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Abstract

Using Users’ Touch Dynamics Biometrics to Enhance
Authentication on Mobile Devices

Pin Shen Teh
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2019

Mobile devices have become a popular platform for users to access informa-
tion and digital services, and stay connected. The increased usage and reliance
on these devices also imply that they increasingly handle, manage, and process
private and sensitive data. As more and more sensitive data are stored in, or ac-
cessible from, mobile devices, the risk and cost of losing these data are becoming
higher, particularly given the fact that mobile devices are much more vulnera-
ble to theft or loss in comparison with conventional computing devices such as
workstations and laptops. Therefore, more stringent security services should be
embedded into mobile devices. One of these services is user authentication, i.e.
how to verify a claimed identity.

Our initial literature study in the topic area of user authentication on mo-
bile devices shows that authentication on mobile devices should be strengthened
and touch dynamics biometrics offers the most usable additional authentication
factor than other biometrics alternatives. This has motivated us to investigate
how to best exploit the use of users’ touch dynamics biometrics to strengthen
authentication on mobile devices. To this end, the thesis has made the following
three novel contributions.

Firstly, this thesis has presented a thorough investigative study on touch dy-
namics biometrics authentication on mobile devices. The investigative study has
led to the discovery that existing studies mainly focus on improving accuracy per-
formance of the authentication system. The characteristics of mobile devices and
the way they are typically used are not given due consideration in these studies.
As a result, those systems may have high accuracy performances in a research
setting, but may not be realistically usable in practice, limiting the scale of their

15



deployment.
Secondly, the thesis has proposed and evaluated a novel touch dynamics based

two-factor authentication (ToDiTA) system to support user authentication on
mobile devices in a secure and usable manner. In proposing this system, we have
carried out comprehensive studies of different parameter value settings, differ-
ent ways of extracting features and different machine learning techniques used
to classify the features. The purpose of the studies is to increase accuracy (thus
making the system more secure), while, at the same time, reduce overhead costs
introduced (thus making the system more usable) as much as possible. The stud-
ies have led us to take the following measures in the design: (i) integrating touch
dynamics biometrics into a PIN-based authentication method that has a wide
social acceptance (improving security and usability); (ii) using descriptive statis-
tical methods to extract additional features from the already-acquired features
instead of using features that have to be captured by using additional device
sensors (improving usability); (iii) reducing the number of features by selecting
and using the most important set of features (improving accuracy and efficiency);
and (iv) reducing the touch dynamics data required to train the model by us-
ing one-class classification approach (improving usability). In addition, we have
used a more comprehensive dataset to evaluate the ToDiTA system so that the
conclusion drawn from the evaluation results are more conclusive. The evalua-
tion of ToDiTA showed that by integrating the touch dynamics authentication
method into the PIN-based authentication method, along with the above men-
tioned measures, the ability to counter impersonation attacks is greatly enhanced.
For example, if a PIN is compromised, the success rate of an impersonation at-
tempt is drastically reduced from 100% (if only a 4-digit PIN is used) to 9.9% (if
both the PIN and the touch dynamics are used).

Thirdly, the thesis has proposed and evaluated an enhanced ToDiTA (E-
ToDiTA) system by adding a novel learning capability into the ToDiTA system.
The E-ToDiTA system can adapt itself to any changes in a user’s touch dynamics
pattern. This is achieved by capturing the user’s new touch dynamics data as
soon as it becomes available and use the new data to update the authentication
model. To minimise any additional overhead cost introduced by this addition, we
have used a feature spooling process to reduce the number of times required to
carry out the model adaptation processes and a progressive adaptation method
which uses a fewer number of samples to update the model. The performance
of the E-ToDiTA system has been evaluated and compared against that of the
ToDiTA system. The results show that, on average, the E-ToDiTA system has
improved the accuracy performance by 33.53% in comparison with the ToDiTA
system, but with virtually zero increase in overhead cost.

These results indicate that touch dynamics biometrics is a viable option for
strengthening user authentication on mobile devices, particularly the capturing
of such biometric data does not require additional efforts from a device user;
the data can be captured while the user carries out their normal device-using
activities.
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Chapter 1

Introduction

1.1 Background

This section provides the background information for the work reported in this

thesis, namely mobile cloud computing, authentication on mobile devices and

touch dynamics biometrics.

1.1.1 Mobile Cloud Computing

The use of mobile devices in handling our routine activities is becoming very

common. This is particularly the case with the rapid growth and widespread use

of smartphones and digital tablets. The processing capability of these devices

has advanced to the point where most digital activities that can be accomplished

on workstations or laptops can also be performed on mobile devices. Routine

activities such as personal and corporate e-mail communications, online banking

transactions, accessing paperless prescription services, route navigation, etc. can

be carried out ubiquitously with these devices.

Mobile cloud computing technologies enable mobile devices to run more com-

plex applications by offloading the more computationally intensive modules of a

mobile application to the cloud. These modules are instead executed by the com-

puting resources in the cloud (e.g. servers, storage, networks, applications and

services), reducing the computational requirements to run the application [1]. In

this way, mobile devices can run more complex applications for use in various

application areas such as those discussed as follows:
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Healthcare and Wellness. Mobile medical monitoring applications allow health-

care providers to collect, monitor and diagnose patients’ latest medical conditions

remotely over the internet [1]. With such applications, patients can receive timely

diagnoses and effective treatments.

Education. The use of mobile devices to support e-learning enhances the learn-

ing experience. With mobile learning applications, such as Blackboard App [2],

Coursera Mobile App [3] and Udacity for Mobile [4], learners and educators can

access content-rich learning materials (e.g. videos, blogs, forums and interactive

quizzes) at any time and from almost anywhere.

Business and Banking. Business activities such as shopping, booking, tick-

eting and advertising can be seamlessly performed on-the-go with the use of

custom-made mobile applications catered for different types of businesses. Finan-

cial institutions can provide their customers with hassle free and secure banking

services (e.g. money transfer, bill payment and balance enquiry) on-the-go with

the use of mobile banking applications.

Social Media and Information Sharing. According to a report [5], there are

3.028 billion active social media users globally in 2017, in which 2.78 billion (or

91.8%) of them accessed their social media accounts via mobile devices. The

increasing use of mobile devices to access social media contents revolutionised

the way we receive, process and share information.

