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ABSTRACT

MODELING AND PERFORMANCE ANALYSIS OF A UAV-BASED

SENSOR NETWORK FOR IMPROVED ATR

Xiaohan Chen

Automatic Target Recognition (ATR) is computer processing of images or signals

acquired by sensors with the purpose to identify objects of interest (targets). This tech-

nology is a critical element for surveillance missions. Over the past several years there has

been an increasing trend towards fielding swarms of unattended aerial vehicles (UAVs)

operating as sensor networks in the air. This trend offers opportunities of integration

ATR systems with a UAV-based sensor network to improve the recognition performance.

This dissertation addresses some of design issues of ATR systems, explores recognition

capabilities of sensor networks in the presence of various distortions and analyzes the

limiting recognition performance of sensor networks.

We assume that each UAV is equipped with an optical camera. A model based

recognition method for single and multiple frames is introduced. A complete ATR sys-

tem, including detection, segmentation, recognition and clutter rejection, is designed and

tested using synthetic and realistic images. The effects of environmental conditions on

target recognition are also investigated.

To analyze and predict ATR performance of a recognition sensor network, a general

methodology from information theory view point is used. Given the encoding method, the

recognition system is analyzed using a recognition channel. The concepts of recognition

capacity, error exponents and probability of outage are defined and derived for a PCA-

based ATR system. Both the case of a single encoded image and the case of encoded

correlated multiple frames are analyzed. Numerical evaluations are performed. Finally

we discuss the joint recognition and communication problems. Three scenarios of a

two node recognition sensor network are analyzed. The communication and recognition

performances for each scenario are evaluated numerically.
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CHAPTER 1

OVERVIEW AND OBJECTIVES

Automated Target Recognition (ATR) is a very specific field of study within the

general scope of image processing and image understanding. This technology is a critical

element of surveillance missions. A variety of sensors and techniques have been developed

to approach the problem. Recent researches in ATR suggest that two or more sensors may

significantly improve the overall system performance. Over the past several years, swarms

of Unmanned Aerial Vehicles (UAVs) equipped with cameras operated as large-scale

sensor networks in the air. This provides opportunities of integration ATR systems with

UAV-based sensor networks to enhance and augment the surveillance and reconnaissance

abilities.

In the past, the extensive research related to UAV networks has been mostly focused

on designing and evaluating communication protocols, describing strategies to control

UAVs, evaluating collision detection capabilities, etc. With respect to ATR protocols,

a vast literature describing various strategies and approaches is available. The designed

algorithms range from purely deterministic structural approaches to complex neural net-

works recognizing 3D objects or complex stochastic models. In spite of this vast research

related to UAVs and their control and a large number of ATR protocols with claimed ex-

clusive recognition performance available, the problem of designing recognition protocols

utilizing optical imagery acquired by a sensor network (UAV-based recognition network)

and the problem of quantifying limits and limitations of recognition sensor networks

in ideal environment and highly complex practical environment have not been solved.

Without understanding limits and capabilities of using sensor network in unconstrained

practical environment, reliable identification of objects will not be possible. Without

understanding how the environment influence the performance of recognition network,

the optimized designs compensating distortions in images due to the environment will

also not be possible.

This thesis approaches these problems and proposes a number of solutions to them.

The main objective of this thesis is to design a complete object recognition system that

operates on long-range optical imagery, explore the capabilities of the designed system
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to recognize objects under a variety of environmental and camera effects, which are

typical features in practical situations, and evaluate large scale recognition capabilities

of designed system. The remainder of the chapter is organized as follows. The structure

of ATR systems is introduced in Section 1.1. The challenges to achieve high performance

are also discussed in this section. In Section 1.2, we briefly describe a swarm of UAVs.

Finally, the organization of the thesis and the main contribution are summarized in

Section 1.3 and Section 1.4.

1.1 Automatic Target Recognition

Automatic Target Recognition (ATR) is the computer processing of images or signals

(data), acquired by optical, radar, infrared, or other imaging sensors with the purpose

to identify objects of interest (targets) based on information contained in the images

or signals [2]. Human operators cannot reliably identify targets on a continuous basis

due to the need for rapid reaction times, difficulty in interpreting observations from all

sensors, and general cognitive overload [41]. These limits are the origin of the concept

of Automatic (or aided) Target Recognition. The application of ATR technology is a

critical element of the future success of Intelligence, Surveillance and Reconnaissance

(ISR) missions.

Fig. 1.1 shows a block-diagram of a traditional ATR system. An ATR system can be

decomposed into three major subsystems. The first subsystem performs preprocessing of

acquired data. Preprocessing may involve denoising, contrast adjustment, normalization,

etc. The second subsystem is to obtain a set of subregions that indicate what pixels in

the original image are likely to belong to targets. By locating the subregions, we can

filter out a large amount of background clutter from the terrain scene, making object

recognition feasible for large data sets. At the last step, the preprocessed signals in each

subregion are utilized to compute the values of a set of attributes or feature vectors. And

the classifier takes the feature vectors and returns the target’s identity by comparing

query data against a target library. Other information such as a priori probability of

occurrence and position coordinates from Global Positioning System (GPS) can also be

incorporated with the information of targets to improve recognition performance. Some

systems may have additional preprocessing blocks such as a segmentation subsystem

that can be placed between the detection and classification blocks in order to extract the

targets from the background as accurately as possible and thus reduce redundancy in the

data.
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Figure 1.1. Structure of an ATR system

The topic of the ATR has been researched for decades. A large number of systems

utilizing a variety of sensory data have been designed. However, the recognition capa-

bilities of most of systems remain unsatisfactory for using these fully automatic ATR

systems in practice. A particular problem is high false alarm rates [44]. The main rea-

sons for unsatisfactory performance of ATR systems in practice is in using idealized data

for estimating parameters of the systems (training) and evaluating performance (testing).

The uncontrollable imaging conditions, complex and unknown background, obscuration

of targets and low signal-to-noise ratios characterizing practical data are the challenges

that most ATR systems face. A practical solution to this problem is to use more infor-

mation about targets and background, which can be achieved by fusing data. This has

been proved to result in performance improvement. However, establishing a theoretical

foundation for ATR is the key point to understand and predict ATR performance, since

it is impossible to involve all situations in training. In this thesis, we will focus on the

classification part and on the analysis of the recognition performance.

1.2 Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircrafts that

can carry sensors, communication equipments or other payloads. UAVs not only decrease

the risks confronted by military personnel, but also have long flight durations and large

flight heights because they are not burdened with the physiological limitations of human

pilots. By taking different equipments, UAVs have the capability to perform multiple

missions. Over the last several years, UAVs have served to enhance and augment the

surveillance and reconnaissance abilities of the military.

One of the primary concerns about UAV applications is “gold plating”. The fear is

that good designs will become loaded up with more sensors and more missions until they

become too expensive to build or too valuable to use [8]. One of the practical solutions is

to build an UAV system composed of several UAVs with indispensable equipments. The

other problem for most early UAVs is that they lacked autonomy and had no on-board

ATR capability. UAVs acquire sensory data and send the data to a central location such

as a base station, where potential targets are identified using image analysis algorithms
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[21]. However, this centralized model for ATR possesses a number of drawbacks such

as scalability with the number of UAVs and network delays in communicating with the

central location.

In developing the next generation of UAVs, one of the ideas is to utilize reactive

agents and the associated swarming behavior as part of the command and control system

for a group of UAVs functioning cooperatively and independently from ground control.

Previous works [7,14] demonstrate that this technique provides a suitable mechanism to

assimilate the capabilities of individual UAVs into a group of coordinating UAVs that

perform ATR in a distributed manner. In a swarmed system, multiple mobile entities are

directed to converge on a single point of interest, disperse and regroup again. To achieve

distributed ATR using swarming, each UAV individually searches for potential targets

within an area of interest using its image sensor. As soon as the image of an object is

sensed to be a possible target by a UAV, other UAVs cooperate with it by swarming

towards the potential target to collectively perform ATR in a data fusion manner and

confirm the object as a target. One of swarm intelligence techniques, digital pheromone is

utilized to coordinate the movements of multiple UAVs based on a computational analog

of pheromone dynamics. In contrast to a centralized model for ATR, a distributed

ATR model possesses a potential to provide minimal user intervention, a high level of

robustness and largely autonomous operation. In this thesis, we are focusing on the

integration of an ATR capability into the UAV system exhibiting swarmed behavior in

order to maximize ATR effectiveness for the UAV system.

1.3 Thesis Overview

In this chapter, we reviewed the concepts and current situations of ATR and UAV-

based networks. We will then review the related works in Chapter 2, including sensor

selection and literature research on state-of-the-art ATR methods and performance anal-

ysis. We motivate use of optical sensors. In Chapter 3, two databases, a simulated

database generated using a 3D Optical ATR Tool provided by Augusta Systems, Inc

and a real image database, COIL-100, are described. A set of distorted data, including

distortions due to illumination, contrast, noise, motion blur and defocus blur, are also

simulated.

This thesis contains two parts. Chapter 4-6 form the first part, where we focus on

building an ATR system and exploring the capabilities of the designed system to recognize

objects under different environmental and camera effects. The second part of the thesis is
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mainly on recognition performance analysis, including Chapter 7-10. Fig. 1.2 illustrates

relationships between chapters.

Figure 1.2. Structure of the thesis

In the first part, we will first introduce a model based recognition method, Bessel K

forms-based method in Chapter 4 and describe a complete ATR system in Chapter 5,

including a Haar-like feature based detector, a region-based segmentation method using

B-splines and a post processing to reject non-targets. The recognition performances

under different environmental conditions and camera effects are further evaluated using

synthetic images. In Chapter 6 a real image database generated using 6 die cast models

is introduced . Distorted images are taken by adjusting the lighting conditions and the

camera parameters. The recognition method designed in Chapter 4 is then applied. The

effect on recognition performance using distorted images is also evaluated. The overall

system performance is then tested using the images taken in the simple and complex

environments.

In the second part, we focus on a PCA-based recognition system. In Chapter 7, a

model-based approach is applied to encoded sensory data, and a concept of recognition

capacity is introduced. The expression for the capacity of a recognition system under

the constraint of PCA-based encoding is further derived. The joint recognition capacity

of multiple images is also defined, and the expression for the multi-frame capacity is ob-

tained. We also define the recognition rate and analyze the empirical mutual information

rate as a function of the recognition rate. The empirical capacity is estimated from the

sequence of empirical mutual information rates. Chapter 8 describes the empirical recog-

nition reliability function using PCA encoding. The exponents of the random coding

lower bound and the space partitioning upper bound are further derived for both single-

and multiple- frame recognition channels. In Chapter 9, the concept of recognition proba-
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bility of outage is introduced. Two types of outage are defined for PCA-based recognition

system. The numerical results are evaluated using images at different distortion levels.

The joint recognition and communication problem is discussed in Chapter 10. The

performance measures introduced in the previous three chapters are used to characterize

the recognition channel with the constraint of wireless communication channel undergoing

Rayleigh block fading. The system probability of outage is the recognition probability

of outage using the transmitted PCA codes. Three scenarios of operation of a two

node network are described and a comprehensive performance evaluation is performed

by changing the parameters of the communication channel.

Finally, in Chapter 11, we conclude the thesis and discuss the potential directions for

future research.

1.4 Contributions

The main contributions of the thesis are listed below.

1. A model-based recognition method using Bessel K forms is introduced for target

recognition. A combination algorithm is designed to balance accuracy and speed.

A recognition method using two images from the same target is designed based on

multivariate Bessel K forms and its performance evaluated.

2. A complete ATR system including detection, segmentation, recognition and clutter

rejection is proposed and tested using both simulated 3D dataset and a dataset of

real objects.

3. The recognition performance of designed systems is evaluated varying environmen-

tal conditions.

4. The concept of recognition channel and recognition capacity are introduced. For an

ATR system, the PCA encoded data from both a single image or correlated multiple

frames are statistically modeled. The PCA constrained recognition capacity is

derived and evaluated numerically. The recognition reliability function and the

recognition probability of outage of a PCA-based ATR system are further defined

and analyzed.

5. Performance of a small wireless sensor network for object recognition is evaluated

numerically. The system probability of outage is defined to measure the overall

system performance. Three protocols of operation of a two node sensor network

are analyzed.



CHAPTER 2

RELATED WORKS

In this chapter, we will briefly introduce the diverse sensors used in ATR systems and

select one sensor source as the research object. The state-of-the-art ATR methods and

performance analysis methods are further presented based on the selected sensor.

2.1 Sensor Selection

Here we present a brief review of sensor sources utilized in ATR systems. For more

detailed discussions see [5, 23, 44]. Sensors can be divided into two main classes: Active,

which require the generation of a signal to scan the scene, and Passive, which rely in the

energy provided by the scene. Table 2.1 summarizes the various advantages and critical

issues for sensor options.

Generally, there is no single type of sensor that clearly dominates the others with

respect to all characteristics. Some sensors, such as Forward-looking infrared (FLIR)

and Synthetic aperture radar (SAR), are suitable for detection, since they have a wider

all-weather capability, can penetrate vegetation to some extent and detect targets at

ambient temperatures. But they may not perform well in recognition or maybe too

bulk or expensive. Target recognition generally requires more information and greater

resolution than that required for detection. FLIR and SAR signatures are variable and

ambiguous [45]. Researchers in [1, 44] have demonstrated that two or more sensors can

significantly improve overall performance of ATR systems.

The selection of sensors also depends on the whole system requirements (weight, size,

capabilities). In this research, the sensors are installed on the UAVs. Since the purpose is

to build a cheap system, the UAVs traditionally used by military for surveillance purpose

are relatively small in size and light in weight. Thus, a relative light and inexpensive

sensor is needed. Here only Electro-Optical (EO) sensors, such as near infrared sensor

and Charge Coupled Device (CCD) camera, are involved. In our research, we use optical

images as the sensor observations and assume that each UAV has a camera on-board.

7
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Table 2.1. Performance Tradeoffs for ATR Sensor Options (Adapted From [23])

Sensor Advantages Critical Issues
Forward-looking
infrared (FLIR)

High target to background
contrast

False alarm from background clut-
ter, vegetation, & animals

Passive Day & night operation Range uncertainty
Penetrates fog, haze &
dust

Occlusions from terrain & vegeta-
tion
Target signature variability
Aspect angle dependence

Millimeter Wave
(MMW) Radar

All weather False alarms from background clut-
ter, rocks, isolated buildings, &
metal structures

Active Day & night operation Terrain occlusions
Target signature varies with aspect
angle

Synthetic Aper-
ture Radar
(SAR)

All weather False alarms from background clut-
ter,rocks, isolated buildings, and
metal structures

Active Day & night operation Terrain occlusions
Large target to back-
ground contrast

Target signature varies with aspect
angle

Laser Radar Penetrates fog, haze &
dust

Target signatur varies with aspect
angle

Active Potentially high level of
discrimination

Complex technology

for range map signatures Power requirements
Vibration signature show
promise

Requires long dwell time on target

Doppler laser radar for
moving targets

Very precise tracking & stabiliza-
tion required

Electro-Optical
(EO)

Light weight Relatively low target to background
contrast

Passive Inexpensive No night or all weather capability
High Resolution
Reliable
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2.2 State-of-the-art ATR Methods based on Optical Images

An ATR system first detects targets and then identifies them. A general block-

diagram was displayed earlier in Fig. 1.1. It is important to contrast detection with the

problem of recognition. A target detection system knows how to differentiate targets

from everything else, while a target recognition system knows the difference between

a target A and a target B. The recognition methods vary as the signals/images from

different sensors and the size of objects. In this section, we will focus on the recognition

system with targets imaged using EO sensors. An efficient automatic classifier should

be able to select those informative features (geometric, topological, spectral, etc.), which

maximize the similarity of objects from the same class and minimize the similarity of

objects from different classes. Similar to most recognition systems, ATR system based

on optical images are broadly classified into 3 categories (based on encoded information

or features). The categories are: (1) Shape-based method; (2) Appearance-based method

and (3) Computer Aided Design (CAD)-based method.

In shape-based recognition ( [4, 35]), the contour or silhouette of the object is ex-

tracted, then the shape templates are used to match the extracted contour. Hausdorff

distance is used as matching criterion. The recognition performance of these algorithms

is sensitive to the accuracy of an edge detection method. In appearance-based (or view-

based) approach, the 2D intensity templates of 3D target acquired from different view-

points are stored as a model. Some view-based methods ( [46, 66]) use statistical tech-

niques to analyze the distribution of the target image vectors in the vector space, and de-

rive an effective representation (feature space) according to different applications. Other

methods ( [33, 43]) design distortion-invariant filters to perform a correlation match-

ing between the model view and the input image. In practice, the number of available

training images covering different target poses is small, which limits the performance of

appearance-based target recognition systems. In CAD-based ATR ( [40,56]), an explicit

3D model of a target is generated and subsequently used in target recognition employing

imagery acquired by a variety of sensors. Target models coupled with environmental af-

fects models presumably can represent any state in which the target can occur. Then, the

images that the sensor produces are compared to the library models until a match occurs

with some level of confidence. The main step of CAD-based ATR is to estimate the pose

of the CAD model so that the projection of 3D model matches with the query image.

However, it is not possible to acquire CAD models of all targets. In [65], a multi-view

morphing algorithm is generated to provide 3D model using several images.
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Some classification schemes that have been used for target recognition are K-nearest

neighbor, linear and quadratic discriminators, tree-based classifiers, multi-layer neural

networks, Support Vector Machine (SVM), etc.

There are also some other methods, such as morphological detection [47] and anomaly

detection [10] for small target (less than 20× 20 pixels). In our research, the target size

is from 100 × 100 pixels to 200 × 200 pixels and CAD models of the targets are not

available. Thus, we will focus on the appearance-based approach and try to develop an

ATR system using images from other UAVs to improve the recognition performance and

reliability.

We introduce a Bessel K based recognition method, which is a stochastic model for

capturing image variability. The direct modeling of image is difficult due to the large

dimensionality of the images. A popular idea is to first reduce dimensions using purely

numerical considerations and then impose probability models on the reduced data. Prin-

cipal components, independent components, Fisher’s discriminant, etc. are all instances

of this idea. The main advantage of such representations is the computational efficiency.

But a lack of physical or contextual information leads to a limited performance, especially

in challenging situations.

Instead of modeling the image itself, we may decompose images into their spectral

components using a family of bandpass filters. Thus, the definition of a probability model

on images is through its spectral representation. Low dimensional statistics of these

filtered components are used as reduced data to represent images. To build probability

models, non-parametric or parametric estimators are researched. Bessel K forms are

derived to state the probabilities in a convenient form, and the resulting analysis can

be simplified considerably compared the analysis performance on the full non-parametric

forms. The relationship between Bessel parameters and certain physical characteristics

of the images objects are discussed in [55, 58].

2.3 Performance Analysis of ATR Systems

There is a large amount of literature devoted to analysis of ATR systems including

both numerical and analytical approaches. Most of works use traditional performance

measures such as Signal-to-Noise Ratio (SNR), probability of detection, probability of

false alarm, Receiver-Operator-Curve (ROC), average probability of recognition error and

confusion matrix. These measures lead to analysis of ATR systems in real time, but do not

allow to predict performance. A traditional approach to performance predictions is to use

bounds, approximations and limits. For example, the work in [58] suggests use of Laplace
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approximation method for solving an integral for Bayesian probability. The asymptotic

analysis relies on vanishing value of noise variance, which leads to overoptimistic results.

Some references on application of bounds and approximations can be found in [22,28,37],

etc.

In [53], the problem is to recognize CAD models at arbitrary orientations observed via

the projective transformation on a sensor with additional noise. Rate-distortion theory

is applied to establish the bounds on codebook size. The more general methodologies for

predicting performance of pattern (biometric) recognition systems was done by Schmid

and O’Sullivan in [50] from channel capacity viewpoint. It was further analyzed by

Westover and O’Sullivan [64]. Similar to a communication channel, a recognition channel

is characterized by its capacity, with the difference being recognition capacity. In an ATR

problem, recognition capacity can be thought as being the maximum number of targets

that can be successfully recognized with probability close to zero when the number of

informative samples gets large. While the recognition capacity gives a comprehensive

measure of ATR system capabilities, it does not provide us with the value of probability

of error, an important characteristic of ATR systems. In [64], Westover etc. considered

the tradeoff between the amount of resources devoted to data representation and the

complexity of the environment. A general model for recognition systems subject to

resource constraints was described and the resource-complexity tradeoff was characterized

in terms of three rates.

2.4 Summary

This chapter reviewed sensors used in ATR systems. The CCD camera is selected as

the sensor to be used in a network of UAVs because it is small in size and light in weight.

The state-of-the-art recognition methods based on optical images are further researched.

In this work, we will focus on the appearance based approach since no CAD models of

targets are available. The recognition performance analysis is also reviewed. Traditional

performance measures can lead to real time analysis of systems, but do not predict

performance. A general methodology for prediction of recognition system performance

from channel capacity view point will be used.
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DATA DESCRIPTION

In this section, we will introduce two databases that are used in this work. The first

database is generated using an ATR Training Tool provided by Augusta Systems, Inc.

The generated data (images) are assumed to mimic data acquired by optical cameras

mounted on board of a network of UAVs. The second database is collected by Columbia

University using a fixed color camera. A set of distorted images are further simulated

from each clear image to imitate the camera and weather effects.

