845 research outputs found

    An investigation of the predictability of the Brazilian three-modal hand-based behavioural biometric: a feature selection and feature-fusion approach

    Get PDF
    Abstract: New security systems, methods or techniques need to have their performance evaluated in conditions that closely resemble a real-life situation. The effectiveness with which individual identity can be predicted in different scenarios can benefit from seeking a broad base of identity evidence. Many approaches to the implementation of biometric-based identification systems are possible, and different configurations are likely to generate significantly different operational characteristics. The choice of implementational structure is, therefore, very dependent on the performance criteria, which is most important in any particular task scenario. The issue of improving performance can be addressed in many ways, but system configurations based on integrating different information sources are widely adopted in order to achieve this. Thus, understanding how each data information can influence performance is very important. The use of similar modalities may imply that we can use the same features. However, there is no indication that very similar (such as keyboard and touch keystroke dynamics, for example) basic biometrics will perform well using the same set of features. In this paper, we will evaluate the merits of using a three-modal hand-based biometric database for user prediction focusing on feature selection as the main investigation point. To the best of our knowledge, this is the first thought-out analysis of a database with three modalities that were collected from the same users, containing keyboard keystroke, touch keystroke and handwritten signature. First, we will investigate how the keystroke modalities perform, and then, we will add the signature in order to understand if there is any improvement in the results. We have used a wide range of techniques for feature selection that includes filters and wrappers (genetic algorithms), and we have validated our findings using a clustering technique

    Strengthen user authentication on mobile devices by using user’s touch dynamics pattern

    Get PDF
    Mobile devices, particularly the touch screen mobile devices, are increasingly used to store and access private and sensitive data or services, and this has led to an increased demand for more secure and usable security services, one of which is user authentication. Currently, mobile device authentication services mainly use a knowledge-based method, e.g. a PIN-based authentication method, and, in some cases, a fingerprint-based authentication method is also supported. The knowledge-based method is vulnerable to impersonation attacks, while the fingerprint-based method can be unreliable sometimes. To overcome these limitations and to make the authentication service more secure and reliable for touch screen mobile device users, we have investigated the use of touch dynamics biometrics as a mobile device authentication solution by designing, implementing and evaluating a touch dynamics authentication method. This paper describes the design, implementation, and evaluation of this method, the acquisition of raw touch dynamics data, the use of the raw data to obtain touch dynamics features, and the training of the features to build an authentication model for user identity verification. The evaluation results show that by integrating the touch dynamics authentication method into the PIN-based authentication method, the protection levels against impersonation attacks is greatly enhanced. For example, if a PIN is compromised, the success rate of an impersonation attempt is drastically reduced from 100% (if only a 4-digit PIN is used) to 9.9% (if both the PIN and the touch dynamics are used). © 2019, The Author(s)

    A survey on touch dynamics authentication in mobile devices

    Get PDF
    © 2016 Elsevier Ltd. All rights reserved. There have been research activities in the area of keystroke dynamics biometrics on physical keyboards (desktop computers or conventional mobile phones) undertaken in the past three decades. However, in terms of touch dynamics biometrics on virtual keyboards (modern touchscreen mobile devices), there has been little published work. Particularly, there is a lack of an extensive survey and evaluation of the methodologies adopted in the area. Owing to the widespread use of touchscreen mobile devices, it is necessary for us to examine the techniques and their effectiveness in the domain of touch dynamics biometrics. The aim of this paper is to provide some insights and comparative analysis of the current state of the art in the topic area, including data acquisition protocols, feature data representations, decision making techniques, as well as experimental settings and evaluations. With such a survey, we can gain a better understanding of the current state of the art, thus identifying challenging issues and knowledge gaps for further research

    Exploration of Machine Learning Classification Models Used for Behavioral Biometrics Authentication

    Full text link
    Mobile devices have been manufactured and enhanced at growing rates in the past decades. While this growth has significantly evolved the capability of these devices, their security has been falling behind. This contrast in development between capability and security of mobile devices is a significant problem with the sensitive information of the public at risk. Continuing the previous work in this field, this study identifies key Machine Learning algorithms currently being used for behavioral biometric mobile authentication schemes and aims to provide a comprehensive review of these algorithms when used with touch dynamics and phone movement. Throughout this paper the benefits, limitations, and recommendations for future work will be discussed

