medial voxels.

In the case of Brunner-Brunnett’s method [BB04], the medial voxels are determined

using a voxel peeling strategy, which starts with the removal of the boundary voxels,
a process that is repeated for each external shell of interior voxels, in a way like the

Matryoshka doll (Figure 2.36). It is clear that the curve-skeleton is then produced from
the discrete medial skeleton. Then the junction points of the skeleton are used as

reference points to segment the meshes through a function that determines the distance
between the barycenter of each triangle and the skeleton.

Figure 2.36: Volumetric contraction-based segmentation using voxel thinning (picture taken from
[BB04]): (a) the original mesh; (b) the discrete medial skeleton obtained using voxel thinning; (c) the

curve-skeleton; (d) the final mesh segmentation.

Another skeleton-based segmentation was proposed by Lovato et al. [LCG09], in partic-
ular for human bodies and the like. This algorithm incorporates a skeleton extraction

method that takes advantage of voxel coding and active contours. For that purpose,
the mesh has to be discretized in a 3-dimensional grid of voxels, after which the bound-

ary voxels of the shape (i.e., those intersection the mesh triangles) are retrieved. The
remaining voxels inside the 2-dimensional mesh are assigned a value that denotes the

distance of each inside voxel to the closest boundary voxel; as a consequence, one
obtains a “distance field from boundary” (DFB) map for the voxelization of the mesh.

Therefore, the medial voxels are those the highest distances from boundary. How-
ever, Zhou and Toga [ZT98] showed that this medial procedure can produce very bad
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results for non-tubular shapes. This is so because the curve-skeleton may result in a
non-continuous curve; hence the use of an active contour approach instead, so that the

medial procedure described above is performed optionally as a pre-processing step.

2.4.5 Skeleton-Based Segmentation: a Discussion

As shown in Figure 2.37, skeleton-based segmentation methods made their appearance

soon after 2000, with a slight predominance of Reeb graph-based methods. Moreover,
two sorts of input data are admissible: 2-dimensional mesh and point cloud. These

methods are particularly adequade for tubular (or articulated) freeform methods such
as, for example, human-like shapes. They are not so suited for mechanical parts and

hand-made artifacts, simply because the skeletons of those objects rarely have tubular
branches. Moreover, sleketons do not capture small features as, for example, the curve

that separates the hair or nose from the face of a human body mesh.
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Figure 2.37: Timeline of the skeleton-based algorithms.

Table 2.3: Skeleton-based segmentation methods.

Method Reference Input Object type Class Skeleton type Feature
M PC Ff NFf MA RG MC VC Sk DRG CSK RG Nt OS A

Li et al. [LWTH01] • • • • • •
Xiao et al. [XSW03] • • • • • •
Brunner and Brunnett [BB04] • • • • • •
Mortara et al. [MPS+04] • • • • • •
Raab et al. [RGS04] • • • • • •
Werghi et al. [WXS06] • • • • • • •
Sharf et al. [SLSK07] • • • • • • •
Tierny et al. [TVD07] • • • • • • • •
Au et al. [ATC+08] • • • • • •
Lovato et al. [LCG09] • • • • • • •
Berretti et al. [BDBP09] • • • • • • •
Aleotti and Caselli [AC12] • • • • • • •

Abbreviations:
M: Mesh; PC: Point Cloud;
Ff: Freeform; NFf: Non-Freeform or CAD;
MA: Medial Axis; RG: Reeb Graph; MC: Mesh Contraction; VC: Volumetric Contraction;
Sk: Skeleton; DRG: Discrete Reeb Graph; CSK: Curve-Skeleton;RG: Reeb Graph;
Nt: Naturalness; OS: Over-Segmentation; A: Automatic;
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The main problem of medial axis-based methods lies in the difficulty in constructing
of the medial axis itself. On the other hand, the main difficulty of Reeb graph-based

methods is in the choice of the height function used to build the Reeb graph. Also, Reeb
graph-based methods tend to produce less natural segmentations than other methods

belonging to the category of skeleton-based methods. In respect to mesh contraction-
based methods, the main issue is the production of non-connected skeleton, which

needs some sort of reconstruction procedure, though the latest algorithms in this cate-
gory have paved the way to overcome this problem. In regard to volumetric contraction-

based methods, the main issue has to do with the resolution of the 3-dimensional lattice,
i.e., the size of its building blocks (e.g., voxels), which has impact on whether or not

the features of an object are well determined. As expected, and as shown in Table 2.3,
skeleton-based methods do not suffer from over-segmentation, except the one due to

Tierny et al. [TVD07], but even in this case the over-segmentation is not much. Finally,
let us mention that these methods are in general automated because the number of

segments can be determined from object skeleton.
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Figure 2.38: Time distribution of the meaningful segmentation algorithms, grouped by classes.

2.5 Evaluation, Discussion and Future trends

A brief glance at Figure 2.38 shows us that the field of meaningful mesh segmentation
attained its peak in 2008 in terms of the number of algorithms, with the boundary-based

and approximate convex decomposition-based techniques gaining a particular emphasis
in recent years.
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2.5.1 Quantitative Evaluation

Let us now compare some of the mesh segmentation methods described above in the
context of the Princeton benchmark [CGF09]. This benchmarking dataset comprises

4,300 manually generated segmentations (created by people from around the world)
for 380 surface meshes collected into 19 different object categories (Figure 2.39).

Figure 2.39: Some segment boundaries selected by different people, one example is shown for each of
the 19 object categories [CGF09].

Additionally, the dataset includes a set of segmentations produced by seven algorithms

published before 2009, namely: KMeans [LZHM06] (hierarchical clustering technique),
random walks [LHMR08] (iterative clustering technique), fitting primitives [AFS06] (hi-

erarchical clustering technique), randomized cuts [GF08] (boundary-based technique),
core extraction [KLT05] (region growing technique), and also shape diameter func-

tion [SSCO08] (hierarchical clustering technique). Additionally, we have included in
the dataset those segmentations generated by other five algorithms described in arti-

cles published after 2011, namely: isoline [AZC+12] (boundary-based technique), M-S
[ZZWC12] (boundary-based technique), WC-Seg [KFK+14] (volume-based technique),

SSFSeg [WLAT14] (boundary-based technique), and HSC [ZLG+15] (hierarchical clus-

Table 2.4: Benchmark metrics [CGF09].

Method Class
Metrics

RI CD HD GCE

Benchmark[CGF09] - 0,101 0,171 0,098 0,067
Rand Cuts [GF08] BS 0,156 0,275 0,136 0,122
Shape Diam.[SSCO08] HC 0,174 0,274 0,165 0,129
Core Extra.[KLT05] RG 0,208 0,374 0,169 0,135
Rand Walks[LHMR08] IC 0,227 0,384 0,207 0,175
Fit Prim. [AFS06] HC 0,214 0,348 0,240 0,217
KMeans[LZHM06] HC 0,252 0,419 0,275 0,249
Isoline Cut[AZC+12]* BS 0,127 0,220 0,130 0,090
M-S [ZZWC12]* BS 0,120 - - 0,100
WC-Seg [KFK+14]* ACD 0,125 0,220 0,129 0,100
SSF-Seg [WLAT14]* BS 0,110 0,200 0,120 0,090
HSC[ZLG+15]* HC 0,170 0,270 0,160 0,120
(*approximated values)
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Figure 2.40: Comparison of the algorithms using the metrics RI and CD [CGF09].
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Figure 2.41: Comparison of the algorithms using the metrics GCE and HD [CGF09].

tering technique). The quantitative results of the segmentations generated from 12

algorithms, here expressed in terms of the four metrics, are listed in Table 2.4.

Such metrics are as follows:

• Rand Index (RI). It measures the likelihood that two triangles belong to either the

same cluster (or region) or two different clusters (regions) when we are comparing
two segmentations of the same mesh. In other words, it measures the similarity

between two segmentations of the same mesh.

• Cut Discrepancy (CD). Intuitively, it is a boundary-oriented metric that measures
the distances between cuts. The idea is to measure howwell the region boundaries

overlap with the ground truth.

• Consistency Error (CE). This metric measures hierarchical (or nested) similarities
and differences between two distinct segmentations.

• Hamming Distances (HD). They measure the overall region-based differences be-
tween two segmentation results. The main advantage of these metrics is that they
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allow us to find correspondences between regions produced by a segmentation al-
gorithm and those of human-generated segmentations.

In short, one of the metrics focuses on boundary errors (Cut Discrepancy), and the other

three focus on region dissimilarities (Hamming Distance, Rand Index, and Consistency
Error). Note that these metrics stand for errors that vary in the range [0, 1], as partially

shown in Figures 2.40 and 2.41.

A brief glance at the charts in Figures 2.40 and 2.41 shows us the following. First, the

segmentations produced by methods described in articles published after 2011 seem to
be more close to the ground-truth (or human) segmentations, i.e., they are more nat-

ural. Second, three out of five methods published after 2011 belong to the category of
boundary-based methods, and seem to outperform other methods in terms of natural-

ness (or meaningfulness). In a way, this explains why this thesis focuses on boundary-
based methods, in particular the next chapter approaches a new method belonging to

this category.

2.5.2 Discussion and Future Trends

Looking back to the three main categories of meaningful mesh segmentation methods,

we observe the following. The meaningfulness of a mesh segmentation depends on
whether the decomposition of a mesh into meaningful parts satisfies Hoffman’s assertion

[HS97].

Volume-based methods are very time-consuming because of geometric decomposition
of an object into sub-objects, which involves cutting procedures based on geometric

intersections. They require the use of approximate convexity to succeed in reducing
the over-segmentation phenomenon and in making segmentations more meaningful.

Surface-based methods have difficulties in dealing with over-segmentation, unless we
use the merging step. Among these surface-based methods, the emerging boundary-

methods seem to be very promising because they tend to rid off the over-segmentation.

Skeleton-based methods do not suffer from over-segmentation; in addition, they are
inherently automatic since it is possible to determine the number of segments from the

skeleton of a mesh. The downside of these method is that they are are mainly designed
for articulated objects, i.e., they do not apply to objects in general (i.e., mechanical

parts). Alias, mesh segmentation methods hardly are general.

Although, many methods have tried to cope with all sorts of objects, we noted that some

are more suited for freeform objects, while others are more adequate for non-freeform
objects, or even others fit in those specificities of articulated objects.

In the future, we envisage the following challenges in the design of new meaningful
mesh segmentation algorithms:

Naturalness. This has to do with perceptual proximity to ground-truth segmentations.
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As seen above, in recent years, we have assisted to the introduction of new algorithms
that produce more and more natural segmentations. In particular, the have assisted to

emergence of the boundary-based methods that well comply with the requirement of
naturalness.

Generality. There is a long way to go in order to come up with general mesh segmen-

tation methods, i.e., methods capable of dealing with objects of distinct categories in
a similar degrees of naturalness given by metrics as those aforementioned.