3.1 Baseline “Clear” Data

An ATR Training Tool provided by Augusta Systems, Inc. was used to build a

simulated database. The tool is capable of generating prospective projections of 15

distinct objects projected at different orientation and elevation angles and sampled at

distinct resolutions. Fig. 3.1 is the illustration of the parameters, where θ is the elevation

angle, α is the orientation angle and d is the distance from the object to the camera. The

objects can be manually superimposed onto a background to simulate various ground

conditions. The camera parameters such as position, azimuth, declination and distance

can be varied to simulate an UAV flight. The resolution of captured images can be

adjusted from 512 × 384 to 1152 × 864. A snapshot of the Graphical User Interface

(GUI) of the tool is shown in Fig. 3.2. Every image generated by the 3D optical tool

is first processed by a target detector and then fed into a recognition system. Prior to

recognition, a potential target is located and placed in a canonical (or object-centered)

reference frame suitable for recognition. In our experiments, we use three target types:

tank, truck, and tractor. Sample images of targets used for recognition are shown in

Fig. 3.3. We built a dataset by projecting each 3D target into a 2D plane at discrete

orientation angles spaced 5 degree apart and elevation angles from 0 to 75 spaced 15

degree apart.

The second object dataset used in this work is a subset of Columbia Object Image

Library (COIL-100). The COIL-100 database consists of color images of 100 objects, 72

12
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Figure 3.1. The illustration of camera
parameters.

Figure 3.2. The GUI of the ATR training
tool.

Figure 3.3. Top view images of tank, truck and tractor for recognition from simulated
ATR database.

images per object taken uniformly 5 degrees apart in orientation (see [25] for the detailed

description). In our experiments, we select 11 visually similar objects (toy cars) shown

in Fig. 3.4 from the database. We use gray-level images instead of the color images.

3.2 Simulated Environmental and Camera Effects

Apart from generated images of objects as described in the previous section, we ex-

pand the dataset by adding six distorted versions of each original image. The involved

distortions mimic various camera and environmental effects. The types of distortions

that we impose include Gaussian noise, Poison noise, illumination effect, effect of con-

trast change, motion blur and defocus blur. The details of generation procedures are

summarized below.

1. Images contaminated by Gaussian noise contain additive white noise with zero

mean and variance σ2.
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Figure 3.4. Images of 11 objects from COIL-100 database selected for our experiment.

2. Shot noise from Charge Coupled Device (CCD) camera is modeled by Poisson

process. ( [54] provides physical descriptions.) The intensity of the Poisson noise

depends on the intensity of the underlying data. The mean of the Poisson process

is equal to the square root of the image intensity.

3. The images are brightened or darkened by increasing or decreasing the intensities

[29]. This procedure simulates illumination effect. Denote by β (β ∈ (−1, 1))
the parameter that controls the level of illumination. We first normalize image

intensities to (0, 1), then brighten images by raising to the power of a number less

than one, that is, (1− β, β ∈ (0, 1)) or darken images by raising to the power of a
number larger than one, that is, ( 1

β+1
, β ∈ (−1, 0)).

4. We model contrast change by linear mapping the normalized histogram to a new

one [29]. If the histogram is “squeezed,” then the new image will have low contrast.

The more compression, the lower the contrast is. The range is determined by

parameter 1−2LF , where LF specifies the fraction of the image to saturate at low

intensities.

5. A linear relative motion of an optical camera or an object is simulated by convolving

images with a two parameter point spread function (PSF) [48]. Length L in pixels

and angle θ in degrees correspond to motion in specific direction with predefined

camera velocity. The parameter θ follows uniform distribution on [0, 360◦].

6. The images are filtered by a two-dimensional circular averaging filter to generate

defocus blur [48]. Defocus level corresponds to the radius r of the averaging filter.

By controlling the value of the parameters, different levels of noise in images can be

generated. Table 3.1 lists the parameter values used to achieve various levels of distortions
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in our experiments. Distortions increase from Level 1 to Level 5. The samples of distorted

images of the tractor are displayed in Fig. 3.5.

Table 3.1. Parameters used to simulate various distortion levels.

Effects Parameter Level 1 Level 2 Level 3 Level 4 Level 5
Gaussian Noise σ2 0.005 0.01 0.015 0.02 0.025

Illumination (dark) β -0.1 -0.2 -0.3 -0.4 -0.5
Contrast LF 0.15 0.2 0.25 0.3 0.35

Motion Blur L 2 4 6 8 10
Defocus Blur r 2 4 6 8 10

Figure 3.5. Distorted images of the tractor. From the top left to the bottom right:
the image with additive Gaussian noise, the image distorted by Poisson noise, the image
characterized by a low illumination, a low contrast image, motion-blurred image and
defocused image.

3.3 Summary

In this chapter, a simulated database and a real database are introduced. Images from

different rotation and declination angles for each target are generated. 6 distorted images

for each clear image are further added into the database to simulated the camera and

environmental effects, which include Gaussian noise, Poison noise, illumination effect,

effect of contrast change, motion blur and defocus blur. By controlling the parameters

in the simulation, 5 levels of distorted data are formed.



CHAPTER 4

RECOGNITION METHOD BASED ON BESSEL K FORMS

In this work, we select an Electro-Optical sensor, a CCD camera, to obtain the in-

formation from the field of interest with the benefit of low cost and a small size. We

assume that the original images taken by the UAVs have been processed through a

proper detection method. The object of interest is located and placed in a canonical (or

object-centered) reference frame suitable for recognition.

Assuming that the CAD models of the targets are not available during the testing

procedure and considering the complex structure of targets, we focus on the appearance-

based or view-based approach. In this chapter, the recognition method based on Bessel K

forms is introduced. The training and testing results using single image and two images

are then discussed based on the simulated data. We will also analyze the influence of

environmental and camera effects on recognition performance.

4.1 Recognition based on Single Frame

Comprehensive studies [55], [57] of natural scenes have shown that the distributions

of pixel intensities in linearly filtered images are described by a family of Bessel K dis-

tribution functions. This constitutes a basis for the implemented recognition algorithm.

Bessel K forms is a stochastic model that can be used to measure image variability.

This parametric family is applied to model lower order probability densities of pixel values

resulting from bandpass filtering of images. The main idea of the recognition algorithm

based on Bessel K forms is to select the critical features of each object class by passing an

image through a bank of linear filters and then analyzing statistics of the filtered images.

As shown by Grenander and Srivastava [57], Bessel K forms parameterized by only two

parameters: (1) the shape parameter p, p > 0, and (2) the scale parameter c, c > 0, may

provide a good statistical fit to empirical histogram distributions of filtered images.

16
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Denote by I an image and by F a filter, then the filtered image I = I ∗ F , where
∗ denotes the 2-dimensional convolution operation. Under the conditions stated in [55],
the probability density function of the random variable I(·) can be approximated by

fK(x; p, c) =
2

Z(p, c)
|x|p−0.5K(p−0.5)(

√

2

c
|x|), (4.1)

where Kν(x) is the modified Bessel function of the second kind, and Z(p, c) is the nor-

malization given by

Z(p, c) =
√
πΓ(p)(2c)0.5p+0.25.

Given J filters, the image I can be represented using 2J Bessel parameters.

Figure 4.1. Representation of an image I using 2J Bessel parameters.

To approximate the empirical density of the filtered image by a Bessel K form, the

parameters p and c are estimated from the observed data using

p̂ =
3

SK(I)− 3
and ĉ =

SV (I)
p̂

, (4.2)

where SK is the sample kurtosis and SV is the sample variance of the pixel values in I.
Since the moment-based estimate of p in (4.2) is sensitive with respect to outliers, in our

computations we replace it with an estimate based on empirical quartiles given by

p̂ =
3

ˆSK(I)− 3
, with ˆSK(I) = q0.995(I)− q0.005(I)

q0.75(I)− q0.25(I)
,

where q(·) is the quartile function that returns the x quartile of a set of samples. More
information on quartile estimates can be found referred in the work by Freund [19]. This

method provides reasonable fit. As shown in Fig. 4.2, the histogram (dashed line) of
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images filtered by Gabor filters [27] closely follows the estimated Bessel K forms (solid

line). To quantify the difference between two filtered images based on their distributions,
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Figure 4.2. (a) Images, (b) Gabor components of images in (a), and (c) the marginal
densities using targets in ATR dataset. The empirical histogram distributions are marked
in dashed line. The Bessel K form approximations are shown in solid lines.

two distance measures: (1) a pseudo-metric introduced by Srivastava [55] and (2) the

K-measure [36] between two Bessel K forms, are used. The pseudo-metric is defined as

dI(I1, I2) =
√

∫ +∞

−∞

(fK(x; p1, c1)− fK(x; p2, c2))
2. (4.3)

The closed form of dI(I1, I2) for the case of p1, p2 > 0.25, c1, c2 > 0 is given by:

dI(I1, I2) =
[

Γ(0.5)

2
√
2π

(G(2p1)√
c1

+
G(2p2)√

c2
− 2G(p1 + p2)√

c1

(

c1
c2

)

p2H
)]

1
2

,

where G(p) = Γ(p−0.5)
Γ(p)

and H = H
(

p1 + p2 − 0.5, p2; p1 + p2; 1− c1
c2

)

. The function H is

the hypergeometric function. In cases where p̂ < 0.25 for an image-filter combination,

we compute the pseudo-metric numerically using the quadrature integration.
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The K-measure is defined as

dKL(I1, I2) = D (fK(x; p1, c1)‖fK(x; p2, c2)) +D (fK(x; p2, c2)‖fK(x; p1, c1)) , (4.4)

where D (fK(x; p1, c1)‖fK(x; p2, c2)) is the relative entropy between two distribution func-

tions fK(x; p1, c1) and fK(x; p2, c2) given by

D (fK(x; p1, c1)‖fK(x; p2, c2)) =

∫ +∞

−∞

log

(

fK(x; p1, c1)

fK(x; p2, c2)

)

fK(x; p1, c1)dx.

In the above expressions fK(·) is the Bessel K probability density function introduced in

(4.1).

Given two images {I1, I2} and a bank of filters {Fj, j = 1, 2, · · · , J}, we evaluate a
set of filtered images {I(n,j) = In ∗ Fj, n = 1, 2; j = 1, · · · , J}. After estimating the
parameter p(n,j) and c(n,j), each image is mapped to J points in the density space. The

distance between two images are calculated by

dI(I1, I2) =
J
∑

j=1

dI(I(1,j), I(2,j)), (4.5)

and

dKL(I1, I2) =

J
∑

j=1

dKL(I(1,j), I(2,j)), (4.6)

where dI(I(1,j), I(2,j)) and dKL(I(1,j), I(2,j)) are defined in (4.3) and (4.4).
The purpose of using the two distance measures is to balance accuracy and compu-

tational efficiency. K-measure is an accurate measure of similarity of two probability

density functions. However, it cannot be obtained in closed form for Bessel K forms. Nu-

merical evaluation of K-measure is computationally expensive. The pseudo-metric (4.3)

has closed form for Bessel K forms, which means that the computation cost is relatively

low. The major drawback of the pseudo-metric is its lower precision compared with the

K-measure. To measure the difference between two histograms fast and with relatively

high precision, we combine these two distance measures. First, we use the fast method,

the pseudo-metric, to evaluate the distance between the input image and all templates

in the database. If the pseudo-metric has multiple minima close in their values, there

will be a potential misclassification. The precise metric, the K-measure, is then used to

re-calculate the distances and make the final decision. By setting threshold properly, we

obtain relatively fast and reliable result. The comparison is shown in Section 4.3.
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4.2 Recognition based on Two Frames

Consider a scenario where a set of UAVs perform an area search. UAVs monitor the

ground continuously at a slow rate (for instance, 2-5 frames per second). We assume that

an UVA while passing a target is capable of acquiring only a few (1-4 frames) containing

this target. Now, if an UAV detects a potential target within a frame, it may appeal

to its neighbors to perform additional monitoring of the area. Thus, this scenario may

result in collecting a relatively large number of optical frames containing information

about a target. In this section we describe a multivariate Bessel K form for improved

recognition.

The multivariate Bessel K forms can be formed as a mixture of Gaussian variables,

where the mixing variable is a scaled Gamma distributed random variable with parame-

ters p and c. Multivariate Bessel K forms are a special case of a larger family, namely, the

generalized hyperbolic distributed family (see Barndorff-Nielson et al [3] for details). De-

note by v a d-dimensional random vector following Guassian distribution with zero mean

and identity covariant matrix. Let z be a random variable following Gamma distribution

with parameters p and c, and Γ be a positive definite matrix. Form

x =
√
zΓ

1
2v.

Then x is a d-dimensional random vector following Bessel K distribution with parameters

p, c and Γ. The probability density function of x is given by

fK(x; p, c,Γ) =
2

ZM(p, c)

(

√

q(x)
)p− d

2
K(p−0.5)

(

√

2

c
q(x)

)

, (4.7)

where q(x) = xTΓ−1x and ZM(p, c) is a normalization given by

ZM(p, c) = π
d
2Γ(p)(2c)0.5p+0.25d.

When d = 1, (4.7) reduces to (4.1).

As illustrated in Fig. 4.3, the pair of images I(α1) and I(α2) are taken from the same

object but at different poses. They can be jointly represented by 3J sets of parameters.

To estimate the parameters p, c and Γ, we first find the mean and covariance matrix

as

µ̂ =
1

N

N
∑

i=1

xi and Γ̂ =
Ĉ

(

det Ĉ
)

1
d

,



CHAPTER 4. RECOGNITION METHOD BASED ON BESSEL K FORMS 21

Figure 4.3. Representation of a pair of images I(α1) and I(α2) by 3J Bessel parameters.

where N is the sample size and Ĉ = 1
N

∑N
i=1(xi − µ̂)(xi − µ̂)T . Then we generate a new

random vector yi = Γ̂−
1
2 (xi− µ̂), which follows d-dimensional Bessel K distribution with

zero mean, identity covariance matrix, the shape parameter p and the scale parameter

c. The marginal distribution of yki, k = 1, · · · , d follows univariate Bessel K form. So

we can estimate p and c as p̂ = 1
d

∑d
k=1 p̂k and ĉ =

1
d

∑d
k=1 ĉk, where p̂k and ĉk are the

estimates from the kth projection.

We use the K measure to qualify the distance between two pairs of images. Fig. 4.4

shows the bivariate fitting results of two tank images with relative angle 10 degrees.

4.3 Numerical Results

In this section, we use the two datasets described in Chapter 3 to evaluate the recog-

nition performance given different samples per target. Compared with the traditional

Principle Component Analysis (PCA) method, the recognition method based on Bessel

K forms performs substantially better. The influence of environmental and camera effects

on recognition performance is also discussed. We further analyze recognition results from

a single frame and multiple frames.

4.3.1 Recognition Performance and Computational Cost

In this section, we will test the capability of recognition methods in dealing with

pose changes of targets. The recognition algorithms operate in two modes: training and

testing. All the clear images in the datasets introduced in Chapter 3 are divided into

nonoverlapping training and testing sets. Some of the images are used for training and
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Figure 4.4. The observed (left) and estimated (right) bivariate densities of two tank
images with relative angle 10 degree plotted as meshes (a) and contours (b).

the remaining for testing. To process data, we used a bank of 38 filters including Gaussian

filters, Laplacian of Gaussian filters and Gabor filters.

Since the recognition performance of our classifier depends on the number of samples

per target used for training the system, we present recognition results for a number of

values that the ratio of training and testing samples can form. For COIL-100 dataset,

since there is only rotation changes, the training samples per target are selected with

equal intervals of rotation angles. For ATR dataset, there are 864 (3 distance, 4 elevation

angles and 72 rotation angles) clear images per target. We only use part of the images at

elevation 15 and distance 10 as training samples and the remaining for testing. Table 4.1

summarizes the results. Note that Bessel K forms generally outperform PCA method.

Here the results of Bessel K forms are obtained using the combined metric described

in Section 4.1. Table 4.2 concludes that compared with the method using Pseudo-metric
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Table 4.1. Correct Recognition Rates for COIL-100 and ATR datasets Using PCA and
Bessel K Forms.

COIL-100 dataset ATR dataset
Train/Test PCA Bessel K Train/Test PCA Bessel K
per target per target
36/36 98.23% 98.48% 36/828 95.77% 96.86%
24/48 97.54% 96.78% 24/840 94.80% 96.83%
18/54 92.26% 93.43% 18/846 89.16% 96.89%
8/64 70.31% 69.18% 8/856 75.35% 91.16%
4/68 46.79% 47.19% 4/860 63.02% 91.32%

only and using K-measure only, the combination algorithm balances the accuracy and

speed. The experiments are performed using Matlab 7.0 and Pentium 4 CPU 3.20GHz.

No optimization is applied. With proper optimization and using C/C++ coding, the

speed of the recognition method based on Bessel K forms may be improved up to 15

times and can meet the requirement to perform online.

Table 4.2. Speed and Performance Using different metrics

Train Samples: 24 per tar-
get

Pseudo-
metric Only

K-measure
Only

Combination
Algorithm

Average Test time per
sample (second)

0.013 0.1 0.02

Correct Recognition Rate
(ATR dataset)

95.75% 98.81% 96.83%

Correct Recognition Rate
(COIL-100 dataset)

92.99% 98.30% 96.78%

4.3.2 Influence of Environmental and Camera Effects on Recognition Per-

formance

To test the influence of environmental and camera effects on recognition performance,

we fix the training samples to be 24 per target. The undistorted images of all targets

at orientations 0, 15, 30, · · · , 345, elevation 15 and distance 10 form the training set. All

distorted images at all positions are used in the testing mode. Each effect is evaluated

individually. We generate a number of distorted images parameterized by a varying

distortion level: from lowest level to highest level. The correct recognition rate of different
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objects under six types of distortions for ATR dataset are shown in Fig. 4.5. We observe

that the performance changes for all three objects are not consistent. In most cases, the

performances of two objects decrease while the performance of the third one increases.

The average correct recognition rate as a function of distortion level parameterized by

various effects for two datasets are shown in Fig. 4.6. Level 0 corresponds to the case

when no distortion is added.
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Figure 4.5. Recognition performance as functions of various environmental and camera
effects for ATR dataset.

From Fig. 4.6 we conclude that the average recognition performance decreases when

distortion level increases, except the illumination and contrast effects. This is due to a

light correction procedure performed prior to classification. To be more specific, prior to

recognition all test images are resized to 64 × 64 and then normalized to minimize the

effect of different lighting conditions. The procedure of normalization is as follows:

I−(x, y) =
I(x, y)− µ

cσ
, c εR+, (4.8)

where I(x, y) is the pixel value within the sub-window during detection scanning. µ and

σ are the mean and the standard deviation of I(x, y).
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Figure 4.6. Average recognition rate under different effects for (a) ATR dataset and
(b) COIL-100 dataset.

4.3.3 Recognition Performance: Single and Multi-frame Cases

In this experiment, we involve only the clear images in the databases. We assume

that the relative rotation angle between the test image pair is known. Two different

relative angles, 5- and 10-degrees, are tested. For each relative angle, there are 24 sets of

multivariate Bessel K parameters describing each target.

For ATR dataset, we only use images generated at 4 different elevation angles, 0, 15, 30

and 45 degree while keeping the distance at 10. Then the total number of testing pairs is

4×4×72 per target. Table 4.3 summarizes the results of testing of the multivariate Bessel
K recognition algorithm. The correct recognition and error rates are presented in the

form of a confusion matrix for a single and two-frame cases (with 5 and 10 degree relative

orientation). Note that multivariate Bessel K forms result in considerably improved

performance when the relative orientation between two images is 10 degrees, that is, when

data are less correlated compared to the case of the relative orientation of 5 degrees.

4.4 Summary

In this chapter, we introduce a recognition method based on Bessel K forms. We con-

cluded that use of the low order statistic properties of the filtered images is sufficient for

analysis of recognition. The distribution of the histogram of filtered images is modeled

using Bessel K distribution with two parameters. This parametric method is beneficial

since it guarantees the storage and the recognition speed by providing a close form met-

ric. The combination algorithm using both Pseudo-metric and K-measure balances the

accuracy and speed. Bessel K form based recognition method outperforms PCA method
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Table 4.3. Recognition Performance Using Single and Two images for ATR dataset.

Confusion Matrix Simulated ATR dataset

Single





0.9545 0 0.0114
0 0.9811 0

0.0455 0.0189 0.9886





Two (5 degree)





0.9931 0.0642 0
0 0.9358 0

0.0069 0 1





Two (10 degree)





0.9991 0.0069 0
0.0009 0.9931 0
0 0 1





at different training to testing data ratios. The influence of camera and environmental

effects on recognition performance is also evaluated. As the distorted level increases, the

recognition performance degrades except the illumination and contrast effects because

of the lighting normalization performed prior to classification. The recognition method,

given two frames based on Bessel K forms, is also generated and tested using images with

relative angle 5 and 10 degrees. The performance given two images is generally better

than the single image case.



CHAPTER 5

MODIFIED ATR SYSTEM

As shown in Fig. 1.1, an ATR system includes a detector as a first processing block,

which scans an input image with the purpose to locate potential objects. Each window is

then sent for further processing into a classifier with a proper size to identify the objects.

