872 research outputs found

    Modulation recognition of low-SNR UAV radar signals based on bispectral slices and GA-BP neural network

    Get PDF
    In this paper, we address the challenge of low recognition rates in existing methods for radar signals from unmanned aerial vehicles (UAV) with low signal-to-noise ratios (SNRs). To overcome this challenge, we propose the utilization of the bispectral slice approach for accurate recognition of complex UAV radar signals. Our approach involves extracting the bispectral diagonal slice and the maximum bispectral amplitude horizontal slice from the bispectrum amplitude spectrum of the received UAV radar signal. These slices serve as the basis for subsequent identification by calculating characteristic parameters such as convexity, box dimension, and sparseness. To accomplish the recognition task, we employ a GA-BP neural network. The significant variations observed in the bispectral slices of different signals, along with their robustness against Gaussian noise, contribute to the high separability and stability of the extracted bispectral convexity, bispectral box dimension, and bispectral sparseness. Through simulations involving five radar signals, our proposed method demonstrates superior performance. Remarkably, even under challenging conditions with an SNR as low as −3 dB, the recognition accuracy for the five different radar signals exceeds 90%. Our research aims to enhance the understanding and application of modulation recognition techniques for UAV radar signals, particularly in scenarios with low SNRs

    Sensors for Vital Signs Monitoring

    Get PDF
    Sensor technology for monitoring vital signs is an important topic for various service applications, such as entertainment and personalization platforms and Internet of Things (IoT) systems, as well as traditional medical purposes, such as disease indication judgments and predictions. Vital signs for monitoring include respiration and heart rates, body temperature, blood pressure, oxygen saturation, electrocardiogram, blood glucose concentration, brain waves, etc. Gait and walking length can also be regarded as vital signs because they can indirectly indicate human activity and status. Sensing technologies include contact sensors such as electrocardiogram (ECG), electroencephalogram (EEG), photoplethysmogram (PPG), non-contact sensors such as ballistocardiography (BCG), and invasive/non-invasive sensors for diagnoses of variations in blood characteristics or body fluids. Radar, vision, and infrared sensors can also be useful technologies for detecting vital signs from the movement of humans or organs. Signal processing, extraction, and analysis techniques are important in industrial applications along with hardware implementation techniques. Battery management and wireless power transmission technologies, the design and optimization of low-power circuits, and systems for continuous monitoring and data collection/transmission should also be considered with sensor technologies. In addition, machine-learning-based diagnostic technology can be used for extracting meaningful information from continuous monitoring data

    Automatic modulation classification of communication signals

    Get PDF
    The automatic modulation recognition (AMR) plays an important role in various civilian and military applications. Most of the existing AMR algorithms assume that the input signal is only of analog modulation or is only of digital modulation. In blind environments, however, it is impossible to know in advance if the received communication signal is analogue modulated or digitally modulated. Furthermore, it is noted that the applications of the currently existing AMR algorithms designed for handling both analog and digital communication signals are rather restricted in practice. Motivated by this, an AMR algorithm that is able to discriminate between analog communication signals and digital communication signals is developed in this dissertation. The proposed algorithm is able to recognize the concrete modulation type if the input is an analog communication signal and to estimate the number of modulation levels and the frequency deviation if the input is an exponentially modulated digital communication signal. For linearly modulated digital communication signals, the proposed classifier will classify them into one of several nonoverlapping sets of modulation types. In addition, in M-ary FSK (MFSK) signal classification, two classifiers have also been developed. These two classifiers are also capable of providing good estimate of the frequency deviation of a received MFSK signal. For further classification of linearly modulated digital communication signals, it is often necessary to blindly equalize the received signal before performing modulation recognition. This doing generally requires knowing the carrier frequency and symbol rate of the input signal. For this purpose, a blind carrier frequency estimation algorithm and a blind symbol rate estimation algorithm have been developed. The carrier frequency estimator is based on the phases of the autocorrelation functions of the received signal. Unlike the cyclic correlation based estimators, it does not require the transmitted symbols being non-circularly distributed. The symbol rate estimator is based on digital communication signals\u27 cyclostationarity related to the symbol rate. In order to adapt to the unknown symbol rate as well as the unknown excess bandwidth, the received signal is first filtered by using a bank of filters. Symbol rate candidates and their associated confident measurements are extracted from the fourth order cyclic moments of the filtered outputs, and the final estimate of symbol rate is made based on weighted majority voting. A thorough evaluation of some well-known feature based AMR algorithms is also presented in this dissertation