Disaster Relief and Recovery. In the event of a severe natural disaster, people

trapped in, or having access to, the disaster areas could use the camera embedded

on their mobile devices to capture photos of their surroundings and upload the

photos to the cloud. These photos can be quickly processed and analysed to

generate valuable information (e.g. severity of the damage or possible access

route) that can facilitate and expedite rescue mission [6].

Gaming. According to Newzoo, a video games research firm, the worldwide

mobile games revenue will account for 50% of the $180.1 billion generated from

total worldwide gaming market in 2018 [7]. This statistic shows that mobile

devices are increasingly used for game entertainment purposes.

Based on the discussion above, it is clear that the use of mobile devices has

brought benefits to several existing application areas, and they have promised
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to bring further benefits to other application areas. This also means that the

use of mobile devices is experiencing continuous and rapid growth. According

to a forecast by Cisco, there will be approximately 11.6 billion mobile-connected

devices by 2021, and the global mobile data traffic will increase nearly sevenfold

between 2016 and 2021, reaching 49 exabytes per month by 2021 [8]. These

staggering statistics show our increasing reliance on mobile devices and also imply

that our private and sensitive data will increasingly be handled, managed and

processed by these devices. Therefore, the security of accessing mobile devices

and accessing data, services and other resources through these devices are of

prime concern. More stringent security services should be embedded on mobile

devices. One of these services is user authentication, i.e. how to securely verify

a claimed identity. In the next section, we further discuss user authentication in

the context of mobile device.

1.1.2 Authentication on Mobile Devices

Authentication is the first-line defence in any computer system or device as it

is a pre-requisite for several other security services such as authorisation and

accountability. In a mobile device context, authentication is typically achieved via

a knowledge-based authentication method, and with this method, a user proves

their identity by demonstrating the knowledge of a secret. This secret could be

a character-based passcode, a digit-based passcode (also referred to as Personal

Identification Number (PIN)) or a graphical-based passcode.

The use of passcodes is vulnerable to a number of security attacks. Studies

have shown that an attacker can easily reproduce or derive a passcode from

smudge (oily residues left on a touchscreen surface) [9], shoulder spoofing [10]

and brute force attacks [11]. Some studies even suggested that an attacker could

infer a passcode by analysing data recorded from the accelerometer and gyroscope

sensors embedded in more recent mobile devices [12, 13]. Wrongful user usage

behaviour such as selecting easy to remember passcode, sharing of a passcode and

using the same passcode across multiple systems makes these attacks easier to

perform and worsened its consequences. Even with the presence of these attacks,

knowledge-based authentication methods are still the primary methods used to

authenticate mobile users [14]. Therefore, to thwart these attacks or to make

these attacks harder to succeed, a more robust authentication method is needed.

An alternative to knowledge-based authentication methods is biometrics-based
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authentication methods. The latter identifies a person based on his/her physiolog-

ical or behavioural characteristics. Physiological biometrics refers to the physical

features of a human body such as fingerprint, facial characteristics and iris pat-

tern. Behavioural biometrics refers to the traits acquired from human behaviour

or habits like signature, voice, gait and touch dynamics.

To ensure that a biometrics authentication method is effective, the method

should be not only secure but also usable. This is supported by the findings

reported in two separate studies [15,16]. In the first study, the authors conducted

a survey to investigate how participants ranked the perceived security protection

and the usability (willingness to use the method) of different types of biometrics

authentication methods on mobile devices. The survey reported that the iris

and voice biometrics authentication methods were ranked the highest in terms of

the perceived security protection factor, but the lowest in terms of the usability

factor.

The findings in the second study enforced the findings of the first study. The

authors reported that one of the important factors influencing the participants’

choice as to which biometrics authentication method they prefer to use on a

mobile device is the usability factor. They identified two primary usability issues

that may put off participants from using a biometrics authentication method: (i)

slow authentication speed and inconvenience, and (ii) social awkwardness. For

(i), in the case of face biometrics, participants felt that it was time-consuming and

difficult to align the face correctly in front of the device’s camera. In the case of

fingerprint biometrics, the participants felt that it was hard to scan a fingerprint

properly when the fingers were too oily or dry, or when the device was covered

with a protective case, and this often leads to a false negative authentication

result [17]. For (ii), participants felt that it was awkward to hold a device in

front of a face to perform an authentication task in public. This is more so the

case in the context of mobile devices, where the use of these devices in public is

very common and frequent.

Furthermore, using a single biometrics authentication method to form an au-

thentication system introduces a number of limitations that may hinder usability.

For example, a face-based authentication method imposes a higher privacy risk

than other biometrics-based authentication methods as it can be more likely used

in a covert manner [18]. A touch dynamics-based authentication method suffers
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from a higher false rejection rate than other physiological-based biometrics au-

thentication method. A hand geometry-based authentication method is less prac-

tical to be used in a mobile device application context because the physical size of

a hand geometry is large [19]. A voice-based authentication method is sensitive

to a number of factors such as background noise as well as the emotional and

physical state of the user [20].

One of the possible measures to make the authentication service more secure,

while, at the same time, without hindering usability, is to integrate a biometric-

based (e.g. touch dynamics) authentication method with a knowledge-based au-

thentication method to form a so-called two-factor authentication system. Such

system can make unauthorised accesses to mobile devices harder, thus strength-

ening the security protection level of mobile devices, while, at the same time, still

be able to maintain usability as high as possible. The existing knowledge-based

authentication method has a wide social acceptance, and the touch dynamics

authentication method is also expected to be widely acceptable by the general

public [21]. The following section introduces touch dynamics biometrics.

1.1.3 Touch Dynamics Biometrics

Touch dynamics is a behavioural biometrics, which captures the way a person

touches on a touchscreen mobile device. When a human interacts with such a

device, a digital signature is generated. The signatures generated are believed to

be rich in discriminative properties, which are relatively unique to each individual

and can be used to identify a person/user [22].