Ideally, each window should have an object in the center with a minimum background

clutter included. In practice, however, the output windows from a detector may only cover

parts of objects, or the objects may not be located in the center of the window and/or

only occupy small parts of windows. To recognize objects, the size of windows need to

be adjusted properly. As a result of adjusted windows, the detector may have a large

number of false alarms. This further may result in a large number of misclassifications,

since typical classifiers are trained to recognize only a certain number objects, that is, an

output of the detector (a window) that enters the classifier will be recognized as one of

the objects in an object library. Thus, there is a potential that clutter will be recognized

as one of the objects. One approach to remove detected windows containing clutter only

is to perform a postprocessing after the classification step. The modified structure of the

ATR system is shown in Fig. 5.1. In this chapter, we will first introduce the detection

method based on Haar-like features, then we will perform perform recognition using

Bessel K forms, and finally we will approach the challenge of practical issues described

above by introducing a clutter rejection block based on alignment distances between the

testing image and the index object and the recognition scores. The system performance

will also be discussed.

Figure 5.1. Modified ATR structure.

27
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5.1 Target Detection based on Haar-like Features

Detection of a possible object of interest is one of the most critical steps in object

recognition problems, since the results of postprocessing depend on this step. In this

work, we will use a local Haar-like filter based detection method which is very popular

in the field of face recognition. This rapid target detection scheme is based on the idea

of a boosted classifier cascade [62].

The classifier cascade is trained on a set of positive images (targets) and a set of

negative images (non-targets). For each training image, an over-complete set of Haar-

like feature pool is calculated and AdaBoost algorithm of Schapire and Singer [49] is used

to build a stage classifier. After the classifier cascade is trained, the detection algorithm

is applied to a query image. A search window is sled over the query image. At each

window location and scale the content of the window is classified as target or non-target.

In each round of boosting, a weak learning algorithm is applied to select a single rect-

angle feature which best separates the positive and negative samples. For each feature,

the weak learner determines the optimal threshold classification function, such that the

minimum number of examples are misclassified. Thus, a weak classifier hj(·) is a binary
valued function obtained by comparing the j-th feature value fj(·) with a threshold θj :

hj(x) =

{

αj if fj(x) > θj

βj otherwise.
(5.1)

Here x is a sub-window of an image. The value of the feature is equal to weighted

differences of integrals over rectangular subregions. αj and βj are positive or negative

votes of each feature set by AdaBoost during the learning process. θj is the optimal

threshold obtained by the weak learner.

The form of the final stage classifier returned by AdaBoost is a thresholded linear

combination of weak classifiers (see Fig. 5.2). The stage classifier is given by:

C(x) =

{

1, if
∑

j hj(x) > T,

0, otherwise,
(5.2)

where T is the stage threshold set by AdaBoost during the learning process.

In order to improve computational efficiency and also reduce the false positive rate,

a sequence of increasingly more complex classifiers called cascade is used. A cascade

of classifiers is a degenerated decision tree where at each stage almost all objects of

interest are detected while only a certain fraction of the non-object patterns are rejected.

The more an input window looks like an object, the larger the number of classifiers are
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evaluated on it and the longer it takes to classify the window. Since most windows of

an image do not look like objects, they are quickly discarded as non-objects. Fig. 5.3

illustrates a cascade.

Figure 5.2. Stage classifier.

Figure 5.3. Cascade of classifiers.

5.2 Window Adjustment using B-spline based Segmentation

Once the images pass the detector, a set of windows which contain potential tar-

gets are produced as the output. Ideally, the targets should be centered in the window

with minimum background included. However, in practice, the targets may not be fully

covered by windows. Since we use a global recognition method, to avoid the effect of

different background and the window positions, the targets should be separated from

the background and the windows should be adjusted properly such that the targets are

centered and occupy the most of the windows.

Since the targets are roughly at the center of the windows, we are able to build a

fully automatic target extraction system. We use B-splines as deformable templates to

describe the target boundary. This results in separation of the whole window into two

nonoverlapping regions: the target and the background. To extract the target, we involve

a region-based approach [18]. This approach implies that target and background regions
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are described by two distinct stochastic models. Potential models may include Gaussian

model, Gaussian mixture or Poisson models. Since both the target boundary and the

parameters of models are unknown, they have to be estimated using available data.

This problem can be solved iteratively, i.e., fixing the parameters of models, we perform

estimation of the boundary between regions; then fixing the boundary parameters, we

re-estimate the models.

For a sake of clarity, we first present a brief review of B-splines; for a more detailed

account, see [15] and [16]. We will then introduce our optimization algorithms.

5.2.1 B-splines

Given m+ 1 non-decreasing real numbers {t0 ≤ t1 ≤ · · · ≤ tm}, which are also called
knots, a B-spline of degree n is a parametric curve S : [t0, tm] → R2 composed of basis

B-splines of degree n

S(t) = [x(t), y(t)] =
m−n−1
∑

i=0

ciB
n
i (t), t ∈ [tn, tm−n].

The ci are called control points. The m − n basis B-splines of degree n can be defined

using the recursion formula

B0
i (t) =

{

1 if ti ≤ ti+1

0 otherwise,

Bn
i (t) =

t− ti
ti+n − ti

Bn−1
i (t) +

ti+n+1 − t

ti+n+1 − ti
Bn−1

i+1 (t).

Since the basis functions are based on knot differences, the shape of basis functions is

only dependent on the knot spacing and not specific knot values. Here we use the uniform

B-splines which means that the knots are equidistant.

To describe closed curves, the periodic extension of the knot sequence, {t̃j, j ∈ Z}
with t̃j = tj mod k is defined. The basis functions are also be expanded periodically

B̃n
i (t) =

+∞
∑

j=−∞

Bn
i+j(tk−t0)(t).

Now an m-knot closed curve is represented as a linear combination of m periodic basis

functions

S(t) =

m−1
∑

i=0

ciB̃
n
i (t), t ∈ R,
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which can be further written in a matrix form, S = Bc, where B is a matrix and c is a

vector.

5.2.2 Region-based Approach and Optimization Algorithms

We use the probability model to define the coherence of different image regions to

group the pixels. Given the contour, the image pixels are assumed to be independently

distributed. All pixels inside or outside of the contour have a common distribution

characterized by a parameter vector θin or θout respectively. Denote Ain(S) and Aout(S)

as the inside and outside region of the contour S. The likelihood function of the image,

given the contour and the model parameters, is

p(I|c, win, wout, θin, θout) =
∏

(i,j)∈Ain(S)

winp(I(i,j)|θin)
∏

(i,j)∈Aout(S)

woutp(I(i,j)|θout),

with S = Bc and I(i,j) denoting pixel value at the location (i, j). p(I(i,j)|θin) and

p(I(i,j)|θout) are the probability functions of the inner and outer regions. win = p((i, j) ∈
Ain) and wout = p((i, j) ∈ Aout) are the priors such that win + wout = 1.

Now the unsupervised segmentation problem has to estimate, from the observed image

I, not only the position of control points c, but also the parameters of probability model

wM and θM, for M ∈ {in, out}. Estimation of the boundary of a smooth object, a

continuous function, from a finite amount of data is an ill-posed problem, which means

that an infinite continuous solutions may result in the same observed data. To regularize

the contour estimate, that is to restrict the estimate to a certain class of functions

providing a unique solution, we use a penalty term that favors smooth contours [67].

Then the segmentation problem solves the following optimization equation,

ĉ, ŵM, θ̂M = arg min
c,wM,θM

[

− log(p(I|c, wM, θM)) + λκ

]

, (5.3)

where λ is a regularization parameter and κ is the curvature of the boundary given by

κ(x, y) =
x′y′′ − x′′y′
(

x′2 + y′2
)3/2

,

among which x′, y′, x′′ and y′′ are the first and second order derivatives of x(t) and y(t).

In general, the number of control points m is also a parameter that needs to be

optimized. In [18], the Minimum Description Length (MDL) is used as a criterion to

find the optimal m. In our case, since we need to segment image very efficiently, we fix
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the number of control points during the experiments. The number of control points is

selected such that both the accuracy of the segmentation and the computation cost are

satisfied.

The minimization of (5.3) is performed iteratively. Each iteration consists of two

phases: First, we solve c with wM and θM fixed. Second, we fix the contour and re-

estimate the parameters of probability model.

Phase 1 : Boundary Optimization by B-spline

To find the shape of an unknown object we use the form of a gradient projection

method described in [18]. Given wM and θM, forM∈ {in, out}, and the control points
ĉ(k), the contour is estimated by minimizing the log likelihood function augmented with

a regularization term.

1. Set p = 0, ĉ(p) = ĉ(k). Build B and compute B⊥ = (BTB)−1BT

2. Calculate the gradient with respect to the contour

∂~S = ∇
[

− log(p(I|ĉ(p), wM, θM)) + λκ(ĉ(p))

]

,

where ∇ is the gradient operation.

3. Update the contour estimate according to

Ŝ(p+1) = S(p) + ε∂~S,

where ε controls the step size. The control points are updated by ĉ(p+1) = B⊥Ŝ(p+1).

4. If a stopping criterion is met, stop and ĉ(k+1) = ĉ(p
∗), where ĉ(p

∗) is a stationary

point; if not, set p = p+ 1, go back to step 2.

Phase 2 : Image Model Estimation

At the Phase 2, we fix the contour and minimize (5.3) with respect to wM and

θM. In our work, we use single Gaussian distribution to model both the object and the

background regions. Then the model parameters are the mean and variance of the pixel

values inside and outside of the contour, i.e., θM = [µM, σ
2
M], for M = {in, out}. By

taking the derivatives of the log likelihood with regard to all parameters and setting them

to zero, we are able to obtain the optimal parameters. µM and σ2M are sample mean

and variance of image intensity in the inner and outer regions. wM is the ratios of the

number of pixels in AM and the total number of pixels in the image.
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5.3 Clutter Rejection Mechanism

The potential candidates detected by the detector may include true targets or may

not include targets (False Alarms). An important capability of an ATR system is to

reject input patterns that cannot be classified in any of the classes in an object library

with a sufficiently high degree of confidence. In [9], a linear classifier, based on absolute

and relative scores, ranks and their dispersion is used to accept/reject the final result.

In [38], the statistic properties of the scores are used to define a threshold or the bounds

of threshold to reject non-target.

In our work, after a window on the output of the detector is classified as an object

in the object library, the classified window will be registered with the indexed image in

the library. The registration is the process of establishing point-by-point correspondence

between two images. After registration, the test window will be aligned with the indexed

image by rotation, translation and other geometric transforms. If the test window is clas-

sified correctly, then both the recognition score and the distance between the registered

test window and the indexed image in the library should be small. Because we estimate

the object and its position jointly, the registration method that we used here is a gradient

based method [34, 39].

Given two images F (x, y) and G(x, y) containing similar regions, pixel locations in

G(x, y) are related to those in the reference F (x, y) as:

G(x, y) = F (x cos θ − y sin θ + tx, y cos θ + x sin θ + ty),

where tx and ty are the horizontal and vertical translations and θ is the rotation, which

takes F (x, y) to the image of G(x, y). By applying the first-order Taylor series expansion,

we have

G(x, y) = F (x, y) + (tx − yθ − x
θ2

2
)
∂F (x, y)

∂x
+ (ty + xθ − y

θ2

2
)
∂F (x, y)

∂y
.

This allows for an error expression between G(x, y) and the transformed F (x, y) pa-

rameterized by the registration terms tx, ty and θ,

E(tx, ty, θ) =
∑

[

F (m,n) + (tx − nθ −m
θ2

2
)
∂F (m,n)

∂m

+(ty +mθ − n
θ2

2
)
∂F (m,n)

∂n
−G(m,n)

]2

,
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where the sum is taken over the overlapping portions of G(m,n) and F (m,n) and vari-

ables of summation have been changed to m and n to represent the discrete horizontal

and vertical pixel locations.

To find the estimates of (tx, ty, θ) parameters, E(tx, ty, θ) can be minimized with

respect to each of parameters, yielding the system







∑

F 2
m

∑

FmFn

∑

AFm
∑

FmFn

∑

F 2
n

∑

AFn
∑

AFm

∑

AFn

∑

A2













tx

ty

θ






=







∑

FmGt
∑

FnGt
∑

AGt






,

where Fm = ∂F (m,n)
∂m

, Fn =
∂F (m,n)

∂n
, Gt = G(m,n)− F (m,n), and A = mFn − nFm. The

sum is again taken over overlapping pixels of F (m,n) and G(m,n).

Since the approximations above are based on Taylor expansions about the estimated

parameters, tx, ty and θ must be relatively small for the estimation to be accurate. To al-

low for larger registration parameters, a multi-resolution iterative technique is employed.

First, both images F (m,n) and G(m,n) are artificially reduced in resolution to a min-

imum size via a Gaussian pyramid [39]. The base of the pyramid is the image at its

original-resolution, each upper tier is derived from the lower one by convolving the image

with a 2-D Gaussian kernel and down sampling by a factor of 2 in each direction. Per-

forming the registration at lower resolutions allows large translations to reduce to small

values which can be accurately estimated. Once registration has converged at a specific

resolution level, the algorithm then moves up one resolution level and proceeds to refine

the registration parameters.

Once the two images are aligned, the intensity distance between the overlapping object

areas can be obtained. Combined with the scores from the recognition, a new classifier

can be trained to reject the non-target while keeping the true recognition results. Here

we use the regression tree to remove non-targets. A set of targets and non-targets are

classified using PCA and Bessel K method. Each image is aligned with the identified

images in the library to calculate the intensity distance. A regression tree is trained using

the distances and the recognition scores. To avoid removing the targets, we adjust the

weights when training the regression tree.

5.4 Experiments and System Performance

To train Haar-like feature based detector, we first generate a set of positive images

with targets in the center and a set of negative images, which do not include any targets.

We use the 3D tool described in Chapter 3 to generate the positive images and negative
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images. Tank, truck and tractor are targets. Each target is projected at 36 rotation

angles and 5 elevation angles. These 180 images per target are further shifted up, down,

left and right by 3 pixels. Thus, there are total 2700 positive images. All the other

objects included in the 3D tool, such as trees, airplanes, balls, etc., are combined and

projected randomly to form the negative set. Some real images are also used as negative

images. The total number of negative images generated is 3342. During the training

process, all the positive images are normalized to the size 24×24. In each training stage,
a set of negative samples are selected from the negative images using windows with all

possible sizes. A 17 stage cascade classifier with 349 weak classifiers in it is formed.

To evaluate the performance of the detector, we generated 287 images with total 1116

objects, including 784 tanks, 192 trucks and 140 tractors. The color imagery is converted

into grey-scale imagery. The performance of detector depends on 4 parameters, the scale

factor, the minimum number of neighbors, the maximum size difference and the maximum

position difference between the true windows and the detected windows. The scale factor

controls the strength of the window scanning. Small value indicates that a large number

of windows in the test images are scanned. The minimum number of neighbors is used

to group retrieved windows in order to filter out noise. The larger the value is, the larger

is the number of windows to be grouped. The last parameters are used to determine the

coincidence of the true and detected windows. Here the scale factor is 1.2, the minimum

number of neighbors is 1, the maximum size difference is 1.5 and the maximum position

difference is set to be 0.3. The test results are shown in Table 5.1. The missed targets

are mostly occluded or located along the boundary of images.

To keep the hitting rate at a high value, the number of false alarms is allowed to be

very large. In practice, we find that some targets are included in more than one windows

and some detected regions cover two or more targets. We use a heuristic method to filter

out large windows which cover more than two small windows and combine overlapped

windows. If the window size is less than a threshold, it will be removed. After combina-

tion and removal, the number of false alarms decreases dramatically while the number of

hits remains the same. The processing time per image also reduces. The ROC curves of

the detected results before and after window combination and removal are shown in Fig.

5.4. We can see that the number of false alarms decreases a lot after window combination.

Table 5.1. Detection Results on 287 Images with 1116 Targets

Hits Miss False Alarms
After detector 1004 112 437

After combination and removal 1003 113 187
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Figure 5.4. The ROC curves of detected results before window combination (dashed
line) and after window combination (solid line).

We further apply the proposed segmentation method to each detected region to have

the targets located in the center of windows. Since the targets may have some parts out-

side of the detected windows, we first enlarge the window by 50% and then retrieve the

targets. To speed up the segmentation, the windows are normalized to the size 64× 64

and the number of control points is set to 10. The detection results are shown in Fig.

5.5. In the top image, two overlapped red windows which contain the same tank are

combined using one green window and further adjusted based on segmentation results to

fit the yellow window. In the middle image, there are 4 targets covered by two red win-

dows. The larger windows are removed after the window combination procedure. In the

bottom image, a red window of small size is removed as non-target. Overall the proposed

processing after detection reduces false alarms and allows improved location of targets.

After combination and removal, we segment targets in each adjusted window. Although

the segmentation increases the processing time, it results in a considerable improvement

in the recognition performance. We apply PCA and Bessel K based recognition method

introduced in Chapter 4 to the detected regions with and without segmentation. 24

images per target are used as the training samples. Table 5.2 summarizes recognition

results. Note that the recognition performance after segmentation is considerably better

than the performance without segmentation. We can also observe that in both scenarios

Bessel K based method outperforms PCA.

We trained a regression tree for each recognition method to reject the clutters. The

regression trees are then applied to the detection results after window adjustment using

combination and segmentation. Table 5.3 shows the results after rejection for both PCA
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Table 5.2. Correct Recognition Rate with and without Segmentation using PCA and
Bessel K methods

PCA Bessel K
Without Segmentation 68.29% 85.05%
With Segmentation 86.83% 95.47%

and Bessel K methods. Compared with Table 5.1, although several targets are missed

by false rejection, a lot of false alarms are removed.

Table 5.3. Detection Results After Rejection for PCA and Bessel K Methods

Process Hits Miss False Alarms
PCA: After rejection 988 128 46

Bessel K: After rejection 991 125 77

5.5 Summary

We proposed a complete detection-recognition system with imposed capabilities to

reject the clutter in detected regions of interest. This addresses a practical approach to

designing an ATR system. A rapid object detection method using a boosted cascade of

Haar-like features is adopted. The detected regions of each image are further combined

or removed using a heuristic method based on the relative locations of the windows to

reduce the number of false alarms. B-spline based segmentation method is then utilized

to retrieve the separate targets from the clutter within detected regions. This extra

step can help to locate the targets in the center of windows and to classify targets

imposed on different backgrounds. The experimental results indicate that the proposed

postprocessing steps result in considerable performance improvements both for PCA and

Bessel K based recognition methods. The Bessel K-based recognition method is more

robust compared to PCA method in the presence of clutters and occlusions.

The method for the rejection of an unknown object is introduced. The final re-

ject/accept rule is trained using the regression tree. System performance is evaluated.
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Figure 5.5. Sample images including detection regions. Detector outputs are marked
in red, results after combination and removal are marked in green and results after
segmentation are marked in yellow.



CHAPTER 6

SYSTEM PERFORMANCE USING DIE CAST DATABASE

In the previous chapters, we designed an ATR system using Bessel K forms applied to

imagery acquired by optical sensors and evaluated the recognition capacity of a system

implementing PCA coding applied to both single and multiple frames. In Chapter 3, a

simulated database was described, and effects of CCD camera and weather effects were

simulated. Some effects, such as shadowing and occlusions are challenging for modeling

and hard to mimic using the simulation tool. Thus, there is a strong need in generating

realistic effects and collecting real data. In this Chapter, we will introduce a real image

database and evaluate the detection and recognition performance using the methods

described in Chapters 4 and 5.

6.1 Die Cast Database

As described in Chapter 3, to evaluate performance of ATR systems, we involve

a database generated using the 3D simulation tool provided by Augusta System, Inc.

Although we can conveniently obtain images of objects from arbitrary view angle, we

observed a number of drawbacks in the images obtained using the tool: (1) Synthetic

images do not look realistic; (2) The tool can not model camera or weather effects with

high precision, for example, shadows; and (3) The number of backgrounds is limited. The

backgrounds are relatively simple and can not imitate the real world. Since simulated

data do not possess features of real images, to understand capabilities of designed ATR

system, we need a real database.

Besides the COIL-100 database, there are several other public databases available

online, which are traditionally used for object detection and recognition, (for example,

UIUC database [24] and UBC database [26].) Some datasets contain imagery that is

not applicable for detection. The other datasets do not consider targets at different

elevation angles. None of existing databases contains images that would allow us to

comprehensively evaluate camera and environmental effects.

39
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In the past we purchased 56 die cast vehicles, including tanks, trucks, trailers, tractors

and airplanes, with the purpose to build an extended dataset useful for a variety appli-

cations. In this work, we select 6 die cast cars or 1/72 scale copies of military objects as

targets. Images are recorded by Nikon CCD color camera (D80). The resolution of the

images is set to be 1936× 1296. The camera was equipped with Tamron AF 70-300mm

f/4.0-5.6 LD Macro zoom lens. Aperture was close to f4.2. Zoom was fixed at 70mm

for the clear images. We set the camera shutter speed (intensity integration time) as

1/60 second. Build-in flash was used. For each die cast model, a set of clear images are

captured from different views as a bench mark. Fig. 6.1 illustrates these 6 objects in

top view. Note that object 1 is M1A1HA with mine plough; object 2 is M1A2; object 3

is UK Challenger; object 4 is a Wurfamen 40 tank; object 5 is a HMMWV M998 “gun

truck” and object 6 is Hummer. Images are taken using Nikon D80. The resolution of

the images is 1936× 1296. The pixel count of objects in the images shown in Fig. 6.1 is

about 800× 800 pixels. Each object is projected at 3 elevation angles, 0, 20.3 and 35.6

degrees. At each elevation angle, a calibrated turntable is utilized to control the rotation

angle of the objects. The selected rotation step angle is 5 degree. Thus there are total

216 (72× 3) poses for each object.