Automation. The a priori computation of segments of a mesh is an important research
topic for future. We have seen some hints for this computation as, for example, critical

points, concave paths on the mesh, skeletons and the like. But, as we will see in the
next chapter, it is also possible to bring techniques from image segmentation into mesh

segmentation in order to find new ways to solve this issue.

2.5.3 Other Literature Reviews

In the last few years, two relevant surveys have been appeared in the literature. First,

Shamir [Sha08] introduced a classification of mesh segmentation algorithms based on
different segmentation goals, optimization criteria and features, as well as on their al-

gorithmic techniques or methodological frameworks. Second, and following essentially

the same line of thinking as Shamir [Sha08], Theologou el al. [TPT15] presented a survey
on mesh segmentation algorithms (include chart segmentation, meaningful segmenta-

tion and co-segmentation) grouping them according to their methodological frameworks
(e.g., clustering, region growing, surface fitting, and so forth)

On the contrary, we use the dimension of the building blocks of the segmentation to

introduce a new taxonomy for meaningful mesh segmentation. Therefore, in volume-
base methods, the 3D object volume is divided into 3D sub-volumes, even when volumes

are represented by 2D shells (i.e., boundary representtaion); in surface-based meth-
ods, a 2D mesh in 3-dimensional space is divided into 2D sub-meshes with boundary; in

skeleton-based methods, we first find a 1D skeleton which is divided into 1D skeletal
branches.

2.6 Concluding Remarks

In this chapter, we have carried out a general literature review of the meaningful mesh

segmentation algorithms. As aforementioned, in the end of the last decade, we have
assisted to a seemingly decline of this knowledge field in terms of production of new

solutions for the problem of mesh segmentation. However, this decline has given place
to the rise of another category of algorithms, the now well-known co-segmentation al-

gorithms that take advantage of machine learning techniques. We have not approached
the chart segmentation methods either.
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Related Publications

The work described in this chapter originated a survey on meaningful segmentation

methods, which is to be submitted for publication as indicated below:

Rui S. V. Rodrigues, José F. M. Morgado, and Abel J. P. Gomes. 2016. Mesh

Segmentation: A Literature Review. ACM Computing Surveys (submitted),

2016.
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Chapter 3

A Contour-Based Segmentation for Triangle
Meshes in 3D Space

This chapter introduces the first contour-based mesh segmentation algorithm that we
may find in the literature, which is inspired in the edge-based segmentation techniques

used in image analysis, as opposite to region-based segmentation techniques. Its lead-
ing idea is to firstly find the contour of each region, and then to identify and collect

all of its inner triangles. The encountered mesh regions correspond to ups and downs,
which do not need to be strictly convex nor strictly concave, respectively. These re-

gions, called relaxedly convex regions (or saliences) and relaxedly concave regions (or
recesses), produce segmentations that are less-sensitive to noise and, at the same time,

are more intuitive from the human point of view; hence it is called human perception-
oriented (HPO) segmentation. Besides, and unlike the current state-of-the-art in mesh

segmentation, the existence of these relaxed regions makes the algorithm suited to
both nonfreeform and freeform objects.

3.1 Introduction

Mesh segmentation is a fundamental procedure in areas as diverse as geometric model-

ing, computer-aided design, computer graphics, and so forth [Sha08]. This procedure
consists in partitioning a mesh into a number of sub-meshes in conformity with some con-

vexity criterion. Intuitively, this is equivalent to detect and delimit the ups (saliences)
and downs (recesses) of the mesh, as illustrated in Figure 3.1. But, as argued by At-

tene et al. [AKM+06], mesh segmentation can be driven by either geometric criteria or
semantic criteria or both.

In geometry-based segmentation techniques, the mesh is divided into a number of sub-

meshes or regions that satisfy some geometric property (e.g., curvature, distance to a
fitting plane, etc.). On the other hand, in semantics-based segmentation techniques,

the division of a mesh into sub-meshes takes place when each sub-mesh delimits a

perceptually meaningful region (e.g., an arm of the human body). In this respect, Bie-
derman [Bie87] states that the people perceive objects as collections of parts, while

Hoffman [HS97] refers that the human vision defines boundaries of parts along the neg-
ative minima of principal curvatures. Note that, in a way, Hoffman’s assertion implies

that the meaningful parts are essentially convex.

Hoffman’s assertion has inspired the development of our algorithm, so we follow the
leading idea of how human vision perceives the boundaries of parts. Let us say that
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Figure 3.1: Segmented meshes (or models) using the human perception-oriented (HPO) segmentation.
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our algorithm has been also inspired in the well-known family of edge-based segmen-
tation algorithms found in image analysis and algorithms. With these edge-based al-

gorithms, we first find the boundaries of each region, filling it afterwards; hence, the
contour-based segmentation (region contour or boundary first, then its interior). On

the contrary, the region-based algorithms work in the other way round: first the region
is formed incrementally, being its frontier defined by some stopping condition.

As far as we know, we are here proposing the first contour-based segmentation in the

domain of mesh segmentation in 3D. For this purpose, the point membership test (PMT)
is here used as a convexity classifier, i.e., we use PMT to classify edges as convex,

concave or flat. PMT is a particular case of the SMC (set membership classification)
test, which is very popular in CSG (constructive solid geometry) modeling, and has

been around for the last three to four decades [Til80]. Nevertheless, recesses and
saliences on the mesh are not classified in a so strict manner in terms of convexity. We

introduce the notion of relaxed convexity to classify those shape features of the mesh.
A salience is a relaxedly convex region, while a recess is a relaxedly concave region.

A relaxedly convex region is not strictly convex, i.e., it admits small concavities. On
the other hand, a relaxedly concave region is not strictly concave, i.e., it admits small

convexities. This shape relaxation allows us to minimize the effects of noise related to

over-segmentation, and makes it suited to the segmentation of freeform objects such
as, for example, the ant shown in Figure 3.1.

The remainder of the chapter is organized as follows. Section 3.2 briefly reviews the

related work existing in the literature. Section 3.3 details the background that is on
the basis of our algorithm, including PMT and the concept of relaxed convexity. Sec-

tion 3.4 outlines our contour-based segmentation algorithm, called HPO segmentation.
Section 3.5 details the region filling step of HPO segmentation algorithm. Section 3.6

introduces the mesh smoothing step (a Laplacian filter, in particular) for noisy meshes,
which uses the cumulative area histogram analysis to identify whether a mesh is noisy

or not. Section 3.7 describes the region merging step of HPO segmentation algorithm.
Section 3.8 presents the most relevant experimental results produced by the HPO seg-

mentation algorithm, in particular the benchmarking results produced by Princeton’s
benchmark software. Finally, Section 3.9 concludes the chapter.

3.2 Related Work

Intuitively, mesh segmentation consists in dividing a mesh into meaningful sub-meshes

(or regions). With reference to the structural dimension of mesh regions, segmentation
algorithms can be categorized as follows: volume-based, surface-based, and skeleton-

based. These three segmentation categories are all based on geometry, including con-
cepts of the convexity theory, topology, homology, etc. Independently of the nature of

the segmentation technique, most algorithms make usage of some geometric or topo-
logical criteria that guide the segmentation of a given mesh [Sha08]. Examples of ge-
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ometric criteria are the curvature [KK10], geodesic distances [ZMT05], dihedral angles
[ZTS02], shape diameter function [SSCO08], planarity [KT96], symmetry [PSG+06], con-

vexity [KJS06] [LLL10], concavity [AZC+12] [GALL13], volume [HC12], etc. Topological
criteria include Reeb graphs [TVD07] and spectral analysis [ZvKD10].

Volume-based segmentation algorithms can be considered as the former category of

segmentation algorithms. In this case, the segments are volumes. This family of algo-
rithms follows the principle of decomposing a 3D volumetric object into a set of convex

sub-objects (or convex volumes). The basic problem of convex decomposition of poly-
hedra was firstly addressed by Chazelle [Cha81] [BD92] [CP94], but such decompositions

usually are costly in terms of time performance and memory space. More amenable de-
compositions, called approximate convex decompositions (ACD), have been proposed in

the literature [LA04] [KJS06] [GALL13]. This sort of decomposition is based on a mea-
sure of concavity; for example, the ACD proposed in [LA06] is guided by the volume

ratio between the actual object and its convex hull, Ghosh et al. [GALL13] propose a
new strategy that improve the results of the ACD, while the one due to Kraevoy et al.

[KJS06] is generated by measuring the average distance from all object’s triangles to
the object’s convex hull.

In surface-based segmentation algorithms, the segments are regions of a 2D triangle
mesh. Each region consists of a number of connected triangles that have similar geomet-

ric properties (e.g., convexity, curvature, etc.). In the literature, we find the following
major sub-categories surface-based algorithms: region growing [CDST95] [KT96], water-

sheds [MW99] [ZTS02], hierarchical clustering [GWH01], iterative clustering [SWG+03],
[KT03], spectral clustering [LZ07], [RBG+09], and fuzzy clustering [KT03].

In skeleton-based segmentation (also known as skeletonization) algorithms, the seg-
ments are line segments. The input is either a 3D volumetric mesh or a 2D surface

mesh, but the output is a 1D skeleton that represents the structural shape of the mesh.
A skeleton provides us with the one-dimensional topological shape of a given higher-

dimensional object. Generating such a skeleton is a process known as skeleton extrac-
tion or skeletonization [CGC+02] [KT03]. Examples of automatic skeletonization tech-

niques are found in the literature, including the Medial Axis Transform (MAT) [Blu67],
Shock graph [SSDZ98] (i.e., another MAT representation), and Reeb graph extracted

from various Morse functions [SKK01].

Note that our algorithm falls into the category of surface-based algorithms, but it does
not fit any of its sub-categories. Making a parallel with the two more important families

of segmentation algorithms we may find in image analysis and processing [GW08], a

region-based segmentation algorithm starts somewhere in the interior of each region
and stops on its frontier, while a contour-based segmentation algorithm starts on the

frontier of each region and stops in its interior. This means that, we do not need to
calculate neither maxima nor minima to start with the segmentation, nor to use other

suited, sophisticated mechanisms to determine the curvature over the mesh as those
we find commonly nowadays.
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(a) (b) (c)

Figure 3.2: Three different meshes: (a) a mesh with two saliences (a brown salience and a green
salience) and a blue recess; (b) a mushroom with four segments or regions (convex edges in blue and

concave edges in red); (c) a calyx with a cut (convex edges in blue and concave edges in red).