Touch dynamics authentication method can be implemented by employing

sensors already available in most mobile phones, digital tablets and other touch-

screen devices, making the implementation of this authentication method com-

paratively cheaper than other biometrics-based authentication methods such as

fingerprint-based and iris-based authentication method where additional or spe-

cialised hardware is required. The availability of higher resolution sensors in

recently released mobile devices provides added opportunities to the develop-

ment of touch dynamics biometrics, as these sensors allow the extraction of more

discriminative features. Also, the acquisition of touch dynamics features is less

sensitive to external factors such as lighting conditions and/or background noise

levels, making it more usable and reliable in a mobile context. Mobile devices

usually operate in an on-the-go manner, so their background noises and lighting
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may change continuously. These external factors may cause problems to some

biometrics authentication method. For example, a voice-based authentication

method is more affected by the background noise level [23]. A face-based au-

thentication method using the visible lighting approach would not work well in

weak lighting conditions [24]. A face-based authentication method using active

invisible lights may work well in weak lighting conditions [25], but the approach

requires the use of special sensors incorporated into a device, increasing cost.

In addition, touch dynamics authentication method can operate in parallel

with a person’s normal mobile device usage activities and is non-intrusive [26].

For example, different from the case for a fingerprint-based or iris-based au-

thentication method where the acquisition of biometrics features has to be done

via separate authentication related input activities, touch dynamics features can

be acquired whenever a user uses his/her device. In other words, the acquisi-

tion of touch dynamics features can be carried out during a user’s normal (i.e.

non-authentication related) input activities, requiring little extra interactions by

the user. This way of acquiring biometrics features brings two further benefits.

Firstly, the authentication method can verify the identity of a user at any point

of the user’s interaction with his/her device, and do so in a non-intrusive and

transparent manner (i.e. without explicit attention from the user). Secondly,

the authentication method is less vulnerable to privacy risks, as touch dynamics

data acquired at different times exhibit a degree of variability, and the higher the

variability, the lower the privacy risk [27].

While using touch dynamics to identify a user has a number of advantages,

it also introduces challenging issues. The next section describes the research

motivation and highlights the challenging issues.

1.2 Research Motivation and Challenges

From our discussions above, it is clear that authentication on mobile devices

should be strengthened, and touch dynamics biometrics offers a desirable addi-

tional authentication factor that can be used to strengthen the authentication.

Through our literature study of the state-of-the-art in the topic area of touch dy-

namics biometrics authentication, it was discovered that existing studies mainly

focus on improving accuracy performance of the authentication system. The char-

acteristics of mobile devices and the way they are typically used are not given
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due consideration in these studies. This observation has motivated the research

conducted in this thesis.

This research is aimed at investigating how to best (in terms of security and

usability) strengthen user authentication on mobile devices by using touch dy-

namics biometrics. We answer this question by designing and evaluating a touch

dynamics authentication system to strengthen user authentication on a mobile

device. In doing so, the following challenging issues are identified:

• Maximising Accuracy: The accuracy performance of a touch dynamics

authentication system is relatively lower than other physiological biomet-

rics authentication system (e.g. fingerprint and iris). This is because touch

dynamics data acquired at different occasions are likely to exhibit a certain

degree of variations due to external factors, such as fatigue, mood or dis-

traction. Therefore, consideration should be given as how to increase the

accuracy performance of a touch dynamics authentication system in the

design.

• Minimising Computation and Communication Costs: Computa-

tional capabilities of mobile devices are typically lower than desktop com-

puters. This means that certain criteria, such as algorithm complexity,

should be considered with the aim of reducing communication cost and

authentication delays. In other words, computational and communication

costs introduced as the result of deploying the authentication system should

be as low as possible.

• Minimising Energy Consumption: Mobile devices, unlike their desk-

top counterparts, are typically battery powered, so the less the energy an

application consumes, the longer the device can operate. Though commu-

nication is the primary source of power consumption of a device [28], other

factors such as the number and usage frequencies of various sensors embed-

ded in a device, which are used to extract touch dynamics data, also have

a direct impact on the mobile device battery consumption level. Therefore,

how to reduce the energy consumption of a mobile device should be taken

into consideration in the design.

• Adaptive Learning Capability: Usually, human behavioural character-

istics change more frequently than their physiological characteristics. Sim-

ilarly, a user’s touch dynamics pattern may change gradually as the user is
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getting more familiar with the passcode, input method, device and other

external factors. A robust touch dynamics authentication system should be

capable of adapting itself to any changes in a user’s touch dynamics pattern.

1.3 Research Aim and Objectives

This research aims to investigate how to best exploit the use of users’ touch

dynamics biometrics to strengthen authentication on mobile devices. This aim is

supported by the following objectives.

1. To investigate and analyse the characteristics of authentication on mobile

environment and the authentication factors used in such environment to

identify the security threats associated with the use of the authentication

factors.

2. To analyse and specify requirements to guide the selection of authentication

factors used for the design of a secure and usable authentication solution

for mobile device based on the threat analysis performed in Objective 1.

3. To investigate and critically analyse related work in the topic area of touch

dynamics biometrics authentication on mobile device with the aim of iden-

tifying gaps in knowledge and investigating novel measures and ideas to

improve existing solutions in terms of accuracy performance and usability.

4. To design a touch dynamics based two-factor authentication (ToDiTA) sys-

tem to strengthen user authentication on mobile devices with as high ac-

curacy, and as low cost, as possible. In designing this system, we also

investigate the effects of various parameter settings on the performance of

the designed system.

5. To extend the ToDiTA system for it to have an learning capability so that it

can also adapt itself to any changes in a user’s touch dynamics pattern. This

extended system is called an enhanced ToDiTA system, i.e. the E-ToDiTA

system.

6. To evaluate and compare the performances of both designed systems using

simulation.
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1.4 Research Methodology

The research methodology utilised in this research consists of four key compo-

nents: literature survey and critical analysis of the related work, system design,

and implementation and evaluation.

1.4.1 Literature Review

The first task carried out in this research was to study in-depth the related work

in the literature. We started by investigating the topic area of authentication on

mobile environment. The purpose of this study was to become familiar with the

characteristics of authentication on mobile environment and the current authen-

tication factors used in such environment, and to identify the security threats

associated with the use of these authentication factors. Upon completion of this

study, it becomes apparent that touch dynamics biometrics is the preferable au-

thentication factor that we could use to design our solution. The next step was to

critically analyse the existing solutions to identify their strengths and limitations,

with the aim of building our solution on the strengths of existing solutions, but

overcoming their limitations. The insights gained from the analyses have led us to

the design of our secure and usable two-factor authentication system. Reviewing

relevant literature was carried on throughout the duration of this research. As

new work was published, it was reviewed, and necessary findings were taken into

account. Performing the literature review and critically analysing the literature

satisfies Objectives 1, 2 and 3.