    Modulation classification of digital communication signals

    Get PDF
    Modulation classification of digital communications signals plays an important role in both military and civilian sectors. It has the potential of replacing several receivers with one universal receiver. An automatic modulation classifier can be defined as a system that automatically identifies the modulation type of the received signal given that the signal exists and its parameters lie in a known range. This thesis addresses the need for a universal modulation classifier capable of classifying a comprehensive list of digital modulation schemes. Two classification approaches are presented: a decision-theoretic (DT) approach and a neural network (NN) approach. First classifiers are introduced that can classify ASK, PSK, and FSK signals. A decision tree is designed for the DT approach and a NN structure is formulated und trained to classify these signals. Both classifiers use the same key features derived from the intercepted signal. These features are based on the instantaneous amplitude, instantaneous phase, and instantaneous frequency of the intercepted signal, and the cumulates of its complex envelope. Threshold values for the DT approach are found from the minimum total error probabilities of the extracted key features at SNR of 20 to -5dB. The NN parameters are found by training the networks on the same data. The DT and NN classifiers are expanded to include CPM signals. Signals within the CPM class are also added to the classifiers and a separate decision tree and new NN structure are found far these signals. New key features to classify these signals are also introduced. The classifiers are then expanded further to include multiple access signals, followed by QAM, PSK8 and FSK8 signals. New features arc found to classify these signals. The final decision tree is able to accommodate a total of fifteen different modulation types. The NN structure is designed in a hierarchical fashion to optimise the classification performance of these fifteen digital modulation schemes. Both DT and NN classifiers are able to classify signals with more than 90% accuracy in the presence of additive white Gaussian within SNR ranging from 20 to 5dB. However, the performance of the NN classifier appears to be more robust as it degrades gradually at the SNRs of 0 and -5dB. At -5dB, the NN has an overall accuracy of 73.58%, whereas the DT classifier achieves only 47.3% accuracy. The overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB, is 90.7% compared to 84.56% for the DT classifier. Finally, the performances of these classifiers are tested in the presence of Rayleigh fading. The DT and NN classifier structures are modified to accommodate fading and again, new key features are introduced to accomplish this. With the modifications, the overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB and 120Hz Doppler shift, is 87.34% compared to 80.52% for the DT classifier

    Modeling and performance analysis of a UAV-based sensor network for improved ATR

    Get PDF
    Automatic Target Recognition (ATR) is computer processing of images or signals acquired by sensors with the purpose to identify objects of interest (targets). This technology is a critical element for surveillance missions. Over the past several years there has been an increasing trend towards fielding swarms of unattended aerial vehicles (UAVs) operating as sensor networks in the air. This trend offers opportunities of integration ATR systems with a UAV-based sensor network to improve the recognition performance. This dissertation addresses some of design issues of ATR systems, explores recognition capabilities of sensor networks in the presence of various distortions and analyzes the limiting recognition performance of sensor networks.;We assume that each UAV is equipped with an optical camera. A model based recognition method for single and multiple frames is introduced. A complete ATR system, including detection, segmentation, recognition and clutter rejection, is designed and tested using synthetic and realistic images. The effects of environmental conditions on target recognition are also investigated.;To analyze and predict ATR performance of a recognition sensor network, a general methodology from information theory view point is used. Given the encoding method, the recognition system is analyzed using a recognition channel. The concepts of recognition capacity, error exponents and probability of outage are defined and derived for a PCA-based ATR system. Both the case of a single encoded image and the case of encoded correlated multiple frames are analyzed. Numerical evaluations are performed. Finally we discuss the joint recognition and communication problems. Three scenarios of a two node recognition sensor network are analyzed. The communication and recognition performances for each scenario are evaluated numerically

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest
    • …
    corecore