3.3 Theoretical Background

According to Hoffman’s assertion mentioned in Section 3.1, the human vision delineates
the boundaries of object’s regions along the negative minima of principal curvatures,

what implies that meaningful regions of an object are convex. This agrees with the
fact that there is only lack of matter (or existence of recesses) when the matter exists

(or existence of saliences). But, when we talk about the convex regions, in fact, in
most cases, we are talking about regions that we call relaxedly convex regions. This

is illustrated in Figure 3.2(b), where the four meaningful parts of the mushroom are
not strictly convex, i.e., we tend to observe the convexity in large. For example, the

mushroom cap (i.e., the top region) is a relaxedly convex region since it mostly consists
of convex edges in blue, although it also possesses concave edges in red.
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Figure 3.3: Edge types of a triangle: (+) for convex edges; (0) for flat edges; and (-) for concave edges.
A stands for the set of triangles used for build relaxedly convex regions; B stands for the set of triangles

used for build relaxedly concave regions; and C stands for the set of boundary triangles.

3.3.1 Edge Classification

Evaluating the convexity of an edge bounding a mesh triangle can be reduced to the
problem of classifying a point in relation to a plane. Let us then use the vectorial
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equation of the plane α given by the dot product
−→
N · −−→QP = 0, where

−→
N is the normal

vector of the triangle at one of its points Q and
−−→
QP stands for a vector in α defined by

Q and any other point P belonging to α. Assuming that N = (a, b, c), Q = (x0, y0, z0)

and P = (x, y, z), we easily obtain the Cartesian equation of the plane as α(x, y, z) :

ax+ by + cz + d = 0, where d = (−ax0 − by0 − cz0).

It is clear that the plane
−→
N ·
−−→
QP = 0 divides R3 in two half-spaces, i.e., the positive

half-space
−→
N · −−→QP > 0 and the negative half-space

−→
N · −−→QP < 0. The normal

−→
N points

to the positive half-space (i.e., outside), so that we can easily test whether an edge
is convex or not using the plane of the first of its incident triangles and the opposite

vertex (i.e., the third vertex) of the second triangle.

Let
−→
N1 and

−→
N2 be the normal vectors of the first and second triangles incident on a

given edge, respectively. Also, let P1 and P2 be the opposite vertices of the first and

second triangles. Thus, after calculating ∆ =
−→
N1 ·
−−−→
P1P2, we have:

• If ∆ = 0, then the triangles are coplanar, and the edge is said to be flat;

• If ∆ < 0, the second triangle lies in the negative side of the plane α, that is, the

edge shared by those two triangles is said to be convex;

• If ∆ > 0, the second triangle lies in the positive side of α, that is, the edge shared

by those two triangles is said to be concave.

Note that this criterion, here called PMT, can be used to know whether or not an edge is
convex without computing the dihedral angle between its incident triangles. Besides,

the PMT does not suffer from the ambiguity of the dihedral angle in evaluating the
convexity of edges. During testing, we observed that PMT criterion is more than fifty

percent faster than the dihedral angle criterion in the evaluation of the convexity of
edges.

3.3.2 Triangle Classification

The PMT is a strict convexity criterion for edges. An edge shared by two triangles is

flat if ∆ = 0, convex if ∆ < 0, and concave if ∆ > 0. Considering that we have
three different types of edges and also that a triangle has tree bounding edges, we end

up having 33 = 27 types of triangles classified in terms of their edges. Nevertheless,
after eliminating the redundant types of triangles, we end with 10 different types of

triangles, which are shown in Figure 3.3.

Définition 1. A triangle falls into one of the following categories:

1. A triangle is of the type+3 convex (or simply convex) if its edges are all convex

(e.g., the triangle on the left hand side in Figure 3.3);
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2. A triangle is of the type+2 convex if it has two convex edges and one flat edge;

3. A triangle is of the type+1 convex if it has one convex edge and two flat edges;

4. A triangle is flat if its edges are all flat;

5. A triangle is of the type-3 concave (or simply concave) if its edges are all concave

(e.g., the triangle on the right hand side in Figure 3.3);

6. A triangle is of the type-2 concave if it has two concave edges and one flat edge;

7. A triangle is of the type-1 concave if it has one concave edge and two flat edges;

8. A triangle is of the type+2-1 undefined if it has two convex edges and one concave

edge;

9. A triangle is of the type+1-2 undefined if it has one convex edge and two concave

edges;

10. A triangle is of the type+1-1 undefined if it has one convex edge, one concave

edge, and one flat edge.

In short, we have tree types of convex triangles, one type of flat triangles, three types

of concave triangles, and three types of undefined triangles in terms of convexity.

3.3.3 Region Classification

Let us now to come up with definitions about regions, which are sustained on the defi-
nitions introduced in previous sections.

Définition 2. A region of a triangle mesh is a connected set of triangles (or sub-mesh)

that locally has the topological type of a 2-dimensional disc.

Définition 3. A region is said to be convex if the following conditions are satisfied:

(1) (Interior Condition). Its triangles belong to the boundary of its convex hull;

(2) (Boundary Condition). It is delimited by at least one cycle of concave edges.

A consequence of the first condition is that the inner triangles of a convex region are

convex (any type) or flat. It also follows that triangles with concave edges are not
admissible for inner triangles of a convex region. Additionally, those two conditions

imply that each outer triangle of a convex region has a single concave edge, that is, each
outer triangle belongs to one the following types: type-1 concave, type+2-1 undefined,

or type+1-1 undefined. For example, the outer triangles of the salience (in green) shown
in Figure 3.2(a) fall into two types: type-1 concave and type+1-1 undefined. Note that

a convex region may be bounded by two cycles of concave edges, as it is the case of
the smallest region (in green) of the five-region shaft depicted in Figure 3.1.
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Analogously, a concave region also satisfies the interior condition (1) above. By con-
trast, the boundary of concave region consists of at least one cycle of convex edges.

For example, the depression (in blue) shown in Figure 3.2(a) is a concave region that is
bounded by a cycle of convex edges. Thus, the inner triangles of a concave region are

concave (any type) or flat, while those of a convex region are convex (any type) or flat.

In respect to relaxedly convex regions, we can say the following:

Définition 4. A region is said to be relaxedly convex if the following condition is

satisfied:

(1) (Relaxed Interior Condition). Its triangles do not necessarily belong to the bound-

ary of its convex hull;

(2) (Boundary Condition). It is delimited by at least one cycle of concave edges.

(a) (b) (c)

Figure 3.4: Algorithm steps for a teddy mesh: (a) after edge classification (convex edges in blue and
concave edges in red) and triangle classification; (b) after region filling; (c) after region merging.

That is, a relaxedly convex region does not satisfy the interior condition of a convex
region; however, convex regions and relaxedly convex region share the same boundary

condition. This means that we may have concave edges in the interior of a relaxedly
convex region since that they do not form a loop. For example, the mushroom cap

shown in Figure 3.2(b) is a relaxedly convex region that has concave edges (in red) in its
interior; in addition, the region adjacent to the mushroom cap shown in Figure 3.2(b)

is a relaxedly convex region with two bounding cycles of concave edges.

Similar to relaxedly convex regions, a relaxedly concave region also satisfies the re-

laxed interior condition. That is, we may find convex edges in the interior of a relaxedly
concave region; however, they cannot form a cycle. On the other hand, concave re-

gions and relaxedly concave regions share the same boundary condition, that is, they
are delimited by one or more cycles of convex edges. For example, the inside of the

calyx shown in Figure 3.2(c) is a relaxedly concave region that has convex edges (in
blue) in its interior.
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It is worthy noting that a convex region is also relaxedly convex, but not vice-versa;
similarly, a concave region is also relaxedly concave, but not vice-versa. Relaxed con-

vexity is particularly important in the segmentation of freeform objects; for example,
the legs of the octopus depicted in Figure 3.1 are examples of relaxedly convex re-

gions. But, it is also suitable for feature recognition of artifacts as those produced by
geometric kernels and CAD systems (e.g., the two mechanical shafts in the Figure 3.1).

In short, unlike other segmentation techniques that divide a mesh into convex, concave
and saddle regions, ours divides a mesh into relaxedly convex regions (saliences) and

relaxedly concave regions (recesses), preventing so the over-segmentation of the mesh
as much a possible.

3.4 Contour-Based Segmentation Algorithm: Overview

Considering the previous theoretical elements on convexity, the steps of our algorithm
are as follows:

1. Edge Classification. Classify each edge of the mesh as either convex edge, concave

edge or flat edge. This classification is performed using the point membership test
(PMT) instead the dihedral angle. See Section 3.3.1 for further details.

2. Triangle Classification. This procedure builds on the edge classification above, as
formalized by Definition 1 in Section 3.3.2.

3. Region Filling. Form mesh regions from boundary triangles, that is, triangles hav-
ing at least one edge in the boundary of each region. However, the algorithm is

flexible enough to start with any triangle to form a region. See Section 3.5 for
more details.

4. Mesh Smoothing. This step starts by checking whether or not a given mesh is noisy
(e.g., Armadillo’s mesh shown in Figure 3.8(a)) or not. Any noisy mesh is subject to

a smoothing procedure, after which such mesh is re-segmented repeatedly while
the noise persists above a given threshold. Non-noisy meshes are not subject to

any smoothing procedure, i.e., the mesh is immediately dispatched to the region
merging step.

5. Region Merging. Merge adjacent regions if appropriate. See Section 3.7 for further
details.

The main steps of the algorithm are illustrated in Figure 3.4. In Figure 3.4(a), we have
the edge classification (convex edges in blue, concave edges in red, and flat edges in

grey), while all the triangles are drawn in grey. Figure 3.4(b) illustrates the region filling
step. The inwards expansion (i.e., from the boundary to interior) of each region stops

when there is not more boundary and interior triangles to fill in. Finally, Figure 3.4(c)
shows us the teddy after the region merging step.
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(a) (b)

Figure 3.5: HPO segmentation: (a) first convex regions, then concave regions; (b) first concave regions,
then convex regions.

Our algorithm produces a kind of human-meaningful segmentation (i.e., HPO segmen-
tation) in a way that saliences (relaxedly convex regions) are formed before recesses

(relaxedly concave regions). As illustrated in Figure 3.5(a), the saliences must be found
before recesses because the resulting mesh segmentation approximately agrees with

the way humans perceive the shape of 3D geometric objects. In fact, the ground-truth
segmentations produced by the Princeton benchmark [CGF09] show us that humans es-

sentially have an additive shape perception of 3D objects in the sense that each object
is mainly seen as a union of saliences. To reinforce this idea, let us consider that the

priority of segmentation goes to recesses at detriment of saliences. As shown in Fig-
ure 3.5(b), the resulting segmentation endows a subtractive perception of shape to 3D

objects, which is not so natural from the human point of view.

3.5 Region Filling

Let us assume that all the mesh edges have been labeled in terms of their convexity:
either convex, or concave, or flat. Also, the mesh triangles have been labelled in

conformity with Definition 1. Then, we can proceed to filling in relaxedly convex regions
in first place, and relaxedly concave regions afterwards.