1.4.2 System Design

Following the literature review, a number of research gaps were identified. Based

on the identified gaps and the research aim, measures and ideas were formed to

design systems that address the gaps. The system measures and ideas were re-

peatedly refined by considering input from existing work and by our progressively

insightful thinking towards the research problem. Considerations were given to

reduce any additional overheads imposed to the proposed systems. At the con-

clusion of this phase, two novel systems were designed. The first system was the

ToDiTA system. The second system was an enhanced version of ToDiTA, i.e. the

E-ToDiTA system. The design of these two systems satisfies Objective 4 and 5.
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1.4.3 Implementation and Evaluation

The next stage of our research was to implement and evaluate the designed sys-

tems. The performances of the designed systems were evaluated using simulation

method. The implementation of the simulation-based evaluations was carried

out using MATLAB programming platform. Before the implementation, it was

necessary first to perform two tasks: (i) define the evaluation metrics, and (ii)

design the evaluation methods. Following these tasks, the simulations were im-

plemented using the evaluation methods to provide accurate measures of the

metrics. The simulations were carried out in two stages. In the first stage, the

simulation was run under various parameter settings to evaluate the impacts of

different parameter value settings on the performance of the ToDiTA system. In

the second stage, the simulation was carried out to compare the ToDiTA system

with the E-ToDiTA system to demonstrate the enhancement of E-ToDiTA over

ToDiTA. The collected results from the simulation runs were plotted into graphs

and recorded into tables, and these graphs and tables were then used to analyse

and evaluate the performances of the proposed systems and to compare with the

most relevant work to demonstrate the merits of the proposed systems over the

related work. The analyses and evaluations provided satisfy Objective 6. Con-

clusions were drawn from the evaluations of the designed systems, and directions

for future research were identified.

1.5 Novel Contributions

The research work presented in this thesis has led to the following novel contri-

butions.

Novel Contribution 1: An investigative study of touch dynamics bio-

metrics authentication on mobile devices [29]

Novel contribution 1 has two parts. In the first part, an initial literature study

has been conducted on authentication on mobile environment and the types of

authentication factors used in such environment. Following this, we have iden-

tified the security threats imposed on such environment and specified a set of

requirements to guide the selection of authentication factors for the design of

authentication system that counters the identified threats. By analysing these
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authentication factors against the specified requirements, touch dynamics bio-

metrics was identified as the most desirable for the system. This has led to the

second part of novel contribution 1. In the second part, a thorough investigative

study has been conducted on touch dynamics biometrics authentication on mobile

devices to gain insights and comparative analysis on the current state-of-the-art,

including the raw data acquisition protocols, feature data representations, fea-

ture data classification techniques, evaluation criteria, as well as experimental

settings and evaluations. The investigative study has led to the identification of

the research gaps described in Section 3.10 in Chapter 3. Based on these gaps,

recommendations for a way forward were made. These recommendations have

led to the generation of the measures and ideas used in the designs of the secure

and usable authentication system proposed in this thesis, which is the second and

third novel contributions in this thesis, described below.

Novel Contribution 2: A secure and usable system for strengthening

user authentication on mobile devices [30,31]

A touch dynamics based two-factor authentication (ToDiTA) system has been

proposed. This system integrates touch dynamics biometrics into existing PIN-

based authentication method to form a two-factor authentication system. In

this two-factor authentication system, the touch dynamics biometrics serves one

factor, and the touch PIN-based authentication method serves the other factor.

It requires additional effort to successfully bypass the authentication control of

such system, as, in this case, to successfully launch an impersonation attack, an

impersonator would have to compromise both authentication factors. Experimen-

tal results show that by integrating touch dynamics biometrics into PIN-based

authentication method, the ability to counter impersonation attacks is greatly

enhanced. The results indicate that the idea of using touch dynamics biometrics

to strengthen user authentication on a mobile device or application context is ef-

fective. To this end, the benefits of the ToDiTA system are clear, yet, the system

not effective when a user’s touch dynamics pattern changes. This limitation has

led to the design of an enhanced system (the E-ToDiTA system), which is the

third novel contribution in this thesis, described below.
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Novel Contribution 3: An enhanced touch dynamics based two-factor

authentication system with adaptive learning capability [32]

The E-ToDiTA system extends the ToDiTA system to provide adaptive learning

capability, making it effective in adapting itself to any changes in a user’s touch

dynamics pattern. This is achieved by updating the authentication model with

new touch dynamics data as soon as the new data becomes available. In the

design of the E-ToDiTA system the following ideas have been used:

• A feature screening process to examine whether the acquired new data

are suitable for use to update the model, reducing the likelihood that the

updated model may incorrectly deviate from the owner’s real touch dynamic

pattern.

• A feature spooling process to limit the number of times required to carry

out the model adaptation processes, reducing computational overhead and

improving usability.

• A progressive adaptation method which uses a fewer number of samples

to update the model, reducing the storage overhead required to store the

samples and the risk of overfitting the model.

The E-ToDiTA system is evaluated against the ToDiTA system. The evaluation

results show that E-ToDiTA performs better in two ways: it is more effective in

improving the accuracy performance of the system when a user’s touch dynamics

pattern changes and do so without introducing excessive overhead to the mobile

device.

1.6 Publications and Industry Collaboration

Parts of the research presented in this thesis have led to the following journal and

conference publications, poster presentation and industry collaboration.

Journal Papers

1. Pin Shen Teh, Ning Zhang, Ke Chen, and Qi Shi, “A Touch Dynamics

Based Authentication System for Mobile Devices with Adaptive Learning

Capability”, Transactions on Mobile Computing, IEEE, in progress.



1.6. PUBLICATIONS AND INDUSTRY COLLABORATION 33

2. Pin Shen Teh, Ning Zhang, Ke Chen, and Qi Shi, “Strengthening User

Authentication on Touchscreen Mobile Devices with User’s Touch Dynam-
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vey On Touch Dynamics Authentication In Mobile Devices”, Computers &

Security, Elsevier, vol.59, pp.210-235, 2016, doi:10.1016/J.COSE.2016.03.003.
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A Touch Dynamics Based Multi-factor Authentication Solution for Mobile

Devices”, International Journal of Pervasive Computing and Communica-
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0005.

Conference Papers
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Pin Shen Teh, “A Robust Abnormal Behavior Detection Method Using

Convolutional Neural Network”, In Computational Science and Technology,

Lecture Notes in Electrical Engineering, Springer, vol.481, pp. 37-47, 2019,

doi:10.1007/978-981-13-2622-6 4.

2. Pin Shen Teh, Ning Zhang, Andrew Beng Jin Teoh, and Ke Chen, “Rec-

ognizing Your Touch: Towards Strengthening Mobile Device Authenti-
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ternational Conference on Advances in Mobile Computing and Multime-
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doi:10.1145/2837126.2837127. Acceptance rate: 30.2%.

Poster Presentation

The author was selected to present the potential of this research in The Uni-

versity of Manchester Postgraduate Summer Research Showcase 2018. In the

showcase, an interactive poster was presented with the title “Enhancing Mobile

Device Authentication by Using Touch Dynamics Biometrics”. Only twelve re-
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Industry Collaboration

Parts of this research have been put into practical application. With the support

of funding by the University (Higher Education Innovation Funding: Connecting

Capability Fund), the author has implemented the two-factor authentication sys-

tem for potential exploitation by Worldpay (a leading global payments provider)

to support secure payment applications. This implementation is a working proto-

type in the form of a mobile application. The application analyses users’ touch-

screen input patterns to enhance PIN security. The project has been completed

successfully, and Worldpay has expressed interest in working on a new proposal

for the next stage of funding.

1.7 Thesis Structure

The remainder of this thesis is organised as follows (the structure of the thesis is

further illustrated in Figure 1.1).

Chapter 2 provides a background about authentication on mobile environment

and the authentication factors used in such environment. The chapter iden-

tifies the security model involved and analyses the security threats imposed

on the model. It also specifies the requirements to guide the selection of

authentication factors for the design of secure and usable authentication

solutions that counter the identified threats.

Chapter 3 presents a detailed investigative study of the related work in the topic

area of touch dynamics biometrics. Based on the identified strengths and

weaknesses of the existing work, the chapter identifies research gaps in these

work and makes recommendations for a way forward. The analyses provided

in this chapter constitute the first novel contribution of this research.

Parts of this research have been published in peer-reviewed journal paper:

“A Survey on Touch Dynamics Authentication in Mobile Devices” [29].

Chapter 4 presents the design and evaluation of the second novel contribution

of this research, i.e. the ToDiTA system. The measures and ideas used in

the design of the ToDiTA system are based on the recommendations made

in Chapter 3. The ToDiTA system is evaluated under different parameter

value settings. The shortcoming of the ToDiTA system is identified.
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Parts of this research have been published in peer-reviewed journal and

conference paper: “TDAS: A Touch Dynamics based Multi-Factor Authen-

tication Solution for Mobile Devices” [30] and “Recognizing Your Touch:

Towards Strengthening Mobile Device Authentication via Touch Dynamics

Integration” [31], respectively.

Chapter 5 presents the design and evaluation of the E-ToDiTA system, which

is an enhanced version of the ToDiTA system. This chapter presents the

third novel contribution of this research. The novelty of the E-ToDiTA

system is that it is capable of adapting itself to any changes in a user’s

touch dynamics pattern. The E-ToDiTA system is evaluated against the

ToDiTA system.

Parts of this research have been submitted for a peer-reviewed journal pa-

per: “Strengthening User Authentication on Touchscreen Mobile Devices

with User’s Touch Dynamics Pattern” [32]. Another journal paper is in

progress. In addition, parts of this research have been implemented into a

working prototype in partnership with Worldpay.

Chapter 6 concludes this thesis and suggests directions for future research.
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Chapter 2

Authentication Technologies on

Mobile Environment

2.1 Chapter Introduction

This chapter gives an overview of authentication on mobile environment and the

types of authentication factors used in such environment. It also identifies the

security models involved and the security threats imposed on the models. In

addition, the chapter specifies a number of requirements that are used to guide

the selection of authentication factors for the design of authentication system

that counters the identified threats. Further, it analyses the different types of

authentication factors against the specified requirements and identifies the most

desirable authentication factors for the system.

In detail, Section 2.2 presents an overview of authentication in relation to

our research context. Section 2.3 describes the types of authentication factors

used including their strengths and weaknesses. Section 2.4 discusses the differ-

ences between single-factor and multi-factor authentication approaches. Section

2.5 identifies the entity and security models involved. Section 2.6 identifies the

security threats imposed on the identified models. Section 2.7 specifies a set of

requirements for the selection of authentication factors. Section 2.8 presents a

comparative analysis of the authentication factors against the specified require-

ments. Finally, Section 2.9 summarises this chapter.

37
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2.2 Authentication Overview

Authentication refers to the process of initiating trust in, or verifying, the identity

of a user, process or device [33]. This process plays a major part in protecting

private and sensitive data from unauthorised access. Depending on the appli-

cation scenario, authentication can be performed using various methods. In a

conventional banking scenario, such as the opening of a bank account, the pri-

mary method used to verify the identity of an individual is by comparing the valid

proof of identity (e.g. passport or driving licence) against the physical presence

of the individual. In a mobile application scenario, the use of physical presence to

verify the identity of a mobile user is harder and less practical, as a mobile user

typically access a mobile device in an on-the-go manner. As such, alternative

methods for verifying the identity of a mobile user that can achieve a comparable

level of trust are required. Apart from the physical presence of an individual,

authentication can also be performed using different types of credentials, also

known as authentication factors (AFs). In the following section, we discuss the

AFs in detail.

2.3 Authentication Factors (AFs)

AFs are normally classified into three categories as follows:

• Knowledge-based AFs (“something a person knows”)

• Possession-based AFs (“something a person has”)

• Biometrics-based AFs (“characteristic belonging typically to a person”)

In the following sections, we discuss the AFs in each category, highlighting

their strengths and weaknesses. The discussion focuses on AFs used in the mobile

environment.

2.3.1 Knowledge-Based AFs

Knowledge-based AFs refer to the use of a shared secret or password (also known

and hereafter referred to as a passcode) as evidence for identity verification. Pass-

code has a number of advantages (+) and disadvantages (-) as follows:

• Easy to use (+).
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• Cheaper implementation (+).

• Widely acceptable (+).

• Vulnerable to shoulder surfing and brute force attacks (when a passcode is

short in length and low in complexity) (-).

• Difficult to remember (when a passcode is long in length and high in com-

plexity) (-).

There are three different forms of passcode: (i) textual, (ii) digit, and (iii) graph-

ical. In the following, we further discuss these three forms of passcode.

Textual passcode: A textual (also known and hereafter referred to as character)

passcode consists of letters, digits, symbols or the combinations among them. It

has been commonly used for access control to digital systems accessed through the

use of physical keyboards equipped on desktop and laptop workstations. Mobile

devices, unlike their desktop and laptop counterparts, are equipped with virtual

keyboards. The use of a virtual keyboard to input a character passcode is harder

and slower than on a physical keyboard for the following two reasons. Firstly,

a virtual keyboard is significantly smaller than a physical keyboard, making it

harder to input the character keys. Secondly, due to the limited space on a

virtual keyboard, the layout of the character keys is spread over different virtual

keyboard screens. Therefore, to complete the input of a passcode, users have to

toggle between different screens, making passcode entry slower and inconvenient.

This is more so the case when a passcode consists of the combination of letters,

digits and symbols.

Digit passcode: A digit passcode (or a PIN), consists of numerical symbols

ranging from 0 to 9. A PIN, typically 4-digit in length, is the most commonly

used AF on mobile devices [34]. The PIN has two advantages over a character

passcode. Firstly, the sizes of digit keys are larger on a virtual keyboard screen,

making it easier to input the intended key. Secondly, it is easier to remember

a PIN that a character passcode. However, a PIN has a lower entropy than a

character passcode (when both passcodes have the same length), making the PIN

more vulnerable to shoulder surfing and brute force attacks.

Graphical passcode: A graphical passcode can be classified into three cate-

gories [35]: recall-based, cued recall-based and recognition-based. A recall-based
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passcode consists of either a drawing (e.g. DooDB [36]) or a sequence of connected

dots on a virtual grid interface (e.g. Pass-Go [37]). A cued recall-based passcode

consists of a sequence of hidden points in an image (e.g. PassPoints [38]). A

recognition-based passcode consists of a selection of images from a list of images

(e.g. Awase-E [39]). A graphical passcode has two advantages over a character

passcode and a digit passcode in terms of usability. Firstly, the human brain is

more capable of remembering graphical information than character and digit se-

quences [40]. Secondly, the process of inputting a graphical passcode is easier and

faster than a character passcode and a digit passcode [41]. However, a graphical

passcode has three weaknesses. Firstly, a recall-based passcode is vulnerable to

smudge attack [42]. Secondly, a recognition-based passcode requires much more

storage space than a character passcode [43]. Thirdly, the time required to in-

put a recognition-based passcode is longer than a character passcode and a digit

passcode [35].

2.3.2 Possession-Based AFs

Possession-based AFs refer to the use of a valid possession of an object as evidence

for identity verification. Examples of possession-based AFs are a key to a lock, a

key fob, a photographic identity card and a One-Time Password (OTP) generator

or paper list. OTP is one of the commonly used possession-based AF on mobile

devices [44]. OTP, as its name suggest, is a passcode that can only be used once.

The content of the passcode is a randomised string generated by a predefined

algorithm stored in a token. There are two different types of token: hardware and

software. A hardware token is a small device that can be conveniently carried.

A software token is an application that can be installed on a mobile device.

There are three disadvantages of using a token. Firstly, the possession of a valid

token alone is not sufficient to guarantee that the individual who possesses the

token is the legitimate user (e.g. the token may be stolen from the legitimate

user). Secondly, the production, distribution and maintenance of a token incur

additional cost to the service provider. Thirdly, it is inconvenient for users to carry

or manage multiple tokens as, normally, different service providers use different

tokens [45].
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2.3.3 Biometrics-Based AFs

Biometrics refer to human traits or characteristics that are uniquely associated

with an individual. Biometrics-based AFs have four properties that make them

useful as a personal identifier [46]: (i) unique among different individuals, (ii)

harder to be transferred or shared, (iii) less likely to be forgotten or lost, and (iv)

difficult to forged or duplicated. However, unlike knowledge-based and possession-

based AFs, the use of biometrics-based AFs may result in false positive (i.e.

wrongly identify an impersonator as a legitimate user) and false negative (i.e.

wrongly identify a legitimate user as an impersonator) authentication decisions

[44]. In general, biometrics are divided into two categories: physiological and

behavioural. In the following sections, we discuss the two biometrics categories

in detail.

2.3.3.1 Physiological Biometrics

Physiological biometrics refer to the physical characteristics or measurement of

parts of the human body [47], such as fingerprint, palmprint, face and iris. Phys-

iological biometrics are highly unique among different individuals and remain rel-

atively stable or less likely to change drastically over a human’s lifetime. These

two properties make using physiological biometrics AFs more accurate than be-

havioural biometrics AFs when used as a personal identifier. While physiological

biometrics AFs are more accurate at identifying an individual, when compro-

mised, imposes greater security and privacy risk as physiological biometrics data

are not revocable (i.e. cannot be altered or replaced) [48]. In the context of

mobile device, four types of physiological biometrics have been used: fingerprint,

face and iris. They are further discussed in the following.

Fingerprint: Human fingerprint consists of pattern of ridges, valleys and minu-

tiae points that makes it unique among a wide population. No two fingerprints

are identical. It is the most mature and establish AF used compared to the other

biometrics AFs [49]. Fingerprint has been used in areas such as law enforce-

ment, forensic investigation and access control. In recent years, fingerprint has

been increasingly used for authentication on mobile devices. For example, Apple

Touch ID [50], enables fingerprint to be used as an alternative to knowledge-based

AFs for activities that require proof of identity (e.g. unlock a device, authorise

a transaction and access to a mobile application). This AF is subject to two
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drawbacks. Firstly, it requires the use of a dedicated fingerprint scanner to cap-

ture and extract fingerprint pattern. This means that it incurs additional cost to

users, hindering the widespread adoption and deployment of the authentication

system. Secondly, the acquisition of fingerprint pattern is affected by external

factors such as sweat, cuts or dry skin on the finger [50], preventing the proper

capture of fingerprint pattern.

Face: Human face consists of features that can be analysed, compared and used

for identity verification. Face recognition is widely used for border control and

crime investigation [51]. Face image can be captured via camera built-in on most

mobile devices, keeping the cost of implementation low. Capturing good quality

face images is essential for this AF to work effectively. The quality of face images

are affected by two factors [52]: (i) lighting condition (e.g. under or over-exposed

lighting condition), and (ii) image shape, size and orientation (e.g. distance and

angle of a captured face image). These two factors are often difficult to control

in a mobile device usage scenario, making it harder to capture good quality face

images.

Iris: Human iris is formed and developed during gestation (i.e. the period be-

tween conception and birth of a baby), and once developed remains permanent

throughout a human’s lifetime. Iris pattern has a very complex structure which

is unique among different individuals, is difficult to replicate or forge, and when

used as an AF, can achieve a high level of accuracy performance [53]. There are

two concerns when implementing an iris-based AF on a mobile device. Firstly,

acquiring iris image requires the use of a specialised infrared camera, and most

commercial off-the-shelf mobile devices are not equipped with such a camera [54].

This means that the implementation of this AF on a mobile device requires the

use of additional hardware, increasing the implementation cost and limiting the

large-scale deployment of this AF. Secondly, the processing of iris images involves

a number of computationally intensive processes. The average mobile devices do

not have the required hardware components capable of executing these processes

efficiently [53].

2.3.3.2 Behavioural Biometrics

Behavioural biometrics refer to the measurable patterns of human activities such

as handwritten signature, voice, gait and touch dynamics. Behavioural biometrics
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data can be acquired transparently without requiring users to perform additional

authentication task. For example, gait data can be captured by carrying a motion

sensing device. In contrast, to acquire physiological biometrics data, users are

required to align their body parts with a sensor of the device. Behavioural biomet-

rics AFs have one major drawback. Unlike physiological biometrics (with excep-

tion to face) which remain relatively stable over a human’s lifetime, behavioural

biometrics are less stable and may gradually change over time. These changes

are caused by factors such as ageing, emotional state and health conditions, and

may have a negative effect on the performance of behavioural biometrics-based

authentication systems. In the context of mobile device, four types of behavioural

biometrics have been used: voice, gait, touch dynamics and gesture. They are

further discussed in the following.

Voice: Human voice varies in terms of vocal tone, pitch and accent [55]. These

variations are unique across different individuals. Voice samples can be recorded

by using microphone embedded in every mobile device, thus the implementation

cost of this AF is low. In addition, voice-based AF has a higher level of user

acceptability than other biometrics-based AFs (e.g. iris) [56]. This is because

voice-related functionalities are very common on mobile devices (e.g. making

a phone call, voice search and voice recording), suggesting that most users are

familiar and comfortable with using voice as a method of interaction with their

devices. The primary concern when implementing a voice-based AF is the back-

ground noise level during the voice recording process. Mobile devices are often

used in an on-the-go manner, so their background noises may change continu-

ously. Inconsistent background noise level may affect the accuracy performance

of the voice-based AF.

Gait: Gait refers to the way a person walks. In the past, gait data have been

collected via three different methods: (i) video recordings, (ii) floor mat embedded

with motion sensors, and (iii) motion sensors attached to different body parts

[57]. Today, gait data are collected via mobile device embedded with motion

sensors, increasing the deployment scale of this AF. Gait data can be used to

verify a user transparently and continuously with the condition that the user is

constantly moving and in possession of a device equipped with motion sensors.

These conditions also mean that this AF will not work in situations when the

user is not moving (i.e. sitting or standing).
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Touch dynamics: Touch dynamics refer to the digital signatures generated

when a human interacts with a mobile device. The generated signatures are

believed to be rich in discriminative properties, which are relatively unique to

each individual and hold potential as personal identifier [38]. The acquisition of

touch dynamics data can be carried out during a user’s normal input activities,

requiring little extra interactions by the user. The challenging issue in the use

of this AF is that the data acquired at different instances are likely to exhibit

a certain degree of variations due to external factors such as fatigue, mood and

distractions. These variations may affect the accuracy performance of this AF.

Section 3.2 provides further discussions on this AF.

Gesture: Gesture refers to the physical manipulation of direction and move-

ment when a user is holding a device in the air. In the context of mobile device,

gesture can be captured in two different forms: standard control and loosely-

defined [58]. Standard control gesture refers to the creation of geometrical shapes,

letters, words or the combination of them, similar to signing a hand-written sig-

nature [59]. Loosely-defined gesture includes tapping on any surface, tilting,

flipping and shaking of a mobile device [60]. The fundamental hardware require-

ment for acquiring gesture data is an accelerometer sensor that measures the

movement of a device along the x-, y-, and z-axis [61]. The acquisition of gesture

data involves activities performed using motor skills that require little conscious

thought [62], which means that the data acquisition process is non-invasive and

the user acceptance level is higher. However, gesture-based AF suffers from a

lower accuracy performance compared to handwritten signature-based authenti-

cation, as it is more difficult to repeat the same gesture while holding a device in

the air (without physical surface support) [59].

2.4 Single Factor vs Multi-factor Authentica-

tion Approaches

Single-Factor Authentication (SFA) approach refers to the use of any one AF for

identity verification [63]. SFA, if implemented properly, can provide a reasonable

level of security protection for resources and services. For example, setting a set

of rules to enforce the use of a strong passcode reduces the risk of shoulder surfing

attacks. While proper implementation of SFA can provide a reasonable level of
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security protection, they offer no further protection when the (one and only) AF

has been compromised (e.g. by more complex attacks). One way to increase the

level of security protection of an authentication system is to increase the over-

all difficulty level of compromising the security protection of the authentication

system. This can be achieved by using a Multi-Factor Authentication (MFA)

approach to design authentication systems.

MFA refers to the use of more than one AF for identity verification. In a

MFA approach, to gain access to the protected resources and services, all the

AFs concern must be presented and verified successfully. This also means that

when any one of the AF has been compromised, the resources and services are

still protected by the other AFs. As discussed in the previous section, each AF

has its unique strengths as well as weaknesses. By using an MFA approach, we

combine the strengths and compensate the weaknesses of the AFs concern, thus

strengthening the overall security protection level of the authentication system.

MFA is becoming the industry best practice for providing additional account

security. World-leading IT companies such as Google (2-step Verification [64]),

Facebook (Login Approvals [65]), Twitter (Login Verification [66]) and Dropbox

(Two-step Verification [67]), have introduced MFA to add an extra layer of pro-

tection to their customers’ accounts. These MFA systems are known as different

names, but they essentially work in a similar way. To successfully gain access to

such systems, a two-stage verification process is used. In the first stage, users

are required to provide a valid pair of username and passcode (knowledge-based

AF). In the second stage, users are required to provide a time-sensitive security

code generated by a token (possession-based AF).

There are three issues to consider when implementing a MFA system: (i) cost

of implementation, (ii) ease of integration with the existing IT ecosystem and

security infrastructure, and (iii) user acceptability and learning curve. An ideal

MFA system should increase the overall security protection level of the system,

and, at the same time, address the three issues mentioned above.

2.5 Security Models

To determine the security models in a mobile environment, we have taken a

three-step approach as follows. Firstly, the entities involved are identified, and
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they are: (i) user, (ii) device or app, and (iii) cloud service. Then, trust bound-

aries are created to separate the entities. Figure 2.1 shows the trust boundaries

between the identified entities in a mobile environment. Finally, based on the

trust boundaries, two security models are determined: (i) User-to-Device/App,

and (ii) Device/App-to-Service. Each security model is associated with different

security threats. In this thesis, we focus on the threats imposed on the User-to-

Device/App model. In the following section, we analyse and identify the related

threats imposed on this model.

Figure 2.1: Trust boundaries between different entities in a mobile environment

2.6 Security Threat Analysis

Based on the User-to-Device/App security model above, this section identifies

the threats or attacks imposed on this model.

Shoulder surfing attacks: A shoulder surfing attack refers to the use of visual

observation methods, such as direct observation and video recording to capture a

user’s AF [68]. For example, an attacker captures the AF of a user by peeking or

eavesdropping the user when the user is using the AF to perform an authentication

task. Shoulder surfing attacks are most effective when performed in public. This

is due to the fact that being near a person in public is common, allowing an

attacker to perform such attacks less noticeably. Voice and knowledge-based AFs

are vulnerable to this attack.
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Social engineering attacks: A social engineering attack refers to the technique

of disguising as a trusted entity to mislead a user into disclosing his/her AF [69].

For example, an attacker disguised as a technical support personnel to deceive a

user into revealing personal information that can be used to infer or reproduce

the user’s AF. Face image, character and digit passcode that are not carefully

chosen (e.g. the use of date of birth or social security number) are vulnerable to

this attack.

Smudge attacks: A smudge attack refers to the technique used to reproduce

an AF by observing and analysing the frequently touched area of a touchscreen

mobile device [9]. For example, an attacker analyses the leftover smudges (oily

residues) on a user’s touchscreen mobile device to reproduce the user’s passcode.

Fingerprint and knowledge-based AFs are vulnerable to this attack.

Guessing attacks: A guessing attack refers to an attack in which an attacker

uses repeated trial and error methods to obtain an AF [69]. Guessing attack

can be conducted in three different ways: (i) pure guessing (effective against

simple and/or frequently used passcodes), (ii) dictionary attack (effective against

passcodes that consist of common words found in dictionary), and (iii) brute

force attack (effective against passcodes with different character combinations).

Knowledge-based AF are vulnerable to this attack.

Theft: This attack refers to the act of illegally gaining possession of an AF.

For example, stealing a mobile device or memorising a passcode written on a

paper placed on an open workspace. Token-based and knowledge-based AFs are

vulnerable to this attack.

2.7 AF Requirements Specification

To design a secure and usable authentication system that counter the identified

threats, the first step is to select the preferable AFs that we could use to design

the system. The selection of AFs should be guided by a set of requirements. The

requirements are divided into security and usability requirements. In identifying

the requirements, we have taken inspiration from the highly cited and extensive

survey conducted by [70]. In the survey, the authors proposed a comprehensive

list of requirements used to comparatively evaluate different AFs used in the web
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environment. Some of the requirements that are relevant to the mobile environ-

ment are adapted in our set of requirements. The following sections describe

these requirements.

2.7.1 Security Requirements

This section specifies a set of security requirements that should be used in the

selection of AFs. These requirements are chosen to counter the identified security

threats discussed in Section 2.6. The requirements are as follows:

(S1) Shoulder Surfing Resistant: An AF that is resistant to shoulder surfing

attacks can prevent attackers from using visual observation to capture the

AF of a user.

(S2) Social Engineering Resistant: An AF that is resistant to social engineering

attacks can prevent attackers from analysing the stolen personal information

of a user to reproduce the AF of the user.

(S3) Smudge Resistant: An AF that is resistant to smudge attacks can prevent

attackers from using the smudge traces left on a user’s touchscreen mobile

device to reproduce the AF of the user.

(S4) Guessing Resistant: An AF that is resistant to guessing attacks can prevent

attackers from obtaining an AF through repeated trial and error methods.

(S5) Theft Resistant: An AF that is thief resistant can prevent an AF from

being stolen or render a stolen AF unusable.

(S6) Privacy-Preservation: An AF that fulfils this requirement can ensure that,

in the event when an AF is lost or stolen, the privacy risk inflicted on the

user is minimal [71].

(S7) Infrequent False Acceptance: An AF that fulfils this requirement has a low

likelihood of making a false positive authentication decision (i.e. incorrectly

grant access to a illegitimate user who do not presents a valid AF).

(S8) Non-Repudiation: An AF that fulfils this requirement can ensure that a

presented AF has been used by the user claiming to own the AF. In this

way, the user who presents the AF cannot later deny having presented the

AF.
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(S9) Revocable: An AF that fulfils this requirement can ensure that, in the event

when the AF has been compromised or lost, the compromised AF can be

renewed or replaced.

2.7.2 Usability Requirements

This section specifies a set of usability requirements that should be used in the

selection of AF. The requirements are as follows:

(U1) Easy-to-Learn: An AF that fulfils this requirement has an authentication

procedure that is easy to learn and remember.

(U2) Efficient-to-Use: An AF that fulfils this requirement has a short authen-

tication turnaround time, which includes the time taken for submitting an

authentication request, processing of the request and receiving of the au-

thentication decision.

(U3) Scalable-for-Users: An AF that fulfils this requirement allows the same

AF to be used in more than one distinct authentication systems without

violating security and usability requirements.

(U4) Infrequent False Rejection: An AF that fulfils this requirement has a low

likelihood of making a false negative authentication decision (i.e. incorrectly

deny access to a legitimate user who presents a valid AF).

(U5) Accessible: An AF that fulfils this requirement should facilitate people

with disability on using the AF.

(U6) Negligible Cost: An AF that fulfils this requirement has a low or negligible

deployment cost.

(U7) