369 research outputs found

    Feature extraction for license plate location based on L0-norm smoothing

    Get PDF
    We propose a simple feature extraction algorithm for license plate location, which can reduce the occurrence of pseudo-licenses significantly. Our scheme arises from a novel L-0 -norm image smoothing, in which the multiple local textures in the complex backgrounds can be suppressed remarkably without changing the structures and edges of the license objects. Due to this "edgeaware" property, we then combine a feature filtering with an efficient binarized image, a simple multi-scale image analysis algorithm, to remove the potential false license plates. Finally, we extract license plates with a projection method. Experimental results show the proposed method provides a flexible and powerful way to the license plate location in complex backgrounds

    Towards Developing Computer Vision Algorithms and Architectures for Real-world Applications

    Get PDF
    abstract: Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading. To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time. Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists. Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Applied Mathematics and Computational Physics

    Get PDF
    As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Image analysis of circulating fluidized bed hydrodynamics

    Get PDF
    The goal of this thesis is to design methods to estimate the local concentration and velocity of particles observed in digital videos of the inner wall of a circulating fluidized bed (CFB) riser. Understanding the dynamics of these rapidly moving particles will allow researchers to design cleaner and more efficient CFB facilities. However, the seemingly random motion exhibited by the particles in three dimensions, coupled with the varying image quality, make it difficult to extract the required information from the images. Given a video sequence, a method for detecting particles and tracking their spatial location is developed. By exploiting the presence of specular reflections, individual particles are first identified along the focal plane by an image filter specifically designed for this purpose. Once the particle locations are known, a local optical flow model is used to approximate the motion field across two images in order to track particles from one frame of the sequence to another. An evaluation of the proposed method indicates its potential to estimate particle count, location, concentration and velocity in an efficient and reliable manner. The method is fully automated and is expected to be an important analysis tool for researchers with the National Energy Technology Laboratory, part of the national laboratory system of the Department of Energy

    esys User's guide: Solving partial differential equations with Escript and Finley. Release 3.0 (r2601)

    Get PDF
    esys.escript is a python-based environment for implementing mathematical models, in particular those based on coupled, non-linear, time-dependent partial differential equations. It consists of four major components: • esys.escript core library • finite element solver esys.finley (which uses fast vendor-supplied solvers or our paso linear solver library) • the meshing interface esys.pycad • a model library. The current version supports parallelization through both MPI for distributed memory and OpenMP for distributed shared memory. The esys.pyvisi module from previous releases has been deprecated. For more info on this and other changes from previous releases see Appendix A.2. If you use this software in your research, then we would appreciate (but do not require) a citation. Some relevant references can be found in Appendix A.3

    esys-Escript User’s Guide: Solving Partial Differential Equations with Escript and Finley Release - 3.2.1 (r3613)

    Get PDF
    esys.escript is a python-based environment for implementing mathematical models, in particular those based on coupled, non-linear, time-dependent partial differential equations. It consists of four major components • esys.escript core library • finite element solver esys.finley (which uses fast vendor-supplied solvers or our paso linear solver library) • the meshing interface esys.pycad • a model library. The current version supports parallelization through both MPI for distributed memory and OpenMP for distributed shared memory. Please see Chapter 2 for changes to the way to launch esys.escript scripts. For more info on this and other changes from previous releases see Appendix B. If you use this software in your research, then we would appreciate (but do not require) a citation. Some relevant references can be found in Appendix D
    • …
    corecore