    Enhancing Usability and Security through Alternative Authentication Methods

    Get PDF
    With the expanding popularity of various Internet services, online users have be- come more vulnerable to malicious attacks as more of their private information is accessible on the Internet. The primary defense protecting private information is user authentication, which currently relies on less than ideal methods such as text passwords and PIN numbers. Alternative methods such as graphical passwords and behavioral biometrics have been proposed, but with too many limitations to replace current methods. However, with enhancements to overcome these limitations and harden existing methods, alternative authentications may become viable for future use. This dissertation aims to enhance the viability of alternative authentication systems. In particular, our research focuses on graphical passwords, biometrics that depend, directly or indirectly, on anthropometric data, and user authentication en- hancements using touch screen features on mobile devices. In the study of graphical passwords, we develop a new cued-recall graphical pass- word system called GridMap by exploring (1) the use of grids with variable input entered through the keyboard, and (2) the use of maps as background images. as a result, GridMap is able to achieve high key space and resistance to shoulder surfing attacks. to validate the efficacy of GridMap in practice, we conduct a user study with 50 participants. Our experimental results show that GridMap works well in domains in which a user logs in on a regular basis, and provides a memorability benefit if the chosen map has a personal significance to the user. In the study of anthropometric based biometrics through the use of mouse dy- namics, we present a method for choosing metrics based on empirical evidence of natural difference in the genders. In particular, we develop a novel gender classifi- cation model and evaluate the model’s accuracy based on the data collected from a group of 94 users. Temporal, spatial, and accuracy metrics are recorded from kine- matic and spatial analyses of 256 mouse movements performed by each user. The effectiveness of our model is validated through the use of binary logistic regressions. Finally, we propose enhanced authentication schemes through redesigned input, along with the use of anthropometric biometrics on mobile devices. We design a novel scheme called Triple Touch PIN (TTP) that improves traditional PIN number based authentication with highly enlarged keyspace. We evaluate TTP on a group of 25 participants. Our evaluation results show that TTP is robust against dictio- nary attacks and achieves usability at acceptable levels for users. We also assess anthropometric based biometrics by attempting to differentiate user fingers through the readings of the sensors in the touch screen. We validate the viability of this biometric approach on 33 users, and observe that it is feasible for distinguishing the fingers with the largest anthropometric differences, the thumb and pinkie fingers

    Continuous User Authentication Using Multi-Modal Biometrics

    Get PDF
    It is commonly acknowledged that mobile devices now form an integral part of an individual’s everyday life. The modern mobile handheld devices are capable to provide a wide range of services and applications over multiple networks. With the increasing capability and accessibility, they introduce additional demands in term of security. This thesis explores the need for authentication on mobile devices and proposes a novel mechanism to improve the current techniques. The research begins with an intensive review of mobile technologies and the current security challenges that mobile devices experience to illustrate the imperative of authentication on mobile devices. The research then highlights the existing authentication mechanism and a wide range of weakness. To this end, biometric approaches are identified as an appropriate solution an opportunity for security to be maintained beyond point-of-entry. Indeed, by utilising behaviour biometric techniques, the authentication mechanism can be performed in a continuous and transparent fashion. This research investigated three behavioural biometric techniques based on SMS texting activities and messages, looking to apply these techniques as a multi-modal biometric authentication method for mobile devices. The results showed that linguistic profiling; keystroke dynamics and behaviour profiling can be used to discriminate users with overall Equal Error Rates (EER) 12.8%, 20.8% and 9.2% respectively. By using a combination of biometrics, the results showed clearly that the classification performance is better than using single biometric technique achieving EER 3.3%. Based on these findings, a novel architecture of multi-modal biometric authentication on mobile devices is proposed. The framework is able to provide a robust, continuous and transparent authentication in standalone and server-client modes regardless of mobile hardware configuration. The framework is able to continuously maintain the security status of the devices. With a high level of security status, users are permitted to access sensitive services and data. On the other hand, with the low level of security, users are required to re-authenticate before accessing sensitive service or data
    • …
    corecore