(a) (b) (c)

(d) (e) (f)

Figure 6.1. Top views of clear images from (a) to (f) are Object 1 to 6.

By adjusting the lighting conditions and the camera settings, we can easily obtain

images with shadows, low contrast, and defocus blur. Each effect is measured at 4 levels

of degradation. The clear and distorted sample images of object 2 in Fig. 6.1 are listed

in Fig. 6.2. The detailed lighting and camera settings are listed in Table 6.1. Thus

total 16848 images taken indoor including clear and distorted image form the real image

database for classification.
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Table 6.1. Lighting Condition and Camera Settings for Real Image Database.

Mode Focus Length Shutter Speed Flash Lighting
Clear Auto 1/60 sec ON 2 lamps, side

Dark

Level 1
Same as
Clear mode

1/10 sec

OFF 1 lamp, top
Level 2 1/20 sec
Level 3 1/40 sec
Level 4 1/60 sec

Shadow

Level 1

Same as
Clear mode

1/15 sec

OFF

1 lamp, 2 inch from
side, 55 feet high

Level 2 1/25 sec
1 lamp, 2 inch from
side, 20 feet high

Level 3 1/10 sec
1 lamp, 4 inch from
side, 55 feet high

Level 4 1/5 sec
1 lamp, 6 inch from
side, 55 feet high

Blur

Level 1 8 inch

1/60 sec ON 2 lamps, side
Level 2 10 inch
Level 3 12 inch
Level 4 14 inch

6.2 Preprocessing and Recognition Using Bessel K Forms

The raw images captured by the camera are first cropped in a square window with the

object in the center. Since in practice, the objects are projected in different backgrounds.

To recognize objects under the real backgrounds, we further generate masks for each

object in the images. Two recognition methods are performed, PCA-based method and

Bessel K forms based method, which are introduced in Chapter 4. For Bessel K forms

based method, only the pixels belong to objects are used to estimate the parameters.

For PCA method, all segmented objects are placed in the black background to perform

classification.

First, we test the capability of recognition methods in dealing with pose changes of

objects. All images in the clear mode are divided into two nonoverlapping sets, training

and testing. A bank of 38 filters including Gaussian filters, Laplacian of Gaussian filters

and Gabor filters are utilized to process data. The recognition performance is evaluated

as the number of training samples change. The training images are selected with equal

intervals of rotation angles and at elevation angle 20.3. All images are further resized to

64× 64 and are normalized using equation (4.8). Table 6.2 summarizes the recognition
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Figure 6.2. Sample distorted images of object 2. From the first row to the third row
are images with defocus blur, low illumination and shadow. From the left column to the
right column are distorted images from Level 1 to Level 4.

results using PCA and Bessel K forms. Note that in general, Bessel K forms outperform

PCA method.

Table 6.2. Correct Recognition Rates for Die Cast dataset Using PCA and Bessel K
Forms.

Die Cast dataset
Train/Test per object PCA Bessel K

36/180 87.41% 88.70%
24/192 84.38% 89.58%
18/198 79.21% 87.46%
8/208 60.82% 71.39%
4/212 49.84% 49.69%

The results in Table 6.2 are obtained using the combined metric described in Section

4.1. Given 24 training images per object, the correct recognition rates are 86.98% using

Pseudo-metric only, 92.79% using K-measure only and 89.58% using the combined metric.

Similar to the results in Table 4.2, we can conclude that the combination algorithm

balances the accuracy and speed.

Then we fix the training samples to be 24 clear images per target, and test the in-

fluence of camera and lighting effects on recognition performance. The average correct

recognition rates as a function of distortion level are shown in Fig. 6.3. Level 0 corre-

sponds to the case when clear images are tested. From the results, we observe that the
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recognition performance drops dramatically even for the lowest distortion level for all

blur, low illumination and shadow conditions.
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Figure 6.3. Recognition performance un-
der different effects.
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Figure 6.4. The ROC curve of detected
results after adjustment.

6.3 Experiments and Results in Detection and Recognition Sys-

tems

The 6 objects combined with 3 non-target vehicles are selected for taking outdoor

images. To generate real images for detection, all vehicles are arbitrarily placed on the

ground, grass, sand and other real world backgrounds. The camera is located 4 to 5

meters apart from the objects. Different zoom scales are applied. Images are taken

at different time with different lighting conditions. Thus a set of images are captured

given different camera poses. We manually departed the images used for detection into

3 categories, simple background, complex background and complex background with

occlusion. Sample images of each categories are shown in Fig. 6.5. All images for

detection are resized to 800× 536. The number of images and objects included for each

category are listed in Table 6.3.

Table 6.3. Information of Detection Images.

Background Number of Images Number of Objects
Simple 299 997
Complex 100 422

Complex with occlusion 50 128
Total 499 1547
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To train the detector for all objects, we use 3888 positive images and 172 real negative

images. All the positive images are modified from the images in the Die Cast dataset.

Chroma keying technique, which removes the blue background, is used to extract the

objects. The objects after keying are then resized properly and put in a window from

a set of background images. The windows from the background images are randomly

selected to avoid the detector to learn features from the backgrounds. Sample positive

images used for training the detector are shown in Fig. 6.6. All positive images are

further resized to 24× 24. A 20 stage cascade classifier with 910 weak classifiers in it is

formed.

All images listed in Table 6.3 are used to evaluate the performance of the detector.

The detection results are shown in Table 6.4. Since only the segmented objects can be

processed in recognition, we further use the segmentation results to adjust the windows

location. We can see that after adjustment, the number of hits increases and the number

of miss and false alarm decrease. The ROC curve after adjustment is drawn in Fig.

6.4. The detection results are further distributed into 3 categories in Table 6.4. We can

conclude that the complexity of background and the occlusion constitute more challenges

for detection.

Table 6.4. Detection Results with and without Adjustment.

Hits Miss False Alarms
Without Adjustment 764 783 3620
With Adjustment 788 759 3504

Simple 598 399 2066
Complex 148 274 658

Complex with occlusion 42 86 780

We further apply PCA and Bessel K based recognition methods to the detected regions

with segmentation. 24 images per object are used as the training samples. Only 15.42%

detected objects can be recognized correctly using PCA method. The performance of

Bessel K based method is 31.98%. By analyzing the detected results in Fig. 6.7, we

observe that some detected regions only occupy part of objects and the real lighting and

backgrounds make the segmentation difficult. All these factors make the final system

performance very low.

We manually select 35 background textures from 7 negative images. These back-

ground textures are further filtered using the designed filter bank. Pairwise distances

are calculated among the background textures and each detected window by using the
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Pseudo-metric of two distribution functions. K-mean cluster is then applied to separate

all the background windows and each detected window into two parts. If the detected

window is clustered with any background texture, then it is rejected as clutter. The

number of false alarm after clutter rejection is 1392 and the number of hits is 750. This

method removes most false alarms while keep the hit rate.

6.4 Summary

In this Chapter, a real image dataset is formed using 6 die cast military models.

The objects are projected from different view points. At each view point, the clear and

distorted images are taken for each object. These distortions include defocus blur, low

illumination and shadow. Bessel K based method outperform PCA based method at

different training to testing data ratios. The influence of camera and lighting effects on

recognition performance is also evaluated. The detection performance using Haar-like

features is tested based on 499 images. The recognition is further performed on the

detected regions after segmentation. The complexity of backgrounds and the occlusion

decrease both the detection and recognition performance.
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Simple Background

Complex Background

Complex Background with Occlusion

Figure 6.5. Sample real images on real background.

Figure 6.6. Sample positive images used to train a detector.
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Simple Background

Complex Background

Complex Background with Occlusion

Figure 6.7. Sample images including detection regions. Detector outputs are marked
in red, results after combination are marked in green and results after segmentation are
marked in yellow.



CHAPTER 7

RECOGNITION CAPACITY OF ATR SYSTEMS

In many large scale recognition applications knowledge of the limiting capabilities

of designed recognition systems is crucial. These limits, however, are determined by

a variety of factors including a source coding technique used to process data, quality,

complexity, and variability of the collected data. Given an encoding technique, the

remaining factors can be attributed to recognition channel introduced and characterized

by Schmid and O’Sullivan [50] and further analyzed by Westover and O’Sullivan [63,

64]. Similar to a communication channel, a recognition channel is characterized by its

capacity, with the difference being recognition capacity. In an object recognition problem,

recognition capacity is the exponent in an exponential approximation to the maximum

number of objects/targets that can be successfully recognized with probability of error

close to zero when the number of informative samples gets large. In this chapter, we

briefly summarize the results by Schmid and O’Sullivan on recognition capacity and then

evaluate the capacity of Principal Component Analysis (PCA)-based Object Recognition

systems. We consider both the case of a single frame and the case of multiple frames of

the same object.

7.1 Recognition Capacity

Consider an object recognition system. A majority of practical recognition systems

are designed to operate in two modes: enrollment / training mode and recognition / test-

ing mode. A block diagram of a typical recognition system is displayed in Fig. 7.1. During

the training mode, the signals or images are encoded to obtain a set of attributes or fea-

ture vectors, which are further stored in a library or database. During the recognition

mode, an encoded query image / signal, that is, image / signal submitted for recognition

and thus presumably containing information about an object to be recognized, is com-

pared against each entry in the library of objects. The recognition system then outputs

the identity of the object. It was shown in [50] that a traditional object recognition sys-

tem, given encoded data stored in an object library and models for encoded data, can be

48
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viewed as a recognition channel, an analog of a communication channel. Fig. 7.2 presents

a block diagram of a recognition channel. Given encoded data and an appropriate model,

the problem of object recognition can be restated as a maximum likelihood (ML) decod-

ing problem [12, 20, 61]. Similar to a communication channel, a recognition channel is

characterized by its capacity, with the difference being recognition capacity. In an object

recognition problem, recognition capacity can be thought as being the maximum number

of objects/targets that can be successfully recognized with probability of error close to

zero when the number of informative samples gets large.

Figure 7.1. Structure of a recognition system. X(1),X(2), . . . ,X(M) are images or
encoded data characterizing M object classes. The vector Y is a query image or encoded
data.

Figure 7.2. Structure of a recognition channel. X(1),X(2), . . . ,X(M) are indepen-
dent codewords (images or encoded data). Y is a distorted noisy version of one of the
codewords in the object library.

Suppose that an object library is composed of templates (processed and encoded

images) xn(1), . . . , xn(M) of M distinct objects. Here n is the length of a template

(codeword). Denote by yn a template submitted for recognition. We assume that yn

contains information about one of the objects stored in the object library. From [50] the

templates in the library can be modeled as realizations ofM independent and identically

distributed (i.i.d.) random vectors Xn(1), . . . , Xn(M) and the template submitted for

recognition as a realization of a random vector Y n. The random vector Y n is assumed to

be a distorted noisy version of one of the M random vectors characterizing M encoded

objects in the object library. During recognition/testing mode, the query template yn is

compared against each template in the object library. Since yn is a distorted version of a
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library template, then one of the templates in the database and the template submitted

for identification will have some information in common and thus can be described by

a joint probability density function pXn,Y n(·, ·). The remaining M − 1 templates in the

object library and the template submitted for identification do not have information

in common and thus can be described by the product of probability density functions

pXn(·) × pY n(·) with pXn(·) and pY n(·) being the marginals of pXn,Y n(·, ·). Under this
setting, the problem of object recognition can be stated as an M-ary hypothesis testing

problem. The vector of test statistics is anM-dimensional vector of information densities,

which are in this case are i.i.d. components. A more detailed description and analysis to

this problem can be found in [50].

Given mathematical models for an encoded image of an object, and for noise and

distortions that the encoded image contains, one may derive an expression for the ca-

pacity (constrained capacity) of an object recognition system. Again, the object library

combined with a query object template can be viewed as a recognition channel, where

the query object template, a distorted, noisy version of a template in the library, is ob-

served on the output of the channel. Theoretical value for the constrained capacity of a

recognition system, given a source encoding technique, can be obtained by following In-

formation Theoretical framework. Given templates, their probability distribution can be

empirically evaluated using classical parametric and modern nonparametric estimation

techniques. The evaluated joint and marginal probability distributions for a template of

an object to be recognized and for a template from the object library can then be used

to form the information density:

in(·, ·) =
1

n
log

pXn,Y n(·, ·)
pXn(·)pY n(·) , (7.1)

where we assume that the ratio of the joint density to the product of marginal densities

is well defined. When the template distributions are known, the constrained recognition

capacity is the mutual information rate defined as

Ī(X, Y ) = lim
n→∞

E[in], (7.2)

where the expected value is with respect to the joint distribution.

In practical cases, given encoded data (templates), their probability distribution are

empirically evaluated using classical parametric and modern nonparametric estimation

techniques from a set of training data. Then the expression under the expected value
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in (7.2) will contain estimated parameters and will not present a deterministic sequence

any more. Thus, in practice, we deal with random sequences.

7.1.1 Empirical Mutual Information Rate

Let p(xn : Θ) be a probability model of a template from an object library. The

model p(xn : Θ) is a parametric probability density function (p.d.f.) parameterized by

a vector of K parameters Θ = [θ1, . . . , θK ]
T . Let p(yn : Θ,Ψ) be a probability model

of noisy transformed templates from an object library. The vector of L parameters

Ψ = [ψ1, . . . , ψL]
T represents the parameters of the distortions introduced by a recognition

channel. The parameters Θ and Ψ are unknown and therefore have to be estimated from

a set of training data (assume labeled data). All other assumptions about the probability

models for templates are similar to the assumptions in Sec. 7.1.

Denote by Θ̂ and Ψ̂ the vectors of estimated parameters. Then the information

density with unknown parameters of the p.d.f.s replaced by the estimated parameters

becomes:

in(Θ̂, Ψ̂) =
1

n
log

pXn,Y n(·, · : Θ̂, Ψ̂)
pXn(· : Θ̂)pY n(· : Θ̂, Ψ̂)

. (7.3)

Taking the expected value with respect to the joint p.d.f. and substituting the estimated

parameters in the final expression, we obtain a plug-in estimate of the empirical mutual

information rate, denote it by In(Θ̂, Φ̂) :

In(Θ̂, Ψ̂) = EpXn,Y n (·,·:Θ̂,Ψ̂)[in(Θ̂, Ψ̂)]. (7.4)

Due to the estimated parameters Θ̂ and Ψ̂ the sequence of In(Θ̂, Ψ̂) is a sequence of

random variables. In the following we will interchangeably use In(Θ̂, Ψ̂) and In(M) to

denote the empirical mutual information rate. The latter notation indicates implicit

dependence of estimated parameters on the number of classes, M, to recognize.

Definition 1 An estimate is a plug-in estimate of a function if unknown parameters of

the function are replaced by their estimates.

It is potentially possible to state and prove convergence of the sequence in (7.4) in

probability or with probability one, provided we are dealing with a “nice” family of

p.d.f.s (for instance, the exponential family) and maximum likelihood (ML) estimates of

unknown parameters. In general, to state conditions for convergence of the sequence in

(7.4) and prove convergence with probability one appears to be hard.

In this work, we are interested in deriving the expression (7.4) under the condition

that images of objects are encoded using a PCA-based approach, an empirical version
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of Karhunen-Loeve expansion [61]. We are further interested in observing and analyzing

a trend of the empirical mutual information rate as the number of objects and tem-

plate length grow in a certain proportion. Ultimately we would like to find the point of

empirical recognition capacity that we define as follows.

From (7.4) the empirical mutual information rate is parameterized by the length of

templates, n, and by the number of classes to recognize, M. Therefore, we can form a se-

quence of empirical mutual information rates. Following the definition of the operational

capacity in communication theory (see for example, [12, Ch.8] for details), we define the

recognition rate as R = log(M)/n. If we had a sequence of PCA codes (n, 2nR) with the

recognition rate R, we would be able to evaluate empirically the trend of the sequence

of In(M) as a function of the rate R, since both In(M) and R are functions of M and

n. Then empirical recognition capacity can be defined as a point of intersection of the

empirical mutual information rate curve plotted as a function of the recognition rate and

the diagonal line bisecting the first quadrant.

7.2 Recognition Capacity under the Constraint of PCA En-

coded Data

In this section we will derive an expression for the constrained capacity of noisy recog-

nition channel under the constraint of Principle Component Analysis (PCA)-encoded

data. PCA( [30, 32]) is a technique which has been widely used in data analysis and

compression. This is a linear transform method, which projects the data into a lower

dimensional space (eigenspace) chosen to maximally capture variability in the data. A

typical PCA-based recognition system operates in two modes: training and testing. Dur-

ing the training mode, the PCA space is empirically evaluated using labeled training

data. During the testing mode, a set of signals/images is projected onto the estimated

PCA space, resulting in templates that are further stored in a dataset or library. Then

the performance of the object recognition system is evaluated by projecting query images

onto the PCA space and comparing query templates against all templates in the library.

In this work, we apply the global PCA method, which uses a single training image per

object class.

The images of M objects from the object library when projected onto the eigenspace

form templates xn(1), . . . , xn(M). To recognize an object based on an acquired image, the

image is projected onto the same eigenspace and is represented by a set of components

that can be arranged in a n-dimensional vector, yn.
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7.2.1 Model for PCA Encoded Data: Single Image Case

Suppose that a set of templates associated with a set of objects is available. We model

templates xn(1), . . . , xn(M), n-dimensional vectors of components in PCA representation

of the objects 1, . . . ,M, as realizations of i.i.d. Gaussian random vectors Xn with mean

zero and unknown diagonal covariance matrix Λ with entries equal to the eigenvalues

of the empirical covariance matrix, that is, Xn ∼ N (0,Λ). We assume that distortions

and noise in encoded images can be modeled as a realization of white Gaussian vector

with mean zero and unknown diagonal covariance matrix ΛN , that is, W
n ∼ N (0,ΛN).

Then a noisy template yn presented for identification is modeled as a realization of a

random vector Y n, Y n = Xn +W n. Thus Y n is also Gaussian distributed with mean

zero and diagonal covariance matrix Λ+ΛN . The unknown matrices are estimated using

labeled training data. The details of the procedure are described in later sections. The

information density, for this case is given by:

in(Λ̂, Λ̂N) = −
1

2n

n
∑

i=1

(

X2
i

σ̂2i
− 2

XiYi

σ̂2i
+

λ̂iY
2
i

σ̂2i (λ̂i + σ̂2i )
− log

(

1 +
λ̂i

σ̂2i

))

, (7.5)

where λ̂i and σ̂
2
i are the ith entry along the diagonal in the estimated matrices Λ̂ and

Λ̂N , respectively. Note since the expression for in(M) contains estimated parameters, it

implicitly depends on the number of classes M used in training. The empirical mutual

information rate, given the length of templates, n, is the average of the information

density in (7.5) with respect to the joint distribution of Xn and Y n :

In(Λ̂, Λ̂N) =
1

n
EX,Y{in(M)} = 1

2n

n
∑

k=1

log

(

1 +
λ̂k(M)

σ̂2k(M)

)

, (7.6)

where σ̂2k(M) is the estimated variance of the k-th component of the noise and λ̂k(M)

are estimated eigenvalues of the empirical covariance matrix Λ̂.

7.2.2 Model for PCA Encoded Data: Multiple Image Case

To derive an expression for the empirical mutual information rate of the PCA-based

Object Recognition system when more than a single image from the same object is

available we assume that the relative pose of the same object in two different images

is known or can be estimated. For two image case, let Xn
1 and Xn

2 be two PCA-based

templates characterizing an object at the unknown poses α1 and α2. We model the
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combined vector [Xn
1 , X

n
2 ]

T as being Gaussian distributed with zero mean and block

diagonal covariance matrix

Λ1 =

[
Λ Λρ1,2

Λρ1,2 Λ

]
(7.7)

where Λρ1,2 is the matrix with components λiρi(δα), i = 1, . . . , n, and δα = |α1 − α2| is
a known parameter or can be estimated.

The combined noisy templates [Y n
1 , Y

n
2 ]

T submitted for recognition are PCA compo-

nents from a randomly selected pair of templates from one of M hypothesis. The noise

in Y n
1 and the noise in Y n

2 are independent Gaussian with the diagonal covariance matrix

ΛN .. Then the combined vector [Y
n
1 , Y

n
2 ]

T follows Gaussian distribution with zero mean

and block diagonal covariance matrix:

Λ2 =

[
Λ + ΛN Λρ1,2

Λρ1,2 Λ + ΛN

]
. (7.8)

To further evaluate the empirical mutual information rate, we find the joint distribu-

tion of [Xn
1 , X

n
2 ]

T and [Y n
1 , Y

n
2 ]

T . If the pair of templates and a pair of candidates have a

signal in common, the joint distribution is assumed to follow Gaussian distribution with

mean zero and covariance matrix R1 composed of four block matrices given in (7.7) and

(7.8):

R1 =

[
Λ1 Λ1

Λ1 Λ2

]
. (7.9)

If the pairs do not have a signal in common, their joint distribution follows Gaussian

distribution with mean zero and covariance matrix R0, which is equal to R1 with off-

diagonal block matrices set to zero.

The joint empirical mutual information rate in this case is calculated by replacing Xn

and Y n in (7.6) with the vectors [Xn
1 , X

n
2 ]

T and [Y n
1 , Y

n
2 ]

T , respectively.

If {ρj(δα) 6= ±1}, for all j = 1, · · · , n, then both R0 and R1 are symmetric, positive

definite matrices. Assume that the matrices R0 and R1 are replaced by their estimates

R̂0 and R̂1. The joint information density for the pairs of templates is given by

in(R̂0, R̂1) = −
1

2n

{
[Xn

1 , X
n
2 , Y

n
1 , Y

n
2 ](R̂

−1
1 − R̂−10 )[Xn

1 , X
n
2 , Y

n
1 , Y

n
2 ]

T + log det(R̂1R̂
−1
0 )
}
.

(7.10)

Replacing R̂1 and R̂0 with their expressions in terms of block matrices results in the

expression for the PCA-based joint empirical mutual information rate:
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Ī(2)n (R̂0, R̂1) =
1

2n

n∑

i=1

log



(
1 +

λ̂i

σ̂2i

)2

−
(
λ̂iρ̂i(δα)

σ̂2i

)2

, (7.11)

where the superscript in Ī
(2)
n indicates that the empirical mutual information rate is eval-

uated for the case of two frames per object. To evaluate the empirical mutual information

rate, we would need to form a sequence of Ī
(2)
n (R̂0, R̂1) parameterized by the increasing

parameters n and M in a certain proportion as discussed in the following sections.

Two special cases of (7.11) are of interest. When {ρj(δα) = 0}, for all j = 1, . . . , n,

which indicates that Xn
1 (α1) and Xn

2 (α2) are uncorrelated, the joint empirical mutual

information rate from (7.11) is equal to twice the empirical mutual information rate

calculated using a single image per object. When {ρj(δα) = ±1}, for any j = 1, . . . , n,

both R1 and R0 are not full rank matrices, thus the inverse matrices do not exist. In

general, assume ρj(δα) = 1 or −1, j = 1, . . . , p, the combined vector [Xn
1 , X

n
2 ]

T can be

reordered as
[
Xp
1 , X

p
2 , X

n−p
1 , Xn−p

2

]T
, where Xp

i and X
n−p
i , i = 1, 2 are the first p entries

and the last n− p entries of Xn
i . Since X

p
2 is fully dependent on X

p
1 , the probability of

the vector [Xn
1 , X

n
2 ]

T is equal to the probability of the reduced vector
[
Xp
1 , X

n−p
1 , Xn−p

2

]T
.

The corresponding noisy vector [Y n
1 , Y

n
2 ]

T is reduced to
[
Y p
1 , Y

n−p
1 , Y n−p

2

]T
. Now, the

empirical mutual information rate of the reduced pair of templates and the corresponding

pair of candidates is the summation of two parts. The first part is the empirical mutual

information rate of the recognition channel formed by the first p components of a single

frame. The other part is the empirical mutual information rate of the recognition channel

formed by the n − p components from two frames separated by the relative orientation

δα. Thus the joint empirical mutual information rate in this case is given by:

Ī(2)n (R̂0, R̂1) =
1

2n

n∑

i=p+1

log



(
1 +

λ̂i

σ̂2i

)2

−
(
λ̂iρ̂i(δα)

σ̂2i

)2

+ 1

2n

p∑

i=1

log

(
1 +

λ̂i

σ̂2i

)
,

(7.12)

where λ̂i and σ̂2i are the estimated parameters. When all correlation coefficients take

values 1 or -1, the expression for the empirical mutual information rate (7.12) degener-

ates into the empirical mutual information rate of recognition channel based on a single

template as in (7.6).

The results above can be extended to obtain the empirical mutual information rate

using multiple images of the same object. Suppose that S distinct images are available

from the same object. Let Xn
1 , . . . , X

n
S be S PCA-encoded images acquired from the

same object at unknown poses α1, . . . , αS. The noisy candidates Y
n
1 , · · · , Y n

S are S PCA-

encoded images of an object submitted for recognition. Similar to the two image case,
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we assume that the combined vector [Xn
1 , · · · , Xn

S ]
T and [Y n

1 , · · · , Y n
S ]

T follow Gaussian

distribution with zero mean and estimated covariance matrix Λ1 and Λ2 given by:

Λ1 =




Λ Λρ1,2 · · · Λρ1,S

Λρ1,2 Λ · · · Λρ2,S
...

...
. . .

...

Λρ1,S Λρ2,S · · · Λ



,

Λ2 =




Λ + ΛN Λρ1,2 · · · Λρ1,S

Λρ1,2 Λ + ΛN · · · Λρ2,S
...

...
. . .

...

Λρ1,S Λρ2,S · · · Λ + ΛN



,

where Λρs,t, s, t = 1, . . . , S, is the diagonal covariance matrix ofXn
s andX

n
t , with diagonal

element λiρi(δαs,t) and δαs,t = |αs − αt|. The matrices are estimated using training data
characterizing M distinct objects. Again we assume that the absolute orientation of an

object is unknown. However, the test statistic, information density in this case, and

thus the empirical mutual information rate, is a function of the relative orientation. For

stationary objects or for slowly moving objects, the relative orientation is either known

or can be estimated with high fidelity.

The joint distribution of [Xn
1 , . . . , X

n
S ]

T and [Y n
1 , . . . , Y

n
S ]

T in multiple images case

is similar to the distribution of two encoded images. If the set of templates and the

set of candidates have a signal in common, then the joint distribution follows Gaussian

distribution with zero mean and covariance matrix R1 defined in 7.9. Otherwise, their

joint distribution follows Gaussian distribution with mean zero and covariance matrix

R0, which is equal to R1 with off-diagonal block matrices set to zero. If no correlation

coefficients equals to 1 or -1, R0 and R1 are symmetric, positive definite matrices. By

substituting R1 and R0 into the expression for the joint empirical mutual information

rate, we can find the empirical mutual information rate of the recognition channel for

multiple images case. For example, when S = 3, the joint empirical mutual information

rate is

I(3)n (R̂0, R̂1) =
1

2n

n∑

i=1

log



(
1 +

λ̂i

σ̂2i

)3

−
(
1 +

λ̂i

σ̂2i

)(
λ̂i

σ̂2i

)2

A1 + 2

(
λ̂i

σ̂2i

)3

A2


 , (7.13)

where A1 = ρ̂2i (δα1,2) + ρ̂2i (δα1,3) + ρ̂2i (δα2,3) and A2 = ρ̂i(δα1,2)ρ̂i(δα1,3)ρ̂i(δα2,3).
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If any correlation coefficient equals to 1 or -1, the redundant bits from the input and

corresponding output will be removed. The joint empirical mutual information rate will

be reduced to the expression similar to the expression in (7.12).

7.3 Model Verification

In this section, we validate the model for PCA-encoded data described above. We

assume that a number of images of the same object can be acquired and processed.

Two special cases are considered: (1) an object is represented by a single class in the

database; (2) an object is represented by a set of classes in the database. This is the

case when multiple images of the same object are acquired from different orientation

and elevation angles. We present one example of empirical capacity evaluation for the

first special case. We involve data from COIL-100. The object classes are formed using

images acquired at zero degree orientation (frontal views) of 100 objects (subset I). To

evaluate the recognition performance, we use synthetically distorted images at Level 3.

To illustrate the second special case, we involve a dataset generated using a 3D

simulation tool and COIL-100 dataset. We present two examples. In the first example,

we use data generated from the ATR Training Tool. The generated clean and distorted

data (images) are assumed to mimic data acquired by optical cameras mounted on board

of a network of Unmanned Aerial Vehicles. In the second example, we involve images of 11

toy cars from COIL-100 dataset (subset II). In each example, the data is then subdivided

into two nonoverlapping subsets: training and testing. The clean images at orientation

0, 15, 30, · · · , 345 form the training set with each angle representing a single hypothesis.

For the generated ATR dataset, the training images are projected at elevation 15 degree.

These 24 images per object are used to generate PCA-based templates of object as well

as to estimate covariance matrix Λ. The images with orientations α−5, α+5 are treated
as transformed realizations of the image at the orientation α and represent the same

hypothesis. The total number of classes formed using the partition above is equal to 72

(24× 3) for ATR dataset and 264 (24× 11) for the COIL-100 dataset.

7.3.1 Parameter Estimation

Prior to recognition, an object is located and placed in a canonical (or object-centered)

reference frame suitable for recognition. All training and testing images from ATR

dataset and COIL-100 dataset are further normalized to image size 64× 64.

PCA is a global encoding algorithm [30]. Consider an object library with M classes.

Assume that M preprocessed images (one per class) I1, I2, . . . , IM are available for train-
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ing of a recognition system that uses PCA encoded data for recognition. Training of a

PCA recognition system is reduced to estimation of a set of parameters including scatter

matrix and its eigenvalues and eigenvectors. Once a PCA system is trained, a set of

images, one per class, are projected onto the estimated PCA space, that is, encoded.

The encoded images are stored in the database in the form of templates.

In this work we assume that resolution, r, of an image is fixed and consider the

following two cases of training a PCA recognition system. In the case when M >> r,

the estimate of the scatter matrix, Σ, is given by:

Σ =
1

(M − 1)

M∑

m=1

(Im − I)(Im − I)T =
1

(M − 1)
AAT ,

where I is the sample mean and A = [I1−I, I2−I, . . . , IM−I]. In the case whenM << r,

nonzero eigenvalues of the scatter matrix Σ are the same as the eigenvalues of 1
(M−1)

ATA.

The eigenvectors are obtained by multiplying the eigenvectors of 1
(M−1)

ATA by A from

the left. The estimated matrix Σ is decomposed using eigenvalue decomposition Σ =

QΛQT , where Λ is the matrix of eigenvalues andQ is the orthogonal matrix with columns

composed of eigenvectors of Σ. In practice, only a small number n of largest eigenvalues

is selected from the total number of eigenvalues equal to min{r,M}. Then a new matrix

Q̃ with vector columns corresponding to the essential eigenvalues is formed (see for

details [30]).

The template Xn(m) of the mth class, an n-dimensional vector, is obtained by pro-

jecting image (I′m − I) onto the space formed by the columns of matrix Q̃

Xn(m) = Q̃T (I′m − I),

where “prime” indicates that the data used to form templates do not overlap with training

data. A query image is also projected onto the space defined by the eigenvectors of Σ.

The query image is now represented by a set of weights that can be arranged in an

n-dimensional vector, yn.

Suppose that L additional training images per class are available to estimate unknown

noise variance. Denote by yn(m; l), m = 1, . . . ,M, l = 1, . . . , L, the lth template of length

n representing the class m. To estimate the variance of the additive noise, we form a set

of vectors {yn(m; l)− xn(m)}. To find the variance of the noise in the kth component of
a noisy template, we appeal to sample estimates
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σ̂2k =
1

ML − 1

M∑

m=1

L∑

l=1

(yn
k (m; l)− xn

k(m)− z̄n
k )

2 , k = 1, 2, · · · , n,

where z̄k is the kth sample mean formed as

z̄n
k =

1

ML

M∑

m=1

L∑

l=1

(yn
k (m; l)− xn

k(m)) , k = 1, 2, · · · , n.

To evaluate the correlation coefficient ρ(δα), between the PCA templates of the same

object acquired δα degrees apart, we use a sample correlation coefficient. The kth cor-

relation coefficient is

ρ̂k(δα) =

∑M
m=1

∑L
l=1(x

n
1,k(m; l)− x̄n

1,k)(x
n
2,k(m; l)− x̄n

2,k)

(ML− 1)sn
1,ks

n
2,k

,

where x̄n
1 and x̄

n
2 are the sample means of X1 and X2, s

n
1 and s

n
2 are the sample standard

deviations of X1 and X2 and L is the number of samples per class.

7.3.2 Model Verification: Single Image Case

To verify the stochastic model described in Sec. 7.2.1, we use two non-parametric

statistical methods: Kolmogorov-Smirnov test [11] and Shapiro-Wilk test [52] for nor-

mality. The Kolmogorov-Smirnov test (D statistic) is to find the greatest discrepancy

between the observed and expected cumulative relative frequencies given by,

D = max
x
|FN(x)− F (x)|,

where F (x) is the hypothesized distribution (here is a normal distribution) and the

empirical distribution function FN (x) for N observations xi, i = 1, · · · , N is defined as

FN(x) =
1

N

N∑

i=1

{
1 if xi ≤ x

0 otherwise.

A p-value p is the smallest significance level at which the null hypothesis would be rejected

for the given observation [11]. Let dobs represent the observed value of the D test statistic.

Then the p-value is 2 × min{P (D ≥ dobs), P (D ≤ dobs)} using the null distribution of

D. Small p-value indicates departures of the observations from normality. By setting an

acceptable significance value pcrit (the critical p-value), the null hypothesis is rejected if

p < pcrit.
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The Shapiro-Wilk test uses the weighted order statistics to calculate the test statistic

W defined as

W =

(∑N
i=1 aix(i)

)2

∑N
i=1 (xi − x̄)2

,

where xi, x(i) and x̄ are the original data, the ordered data and the sample mean of the

observations. The constants ai are derived from the order statistics of a sample from the

standard normal distribution. A p-value is then compared with pcrit to make decisions.

In our test, the null hypothesis is that PCA components Xn follows Gaussian dis-

tribution with zero mean and estimated variances along the diagonal of Λ. The critical

p-value is set to 0.05. The results applying Kolmogorov-Smirnov test and Shapiro-Wilk

test to each dataset are reported in Table 7.1, where n is the number of random variables

and M is the sample size. Note that normality hypothesis is not rejected for majority of

individually treated random components of the vectorXn based on the test results. These

results confirm that in spite of using estimated parameters in place of these unknown

parameters of the model, it provides a reasonable fit.

Table 7.1. Results of Kolmogorov-Smirnov test and Shapiro-Wilk test for ATR dataset
and COIL dataset

Dataset
Subset I Simulated Subset II

of COIL-100 ATR set of COIL-100
n (length of PCA components) 98 71 105
M (number of hypothesis) 100 72 264
Rejected by Kolmogorov

11 0 2
-Smirnov test
Rejected by

45 17 26
Shapiro-Wilk test

7.3.3 Model Verification: Multiple Image Case

To validate the model for the case of two images, we form the matrix of correlation co-

efficients between Xn
1 and X

n
2 and a matrix of p-values, Pn×n, for testing “no correlation”

hypothesis. The p-value is computed by transforming the correlation to form a t-statistic

with N − 2 degrees of freedom [17], where N is the number of observations. Each entry

in the matrix P is evaluated on its significance. If an entry takes value smaller than

0.05, then the corresponding correlation element is significant. Fig. 7.3 displays three

matrices of p-values for the cases of α = 0, 5 and 10 given two datasets. The entries with

P (i, j) < 0.05 are marked in black while entries with P (i, j) > 0.05 are marked in white.
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(a) (b) (c)

Figure 7.3. The matrix of p-values for three cases of the relative angle δα : (a) 0, (b)
5 and (c) 10. The first row shows 71× 71 matrix from ATR dataset and the second row
shows 105×105 matrix from COIL-100 dataset. Black points correspond to P (i, j) < 0.05.
White points correspond to P (i, j) > 0.05.

From the results shown in Fig. 7.3, we can see that only a small portion of elements which

are not along the main diagonal are significantly correlated. This is in good agreement

with the model introduced in Sec. 7.2.2. The dependence of ρk(δα), k = 1, · · · , n on k for
two values of δα is shown in Fig. 7.4 for both ATR dataset and COIL-100 dataset. As

δα increases, correlation coefficients decrease. Thus we conjecture that the correlation

coefficients are related with the number of hypotheses and δα.

7.4 Evaluation of The Empirical Capacity

In this section, we evaluate the empirical capacity of recognition systems using both

synthetic and real images. We consider two cases: (1) high resolution images and a

relatively small number of classes and (2) low resolution images and a large number of

classes. To be more specific, let r be the number of pixels that represent an object within

an image and M be the number of considered classes. Case I assumes that r is much

larger thanM. Case II assumes thatM is 5 ∼ 10 times larger than r. In our experiments,

the parameters are estimated following procedures in Sec. 7.3.1.

7.4.1 Case I: High Pixel Count

In this case, we will fix the image resolution at 64×64, which corresponds to r = 4096

describing objects in ATR and COIL-100 datasets.

The total number of classes formed to evaluate the capabilities of the recognition

system for this case is 100 for subset I of COIL-100, 72 (24×3) for ATR set and 264 (24×
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Figure 7.4. The value of diagonal elements in the matrix of correlation coefficients as a
function of their number for two cases of δα. (a) ATR dataset (b) COIL-100 dataset.

11) for subset II of COIL-100. For details on how these hypotheses are formed see

Sec. 7.3. In our experiments, we follow the traditional PCA method that generates

estimates of n eigenvalues λ̂1, . . . , λ̂n and n corresponding eigenvectors by forming the

empirical covariance matrix from M distinct images of M distinct objects. We retain

only eigenvectors corresponding to the eigenvalues with the value above 0.5% of the

largest eigenvalue λ̂1. The values of eigenvalues decrease as the number of hypotheses

M increases. When r >> M the estimation problem is ill-posed, since the amount of

observed data (available data) is insufficient to estimate unknown parameters, a scatter

matrix Σ of size r × r. As described in Sec. 7.3.1, in this case PCA estimates only a

small number of parameters out of a large set of unknown parameters. The remaining

parameters are assumed to be zero. The empirical information measures that we evaluate

in this section contain estimated parameters, the eigenvalues and eigenvectors of the

scatter matrix and noise variances. Since the problem of finding the estimates of the

eigenvalues and eigenvectors of the scatter matrix is regularized by estimating only a small

number of parameters and setting the remaining parameters to zero (see [42] for details on

regularization and ill-posed problems), the plug-in estimates of the mutual information

rate, empirical capacity, and random coding exponent are also regularized. That is, the

estimates are sought in reduced spaces. In this particular case, the reduced space is due

to a small number of estimated eigenvalues and eigenvectors with the remaining values set

to zero. Therefore, the empirical capacity point may not be the true solution compared
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to the case when the estimation of the scatter matrix, Σ, is a well posed problem. The

case of a well posed problem is considered in the next subsection.

The values of eigenvalues decrease as the number of hypotheses M increases. Fig.

7.5 and Fig. 7.6 demonstrate the behavior of estimated eigenvalues {λ̂i(M)} and noise
variance {σ̂2i (M)} asM increases. Note that the eigenvalue λ̂i is evaluated only ifM > i.

It is interesting to observe that the ith eigenvalue and ith noise variance have very similar

trends as M and n increase, and the ratio λ̂i(M)/σ̂2i (M) is approximately constant for

all i.
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Figure 7.5. Values of eigenvalues and noise variance as a function of the number of
hypothesis for subset I of COIL-100.
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Figure 7.6. Values of eigenvalues and noise variance as a function of the number of
hypothesis for ATR dataset (left panel) and subset II of COIL-100 (right panel).

For the multiple image case, we estimate the correlation coefficients between two

images. Similar to the single image case, limiting values of ratios of parameters in (7.11)-
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(7.13) are evaluated empirically. In our experiments, ρi 6= 1,−1, for all i = 1, · · · , n.
Given a single or multiple image case, the PCA-based empirical mutual information rate

can be rewritten as

In(M) =
1

2n

n∑

i=1

log[f
(
λ̂i(M), σ̂2i (M), ρ̂i(M ; δα)

)
],

where

f(·) = 1 +
λ̂i(M)

σ̂2i (M)

for single image case and

f(·) =
(
1 +

λ̂i(M)

σ̂2i (M)

)2

−
(
λ̂i(M)ρ̂i(M ; δα)

σ̂2i (M)

)2

for two image case and

f(·) =
(
1 +

λ̂i(M)

σ̂2i (M)

)3

−
(
1 +

λ̂i(M)

σ̂2i (M)

)(
λ̂i(M)

σ̂2i (M)

)2

A1 + 2

(
λ̂i(M)

σ̂2i (M)

)3

A2

for a three image case, where A1 and A2 are defined in (7.13). The trends of f(·) as M
increases given images from ATR dataset are shown in Fig. 7.7 (a) for a single image

case, in (b) for two image case with δα = 5, in (c) for two image case with δα = 10 and

in (d) for three image case. From Fig. 7.7, it appears that the random sequence f(·)
converges to a specific value as M and i increase.

To find the value of PCA-based empirical capacity, given a finite amount of data, we

numerically analyze the behavior of the sequence of the empirical mutual information

rates,

In(M) =
1

2n

n∑

i=1

log
[
f
(
λ̂i(M), σ̂2i (M), ρ̂i(M ; δα)

)]
.

We first select a set of recognition rates, R, and form sequences of (n, 2nR) codes for

each selected R. For each combination of n and M = 2nR parameterized by a given R,

we find the value of the empirical mutual information rate. For each combination of n

and M = 2nR (given R) we also find the empirical value of the random coding exponent.

If the sequence (n, 2nR) parameterized by R produces positive values of the empirical

random coding exponent, we say that R is achievable. With available data, it is easy to

form and analyze sequences (n, 2nR) for small values of the rate, R. However, large values
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Figure 7.7. Values of f(·) as a function of the number of hypothesisM for ATR dataset
and (a) single image case, (b) two image case with δα = 5, (c) two image case with
δα = 10 and (d) three image case.

of R may have very sparse representation, two or three entries in a sequence. Therefore,

the results obtained for large values of R are much less reliable.

Since the channel coding theorem [12, Ch.8], [6] states that transmission is impossible

at the rates R exceeding capacity, we use this principle in our numerical evaluation of the

empirical capacity. The point of empirical capacity is the point of intersection between

the empirical mutual information rate curve plotted as a function of the recognition rate

and the straight line bisecting the first quadrant.

The left panel in Fig. 7.8 demonstrates a set of the plots of the empirical mutual

information rate as a function of the number of classes, M . Each curve is parameterized

by a fixed value R, with M and n growing in proportion. The right panel in Fig. 7.8
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shows the plot of the empirical mutual information rate versus the rate for a fixed value

of the number of classes, M = 100. The empirical capacity is evaluated at the point

where the empirical mutual information rate is equal to the recognition rate. The results

in Fig. 7.8 are provided for the subset I of COIL-100 dataset. Fig. 7.9 illustrate similar

results for ATR dataset (test images at distortion Level 1) and subset II of COIL-100

(test images at distortion Level 3).
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Figure 7.8. The left panel shows the PCA-based empirical mutual information rate as
a function of the number of classes parameterized by a set of recognition rates, R. The
right panel displays the points of the empirical mutual information rate at M = 100 as a
function of the recognition rate R. The results are provided for the subset I of COIL-100
with test images at distortion Level 3.

Similar to the case of a single image, we use the empirical mutual information rate to

calculate the numerical value of capacity for multiple image case using ATR dataset and

subset II of COIL-100. We also change the distortion levels of test images and the results

are shown in Fig. 7.10-7.12. Table 7.2 summarizes the empirical value of the recognition

capacity for the case M << r. Note that the case of high pixel count does not allow us

to find the limiting value of the PCA-based recognition capacity.

7.4.2 Case II: Low Pixel Count

This case is motivated by the fact that high resolution images (order of 1024× 1024)

acquired by UAVs at the elevation of 1000 ∼ 1500 feet may contain objects of interest

described by relatively small windows of size 32 × 32, 24 × 24 or even smaller. For a

window of size 32 × 32, r = 1024. For a window of size 24 × 24, r = 576. To generate

the empirical mutual information rate in (7.6), the number of classes has to be much

larger than the number of pixels representing objects. To accumulate a large number
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Figure 7.9. The left panel shows the points of the empirical mutual information rate at
M = 72 as a function of the recognition rate R. The results are provided for the ATR
dataset with test images at distortion Level 1. The right panel displays the points of
the empirical mutual information rate at M = 264 as a function of the recognition rate
R. The results are provided for the subset II of COIL-100 with test images at distortion
Level 3.

of classes, we treat the images of the same object but acquired at different orientations

and elevations as different classes. For ATR database, we use images of 15 objects at 72

orientation angles and 6 elevation angles as training data. The total number of generated

hypothesis is 15 × 72 × 6. For COIL-100 database, we use images of 100 objects at 72

orientation angles as training data. The maximum number of hypothesis is 100 × 72.

The testing data per object class consist of 6 distorted images with Level 3 distortion

parameters. All images are resized to 32 × 32 and 24 × 24. The sample low resolution

images are shown in Fig. 7.13.

Similar to the case of high pixel count, we study the empirical mutual information

rate as a function of the number of classes, M , parameterized by a set of recognition

rates R. The empirical capacity is evaluated at the point where the empirical mutual

information rate is equal to the recognition rate. Fig. 7.14 and Fig. 7.15 demonstrate

the results for ATR dataset when r = 576 and 1024, respectively. Similar results for

COIL-100 dataset are shown in Fig. 7.16 and 7.17. Note that the empirical random

coding exponent at r = 576 and r = 1024 are almost identical. Table 7.3 summarizes

the empirical capacity at different image resolution levels for both datasets.

We can conclude that for a given encoding technique, the value of empirical recogni-

tion capacity is determined not only by distortions due to the environmental conditions

and an acquisition device, but also depends on complexity of the data, complexity of the

original objects, resolution of the data, and definition of classes.
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Figure 7.10. The points of the empirical mutual information rate at M = 100 as a
function of the recognition rate R. The results are provided for the subset I of COIL-100
with test images at distortion Level 1, 3 and 5.

7.5 Summary

This chapter suggests steps towards evaluation of empirical recognition capacity of

a recognition system under the constraint of PCA-based encoding. We model encoded

single and multiple frames containing the same object as realizations of Gaussian vectors

with zero mean and unknown structured covariance matrices with the covariance being a

function of the relative orientation angle. The unknown parameters are estimated using

training data. The proposed probabilistic models are verified using various goodness of

fit tests.

The empirical capacity is evaluated using both simulated data and real images. Two

cases of the relationship between the number of pixels representing an object in an image

and the number of recognition classes are analyzed: (1) the case of high resolution images

and a relatively small number of classes and (2) the case of low resolution images and a

large number of object classes.

To obtain the empirical capacity point, we plot the empirical mutual information

rate as a function of the recognition rate, R, and find the point of intersection between

this curve and the diagonal line bisecting the first quadrant. Given a value of empirical

capacity and a length of templates (assume long), we can evaluate the maximum number

of object classes in an object library that can be recognized with probability of error

close to zero. With respect to single and multiframe cases, we demonstrated that two

encoded templates of the same object separated by the orientation angle of 10 degrees,
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Figure 7.11. The points of the empirical mutual information rate at M = 72, obtained
using single image and multiple images, as a function of the recognition rate R. The
results are provided for the ATR dataset with test images at distortion Level 1, 3 and 5.

when probabilistically fused using the proposed Gaussian model, result in considerable

increase in the value of the empirical capacity.
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Figure 7.12. The points of the empirical mutual information rate atM = 264, obtained
using single image and multiple images, as a function of the recognition rate R. The
results are provided for the subset II of COIL-100 with test images at distortion Level 1,
3 and 5.

(a) (b)

Figure 7.13. Sample images of size 64× 64, 32× 32 and 24× 24 from (a) ATR dataset
(b) COIL-100 dataset.

Table 7.2. Empirical Recognition Capacity under the constraint of PCA encoding in
the case of high pixel count (nats/pc)

Dataset Noise Level Single Two (δα = 5) Two (δα = 10) Three
Subset I Level 1 2.5194 N/A N/A N/A

of COIL-100
Level 3 2.0206 N/A N/A N/A
Level 5 1.6754 N/A N/A N/A

Simulated ATR set
Level 1 1.4965 2.8158 2.8913 3.9793
Level 3 1.3343 2.5539 2.6208 3.5768
Level 5 1.2123 2.3551 2.4136 3.2796

Subset II Level 1 1.3652 2.4394 2.6637 3.3961

of COIL-100
Level 3 1.2392 2.2633 2.4568 3.2767
Level 5 1.0639 2.0037 2.1747 3.1590
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Figure 7.14. The left panel shows the PCA-based empirical mutual information rate as
a function of the number of classes parameterized by a set of recognition rates, R. The
right panel displays the points of the empirical mutual information rate at M = 100 as
a function of the recognition rate R. The results are provided for the ATR dataset with
the image resolution 24× 24.
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Figure 7.15. The left panel shows the PCA-based empirical mutual information rate as
a function of the number of classes parameterized by a set of recognition rates, R. The
right panel displays the points of the empirical mutual information rate at M = 100 as
a function of the recognition rate R. The results are provided for the ATR dataset with
the image resolution 32× 32.

Table 7.3. Empirical Recognition Capacity under the constraint of PCA encoding in
the case of low pixel count (nats/pc)

Dataset Resolution, r = 576 Resolution, r = 1024
ATR dataset 1.2952 1.3074
COIL dataset 1.7262 1.7444
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Figure 7.16. The left panel shows the PCA-based empirical mutual information rate as
a function of the number of classes parameterized by a set of recognition rates, R. The
right panel displays the points of the empirical mutual information rate at M = 100 as a
function of the recognition rate R. The results are provided for the COIL dataset with
the image resolution 24× 24.
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Figure 7.17. The left panel shows the PCA-based empirical mutual information rate as
a function of the number of classes parameterized by a set of recognition rates, R. The
right panel displays the points of the empirical mutual information rate at M = 100 as a
function of the recognition rate R. The results are provided for the COIL dataset with
the image resolution 32× 32.



CHAPTER 8

RECOGNITION ERROR EXPONENT

From information theory, the channel capacity is the maximum rate that can be used

to communicate information over a channel reliably, that is, with vanishing probabil-

ity of errors. Information Theory states that codes with arbitrarily small probability of

decoding error exist at any rate smaller than the channel capacity C as the code word

length becomes large. In practice, however, the code word length is finite. Therefore the

problem can be restated as finding the code word length for a given value of probabil-

ity of error [51]. In this chapter, we study the relationship between code word length

and probability of decoding error for a recognition channel. We involve the bounds on

the recognition reliability function, which is defined by analogy with the channel relia-

bility function in communication problems. The limiting expressions and the results of

numerical evaluation are applied to PCA encoded images.

8.1 Reliability Function

Consider the average probability of error

P (error) =
1

M

M∑

m=1

P (error|Xn(m)),

where Xn(m) is the mth template (a codeword), which is defined in Section 7.1, n is

the length of the codewords, M is the number of hypothesis and P (error|Xn(m)) is

the conditional probability of error, given that a codeword is a realization of the random

vector generated by the m-th hypothesis. The minimum probability of error decision rule

is the same as the maximum likelihood decision rule: select the most likely observation

given Xn(m).

73
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Then the reliability function is defined as

E(R) = − lim inf
n→∞

1

n
logP (error),

where the infimum is taken over all decoding rules. That is, in channel coding problems,

there is an optimization over the codewords and the decision rules. The variable R in the

left hand side is the code rate defined as R = log(M)/n. This additional complication

makes the determination of the channel reliability function difficult. In the recognition

problem posed here, the distribution of the codewords is determined by the statistics of

object signatures and a measurement process. Provided that the encoding algorithm is

specified, the recognition reliability function is the random coding bound for the channel

reliability function [6]. When the code rate R is relatively small, the reliability function

is unknown. Only the bounds can be found [6].

8.2 Random Coding Lower Bound

In this section we will derive random coding exponent for recognition channel under

the constraint of PCA encoding technique. Previously, Shannon [51] has derived the

lower bounds on the reliability function of a real Gaussian channel. The bounds were

derived using random constructions under a geometrical approach. In [51], the signals

have the same power P along each dimension and the noise has the same variance N

for each component. All M code words are assumed to lie on the surface of a sphere

of radius
√
nP . However, in the PCA-based recognition channel, both the signals and

the noise have different variances in different dimensions. Here we choose a more general

approach from [6]. The random coding bound is defined as

Er(R) = lim
n→∞

max
s∈[0,1]

max
p

[
−sR− 1

n
log

(∫

Y

[∫

X

p(X)p(Y |X) 1
1+sdX

]1+s

dY

)]
.

The derivation of the random coding bound is presented in Appendix A.

In a single-image case, the templates (codes), X, stored in the library follow Gaussian

distribution with zero mean and diagonal covariance matrix Λ. The encoded test image

can be modeled as Y = X+W , where X and W are independent. W is a Gaussian noise

with mean zero and diagonal covariance matrix ΛN . Then the random coding bound

becomes
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Er(R) = lim
n→∞

max
s∈[0,1]

[
−sR − 1

n
log

(∫

Y

[∫

X

p(X)p(Y |X) 1
1+sdX

]1+s

dY

)]
, (8.1)

where

p(X) =
1

(2π)
2
n |Λ| 12

exp

[
−X

TΛ−1X

2

]
, (8.2)

and

p(Y |X) = 1

(2π)
2
n |ΛN |

1
2

exp

[
−(X − Y )TΛ−1N (X − Y )

2

]
. (8.3)

After submitting (8.2) and (8.3) into (8.1), we obtain expression for the random coding

bound under the constraint of PCA encoding (see Chapter 7 on PCA-based model),

Er(R) = lim
n→∞

max
s∈[0,1]

{
−Rs + s

2n

n∑

k=1

log[1 +
λk

σ2k(1 + s)
]

}
. (8.4)

For practical cases, since codewords have a finite length, n, and since the unknown

parameters are estimated using training data, we introduce empirical random coding

bound:

Êr(R) = −R̂n(s
∗)s∗ +

s∗

2n

n∑

k=1

log[1 +
λ̂k

σ̂2k(1 + s∗)
], (8.5)

where s∗ ∈ [0, 1] is the parameter that maximizes the expression in the parentheses in

(8.4). λ̂k and σ̂
2
k, k = 1, · · · , n, are the estimated parameters,

R̂n(s
∗) =

1

2n

n∑

k=1

log[1 +
λ̂k

σ̂2k(1 + s∗)
]− s∗

1 + s∗
1

2n

n∑

k=1

[1− 1

1 + λ̂k

σ̂2
k
(1+s∗)

].

Note when s∗ = 0, the empirical random coding exponent is Ên(R) = 0 and R̂n(s
∗) =

1
2n

∑n
k=1 log[1 +

λ̂k

σ̂2
k

], which is the value of the constrained empirical mutual information

rate under PCA encoding.

In classical information theory, the true function E(R) is known only for rates greater

than the critical rate Rcrit, at which the random coding bound Er(R) deviates from a

straight line of slope -1. For lower rates, only bounds on E(R) are known.

Similar to the case of a single image, the empirical random coding bound based on

two images with the relative orientation δα is

Ê(2)
r (R) = max

s∈[0,1]



−R̂ns+

s

2n

n∑

k=1

log



(
1 +

λ̂k

σ̂2k(1 + s)

)2

−
(

λ̂kρ̂k

σ̂2k(1 + s)

)2





 , (8.6)
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where ρ̂k is the kth estimated correlation coefficient between the templates of two images

with relative angle δα. Here we assume that no correlation coefficients take values 1 or

-1. When s = 0 achieves the maximum value, Ê
(2)
r (R) = 0, the rate R̂n equals to the

joint empirical mutual information rate defined in (7.11).

The empirical random coding bound based on three images with the relative orienta-

tion δα1,2, δα1,3 and δα2,3 is given by

Ê(3)
r (R) = max

s∈[0,1]



−R̂ns+

s

2n

n∑

k=1

log




(
1 +

λ̂k

σ̂2k(1 + s)

)3

(8.7)

−
(
1 +

λ̂k

σ̂2k(1 + s)

)(
λ̂kρ̂k

σ̂2k(1 + s)

)2

A1 + 2

(
λ̂k

σ̂2k(1 + s)

)3

A2






 ,

where A1 and A2 are defined in (7.13).

This expression can be generalized to an arbitrary finite number of frames of the same

object/target.

8.3 Space Partitioning Upper Bound

The random coding bound is known as one of two lower bounds on the channel

reliability function. A popular upper bound on the channel reliability function is the

bound by partitioning [6]. Given the PCA encoded data, the empirical upper bound by

partitioning is given

Êp(R) = max
s≥0

{
−R̂ns+

s

2n

n∑

k=1

log[1 +
λ̂k

σ̂2k(1 + s)
]

}
, (8.8)

where s is the parameter of optimization. The derivation of the expression 8.8 can be

found in Appendix B.

For the case of two PCA encoded images of the same object with a relative angle δα,

the empirical upper bound by partitioning is

Ê(2)
p (R) = max

s≥0



−R̂ns+

s

2n

n∑

k=1

log



(
1 +

λ̂k

σ̂2k(1 + s)

)2

−
(

λ̂kρ̂k

σ̂2k(1 + s)

)2





 , (8.9)

where we assume that the correlation coefficients ρ̂k, k = 1, · · · , n do not take values 1

or -1.
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The empirical upper bound for the case of three images is

Ê(3)
p (R) = max

s≥0



−R̂ns+

s

2n

n∑

k=1

log



(
1 +

λ̂k

σ̂2k(1 + s)

)3

(8.10)

−
(
1 +

λ̂k

σ̂2k(1 + s)

)(
λ̂kρ̂k

σ̂2k(1 + s)

)2

A1 + 2

(
λ̂k

σ̂2k(1 + s)

)3

A2







 ,

where A1 and A2 are defined in (7.13).

From the above expressions we can see that if the optimization of Ep(R) is limited to

s ∈ [0, 1], then the upper bound Ep(R) is equal to the lower bound Er(R). Therefore, in

this range of s we obtain the empirical reliability function.

8.4 Experiments and Results

In this section, the empirical exponents, random coding and by partitioning, under

the assumption of PCA encoded data are evaluated using ATR dataset, subset I and

subset II of COIL-100 dataset. Following the descriptions in Sec. 7.4, the case with high

resolution images and a relatively small number of classes is considered.

To empirically evaluate the random coding exponent, we numerically optimize (8.5-

8.10) with respect to the parameter s. The empirical bounds as a function of the recog-

nition rate, R, are evaluated. By changing the number of classes M and the code word

length n, we can obtain different values of R. Since the same value of the rate can be ob-

tained by invoking different combinations of M and n, we evaluate the empirical bounds

for each combination and select the value with maximum M and n characterizing the

same value of the rate R. Since the lower rate are easy to form, we obtain reliable results

at lower rates and less reliable results at higher rates. Using the terminology of Infor-

mation Theory, for each given R, we form a sequence of codes (n, 2nR) and empirically

evaluate achievability of the rate, R.

The random coding and partitioning exponents are first evaluated using the subset

I of COIL-100 dataset. In this set, an object is represented by a single class. The

total number of classes formed is 100. The quary images are obtained by distorting

clean images at Level 3. The empirical bounds as a function of R are shown on the left

panel in Fig. 8.1. The rate at which the bound attains zero is approximately 2.2 nats.

By comparing the value of the empirically evaluated capacity 2.1 nats/PC on the right

panel in Fig. 8.1 (the point of intersection of the diagonal line and the empirical mutual
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information curve), we can see that numerically evaluated recognition capacity points

are approximately equal. Apart from the point of capacity, the empirical bounds provide

an approximate value of the exponent in the exponential approximation to probability

of recognition error.
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Figure 8.1. The left panel shows the empirical Error Exponents as a function of the
recognition rate R. The right panel displays the empirical mutual information rate as a
function of the recognition rate R. The results are provided for the subset I of COIL-100
dataset.

The case when an object is represented by a set of classes in the database is illustrated

by two examples. One is the ATR dataset generated using a 3D simulated tool and the

other is the subset II of COIL-100 dataset. The empirical bounds as a function of R

given single and multiple images for ATR dataset are demonstrated in Fig. 8.2 (a) -

(d). The corresponding empirical mutual information rates as a function of R at the

maximum value of M and n are shown in Fig. 8.3. Note that the empirical capacity

values evaluated from the plot of the empirical mutual information rate as a function of

R and the empirical random coding and partitioning exponents are consistent.

Similar results for the subset II of COIL-100 dataset are illustrated in Fig. 8.4 and

Fig. 8.5.

The empirical error exponents are also evaluated using query images distorted at

different distortion levels. These results are shown on the left panel in Fig. 8.6-8.8.

Again, the values of empirical capacity obtained using plots of the empirical mutual

information rate in Fig. 8.6-8.8 and using empirical error exponents are in a relatively

good agreement.
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Figure 8.2. The empirical Error Exponents for ATR dataset given (a) Single-image case,
(b) Two-image case with relative angle of 5 degrese, (c) Two-image case with relative
angle of 10 degrees and (d) Three-image case.

8.5 Summary

In this Chapter, we derived two bounds on the reliability function of a recognition

system under the constraint of PCA-based encoding. The empirical random coding expo-

nent and the space partitioning exponent, two approximations to the reliability function,

are defined for both single and multiple image cases. The empirical bounds are evaluated

using the subset I and subset II of COIL-100 dataset and ATR dataset. The points

where the exponents touch the x-axis (become zero) are the values of empirical capacity.

These values and the values of the empirical capacity obtained using the empirical mu-

tual information rate curve as a function of R are in a good agreement. For the subset
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Figure 8.3. The empirical mutual information rate as a function of R for ATR dataset
for a single-image case, two-image case with the relative angle 5 degree, 10 degree and a
three-image case.

II of COIL-100 dataset and ATR dataset, the upper and lower exponents from multiple

images are compared with the corresponding exponents from a single image. The results

confirm that the empirical recognition capacity and error rates from multiple images are

higher compared to the capacity and error rates from a single image.
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Figure 8.4. The empirical Error Exponents for the subset II of COIL-100 dataset for
(a) Single-image case, (b) Two-image case with relative angle 5 degree, (c) Two-image
case with relative angel 10 degree and (d) Three-image case.
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Figure 8.5. The empirical mutual information rate as a function of R for the subset
II of COIL-100 dataset for a single-image case, two-image case with the relative angle 5
degree, 10 degree and a three-image case.
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Figure 8.6. The left panel shows the empirical random coding exponents. The right
panel displays the empirical mutual information rates as functions of the recognition rate
R. The results are provided for the subset I of COIL-100 dataset with test images at
distortion Level 1, 3 and 5.



CHAPTER 8. RECOGNITION ERROR EXPONENT 83

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

RATE, R (NATS)

E
R
R
O
R
 E
X
P
O
N
E
N
T

SINGLE, L1

TWO (δα = 5), L1

TWO (δα = 10), L1

THREE, L1

SINGLE, L3

TWO (δα = 5), L3

TWO (δα = 10), L3

THREE, L3

SINGLE, L5

TWO (δα = 5), L5

TWO (δα = 10), L5

THREE, L5

(a)

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

RATE, R (NATS)

E
M
P
IR
IC
A
L
 C
A
P
A
C
IT
Y
 A
T
 (
N
A
T
S
/P
C
)

SINGLE, L1

TWO (δα = 5), L1

TWO (δα = 10), L1

THREE, L1

SINGLE, L3

TWO (δα = 5), L3

TWO (δα = 10), L3

THREE, L3

SINGLE, L5

TWO (δα = 5), L5

TWO (δα = 10), L5

THREE, L5

RATE

(b)

Figure 8.7. The left panel shows the empirical random coding exponents. The right
panel displays the empirical mutual information rates as functions of the recognition rate
R. The results are provided for the ATR dataset with test images at distortion Level 1,
3 and 5, for a single image, two images with the relative angle 5 and 10 degree and three
image cases.
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Figure 8.8. The left panel shows the empirical random coding exponents. The right
panel displays the empirical mutual information rates as functions of the recognition rate
R. The results are provided for the subset II of COIL-100 dataset with test images at
distortion Level 1, 3 and 5, for a single image, two images with the relative angle 5 and
10 degree, and three image cases.



CHAPTER 9

RECOGNITION PROBABILITY OF OUTAGE

In Chapter 7, we defined the constrained recognition capacity given an encoding

method and evaluated the PCA-based recognition capacity using large datasets of im-

ages of objects. The capacity is related with the maximum number of classes which

can be correctly recognized with arbitrarily small probability of error when the length

of code words becomes large. However, since the capacity does not specify the value of

the probability of error, in Chapter 8 we appealed to bounds on the channel reliability

function. These bounds characterize the asymptotic exponential rate of the probability

of recognition error. However, evaluation of the error exponent require both the number

of users, M , and the length of codewords n to become very large. This assumption is

rarely satisfied in practice. To address practical cases of relatively large but finite M

and n, we invoke the performance measure used in communication theory called Prob-

ability of information Outage. It evaluates the probability that the empirical capacity

estimated using codewords of M distinct classes, each of length n does not drop below

the recognition rate R = logM/n. In this Chapter, we discuss results related to the

outage probability of recognition channel.

9.1 Probability of Outage

In fading communication channel, the outage probability is defined as the percentage

of time in which information transfer with a predetermined reliability is not possible.

The performance parameters which characterize the reliable transfer can be signal-to-

inference ratio (SINR) [13], the instantaneous capacity [31] and bit error probability [60].

In a cellular system, the outage probability is related with the probability of not being

able to successfully place a call, whereas the average probability of error relates to the

average quality of such calls [31]. In the recognition channel, we define two types of the

probability of outage.

84
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1. The Type I outage probability is the probability that the empirical capacity is lower

than the recognition rate, R,

POI
r = Pr[Ĉ < R],

where Ĉ is the empirical capacity and the subscript r stands for recognition. For a

single-image case

In(M) =
1

2n

n∑

k=1

log

[
1 +

λ̂k

σ̂2k

]
,

for a two-image case

In(M)(2) =
1

2n

n∑

k=1

log



(
1 +

λ̂k

σ̂2k

)2

−
(
λ̂kρ̂k

σ̂2k

)2

 ,

and for a three-image case

In(M)(3) =
1

2n

n∑

k=1

log



(
1 +

λ̂k

σ̂2k

)3

−
(
1 +

λ̂k

σ̂2k

)(
λ̂k

σ̂2k

)2

A1 + 2

(
λ̂k

σ̂2k
A2

)
 ,

where A1 and A2 are defined in (7.13). Here λ̂k, σ̂
2
k and ρ̂k are estimated using all

training and testing images from all classes. Given a set of images from M classes,

we can calculate the Type I outage probability by iteratively selecting one image

per class as a training image and the other images as testing images.

2. The Type II outage probability is the probability that the instantaneous capacity

(defined below) is lower than the recognition rate, R,

POII
r = Pr[Cinst < R],

where Cinst is the instantaneous capacity. Cinst for a single and multiple images

have the same expressions as the corresponding Ĉ defined above, with σ̂2k replaced

by σ̃2k. Here σ̃2k is estimated using only testing images of one class, while σ̂2k is

estimated using all testing images from all classes. The Type II outage probability

is calculated by comparing Cinst of each class with the recognition rate. It is

related to the percentage of times when submitted for identification codewords are

not recognized correctly.
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9.2 Experiments and Results

Following the experimental setting in Chapter 8, we evaluate the outage probability

using the subsets I and II of COIL-100 dataset and ATR dataset. Instead of fixing the

training images, we at random select one image per class to be included in a training set.

The remaining images per class are used for testing and estimating the noise variances.

This procedure is repeated 20 times resulting in 20 data realizations. Testing images at

different distortion levels are involved.

To estimate the Type I probability of outage, for each realization, we find the empirical

capacity first and then compare it with the recognition rate. The number of events when

the value of the empirical capacity drops below a fixed value of the rate is counted and

normalized by the number of data realizations. The plots of the Type I probability of

outage as a function of the recognition rate, R, are shown in Fig. 9.1 (a) for the subset

I of COIL-100 dataset, Fig. 9.2 (a) for ATR dataset and Fig. 9.3 (a) for the subset II of

COIL-100 dataset.

To find the Type II probability of outage, the instantaneous capacity is estimated

using the testing images from each class. The probability of outage is evaluated as the

relative frequency of the event that the instantaneous capacity drops below a given value

of the rate. The total number of events is M . This procedure is repeated 20 times. The

average value of Type II outage probability as a function of the recognition rate is shown

in Fig. 9.1 (b) for the subset I of COIL-100 dataset, Fig. 9.2 (b) for ATR dataset and

Fig. 9.3 (b) for the subset II of COIL-100 dataset.

In Fig. 9.1-9.3, the blue, red and green curves are obtained using the distorted

images at Levels 1, 3 and 5, respectively. The curves marked by ‘x’, ‘o’, ‘+’ and ‘?’

correspond to the case of a single, two image with the relative angle δα = 5, two image

with the relative angle δα = 10, and three images, respectively. From the results we

can see that for the subset I of COIL-100 dataset and ATR dataset, the larger the

distortion is, the higher is the outage probability for the same recognition rate. For the

subset II of COIL-100 dataset, the increasing of the distortion level does not degrade the

performance significantly. We can also conclude on improvements due to use of multiple

images separated by a small rotation angle compared to a single image case.

The empirical mutual information rate and the empirical random coding lower bound

averaged over 20 data realizations as a function of the recognition rate, R, are also

displayed in Fig. 9.1 (c) and (d) for the subset I of COIL-100 dataset, in Fig. 9.2 (c)

and (d) for ATR dataset and in Fig. 9.3 (c) and (d) for the subset II of COIL-100

dataset. By comparing the values of the empirically evaluated capacity estimated using
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Figure 9.1. (a) The Type I probability of outage, (b) the average Type II probability of
outage, (c) the average empirical mutual information rate and (d) the average empirical
random coding bounds. The results are provided for the subset I of COIL-100 dataset
with test images at distortion Level 1, 3 and 5.

the sequence of empirical mutual information (the point of intersection of the diagonal

line and the empirical mutual information rate curve) and the values evaluated using

the random coding bounds (the rate at which the bound attains zero), we can see that

numerically evaluated recognition capacity points are approximately equal. The point

where the Type I probability of outage equals to 0.5 is clearly related to the empirical

capacity of the PCA-based recognition systems. Furthermore, by analyzing plots of the

Probability of Outage as a function of the rate, R, we can identify these regions of

recognition rates: (1) the region of perfect recognition, where the probability of outage is

zero; (2) transition region, where the probability of outage takes values between zero and

one, and (3) the region of complete outage, where recognition is impossible. Within the
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Figure 9.2. (a) The Type I probability of outage, (b) the average Type II probability of
outage, (c) the average empirical mutual information rate and (d) the average empirical
random coding bounds. The results are provided for the ATR dataset with test images
at distortion Level 1, 3 and 5, given single image, two images with relative angle 5 and
10 degree and three images.
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transition region, a value of probability of outage can be interpreted as the percentage

of times when an object is not recognized correctly provided that a number of attempts

is made to recognize an object. Note that the estimated capacity is within the transition

region, which indicates that the probability of recognition error is not zero for the largest

n, resulting in the code (n, 2nR), where R = Ĉ. In summary, for a dataset of a finite size,

recognition with empirically evaluated zero probability of error is possible only at the

rates significantly smaller Ĉ, that is, at the rates within the region of perfect recognition.

These conclusions hold for Type I probability of outage. However, it is harder to establish

the relationship between the point of the empirical recognition capacity and the Type

II probability of outage. Since the Type I and Type II probabilities of outage are two

distinct estimates of the probability of outage, they exhibit distinct behavior as the rate,

R, grows.

The actual values of empirical capacity evaluated from the sequence of the empirical

mutual information rate, the empirical bounds and the Type I probability of outage are

compared in Fig. 9.4.

9.3 Summary

Similar to the communication channel, the recognition channel is characterized by

the outage probability. We define two types of outage probability. The Type I outage

probability involves the empirical capacity, while the Type II outage probability is based

on the instantaneous capacity. The subset I and II of COIL-100 and ATR dataset are

used to evaluate the empirical outage probability. The rate at which the Type I outage

probability equals to 0.5 is in agreement with the rate at which the average empirical

capacity is equal to the rate. We also analyze the outage probability involving images at

different distortion levels. Generally, the heavy distortions result in high outage proba-

bility at a given rates. For the subset II of COIL-100 dataset and the ATR dataset, we

compared the outage probability for the two image case with the images separated by

the relative angles δα = 5 and 10 and three image case against the result for the single

image case. The results show that recognition based on multiple images provides more

reliable recognition compared to recognition based on a single image case.
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Figure 9.3. (a) The Type I probability of outage, (b) the average Type II probability of
outage, (c) the average empirical mutual information rate and (d) the average empirical
random coding bounds. The results are provided for the subset II of COIL-100 dataset
with test images at distortion Level 1, 3 and 5, given single image, two images with
relative angle 5 and 10 degree and three images.
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Figure 9.4. The consistence of empirical capacity estimated from the sequence of the
empirical mutual information rate (blue), the empirical random coding bounds (green)
and the Type I probability of outage (red), given test images at distortion Level 1, 3
and 5. The results are provided for (a) the subset I of COIL-100 dataset, (b) the ATR
dataset and (c) the subset II of COIL-100 dataset.



CHAPTER 10

A TWO NODE RECOGNITION SENSOR NETWORK

Theoretically, the recognition systems benefit from using more sample images of the

same target. However, in a sensor network, the limited communication between nodes

imposes additional constraints. This can decrease the overall system performance. It

is important to optimize the ATR system performance under the constraint on commu-

nication channel or input codewords. In this chapter, a two node recognition network

is considered, and various scenarios of its operation are analyzed. The performance for

each scenario will be evaluated numerically.

10.1 Scenarios of Operation of a Two Node Network

Consider a two node recognition network. Each node is autonomous unit equipped

with a sensor (for instance, camera), radio transmitter and receiver, a processing unit

(a computer), power block, and a storage unit. The node is autonomous since it can

independently acquire, process, store, transmit, and receive data. Nodes can be station-

ary ground nodes or flying UAVs. In this chapter we are not concerned with control

problem. The main focus of this work is to analyze large scale recognition performance

at the network. We assume that the recognition network can operate in three modes

or follow three scenarios. In Scenario I, the images obtained by Node 1 are encoded on

board using the PCA method. The PCA codes are further converted to bitstream and

the bitstream is transmitted to the ground station through a wireless communication

channel. Then the ground station performs classification based on the transmitted data.

The flow chart of Scenario I is shown in Fig. 10.1 (a). In Scenario II and III, the clas-

sification is performed based on two images. In Scenario II, after converting the PCA

codes of images to bitstream on board, Node 1 transmit the information to Node 2. Then

Node 2 classifies objects according to the transmitted data from Node 1 and the encoded

information from Node 2. Thus, the recognition is performed by Node 2. Compared with

Scenario II, in Scenario III the final decision will be made by the ground station using

92
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the transmitted codes from both Node 1 and Node 2. The diagrams in Fig. 10.1 (b) and

(c) show the two scenarios.

(a)

(b)

(c)

Figure 10.1. Block Diagrams: (a)Scenario I, (b)Scenario II and (c)Scenario III.

10.2 Performance Measures

In this section, the performance measures used to characterize recognition channel,

communication channel and the overall system are described.

To characterize a recognition channel, the empirical mutual information rate defined

in Chapter 7, the empirical random coding exponent, the space partitioning exponent

defined in Chapter 8 and the outage probability defined in Chapter 9 are utilized. For

the purpose of comparison, the probability of recognition error, one of traditional perfor-

mance measures, is involved.

In a communication channel, transmission bit error rate (BER) is a common perfor-

mance measure, which is defined as the number of errorneous bits received divided by

the total number of bits transmitted. In the case when a wireless channel experiences

Rayleigh fading, another appropriate measure of performance is the outage probability
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of the communication channel. The probability of outage is defined as the probability

that the instantaneous capacity is less than the transmission rate, Rc,

POc = Pr[C(SNR) < Rc],

For a block fading channel, the unconstrained instantaneous capacity is given by

C(SNR) = W log(1 + SNR), (10.1)

where W is the bandwidth and the signal to noise ratio, SNR, is a random variable for

each fading status. SNR is often modeled as being Gamma distributed. Note that this

capacity is for an unconstrained input. Therefore, (10.1) assumes arbitrary modulation.

This expression also does not depend on the type of channel coding. It would be more

appropriate to use the capacity based on a particular modulation and coding method,

however, the difference could only be a couple of dBs. So it is still a good approximation.

Given L blocks per frame, the instantaneous capacity of one frame is

C(SNR) =
1

L

L
∑

i=1

W log(1 + SNRi),

where SNRi corresponds to the signal-to-noise ratio of each block.

The overall system performance will be evaluated using probability of recognition

outage, which is an important metric that quantifies the leakage of information at a

given rate. The system probability of outage is evaluated using the transmitted PCA

codewords, i.e., Ŷ1 for Scenario I ,{Ŷ1, Y2} for Scenario II and {Ŷ1, Ŷ2} for Scenario III.

10.3 Experiments and Results

In this section, the performance of each scenario will be evaluated numerically by

varying the parameters of the recognition channel and the communication channel. We

use ATR dataset to analyze the performance of the recognition network. The dataset is

composed of 72 classes, 12 images per class.

In our simulations the wireless communication channel will assume Rayleigh block

fading. We select frequency shift keying (FSK) modulation. FSK is a modulation scheme

in which digital information is transmitted through discrete frequency changes of a carrier

wave. Encoding and decoding employ cdma2000. The detailed information on cdma2000

can be found in [59].
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The PCA encoding and parameter estimation are described in Chapter 7.3.1. Since

transmission of data requires convertion of the fractional PCA codes of one image into a

bitstream, we chose a fixed-point conversion. The range and precision of the fixed-point

conversion depends on the dataset. Here, we use ws = 18 bits per PCA component. The

precision is p = 0.0001 and the bias is b = 0. Then the range is [p × (−2ws−1) + B, p ×
(2ws−1 − 1) +B], that is [−13.1072, 13.1071] for our case.

Given the length n of a codeword from a single encoded image, the total number

of bits transmitted over a wireless channel is 18 × n bits per encoded image. Assume

that all PCA encoded components converted into a bit stream from a single image are

transmitted over the communication channel within one frame. In this case the number

of bits per frame, K, should be greater than 18×n. For the ATR dataset, the maximum

length of a PCA encoded image, n, is 72. Thus the number of required bits per frame

is at least 1296. According to the standard of cdma2000, we select K = 1530 bits. In

each frame, the first 18×n bits contain PCA codewords converted into bit streams. The

remaining bits are set to be zeros or ones at random.

The recognition performance is evaluated as a function of the recognition rate, R.

By changing the number of classes, M , and the code word length, n, we can obtain

different values of R. For each given R the total of M × 12 images are converted to

bitstreams and further transmitted over the communication channel. The performance

of communication channel characterized by BER and POc are evaluated based on all K

bits per frame and averaged over M × 12 frames (assume one frame per image). The

bitstreams after the communication channel are converted back to fractional numbers

and compared with the templates in the database to make classification. The system

probability of outage (Type II) is obtained by comparing the instantaneous recognition

capacity against the recognition rate.

First, we fix the parameters of communication channel, i.e., 4-ary non-coherent FSK

modulation, 20 blocks per frame and cdma2000 encoding rate 1/2. The Eb/No of com-

munication channel is set to be 6dB. The BER of the communication channel is shown

in Fig. 10.2 (a). The average BER is 0.13. The outage probability of the communication

channel is shown in Fig. 10.2 (b).

The recognition performance for all three scenarios is compared with the performance

without transmission using a single image or two images. Fig. 10.3 (a)-(d) show the

empirical mutual information rate, the Type II outage probability of the recognition

channel, the error exponents and the probability of recognition error as a function of

recognition rate, respectively. We can see that after transmission of the PCA encoded

images over the communication channel, the recognition performance drops for both a



CHAPTER 10. A TWO NODE RECOGNITION SENSOR NETWORK 96

0 1 2 3 4
0.1

0.11

0.12

0.13

0.14

0.15

0.16

RECOGNITION RATE (NATS)

B
E

R
BER

BER mean

(a)

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

RECOGNITION RATE (NATS)

O
U

T
A

G
E

 P
R

O
B

A
B

IL
IT

Y
O

F
 C

O
M

M
U

N
IC

A
T

IO
N

 C
H

A
N

N
E

L

(b)

Figure 10.2. (a) BER and (b) Outage probability of communication channel as a
function of the recognition rate. The performance is evaluated over a Rayleigh block
fading channel with 20 blocks per frame and Eb/No = 6dB. 4-ary NFSK modulation and
the K = 1530 bit cdma2000 turbo code with code rate Rc = 1/2 are used.

single image and two image cases. The errors introduced during data transmission result

in highly unstable recognition performance in the region of small recognition rates. This

result is due to definition of recognition rate. Small values of R are achieved in practice

using long codewords. This requires a large number of bits to be transmitted. The

transmitted codewords with larger n contain more errors than the codes with smaller n.

Another observation is that the performance of the network set to operate according to

results Scenario 3 (with both sensor nodes communicating their PCA codewords to the

central station, marked in green) are worse than the results under Scenario 2 (with a PCA

codeword communicated by one of sensor nodes, marked in red). However, under both

scenarios, the results when two frames per object with relative angles δα = 5 (marked

by ’o’) and δα = 10 (marked by ’+’) do not differ significantly.

We also test the impact of performances of the communication channel on the system

performance. Here the performanceis analyzed only under Scenario 1. We first vary

Eb/No of the communication channel. We set it to 6dB, 8dB, 10dB and 20dB. The

performance of communication channel is displayed in Fig. 10.4, and the performance of

the recognition channel is displayed in Fig. 10.6 (a) to (d). We can see that as the Eb/No

of the communication channel increases, the recognition performance under Scenario 1

improves.

We further vary the transmission rate of the communication channel under fixed

Eb/No = 6dB. We investigate three transmission rates supported by cdma2000, specif-
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ically Rc = 1/2, 1/3, and 1/4. Fig. 10.5 shows the communication BER and POc as

a function of the recognition rate. The recognition performance as a function of the

recognition rate, R, is displayed in Fig. 10.7 (a)-(d). It is hard to interpret the perfor-

mance difference under 3 different transmission rates. We further plot the system outage

probability (Type II) as a function of code rate Rc and recognition rate Rr. Fig. 10.8

illustrates the results. We can see that as the code rate of the communication channel

increases, the performance under Scenario 1 drops.

We further change the order of FSK modulation to 8-ary FSK and 16-ary FSK mod-

ulation while keeping the other parameters fixed. As the size of constellation increases,

the ratio of energy per symbol to the noise variance, Es/No increases, and therefore the

overall communication performance inproves. Fig. 10.9 illustrates the results. From the

the recognition performance plotted in Fig. 10.10 (a)-(d), we can also conclude that the

recognition and system performance increase as the order of FSK modulation increases.

The impact on the performance of varying number of blocks per frame in the commu-

nication channel is also investigated. The number of blocks per frame varies from 2, 20

to 100. The communication and recognition performance results are shown in Fig. 10.11

and Fig. 10.12. We can see that as the number of blocks per frame increases, the channel

is more ergodic. Although the values of outage probability of communication channel for

different number of blocks per frame are similar, the actual communication bit error rates

are different. The BER with 20 blocks per frame is higher than the BER with 2 or 100

blocks per frame. This higher communication error rate of the channel with 20 blocks

per frame degrades recognition performance compared with the recognition results of the

channel with 2 or 100 blocks per frame.

10.4 Summary

In this Chapter, the topic of joint recognition and communication was discussed. We

considered a two node sensor network and assumed 3 scenarios of its operation. The

system probability of outage was defined as probability that encoded images after their

transmission over a wireless communication channel are not recognized correctly at the

recognition rate, R. The bit error rate (BER) and the communication probability of

outage were used to analyze the performance of communication channel. The empir-

ical mutual information rate, the Type II outage probability, the error exponents of

recognition channel and the probability of recognition error were applied to measure the

performance of recognition channel. ATR dataset was utilized to obtain numerical re-

sults. The wireless communication channel was the Rayleigh block fading channel using
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non-coherent FSK modulation and K = 1530 bit cdma2000 turbo code. Given the com-

munication channel with Eb/No = 6dB, using 4-ary NFSK modulation and code rate 1/2,

we found that the recognition performance of all scenarios decrease when compared with

the performance without transmission. The system probability of outage under Scenario

3 is higher than the system outage probability under Scenario 2. However, the system

performance based on combined information from two sensor nodes (Scenario 2 or 3) is

higher than the performance based on the performance based on a single encoded image

transmitted over communication channel (Scenario 1).

We also tested the impact of various parameters on system performance under Sce-

nario 1 by varying the parameters of the communication channel. As Eb/No of the

communication channel increases, the recognition performance improves and the system

probability of outage decreases. For a high signal-to-noise ratio in communication chan-

nel, the performance of the entire system based on transmitted PCA codewords exhibits

similar performance to the performance of the network without data transmission. We

further investigated the influence of varying transmission rate on the performance. Three

code rates of communication channel supported by cdma2000 were tested. The system

probability of outage as a function of the transmission rate and the recognition rate was

evaluated. The order of FSK modulation was also varied. The use of the higher order

of FSK modulation results in higher system performance. Finally, the impact of varying

number of blocks per frame on the performance was evaluated.
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Figure 10.3. (a) Empirical mutual information rate, (b) Type II outage probability, (c)
Random coding error exponents and (d) Probability of recognition error as a function
of recognition rate. The results of Scenario 1 (cyan lines), Scenario 2 (red lines) and
Scenario 3 (green lines) are compared with the results without data transmission (blue
lines). The performance is evaluated over a Rayleigh block fading channel with 20 blocks
per frame and Eb/No = 6dB. 4-ary NFSK modulation and the K = 1530 bit cdma2000
turbo code with code rate Rc = 1/2 are used.
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Figure 10.4. (a) BER and (b) Outage probability of communication channel for each
recognition rate when Eb/No of the communication channel is 6dB, 8dB, 10dB and 20dB.
The performance is evaluated over a Rayleigh block fading channel with 20 blocks per
frame. 4-ary NFSK modulation and the K = 1530 bit cdma2000 turbo code with code
rate Rc = 1/2 are used.
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Figure 10.5. (a) BER and (b) Outage probability of communication channel parame-
terized by the transmission rate Rc set to 1/2, 1/3 and 1/4. The performance is evaluated
over a Rayleigh block fading channel with 20 blocks per frame and Eb/No = 6dB. 4-ary
NFSK modulation and the K = 1530 bit cdma2000 turbo code are used.
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Figure 10.6. Scenario 1: (a) Empirical mutual information rate, (b) Type II outage
probability, (c) Error exponents of the recognition channel and (d) Probability of recog-
nition error as a function of recognition rate. Eb/No of the communication channel is
6dB, 8dB, 10dB and 20dB. The performance is evaluated over a Rayleigh block fad-
ing channel with 20 blocks per frame. 4-ary NFSK modulation and the K = 1530 bit
cdma2000 turbo code with code rate Rc = 1/2 are used.
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Figure 10.7. Scenario 1: (a) Empirical mutual information rate, (b) Type II outage
probability of the recognition channel, (c) Random coding lower bound and (d) Proba-
bility of recognition error as a function of recognition rate. Code rate Rc is 1/2, 1/3 and
1/4. The performance is evaluated over a Rayleigh block fading channel with 20 blocks
per frame and Eb/No = 6dB. 4-ary NFSK modulation and the K = 1530 bit cdma2000
turbo code are used.
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Figure 10.8. Type II system probability of outage (left panel) and probability of error
(right panel) for Scenario 1 as a function of transmission rate and recognition rate. The
performance is evaluated over a Rayleigh block fading channel with 20 blocks per frame
and Eb/No = 6dB. 4-ary NFSK modulation and the K = 1530 bit cdma2000 turbo code
are used.
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Figure 10.9. (a) BER and (b) Outage probability of communication channel as a
function of the recognition rate for three FSK modulations: 4-ary, 8-ary and 16-ary. The
performance is evaluated over a Rayleigh block fading channel with 20 blocks per frame
and Eb/No = 6dB. NFSK modulation and the K = 1530 bit cdma2000 turbo code with
code rate Rc = 1/2 are used.
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Figure 10.10. Scenario 1: (a) Empirical mutual information rate, (b) Type II outage
probability of the recognition channel, (c) Random coding exponent and (d) Probability
of recognition error as a function of the recognition rate. The order of FSK modulation
is 4-ary, 8-ary and 16-ary. The performance is evaluated over a Rayleigh block fading
channel with 20 blocks per frame and Eb/No = 6dB. NFSK modulation and the K =
1530 bit cdma2000 turbo code with code rate Rc = 1/2 are used.
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Figure 10.11. (a) BER and (b) Outage probability of communication channel as a
function of the recognition rate when the number of blocks per frame is set to 2, 20 and
100. The performance is evaluated over a Rayleigh block fading channel with Eb/No =
8dB. 4-ary NFSK modulation and the K = 1530 bit cdma2000 turbo code with code
rate Rc = 1/2 are used.
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Figure 10.12. Scenario 1: (a) Empirical mutual information rate, (b) Type II outage
probability of the recognition channel, (c) Random coding lower bound and (d) Proba-
bility of recognition error as a function of the recognition rate. The number of blocks
per frame is 2, 20 and 100. The performance is evaluated over a Rayleigh block fading
channel with Eb/No = 8dB. 4-ary NFSK modulation and the K = 1530 bit cdma2000
turbo code with code rate Rc = 1/2 are used.



CHAPTER 11

CONCLUSION AND FUTURE WORK

11.1 Conclusion

Researchers have invested a substantial amount of effort in studying Automatic Tar-

get Recognition (ATR) or generally, object recognition for decades of years. New sensors

and technologies in control and systems provide new platforms and challenges for ATR.

Over the past several years, there is an increasing trend towards operating swarms of

Unattended Aerial Vehicles (UAVs) as large-scale sensor networks in the air. This trend

offers opportunities of integration ATR systems with a UAV-based sensor network to

improve the recognition performance. To build an ATR system using UAVs successfully,

researches are needed in lots of fields, such as sensors modeling, signal/image process-

ing, detection, tracking, etc. In this thesis, we focus on three problems: designing a

complete automatic recognition system, evaluating capabilities of this system to perform

recognition in complex environments and evaluating performance limits of a two node

recognition network.

We first introduce a model-based recognition method. Instead of modeling the im-

age itself, we decompose images into their spectral components using a bank of filters.

Bessel K forms are then applied to model the low dimensional statistics of these filtered

components. In our thesis, we choose the histogram of the filtered images. These para-

metric forms provide a close form of the distance metric, pseudo-metric, between two

images. This metric is then combined with the metric based on K-measure to balance

accuracy and speed. This model-based method is further extended to recognition using

two correlated images, by modeling the joint histogram of a pair of filtered images using

multivariate Bessel K forms. The recognition performance is tested using both simulated

dataset and the real dataset.

A complete detection-recognition system is then built. Images with potential targets

are first detected using a Haar-like feature based method. The detected regions of each

image are then combined or removed using a heuristic method based on the relative loca-

tions of the windows. After detection, a B-spline based segmentation method is applied
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to separate the images of potential targets from the clutter within each detected region.

The recognition method is then applied to each segmented regions. These procedures

allow to detect and recognize targets regardless of the type of backgrounds. Two methods

of rejecting an unknown object are introduced. This first one is based on classification

index. The final reject or accept rule is based on a regression tree. System performance is

evaluated on the simulated 3D dataset. The second one uses cluster method to separate

sample clutter images and the detected windows into two groups. This method is applied

in the die cast dataset collected using the real images. The performance of the Bessel K

based recognition method is compared with the performance of PCA method. The Bessel

K based method is proved to be more robust in the presence of clutters and occlusions.

To analyze the performance of recognition system, a general methodology from chan-

nel capacity view point is used. We derive the expression for capacity of a recognition

system under constraint of the PCA-based encoding. Encoded single and multiple frames

containing the same target are modeled as realizations of Gaussian vectors. These models

are verified using statistical goodness of fit tests. The relationship of the empirical mutual

information rate and the recognition rate is established. The empirical capacity is then

evaluated from the sequence of empirical mutual information rates using two datasets for

both high resolution images and low resolution images. The empirical capacities for the

distorted images at different levels are also obtained.

The recognition channel capacity is related with the maximum number of classes

which can be correctly recognized with arbitrarily small probability of error when the

length of code words becomes large. However, the constrained recognition capacity does

not specify the value of the probability of error, we further study the relationship between

code length and the probability of decoding error for a recognition channel. The recog-

nition reliability function is involved and bounded using the random coding lower bound

and the space partitioning upper bound. The empirical bounds are evaluated using two

datasets for both single and two frames. The rates where the bounds become zero are

consistent with the crossing point where the empirical mutual information rate is equal

to the rate.

Similar to the communication channel, the recognition channel is also characterized

by the outage probability. It evaluates the confidence measure that the empirical ca-

pacity estimated using codewords of M classes, each of length n does not drop below

the recognition channel rate R = logM/n. Two types of outage probability are defined.

The empirical outage probability is evaluated using two datasets. The relationship be-

tween the outage probability and the recognition rate is studied. We further analyze the
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outage probability involving images at different distortion levels. Generally, the heavy

distortions result in high outage probability at given rates.

Finally, we go back to the problem of recognition sensor networks. The joint recog-

nition and communication problem is discussed. Since in the swarmed UAV system, the

limited communication between UAVs imposes additional constraints, the benefit of the

recognition system obtained from using more sample images of the same target will de-

crease. We consider a small sensor network composed of two autonomous nodes. Three

scenarios of its operation are considered. The system probability of outage is defined

to evaluate the entire system performance. The simulated 3D dataset is used to obtain

numerical results. Here the wireless communication channel is the Rayleigh block fading

channel using non-coherent FSK modulation and K = 1530 bit cdma2000 turbo code.

The system performance of different scenarios are compared. We also test the impact of

performance by varying the parameters of communication channels.

11.2 Future Work

The model-based recognition method based on Bessel K forms as was shown is more

robust compared to the PCA method especially in the presence of clutters and occlu-

sion. However, the filter bank used to filter each image requires adjustment with each

new dataset. Additional studies about the number of filters, the type of filters and the

parameters of each type of filter are needed to find an optimal set up. Although the com-

bination method using both pseudo-metric and k-measure can speed up the classification,

more efforts may be involved in algorithm optimization to achieve the requirement of real

time recognition. One limitation of this model-based recognition method is that it is a

texture based method. Therefor, it may not work well for targets without rich textures.

One way is to involve other features, such as shape as overall structure, to improve the

recognition performance.

Although the detection-recognition system performance is relatively good when tested

on the simulated 3D dataset, the performance evaluated using the die cast dataset indi-

cates that the designed system needs adjustments when dealing with complex environ-

ments. The real situation is very complex, including uneven lighting conditions, shadows,

camouflage of targets, etc. To improve the system performance, a proper image process-

ing, efficient detection method and a robust segmentation are needed. A proper image

processing may include adaptive illumination adjustment and shadow detection. When

the number of targets and the complexity of target increase, the Haar-like feature based

detector trained using all targets at an arbitrary pose becomes inefficient. The number
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of false alarms increases dramatically. One possible way to solve the problem is to train

each target at a range of poses separately and then combine all detectors together. A

more robust segmentation method is needed for targets displaying a lot of textures on a

background of clutter. One way to deal with the problem is to use the prior information

about the clutter. For camouflaged targets, optical cameras are not an appropriate imag-

ing modality. Infrared sensors can be mounted on board of UAVs to obtain additional

useful information about objects of interest.

In the part with performance evaluation, we analyze the recognition limits of recog-

nition channel under the constraint of PCA encoding. Other encoding techniques can be

used to encode images. The distributions of data under matching and nonmatching hy-

potheses can be modeled using parametric and nonparametric techniques. The capacity

and other information theoretic limits under constraints on encoding techniques can be

evaluated.

In this thesis, targets at different pose are treated as distinct classes. The problem

can be viewed as a joined pose estimation-target recognition problem. However, it is not

clear how to evaluate the object recognition capacity of the channel. Therefore, we would

like to address this problem in our future work.

We discussed a joint recognition and communication system in the last part of the

thesis. Three scenarios of operation of a two node sensor network were proposed and a

comprehensive performance evaluation was performed. Further optimizations of the two

node sensor network need to be addressed. One possible solution is tandem structure

with resource control, that is optimal allocation of recognition and communication bits

given the overall rate constraints. Since there are more than one sensor collecting data

in the networks, the multi-terminal optimization should also be considered.



APPENDIX A

RANDOM CODING LOWER BOUND

The random coding lower bound can be obtained from the hypothesis test. Given

R = log(M)/n, we want to prove that there exists a data code of sizeM and blocklength

n for the channel with conditional probability Q(Y |X) whose probability of decoding

error pe satisfies

pe ≤ min
s∈[0,1]

min
p(X)

{

ensR

∫

Y

[
∫

X

p(X)Q(Y |X) 1
1+sdX

]1+s

dY

}

.

Detailed proof can be found in [6], here we only give the brief descriptions.

Let {C0, · · · ,CM−1} denote the set of codewords, and let the decoding rule be that
the mth codeword is decoded when Y is received if p(Y |Cm) > p(Y |Cm′) for all m′ 6= m.

All possible Y that decode into Cm form a set Um,

Um = {Y : p(Y |Cm) > p(Y |Cm′) for all m′ 6= m}.

The characteristic function of this set φm(Y ) is defined as

φm(Y ) =

{

0 if Y /∈ Um

1 if Y ∈ Um.

If φm(Y ) = 0, then p(Y |Cm) ≤ p(Y |Cm′) is true for at least one m′. Thus for s ≥ 0,

we have

1 ≤
[

p(Y |C′
m)

p(Y |Cm)

]
1

1+s

.

Since the ratio p(Y |C′
m)

p(Y |Cm)
is nonnegtive for any m′, we have

1− φm(Y ) ≤
{

∑

m′ 6=m

[

p(Y |C′
m)

p(Y |Cm)

]
1

1+s

}s

. (A.1)

This inequality is also true when φm(Y ) = 1 because the right side is nonnegative.
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Given that themth codeword is transmitted, the probability of decoding error is given

by

pe|m =

∫

Y /∈Um

p(Y |Cm)dY

=

∫

Y

p(Y |Cm)[1− φm(Y )]dY

≤
∫

Y

p(Y |Cm)

{

∑

m′ 6=m

[

p(Y |C′
m)

p(Y |Cm)

]
1

1+s

}s

dY

=

∫

Y

p(Y |Cm)
1

1+s

[
∑

m′ 6=m

p(Y |C′
m)

1
1+s

]s

dY. (A.2)

Assume that the codewords are selected independently, with probability of selecting

X as a codeword equal to p(X). Then the expected value pe|m is

E[pe|m] ≤ E

{∫

Y

p(Y |Cm)
1

1+s

[
∑

m′ 6=m

p(Y |C′
m)

1
1+s

]s

dY

}

=

∫

Y

E

{
p(Y |Cm)

1
1+s

[
∑

m′ 6=m

p(Y |C′
m)

1
1+s

]s}
dY

=

∫

Y

E
[
p(Y |Cm)

1
1+s

]
E

[
∑

m′ 6=m

p(Y |C′
m)

1
1+s

]s

dY,

since the codewords are selected independently.

Now suppose 0 ≤ s ≤ 1, then E[ts] ≤ [E(t)]s holds according to Jensen’s inequality.

Therefore,

E[pe|m] ≤
∫

Y

E
[
p(Y |Cm)

1
1+s

]{∑

m′ 6=m

E
[
p(Y |C′

m)
1

1+s

]}s

dY

=

∫

Y

E
[
Q(Y |X) 1

1+s

]{
(M − 1)E

[
Q(Y |X) 1

1+s

]}s

dY

= (M − 1)s
∫

Y

{
E
[
Q(Y |X) 1

1+s

]}1+s

dY

≤Ms

∫

Y

[∫

X

p(X)Q(Y |X) 1
1+sdX

]1+s

dY. (A.3)

Then the average probability of error has the expected value
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E[pe] = E

[
∑

m

Pr[Cm]pe|m

]

=
∑

m

Pr[Cm]E[pe|m]

≤Ms

∫

Y

[∫

X

p(X)Q(Y |X) 1
1+sdX

]1+s

dY.

Because the expected value over the ensemble of codes satisfies this bound, there must

be at least one code that itself satisfies the bound. Hence there exists a code whose

probability of decoding error satisfies

pe ≤ min
s∈[0,1]

min
p(X)

{
ensR

∫

Y

[∫

X

p(X)Q(Y |X) 1
1+sdX

]1+s

dY

}
.

According to the definition of reliability function, the random coding bound is

Er(R) = lim
n→∞

max
s∈[0,1]

max
p

[
−sR− 1

n
log

(∫

Y

[∫

X

p(X)Q(Y |X) 1
1+sdX

]1+s

dY

)]
.



APPENDIX B

SPACE PARTITIONING UPPER BOUND

Let {C0, · · · ,CM−1} denote the set of codewords, all possible Y that decode into Cm

form a set Um. We will start from a binary hypothesis testing problem:

H0 : Cm = codewordtransmitted

H1 : Cm 6= codewordtransmitted

The hypotheses are characterized by q0(Y |X) for H0 and q1(Y |X) for H1. By defining

the error exponent function e(r) as

e(r) = min
q̂∈Pr

∫

X

p(X)

∫

Y

q̂(Y |X) log q̂(Y |X)
q1(Y |X)

dY dX,

where

Pr = {q̂ :
∫

X

p(X)

∫

Y

q̂(Y |X) log q̂(Y |X)
q0(Y |X)

dY dX ≤ r}.

Then according Theorem 4.5.3. in [6], we have

α ≥ e
−nqλ(Y |X) log

qλ(Y |X)

q0(Y |X)
−o(n)

β ≥ e
−nqλ(Y |X) log

qλ(Y |X)

q1(Y |X)
−o(n)

where α, β are type I and type II errors of a hypothesis-testing problem.

qλ(Y |X) =
q1−λ
0 (Y |X)qλ

1 (Y |X)∫
Y
q1−λ
0 (Y |X)qλ

1 (Y |X)dY
,

and λ is chosen such that the threshold T satisfies,

T =

∫

Y

qλ(Y |X) log
q0(Y |X)
q1(Y |X)

dY.

Then we defined the channel reliability exponent E(R) as
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E(R) = max
p

min
Q̂∈LR(p)

∫

x

p(X)

∫

Y

Q̂(Y |X) log Q̂(Y |X)
Q(Y |X)dXdY,

where

LR(p) = {Q̂ :

∫

X

p(X)

∫

Y

Q̂(Y |X) log Q̂(Y |X)∫
X
p(X)Q̂(Y |X)dX

dXdY ≤ R}.

By Theorem 10.1.4 and 10.1.5 in [6], we have

1. Suppose that p∗ and Q∗ achieve E(R), and q∗(Y ) =
∫

X
p∗(X)Q∗(Y |X)dX. Then

E(R) = max
p

min
Q̂∈L′

R(p)

∫

X

p(X)

∫

Y

Q̂(Y |X) log Q̂(Y |X)
Q(Y |X)dXdY,

where

L′R(p) = {Q̂ :

∫

X

p(X)

∫

Y

Q̂ log
Q̂(Y |X)
q∗(Y )

dXdY ≤ R}.

2.

E(R) = max
p

max
s≥0

[
−nsR − log

∫

Y

(∫

X

p(X)Q(Y |X) 1
1+sdX

)1+s

dY

]

Now let us consider the channel coding problem. Let q∗(Y ) be the probability dis-

tribution on the channel output that achieves E(R∗) for any R∗. Select m so that∫
Y ∈Um

q∗(Y )dY ≤ 1
M
. The hypotheses are now characterized by Q(Y |X) and q∗(Y ),

which replace q0(Y |X) and q1(Y |X), respectively. The probability of error pe|m replaces

the type I error α and 1
M
replaces the type II error β. By the Theorem 4.5.3 in [6], we

have the lower bound on pe|m :

pe|m =

∫

Y ∈Uc
m

Q(Y |Cm) ≥ exp{−n
∫

X

p(X)

∫

Y

Q∗(Y |X) log Q
∗(Y |X)
Q(Y |X) dY dX − o′′(n)}.

Referring to Theorem 10.1.4, these becomes

pe|m ≥ e−nE(R∗)−o′′(n) ≥ e−nE(R−o′(n))−o′′(n), (B.1)

since R ≤ R∗ + o′(n) and E(R) is a decreasing function.

Of the M codewords, remove those M/2 codewords whose probability of error is

largest. This results in a code having M/2 = enR−log 2 codewords that must satisfy B.1.

Let C′ denote the set of codewords in the purged code. Let (p′e)max denote the maximum
error of any codeword in this purged code. Then,
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(p′e)max ≥ e−nE(R−log 2/n−o′(n))−o′′(n).

The average error of the original code is bounded as follows:

pe =
1

M

∑

m

pe|m ≥
1

M

∑

m/∈C′

pe|m

≥ 1

M

∑

m/∈C′

(p′e)max =
1

2
(p′e)max

≥ 1

2
e−nE(R−log 2/n−o′(n))−o′′(n)

= enE(R)−o(n).
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