3.5.1 Filling Relaxedly Convex Regions

Filling in a relaxedly convex region starts with one of its boundary triangles, i.e., with

one undefined triangle (cf. undefined triangles of the set C in Figure 3.3). Recall that a
boundary triangle has at least a convex edge and a concave edge. The filling procedure

follows the door-in-door-out principle [AG03]. An edge that bounds a triangle acts as
door to get in or get out such a triangle, or still to stop the local expansion of a region.
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Given a relaxedly convex region, we consider that convex edges (and also flat edges)
in the frontier of a triangle are open doors to neighbor triangles, so that such a region

spreads inwards. In other words, if a door-in edge of a triangle is convex, its door-out
edges must be convex or flat; in this case, a concave edge is a boundary edge that

blocks the expansion of such a relaxedly convex region.

The procedure to form relaxedly convex regions (or saliences) of a mesh is described in
Algorithm 1. As noted above, filling in a relaxedly convex region starts with a boundary

triangle (cf. lines 4 to 10 in Algorithm 1). For this purpose, and according to the door-in-
door-out principle, one examines whether or not the neighbor triangles may be added

to the relaxedly convex region (cf. line 7), being then the growing process iterated on
each previously added triangle. Recall that the filling of a relaxedly convex region is

barred by concave edges (i.e., its frontier), as expressed by the condition of the while
loop in line 7.

It is worthy noting that Algorithm 1 applies to all boundary triangles, i.e., no boundary
triangle is left to the posterior formation of relaxedly concave regions. This means that

Algorithm 1 may produce small relaxedly convex regions consisting of two triangles; for
example, the isolated convex edge (in blue) in the interior of the calyx in Figure 3.2

may originate a relaxedly convex region consisting of its two incident triangles. As
described in Section 3.7, these small regions will be later absorbed by larger regions in

their vicinity.

Algorithm 1 Filling in Relaxedly Convex Regions (RCR)

Input: F : array of boundary triangles
Input: R: array of filled RCRs
1: R← ∅
2: n← size of F
3: for i← 0 to n− 1 do
4: if F [i] ̸∈ any mesh region then
5: Generate new RCR r
6: r ← r ∪ F [i]
7: while ∃ a convex or flat edge e bounding r do
8: f ← triangle adjacent to e
9: r ← r ∪ f

10: end while
11: R← R ∪ r
12: end if
13: end for

3.5.2 Filling Relaxedly Concave Regions

Likewise, the procedure to form relaxedly concave regions (or recesses) is done by
exchanging the roles of convex and concave edges in Algorithm 1. Besides, the algorithm

to filling in relaxedly concave regions does not iterate on the array of boundary triangles,
but on the array of concave triangles (i.e., type-k concave triangles, with k = 1, 2, 3).
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(a) (b)

Figure 3.8: Armadillo’s mesh after the region filling step (model 281 of Princeton benchmark): (a)
original mesh; (b) smoothed mesh.

It is clear that if the priority of the segmentation had been given to recesses at detri-
ment of saliences, the algorithm would iterate on the array of boundary triangles, while

saliences would be formed from the array of convex triangles (i.e., type-k convex tri-
angles, with k = 1, 2, 3). But, as shown in Figure 3.5(b), the resulting segmentation in

this case would not be so close to the human perception about shape of 3D objects.

Remarkably, the region filling step suffices to correctly segment meshes of nonfreeform
objects (e.g., mechanical parts). Even some freeform objets do not need the supple-

mentary step of region absorbing to attain their final segmentations, as it is the case

of the mushroom shown in Figure 3.2. This makes our algorithm particularly adequate
for feature recognition of artifacts as those produced by geometric kernels and CAD

systems (e.g., the two mechanical shafts in Figure 3.1).

3.6 Mesh Smoothing

It is widely known that noise may undermine the segmentation of a given mesh. We

follow the notion of noise in image processing and analysis [GW08], so that high fre-
quencies of a signal (or image) correspond to rapid oscillations of a mesh. Intuitively,

this means that a noisy mesh possesses a large number of small segments, i.e., it is
over-segmented.

In order to cope with noisy meshes, we need to check beforehand whether a given

segmented mesh is noisy or not; for this purpose, we use histogram analysis. Identified
a noisy mesh, we apply a Laplacian filter to reduce its noise.
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3.6.1 Area Histogram Analysis

By analyzing the cumulative relative area histogram of a given segmented mesh, we are

able to decide whether such a mesh is noisy or not. For example, Figure 3.6 shows the
cumulative histogram of relative region areas of two meshes, Teddy’s mesh (Figure 3.4)

and Armadilo’s mesh (Figure 3.8), where a stands for the region area percentage in
relation to the total mesh area, also called relative region area, while A denotes the

cumulative region area percentage in relation to the total mesh area, here called cumu-

lative relative region area. Each histogram bin [a, a+1[, where 0 ≤ a ≤ 99, accumulates
the relative areas of all regions such that the relative area of each region is greater or

equal to a and less than a+ 1.

Intuitively, we see that Teddy’s mesh is not much noisy because the cumulative relative
area of its smaller regions (i.e., regions with less than 1 percent of relative area) is small

(i.e., less than 10 percent); also, we have 1 region (the body trunk) with a = A = 40%,
1 region (the head) with a = A = 18%, 2 regions (the legs) with a = 9% and A = 18, and

so on. On the contrary, we observe that Armadillo’s mesh is noisy because 90% of the
total area of the mesh is made up of the smaller regions, i.e., regions with less 1% of

relative area. Note that these smaller regions add up to the first bin (on the left hand
side) of the histogram, here called noise bin.

More specifically, we assume that a mesh is noisy if the percentage of the cumulative
region area (A) of the noise bin [0, 1[ is at least twice greater than the one of the second

highest-ranked bin. This noise-based criterion is empirical and was obtained after an
exhaustive number of experiments.

3.6.2 Laplacian Smoothing

We use Laplacian smoothing to reduce the noise of a given noisy mesh. The Laplacian

operator replaces the position of each vertex by the arithmetic mean of the positions
of its adjacent vertices [Her76] [ABE99] [VMM99]. Therefore, the Laplacian operator is

a local shape operator. It works as a low-pass filter, i.e., it preserves the large mesh
oscillations (corresponding to low frequencies of a signal) and throws away the small

mesh oscillations (corresponding to high frequencies of a signal).

The Laplacian operator is applied to the mesh as many times as necessary, i.e., while

the noise-based criterion is satisfied. For example, the Armadillo’s histogram (in or-
ange) in Figure 3.7 was obtained after four iterations of the Laplacian operator. It is

worth noting that after applying the Laplacian operator to the mesh, the flow control
of the segmentation algorithm goes back to its first step, in order to proceed to the

re-segmentation of the mesh. For example, the Armadillo’s segmentation shown in Fig-
ure 3.8(b) is the result of applying the Laplacian smoothing twice. Once the noise-based

criterion is no longer satisfied, the mesh vertices recover their original positions before
proceeding to the region merging step. It should be also noted that the smoothing step
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described in the present section does not apply to the majority of the meshes; it only
applies to noisy meshes.

3.7 Region Merging

The region merging step is essentially necessary for freeform objects (e.g., human be-
ings and other animals). These freeform objects are the most challenging objects in the

segmentation process of our algorithm because they feature many variations in curva-
ture, what provokes the over-segmentation of the mesh. In large extent, the ups and

downs of the freeform objects led us to come up to the notion of relaxed geometry,
which is at the core of our algorithm. Thus, the region merging aims at further reducing

the over-segmentation of the mesh.

In the region merging step, we decided to use the algorithm proposed by Chen and
Georganas [CG06]. The leading idea of this algorithm is to reduce the number of small

regions (or segments) by merging of these small regions with adjacent larger regions.
The main steps of the merging procedure are presented in Algorithm 2.

Algorithm 2 Region Merging

Input: L: list of segments sorted by increasing area
Input: n : # of segments given by Eq. (3.1) or ground truth
1: first← first segment of L
2: N ← size of L
3: while N > n do
4: neighbor ← find best segment neighboring first
5: mergedsegment← merge first and neighbor segments
6: add mergedsegment to L
7: remove first from L
8: remove neigbor from L
9: first← first segment of L

10: N ← size of L
11: end while

The algorithm requires a preliminary sorting of the list of regions in terms of increasing

areas. Basically, a small region is merged with its adjacent region with which it shares
the longest path of its boundary (cf. line 4 of Algorithm 2). The stopping condition

(cf. line 3 of Algorithm 2) is satisfied when the number of regions of the segmentation
equals the value given by

n =

100∑
i=2

Ai

ai
(3.1)

where ai stands for the relative region area associated to each bin of the histogram, and
Ai denotes the corresponding cumulative region area. Note that the index i of the first
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bin of the histogram (i.e., i = 1 that corresponds to the interval [0, 1[ in the horizontal
axis) is not considered in Eq. (3.1) because it accumulates areas of noisy regions.

Eq. (3.1) provides a number of segments that is similar to the one of the ground truth

defined by the Princeton benchmarking [CGF09]. Nevertheless, as suggested by Chen et
al. [CGF09], we also used the value of n of the ground truth in order to not give advan-

tage to any algorithm involved in the comparison undertaken in Section 3.8. Morever,
only 2 out of 7 benchmark algorithms are able to calculate the number of segments

automatically.

3.8 Experimental Results

3.8.1 Testing Setup

The HPO segmentation algorithm was designed and implemented on an Intel Core Duo
2.4 computer running a Mac OS X operating system, and using the OpenGL User Interface

Library (GLUI), which is a C++ user interface library based on the OpenGL Utility Toolkit
(GLUT).

3.8.2 Benchmarking

We have used the Princeton benchmarking to compare our algorithm to the state-of-

the art of algorithms in mesh segmentation [CGF09]. This benchmarking tool provides
19 categories of models, with each category comprising 20 shapes (i.e. 380 models).

This tool also supplies the ground truth of 4300 human-generated segmentations, being
provided on average 11 human-generated segmentations concerning distinct poses of

each shape.

The Princeton segmentation benchmarking provides quantitative comparisons of human-
generated segmentations (i.e., ground truth) and computer-generated segmentations

produced by the following seven algorithms: k-means [STK02], random walks [LHMR08],
fitting primitives [AFS06], normalized cuts [GF08] randomized cuts [GF08], core extrac-

tion [KLT05] and shape diameter function [SSCO08]. It is worth noting that the bench-
marking software does not include the codes of those seven algorithms, but only seg-

mentations produced by them, which work as input data for the benchmarking software.

Therefore, before running the benchmarking itself for the eight algorithms (including
ours), we added the segmentations generated by our algorithm to the benchmark.

In order to compare the segmentations produced by those eight algorithms (including

our algorithm), the Princeton benchmarking tool uses the following four metrics: Rand
Index (RI), Cut Discrepancy (CD), Consistency Error (CE), and Hamming Distances (HD).

The CD metric focuses on boundary errors, while the other three metrics focus on region
dissimilarities. Figure 3.9 compares our algorithm to the seven segmentation algorithms
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RI CD GCE HD

0.1

0.2

0.3

0.4

Er
ro
r

Benchmark HPO NormCuts RandCuts ShapeDiam CoreExtra RandWalks FitPrim KMeans

Figure 3.9: Comparison of segmentation algorithms with different metrics.

of the benchmark, with reference to the aforementioned four benchmark metrics. Note

that the metrics are consistent with one another, in the sense that segmentation algo-
rithms have the same relative performance with regard to such metrics. A more de-

tailed comparison is presented in Table 3.1, whose results show that on average the

HPO algorithm ranks first for the four benchmarking metrics.

(a) (b) (c)

Figure 3.10: A plier (model 202 of Princeton benchmark) with different levels of noise, as segmented by
the HPO algorithm: (a) original mesh after its filling (top) and merging (bottom) steps; (b) mesh with
noise generated by vertex displacement of 0.005, after its filling (top) and merging (bottom) steps; (c)
mesh with more noise generated by vertex displacement of 0.007, after its filling (top) and merging

(bottom) steps.
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3.8.3 Discussion and Limitations

In a previous version of the HPO algorithm, the smoothing step was not part of the
algorithm. Even so, the HPO algorithm was ranked first for the RI, CD, and HD met-

rics, while it ranked second for the CE metrics. In this latter metric, the RandCuts
algorithm performed better than our algorithm, but not that much. This happens be-

cause CE metrics provide better results when the number of regions is higher than the
human-generated regions of the ground truth, as it is the case of the RandCuts algo-

rithm. In fact, according to Chen et al. [CGF09], the CE metrics have the “problem
that they normally provide better scores when two models have different numbers of

segmentations”. Consequently, we can fit small regions produced by RandCuts in bigger
human-generated regions. By contrast, the HPO algorithm tends to produce the same

number of regions as in the ground truth, so it becomes more difficult to fit a HPO re-
gion in a ground truth region. This drawback of HPO algorithm in respect to CE metrics

was solved using the additional step of mesh smoothing for noisy meshes, as it is the
case of Armadillo’s mesh shown in Figure 3.8. In this way, the HPO algorithm ends up

being more robust in respect to mesh noise.

Although the mesh noise is a problem for many algorithms, it is not less true that the

absence of mesh noise may be also a problem for a proper segmentation of a given
mesh. For example, the HPO algorithm cannot produce an adequate segmentation for

a T-shape provided that its T-shaped back surface (and T-shaped front surface) is made
of coplanar triangles. Consequently, there is no cycle of concave edges separating

the horizontal part from the vertical part of a T-shape. This explains why the regions
concerning the arms of the man placed in the lower right corner in Figure 3.1 do not

end at the clavicles.

A possible solution to this problem would be to add noise to the mesh. For example,
the plier depicted in Figure 3.10(a) essentially is a X-shaped model, which is not very

well segmented because the central part of its X-shaped back surface (and X-shaped
front surface) consists of coplanar triangles. By adding noise to the plier mesh (cf.

Figure 3.10(b)), we end up obtaining a perceptually better segmentation of the plier.
But, as shown in Figure 3.10(c), adding more and more noise to the mesh is not a good

solution, because much likely this procedure undermines the segmentation. Possible,
a better solution would be to add noise to the mesh locally (instead of globally) where

needed, but this remains an open issue for future work because currently there is no

way to know in advance when we need to do so.

Anyway, the important fact to retain is that the HPO segmentations agree largely with
the human-generated regions of the ground truth. A number of HPO segmentations of

the entire set of models (among those 380 models of the Princeton benchmark reposi-
tory) are depicted in Figure 3.1; also the HPO segmentations of the entire family of 20

bears is shown in Figure 3.11. Moreover, the HPO algorithm compares to more recent
algorithms proposed in the literature, namely those due to Au et al. [AZC+12] and Wang
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et al. [WLAT14].

Figure 3.11: Models of the category of bears segmented by the HPO algorithm.

3.9 Conclusions

We have introduced here a new mesh segmentation algorithm, named HPO algorithm,

that outperforms the state-of-the-art algorithms in mesh segmentation in the sense that
it ranks first in Princeton benchmarking for all its four metrics. This means that the HPO

segmentations largely match the human-generated segmentations of the ground truth,
even using only geometric criteria (i.e., the PMT criterion, interior condition, bound-

ary condition, and the door-in-door-out principle) and reasoning, without the need of
computing convex hulls as usual in many convexity-based algorithms.
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At our best knowledge, there is not any other contour-based mesh segmentation algo-
rithm in the literature, other than the HPO algorithm itself. The idea of a contour-based

segmentation taken from image analysis and processing has led us to the concept of re-
laxed convexity. This in some extent avoids the over-segmentation of freeform objects.

For over-segmented or noisy meshes, we have also introduced a cumulative histogram
that is capable of distinguishing a noisy mesh from a mesh without significant noise, as

well as a mesh smoothing filter. Furthermore, in practice, it is enough to use the region
filling step to segment non-freeform objects correctly.

Related Publications

The work described in this chapter originated a publication as indicated below:

Rui S.V. Rodrigues, José F.M. Morgado, and Abel J.P. Gomes. 2015. A

contour-based segmentation algorithm for triangle meshes in 3D space. Com-
puters & Graphics 49 (2015), pp. 24–35
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Chapter 4

A Shape-Preserving Multiresolution Segmentation
Scheme for Triangle Meshes with Creases and
Apices

A plethora of segmentation techniques, as well as a number of multiresolution tech-

niques, for triangle meshes already exist in the literature. However, it is not so common
to find algorithms and data structures that fuse these two concepts, multiresolution and

segmentation, into a symbiotic multi-resolution scheme for both plain and segmented
meshes, in which a plain mesh is understood as a mesh with a single segment. In this

chapter, we introduce such a novel multiresolution segmentation scheme, called ex-
tended Ghost Cell (xGC) scheme. This scheme preserves the shape of the meshes in both

global and local terms, i.e., mesh segments and their boundaries, as well as creases and
apices are preserved, no matter the level of resolution we use for simplification/refine-

ment of the mesh. Moreover, unlike other segmentation schemes, it was made possible
to have adjacent segments with two or more resolution levels of difference. This is par-

ticularly useful in computer animation, mesh compression and transmission, geometric
computing, scientific visualization, and computer graphics.

4.1 Introduction

With the advent of modern sampling tools and systems (e.g., laser scanners), the com-
plexity of 3D models used in geometric computing and computer graphics has increased

at least in an order of magnitude. Also, the triangle mesh is the standard representation
for 3D objects, in largely because it easily converts into primitives of the 3D graphics

pipeline for rendering purposes. Note that triangle meshes also include geometry and
topology information, which —in case they possess a large number of triangles— spend

a lot in computation, storage, transmission, and display tasks. Hence, multi-resolution
techniques have emerged as a solution to represent data with multiple levels of detail

(LOD) [GH97], or levels of resolution, mainly for progressive transmission and visualiza-

tion purposes.

In 3D scenes, it is quite common to apply multiresolution techniques to the visible parts
of meshes (i.e., those seen by the viewer), particularly in the context of compression

and transmission of geometry [KL01] [YKK04] [KCL06] [MGH11] [MGH13]. In fact, it is
also common to use the distance to the viewer as a multiresolution criterion [Hop97]

[ESV99] [Paj01] [CKLL09], in particular in terrain modeling and rendering. Furthermore,
we can say that there are parts of the mesh with more or less detail, which we might
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call segments, not it were the fact that these parts depend on the viewer’s position.
At best, these parts of the mesh that are not perceptually meaningful might be called

charts. That is, mesh segmentation is a particular type of mesh chartification in the
sense that a segment is a chart endowed with perceptual meaningfulness, but a chart

is not necessarily a segment. Therefore, mesh segmentation consists in dividing a mesh
into meaningful regions, also called segments (cf. Figure 4.1).

Figure 4.1: Segmentations of different meshes.

This procedure has been used in a number of tasks that take into account such mean-
ingful components of objects, namely shape processing [KT03] [LKA06], shape match-

ing [FKS+04] [MW99] [ZG06], 3D modeling, collision detection [LWTH01], skeletoniza-
tion, metamorphosis, mesh deformation [HSL+06], animation [VF14], parameterization

[ZMT05], mesh editing [STL06], and texturing of 3D shapes [SWG+03], just to mention
a few [GF08] [CKGK11] [ZSSL15].

Both mesh segmentation and multi-resolution meshes have been widely discussed in the

fields of applied geometry, computer aided design, and computer graphics. But, it is
a bit surprising that a synthesis of these two techniques has never emerged in the lit-

erature in a convincing way, as shown in Table 4.1, where we can observe that only a
few schemes have tried to combine chartification with multiresolution, and much less

segmentation with multiresolution. In fact, mesh segmentation techniques have been
mostly developed for plain meshes, but not for multi-resolution meshes. On the other

hand, as far as we know, there is not any multi-resolution scheme for segmented meshes
that copes with segments having a resolution differential greater or equal to two. The

exception is the multiresolution scheme put forward by González et al. [GGC+09] (see
Table 4.1), but even in this case there is not the desirable symbiosis between segmen-

tation and multiresolution because the boundary preservation of material color-based

facet clusters (or sub-ojects) develops from the idea of descontinuity preservation due
to Hope [Hop99]. Unlike the current state-of-the-art algorithms, we here propose a

multi-resolution scheme for segmented meshes that supports segments with distinct
resolutions.

In addition to the lack of an integrated multiresolution segmentation scheme, another

problem with the segmentation of a multiresolution mesh is that there is no guaran-
tee that the segmentation holds after applying the multi-resolution operators, i.e.,
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refinement and simplification operators. This is illustrated in Figure 4.2, where we can
observe that after simplify twice the mesh, its number of segments does not longer

hold. In short, the ordinary multi-resolution schemes do not preserve the meaningful
shape of a mesh (or object). Besides, the simplification of a mesh tends to eliminate

its concavities, creases, and apices.

Note that, with the exception of a few solutions (see, for example, Hoppe [Hop99]
and Silva and Gomes [SG04] in Table 4.1), there is no guarantee that refinement and

simplification operators preserve eventual creases and apices in the mesh. However,
these solutions generally are averse to segmentation techniques, i.e., they are not

approached in the context of mesh segmentation.

Table 4.1: Schemes that somehow combine segmentation, multiresolution, discontinuities (i.e., apices
and creases), and preservation of the chart/segment/cluster boundaries.

Method Charts Segments Boundary Apices Creases MR PM PM Cl. Segments With Application
Preservation Distinct Resolutions

Garland and Heckbert [GH98] • • • • MRV
Hoppe [Hop99] • • • • • MRV
Kim and Lee [KL01] • • MRV
Zuckerberger et al. [ZTS02] • • MS
Silva and Gomes [SG04] • • • • MRV
Vivodtzev et al. [VBLT05] • • • • MS
Kim et al. [KYL06] • • • • • MS
Kim et al. [KCL06] • • MRC
Cheng et. al. [CLJ07] • • MRC
González et al. [GGC+09](*) • • • • • MRV
Maglo et al. [MGH11] • • MRC
Thomas et al. [TNB11] • • MS
Maglo et al. [MGH13] (**) • • • MRC
xGC • • • • • • • • MRV
* Object defined as set of sub-objects;
** Cluster defined by merged vertices;
MR: Multiresolution; PM: Plain Mesh; PM Cl: Plain Meshes with Clusters;
MRV: Multiresolution to Visualization; MS: Mesh Simplification; MRC: Multiresolution to Compression.

Summing up, preserving the shape of a multiresolution segmented mesh requires the

following:

• Segments and their boundaries. First, a multi-resolution mesh preserves its shape

if their segments are preserved, independently of the resolution of each segment.
That is, the meaningful 2-dimensional shapes (i.e., regions) must be preserved.

• Creases and apices. Second, creases and apices (e.g., edges and vertices of a
cube) must be also preserved. That is, the 1- and 0-dimensional local shapes of a

mesh must be also preserved.

Thus, in this chapter, we engender a solution that solves these issues in a straight-
forward manner. Basically, the solution focuses on the boundaries (i.e., 1-cycles) of

segments, creases, and apices. In the case of segments, there is no need to identify
their boundaries because they are given beforehand by the segmentation itself. In re-

gard to creases and apices, which consist of points of high curvature, they are easily
filtered out using the norm of covariance matrix, as shown by Mangan et al. in [MW99].

The main contributions of this chapter are the following:
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• At our best knowledge, here we propose the first data structure for multi-resolution
segmented meshes in an integrated or symbiotic manner.

• We also introduce a shape-preserving simplification operator for segmentedmeshes.

This requires that the boundaries that separate mesh segments from each other
must hold after all.

• Creases and apices are also preserved after finding them through the covariance

matrix norm in the context of multiresolution segmented meshes.

• Simplification and refinement operators can be applied to the entire mesh or to
any number of segments in an independent manner. This means the segments may

have distinct levels of detail.

So, the remainder of the chapter is organized as follows. Section 4.2 describes the
xGC-based multi-resolution scheme as an extension of the GC-based scheme, as needed

for mesh segmentation. Section 4.3 describes the techniques to preserve shape of seg-
mented meshes and their distinctive geometric features. Section 4.4 describes the

extended versions of mesh collapse and vertex split used in the context of segmented
meshes. Section 4.5 details how to preserve segments of a mesh independently of the

level of detail. Section 4.6 advances with the most important results obtained with
xCG-based multi-resolution scheme for segmented meshes. Section 4.7 concludes the

chapter with some hints for future work.

Figure 4.2: Multi-resolution schemes do not preserve the meaningful shape.

4.2 Multi-resolution Segmented Meshes

4.2.1 Multi-resolution schemes

In the literature, we find mainly two families of multi-resolution schemes for plain
meshes, but there is none for segmented meshes. Anyway, let us briefly review the

former schemes because the one here proposed for segmented meshes can be seen
as an extended multi-resolution scheme. Those two families include plain subdivision

schemes and selective subdivision schemes; note that subdivision is by definition a re-
cursive operation.
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A plain subdivision scheme subdivides all polygons in the same manner for each level
of detail [SZD+00] [DFM02]; for example, by subdividing every single triangle into four

smaller triangles, we end up getting a progressively smoother mesh. In a word, this
scheme operates globally on the mesh in the sense that every single triangle is equally

refined (or simplified) at each level of detail.

In a selective subdivision scheme, not all the triangles are necessarily subject to a
refinement/simplification procedure at each level of detail [Gar99]. This is particularly

useful in a shape-preserving scenario, as it the case of segmented meshes, as well when
we intend to preserve creases and apices in the mesh.

In this chapter, we take advantage of the selective subdivision scheme proposed by
Rodrigues et al. [RMSG07], called GC-based scheme, with GC standing for ‘ghost cell’.

GC-based scheme has been extended in order to cope with mesh segments, resulting in
a new scheme called xGC (‘extended ghost cell’). As shown further ahead, its selective

nature enables us to preserve the shape of a mesh along the segment boundaries, as
well as on creases and apices. The xGC data structure builds on the GC data structure

[RMSG07], which in turn builds on the AIF data structure [SG03], also known as Woo’s
data structure [Woo85], as illustrated in Figure 4.3.

4.2.2 AIF data structure

The AIF (adjacency and incidence framework) data structure is an optimal C9
4 data

structure for plain polygonal meshes [SG03] (cf. Ni e Bloor [NB94] about the optimality
of C9

4 ), which encodes the following topological relationships: V ≺ E e E ≺ F , and

their inverses E ≻ V , and F ≻ E. Therefore, the edge is the central topological
entity of the data structure, as shown in Figure 4.3 (code in black). Here, the incidence

relationship V ≺ E denotes the edges incident at a given vertex, which is represented
by Array<Edge*> aoe; in the class V for vertices, while relationship E ≺ F stands for

the faces incident on a given edge, which is accounted for by Array<Face*> aof; in
the class E for edges. Conversely, the adjacency relationship E ≻ V represents the

vertices bounding a given edge, as encoded by the variables v1 and v2 in the class E
for edges; also, F ≻ E denotes the edges bounding a given face, as encoded by the

variable Array<Edge*> aoe; in the class F for faces. In addition to the classes V for
vertices, E for edges, and F for faces, we also need the central repository for meshes,

which is represented by the class MESH.

4.2.3 GC-based data structure

The GC-based data structure was designed for multi-resolution meshes by Rodrigues
et al. [RMSG07], in conformity with a selective subdivision scheme. In Figure 4.3, GC-

based data structure includes the AIF data structure code in black and the code in brown.
For example, the brown code in the class MESH concern the arrays of vertices, edges,
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!

 ID vid; 
 Point3D *pt; 
 
Array<Edge*> aoe; 
BINTREE<VG>*bog; 
Bool flag; 
Float c; 

V 

 int eid; 
  
Vextex v1,v2; 
Array<Face*> aof; 
STACK<ID,ID> *soii; 
Bool flag; 
Float c; 
 

E 

 int fid; 
 Vector *v; 
 
Array<Edge*> aoe; 
SEGMENT *s; 
 

F 

MESH 

int mid; 
int LOD; 
Array<Vextex*> aov; 
Array<Edge*> aoe; 
Array<Face*> aof; 
Array<Vextex*> aogv; 
Array<Edge*> aoge; 
Array<Face*> aogf; 
Array<Segment*> aos; 
 

  
 
 
int sid; 
Array<Face*> aof; 
 

SEGMENT 

!

int id; 
char LOD; 

ID 

ID *leftAncestorID;  
ID *rightAncestorID;  
Vector3D Hoppe; 
 

VG 

VG *v; 
BINTREE *left; 
BINTREE *right; 
 

BINTREE 

int top; 
Array<ID,ID> aoii; 

STACK 

Figure 4.3: xGC-based data structure.

and faces that became invisible (or ghost) to the viewer as a consequence of simplifica-
tion operations, i.e., edge collapsing; hence, the arrays of ghost simplices for vertices

(Array<Vertex*> aogv), edges (Array<Edge*> aoev), and faces (Array<Vertex*> aogf)
in the class MESH.

The two most important supplementary GC-based data structures that we need in mul-

tiresolution meshes are those associated to vertices and edges, i.e., BINTREE<VG> *bog
and STACK<ID,ID> *soii. Note the presence of Hoppe’s vector in the class VG, as nec-
essary to refine the mesh later on. The bintree associated to each vertex represents its

genealogy, that is, its vertex ancestors. The stack associated to each edge represents
its state at different levels of detail (LODs).

As illustrated in Figure 4.4(b), the vertex bintree grows from the bottom to top during

the process of mesh simplification, i.e., the vertices at the tree leaves (level l0) work
as ancestors for those vertices belonging to higher levels of simplification. In parallel,

as a consequence of edge collapsing inherent to mesh simplification, edges end up
turning into ghost edges as pictured by the stacking of each edge in Figure 4.4(c); for

example, the edge (v1, v2) turns into (v7, v7) at the first level, i.e., it becomes a ghost
edge because it collapses into a single vertex v7.
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Figure 4.4: Illustrating GC-based mesh simplification of a wedge of 6 points via edge collapsing: (a)
across four LODs, l0, . . . , l3; (b) bintrees for vertice: v1 and v2 (level l0) collapse into v7 (level l1), v3 and
v4 (level l0) collapse into v8 (level l1) , v5 and v6 (level l0) collapse into v9 (level l1); v7 and v8 (level l1)
collapse into v10 (level l2); v9 (level l1) and v10 (level l2) collapse into v11 (level l3); (c) stacks for 12
edges from level l0 to level l3, i.e., each edge stack has 4 edges, except the stack of (v5, v6) that

possesses 3 edges.

4.2.4 xGC-based data structure

The xGC-based data structure extends the GC-based structure in order to represent

multi-resolution segmented meshes; hence, the class SEGMENT for segments in Fig-
ure 4.3. The additional blue code in Figure 4.3 was exclusively written for segment

meshes. It is clear that a segment is a connected set of faces, as indicated by the
field Array<Face*> aof; in the class SEGMENT. Conversely, the class F has now the field

SEGMENT *s; that stands the segment of each face. Additionally, the classes V and E in-
clude the field Bool flag; to indicate whether or not a vertex or an edge are amenable

to simplification and refinement operations. In our case, vertices and edges belonging
to the boundaries of segments, as well as those belonging to creases and apices, are not

amenable to such multi-resolution operations. Obviously, the class MESH also includes
an array of segments.
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4.3 Shape-Preserving Multiresolution Meshes

Every multi-resolution scheme is centered at the sort of topological entity (i.e., either

vertex or edge) to be modified [DFM02]. That is, there are vertex-based and edge-
based multi-resolution schemes. Edge-based multi-resolution schemes make usage of

edge collapse and vertex split operations [Hop96] [ESV99] [DFM+05], while vertex-based
multi-resolution schemes use vertex insertion and removal operations [SZL92] [CCMS97])

[RB93] [LE97].

Figure 4.5: A non-segmented mesh with three levels of detail depending on the distance to the viewer.
The smaller mesh is more far away from the viewer and has thus a less number of visible vertices, edges,
and faces. We used the dihedral angle of each edge to decide on its collapse, so that the global shape of

the mesh is preserved.

Our xGC-based data structure sustains on an edge-based multiresolution scheme. In

ordinary edge-based multiresolution schemes (i.e., those for plain meshes), we follow
a criterion (or criteria) to choose the next edge to collapse. Examples of criteria are the

energy minimization [HDD+93] [Hop96], vertex minimization error [GH97], and dihedral
angle [SG04]. If we prevent edges with significant dihedral angles from collapsing, we

end up preserving the global shape of a given mesh, as it is the case of the mesh of the
cow pictured in Figure 4.5.

4.3.1 Preserving mesh segments

However, when using segmented meshes, the dihedral angle criterion does not preserve

the zonal shape of a mesh, i.e., the perceptually significant regions (e.g., legs, hands,
etc.) of a mesh are not preserved. This is so because the dihedral angle of some

edges bounding a given region may be small; consequently, such edges are eligible
for collapsing. In order to keep perceptually significant regions independently of the

level of detail used in multiresolution meshes, boundary edges of regions cannot be
subject to collapsing operations. In other words, we preserve the shape of a segmented
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(a) (b) (c)

Figure 4.6: Preserving the segment boundaries independently of the level of detail (LOD): (a) the most
detailed amphora; (b) the same amphora after simplifiying it in 2 LODs; (c) the same amphora after

simplifiying it in 4 LODs;

mesh by preserving the boundary of each region, and this is done independently of the
levels of detail of adjacent regions. For example, in Figure 4.6, the boundaries (in red)

of the mesh segments remain unchanged, yet the their levels of detail are distinct in
Figure 4.6(a), (b), and (c).

4.3.2 Preserving mesh creases and apices

Mesh creases and apices are edges and vertices, respectively, that are characterized
by high values of curvature [MW99]. This combinatorial curvature at a vertex can be

calculated through the norm of covariance matrix of the normals {Ni} of its incident
faces, with Ni = (xi, yi, zi) e i = 1, . . . , n. For that purpose, we need to determine the

mean vector of normals given by:

N̄ = (x̄, ȳ, z̄), com x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi, e z̄ =
1

n

n∑
i=1

zi. (4.1)

Recall that the general formula to calculate the covariance of two variables u ∈ {x, y, z}
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(a) (b) (c) (d)

Figure 4.7: Preserving segments, creases and apices: (a) Armadillo’s curvature map with high-curvature
vertices and edges in red; (b) Armadillo with 50,542 faces after segmentation; (c) Armadillo with 17,440
faces after its simplification in 2 LODs; (d) Armadillo with 9,512 faces after its simplification in 4 LODs.

and v ∈ {x, y, z} is as follows:

σ2
uv =

1

n

n∑
i=1

(ui − ū)(vi − v̄) (4.2)

so that the covariance matrix is given by:

C =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (4.3)

Consequently, the norm of the covariance matrix, also known as Frobenius matrix, is

the following:

K =

√√√√√ ∑
u∈{x,y,z}
v∈{x,y,z}

σ2
uv (4.4)

which represents the combinatorial curvature of a given vertex surrounded by n faces.

Note that, in conformity with Eq. (4.4), the value ofK is always greater or equal to zero.
In Figure 4.7, the high-curvature vertices (including those that are apices or corners)

in red are those for which K ≥ 0.5; those in blue correspond to vertices belonging
to nearly planar zones (K ≈ 0), while those in cyan correspond to vertices in slightly

non-planar zones K < 0.5. In our xGC-based scheme, high-curvature vertices are not
allowed to change at all. Also, an edge with at least a high-curvature vertex bounding
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it is not allowed to collapse, i.e., they are not eligible for collapsing in the process of
simplifying a mesh. These edges bounded by at least a high-curvature vertex are called

high-curvature edges.

4.4 Multiresolution Operations

In the presence of segmented meshes and meshes with creases and apices, the mul-
tiresolution operators must necessarily work in a different manner.

4.4.1 Edge collapse for segmented meshes ⊙

Before proceeding any further, let us recall that the primary simplification rule holds:
an edge cannot be collapsed more than once at the same level of detail. For segmented

meshes, the secondary simplification rule is as follows: no edge bounding a mesh seg-
ment is eligible to collapse. However, these two rules are not enough to preserve the

boundaries of mesh segments, i.e., their shapes, because the vertices bounding edges of
segment boundaries also bound edges that are eligible for collapsing. These collapse-

eligible edges incident at vertices belonging to the boundaries of segments are here
called wing edges. Summing up, we have three types of segmentation edges: bound-

ary edges (with disabled collapsing), interior edges (with enabled collapsing), and wing
edges (with enabled, but different, collapsing). The two sorts of edge collapse are

shown in Figure 4.8: interior edge collapse and wing edge collapse.
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Figure 4.8: Two types of edge collapse (and vertex split).

The interior edge collapse (or type-1 edge collapse) is just the standard edge collapse

proposed by Hoppe et al. [HDD+93], with the restriction that it solely applies to interior
edges of each segment. This topological operator is illustrated in Figure 4.8(a), where

the magenta edge bounded by two vertices, vi and vj, is replaced by a single vertex vk;
as a consequence, the two triangles incident on the collapsing edge are also discarded

during this operation. In xGC-based multi-resolution scheme, the edge collapse is ac-
complished according to Hoppe [Hop98], i.e., new vertex vk is given by the midpoint of
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the edge (vi, vj), so that the Hoppe vector vH = vi− vk allows us to recover the original
edge in refinement operations.

The wing edge collapse (or type-2 edge collapse) is illustrated in Figure 4.8(b) in ma-

genta. Note that one of the vertices bounding the collapsing edge belongs to the bound-
ary of the mesh segment. In this case, the edge collapses into such vertex belonging to

the segment boundary, not into its midpoint; hence, and assuming that vj is the vertex
in the segment boundary, the new vertex is vk = vj, so that the Hoppe vector is now

vH = vi − vk.

4.4.2 Vertex split for segmented meshes ⊘

As illustrated in Figure 4.8, we also have two sorts of vertex split, interior vertex split

(or type-1 vertex split) and wing vertex split (or type-2 vertex split), which are the
inverse operations to the interior edge collapse and wing edge collapse, respectively.

Each vertex split operation divides the vertex into two new vertices. This means that a
new edge and two new triangles end up by making their appearance as a result of either

of those two refinement operations.

4.5 Segment-Preserving Multiresolution

As for plain multi-resolution meshes, simplification and refinement operations may be

applied to a segmented mesh as a whole. In addition, such multiresolution operations
can be applied to mesh segments in a separate manner, so that the segments may

end up possessing distinct levels of detail. In fact, with the xGC-based scheme, each
mesh segment can be simplified and refined independently of any other segment of the

mesh. Clearly, this is a contribution in comparison to the scheme proposed by Maglo et.
al. [MGH13], which only admits a difference of one level of detail between adjacent

segments in the mesh.

4.5.1 Segment-Preserving Simplification

The simplification algorithm is based on the edge collapse operators described above.
Hereupon, we need to iterate on the edges belonging to the array (aov) of visible edges,

as defined in the class MESH, in order to proceed to the collapse of each eligible edge.
Note that a visible edge is an edge that has not been collapsed yet. The eligibility of a

visible edge for collapsing is determined according to the following criteria:

• It cannot be a wing edge of a collapsed edge at the current level of detail. This
ensures that the mesh is uniformly simplified (cf. [RMSG07] for further details).
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• It cannot be an edge belonging to the boundary of a mesh segment. This ensures
the mesh segmentation holds.

• It cannot be a high-curvature edge belonging to a crease or being delimited by an

apex. This ensures that the mesh holds its creased and pointed shape.

In general, given an eligible edge (vi, vj) for collapsing, we proceed as follows:

1. Determine the sort of edge collapse for the edge (vi, vj).

2. Determine the new vertex vk that results from collapsing the edge (vi, vj).

3. Calculate the Hoppe vector v⃗H.

4. Set the edge collapse type for vk.

5. Set v⃗H as the Hope vector for vk.

6. Create the genealogical bintree for vk with vi and vj as its ancestors.

7. Update de array of visible mesh edges.

8. Update de array of ghost mesh edges.

9. Update the set of edges of vk.

4.5.2 Segment-Preserving Refinement

This refinement operation extends the one described by Rodrigues et al. [RMSG07], in

the sense that we have now to take into account two sorts of edge collapse, and not a
single one, before splitting a vertex that resulted from a edge collapse in the past. That

is, before splitting a vertex vk into a former edge, we need to know which sort of edge
collapse has originated it. Recall that all the data (i.e., Hoppe vector and sort of edge

collapse) necessary to restore the mesh to a higher level of detail is all maintained in
the genealogical tree of each vertex, as well as in the stack of edges associated to each

edge. The edge restoration using the vertex split operation is accomplished as follows:

1. Type-1 vertex split. This is the inverse of type-1 collapse of the edge (vi, vj). The
restoration of the edge (vi, vj) from the vertex vk placed at the midpoint of (vi, vj)

is carried out using the Hoppe vector (hold along vk) as follows: vi = vk − v⃗H e
vj = vk + v⃗H.

2. Type-2 vertex split. This is the inverse of type-2 collapse of the edge (vi, vj). In

this case, the restoration of (vi, vj) is done from vk = vi also with the help of the
Hoppe vector as follows: vi = vk e vj = vk + v⃗H.
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4.6 Results

The xGC-based multi-resolution scheme was designed and implemented on an Intel Core

Duo 2.4 computer running a Mac OS X operating system. We also took advantage of

the OpenGL User Interface Library (GLUI), which is a C++ user interface library based
on the OpenGL Utility Toolkit (GLUT), to build up a graphics interface to render and

interactively handle meshes.

Let us mention that we used the mesh models of those 19 families made available by the
Princeton Benchmarking [CGF09], but the mesh segmentation of each mesh was gener-

ated by the HPO algorithm due to Rodrigues et al. [RMG15]. Testing took place con-
sidering the following guidelines: shape preservation across uniformly detailed meshes,

shape preservation across non-uniformly detailed meshes, simplification rate, memory
space occupancy, and time performance.

4.6.1 Preserving shape across uniform levels of detail

As shown in Figs. 4.9 and 4.10, by simplifying a mesh in a uniform manner across succes-
sive levels of detail the mesh shape is preserved, as well its segmentation and geometric

features (i.e., creases and apices), and this happens in spite of the significant reduction
of triangles. This is so because, as mentioned above, the segment boundaries and those

geometric features remain geometrically unchanged.

4.6.2 Preserving shape across non-uniform levels of detail

Sometimes, we need to simplify the entire mesh with the same level of detail, some-
times it is required to have segments with distinct levels of detail. In the latter case, we

need to preserve the boundaries of segments. Unlike other multi-resolution schemes
for meshes, the xGC-based scheme is capable of dealing with segments with rather dis-

tinct levels of detail. For example, the segmented meshes shown in Figure 4.11 exhibit

different levels of detail from a segment to another. Note that segment boundaries,
creases, and apices (i.e., corners) are preserved independently of the detail of detail

used for each segment. As a consequence, the mesh shape is also preserved.

4.6.3 Simplification rate

The simplification rate was evaluated for objects of the 19 classes of the Princeton
benchmark, as indicated in Figure 4.12(a). As shown in Figure 4.12(a), the simplification

rate (i.e., number of faces) inversely varies with the level of detail. This rate is about
50% for the first level of detail, and from there on it monotonically decreases from

one level of detail to another. Nevertheless, the simplification stops after five to ten
simplification steps, and this depends on the number of faces of the mesh and its shape.
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(a) (b)

(c) (d)

Figure 4.9: A human mesh simplified in a uniform manner after: (a) 0 simplifications (21994 faces,
100%); (b) 2 simplifications (7364 faces, 33%); (c) 4 simplifications (4192 faces, 19%); (d) 6 simplifications

(3624 faces, 16%).

It is clear the simplified mesh comes to a point at which it cannot be further simplified
due to the geometric criteria imposed to the simplification algorithm. Moreover, we

observed that the simplification rate is higher for the meshes with larger segments and
small variations of curvature.

4.6.4 Memory space occupancy

The memory space occupancy was also measured for objects of the 19 Princeton bench-
mark classes of objects, as shown in Figure 4.12(b). For that purpose, we measured the

memory space occupied by each mesh with 0 to 7 levels of detail, i.e., considering up
7 levels of simplification. As illustrated in Figure 4.12(b), we noted that the average
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(a) (b) (c) (d)

Figure 4.10: A chair mesh simplified in a uniform manner after: (a) 0 simplifications (16998 faces,
100%); (b) 2 simplifications (5846 faces, 34%); (c) 4 simplifications (3674 faces, 22%); (d) 6 simplifications

(3238 faces, 19%).

memory utilized by xGC-based mesh across those 7 levels of detail slightly increases

from level to level, attaining a maximum of 133% at the seventh level. This increase
in occupied memory space is due to the supplementary vertex bintree and the stack of

edges of the xGC data structure in Figure 4.3. Nevertheless, this xGC memory space
occupancy is much less that those more than 300% of memory space occupied by the 7

traditional LOD meshes of the same mesh.

In more formal terms, and taking the Euler formula for 2-dimensional triangular meshes

into consideration, the xGC data structure holds v = n vertices, e = 3n edges, and
f = 2n faces (triangles). If we assume that 1 float and 1 pointer are 4 bytes long each,

1 integer is 2 bytes long, and a char is 1 byte long, we come to the conclusion that
the overall memory space occupancy is (88+2k)f, where k denotes the vertex degree,

i.e. the number of edges incident at each vertex. This memory space occupancy is the
result from summing up the following contributions:

• Vertices. The storage cost for each vertex amounts to 4 bytes for its identifier, 1

byte for the level of detail, 3×4 bytes for its three float coordinates, 4×k bytes for
its k incident edges, 4 bytes for a pointer to the array of incident edges, 4 bytes for

its floating-point combinatorial curvature, 1 char for its type of concavity, and 4

bytes for a pointer to its genealogical tree (or bintree), i.e. (30+4k)n = (15+2k)f

bytes for all vertices.

• Edges. The storage cost for each edge amounts to 4 bytes for its identifier, 1 byte

for the level of detail, 2×4 bytes for pointers to its bounding vertices, 2×4 bytes
for its incident faces, 4 bytes for its floating-point combinatorial curvature, 1 char

for its type of concavity, and 4 bytes for a pointer to its edge stack, i.e. 30e = 45f

bytes for all edges.
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Figure 4.11: Three meshes simplified in a non-uniform manner: (a) an airplane with segments with 0, 2,
3 and 4 levels of detail; (b) a bust with segments with 0, 2, and 4 levels of detail; (c) a box with segments

with 0, 1, 2, 3, 4 and 5 levels of detail.
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Figure 4.12: Results of Simplification and memory of our algorithm.

• Faces. The storage cost for each face amounts to 4 bytes for its cluster identifier,
3 × 4 bytes for its 3 adjacent edges, and 3 × 4 bytes for the three floating-point

components of its normal vector, i.e. 28f bytes for all triangles of the mesh.

However, if the mesh has been simplified, each node of the vertex bintree costs more 24

bytes, but it should be said that each vertex removed from the array of vertices during a
simpliifcation step originates only one bintree node. But the cost of adding information

to the edge stack amounts to either 11 or 6 bytes for each new stack element, depending
on whether the edge is collapsed or not.
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Figure 4.13: Time performance: (a) simplification algorithm; (b) refinement algorithm.
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4.6.5 Time performance

As shown in Figure 4.13(a), the time performance of the xGC-based simplification algo-
rithm up to 6 simplification levels is quite reasonable even for models possessing more

50,000 triangles; for example, the Armadillo mesh has 50,542 triangles and takes about
0.3 seconds to simplify from the level-0 mesh to level-1 mesh. Conversely, and as illus-

trated in Figure 4.13(b), the time performance of the xGC-based refinement algorithm
is obviously faster than its simplification counterpart because it essentially involves

‘undoing’ operations, which restores the geometry of the previous level of detail.

4.7 Conclusions

We have introduced an integrated multiresolution scheme for segmented meshes that

preserves their shape. That is, it preserves the boundaries of mesh segments —and,
in turn, the segments themselves—, as well as creases and apices (or corners). The

segmentation of a mesh allows for applying simplification and refinement operations
to the mesh as a whole or, alternatively, to a segment in a separate manner. Also,

segments may possess distinct levels of detail. Summing up, the mesh may possess
non-uniform multi-resolution across the segments.

Related Publications

The work described in this chapter originated a publications about segmented meshes
and a Multi-resolution scheme, which is to be submitted for publication as indicated

below:

Rui S.V. Rodrigues, José F.M. Morgado, and Abel J.P. Gomes. 2016. A Shape-

Preserving Multiresolution Segmentation Scheme for Triangle Meshes with

Creases and Apices. Computers & Graphics (submitted), 2016.
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Chapter 5

Conclusions

This thesis sustains on the research work carried out in mesh segmentation and multires-
olution meshes, which are two important topics in geometric computing and computer

graphics. Briefly speaking, we can say that its main contribution lies in the human
perception-oriented mesh segmentation (also called meaningful or perceptive segmen-

tation) technique advanced in the third chapter. But, the thesis also puts forward a

solution that combines mesh segmentation and multiresolution meshes in the fourth
chapter, which preserves the shape of mesh segments, creases, and apices, i.e., the

shape of the a given mesh is preserved in both global and local terms.

5.1 Context of the Research Work

It is important to recall that the work developed in this thesis started after getting the
understanding that the mesh segmentation algorithms and techniques lacked general-

ity, automation, and perceptual proximity. In fact, we noted that most segmentation
algorithms were limited to specific categories of geometric objects; for example, some

techniques were more adequate for CAD (computer aided design) mechanical parts,
which are usually defined by quadric algebraic geometry, while others were designed

for specific families of freeform objects like animals and handicraft. Only recently,
we noted a trend to comply with the requirement of generality in mesh segmentation

algorithms.

In regard to fully automatic mesh segmentation, we also noted that most algorithms
needed some sort of user assistance to set the final number of segments of the mesh.

Therefore, we easily concluded that the mesh segmentation techniques in computer

graphics were fairly behind the homologous image segmentation techniques in image
analysis and processing. Hence, we had investigated automated ways of determining

the number of segments beforehand, i.e., before terminating the mesh segmentation
procedure.

Another important issue of our work was related with the perceptual proximity of the

mesh segmentation. In other words, we were interested in obtaining mesh segmen-
tations close to human-perceptually segmentations as much as possible. Hence, we

had used the Princeton benchmark for comparison sake, because it includes human-
perceptually segmentations as the ground truth.
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5.2 Research Questions, Results, and Contributions

At this point, we are able to respond to the research questions put forward in Chapter 1:

Is it possible to segment a given object into meaningful parts as they are perceived
by the human being?

In Chapter 3, we have introduced the concept of relaxed convexity in order to suc-

ceed in obtaining meaningful or perceptive mesh segmentations. The perceptive mesh
segmentation is carried out from the region contours or boundaries to their interiors

according to the door-in-door-out principle. Besides, perceptive mesh segmentation
follows Hoffman’s principle so that relaxedly convex regions are built before relaxedly

concave regions because humans normally perceives a given object as a set of its convex
regions separated from each other each other along concave boundaries.

Is it possible to segment both freeform and non-freeform objects into meaningful
parts through a single segmentation algorithm?

Likewise, we have also shown that it is possible to design and implement mesh seg-

mentation algorithms since one uses human perception principles. The difficulty was
to translate human perception principles into mathematical abstractions and rules. We

succeeded at this point because we were able to come up with the concept of relaxed
convexity.

Is it possible to design and implement an algorithm to automatically extract segments
without requiring user interaction?

This is feasible provided that we succeed in finding the number of segments beforehand.

Despite the difficulties in computing such number of segments in advance, we did that
using histogram-based techniques inspired in image analysis and processing.

Is it possible to use mesh segmentation within a multiresolution scheme that pre-
serves the segments?

Preserving mesh segments means that such segments must be preserved no matter the

level of detail of the mesh as a whole, as well as the level of detail of its segments

separately. We have thus demonstrated that it is possible to integrate the concepts of
segmentation and multiresolution seamlessly.

Summing up, and recalling the thesis statement:

Is it feasible to segment different categories of meshes in a single, auto-

mated manner as the humans perceptually do, regardless of their level of

detail?

we can say the research work described in the present document responds positively to

and validates the thesis statement above, in respect to the three open issues mentioned
in Chapter 1, namely: perpetual proximity, generality, and automation.
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5.3 Research Limitations and Future Work

During the research work carried out in the doctoral programme, we have identified a
number of research limitations that open a window for future work, namely:

• Incomplete contours. Incomplete region contours or boundaries may occur in

static and dynamic objects. For example, a plier has a X-shape but may not be
divided into four parts because its front and posterior surfaces are planar, i.e.,

it is not possible to find four complete contours bounding four stem regions. The
same applies to L-shapes because there is no complete contour separating the ver-

tical stem from horizontal stem. This problem also occurs in presence of dynamic
objects or objects with a number of poses. How to delineate the fingers of an

hand when they are leaning against each other?

• Contour smoothing. There is still room for improvement the perception of our
segmentation algorithm in case we succeed in smoothing the jagged region con-

tours. This would allow us to improve the benchmark results in relation to the CD
metric.

• Number of segments. We succeeded in calculating the number of segments in an
automated manner. However, that required a preliminary mesh segmentation. A

possible challenge for the future is to find such number before making any seg-
mentation. In particular, it is certainly necessary to further investigate how this

problem has been overcome in the area of image analysis and processing, apart
the histogram-based techniques.

• Small features. Small features tend to be eliminated because the algorithm pri-

oritizes large regions in detriment of small regions. In fact, small regions usually
merge with large regions. This means that small features as those concerning the

human eyes end up being absorbed by others neighboring them.

• Triangle regularity. After successive mesh simplifications in the multiresolution

scheme, triangles tend to get less and less regular. An idea for future work is to
introduce a complementary criterion in the multiresolution operators in order to

mitigate this issue.

As a final note, let us to say that remains the general impression for future work that

a more integrated research work in visual computing, which combines image analysis
and synthesis, i.e., image analysis and computer graphics, may originate a catalytic

chunk of new knowledge in mesh segmentation and multiresolution in 3D, particularly
in human-perceptually segmentations.
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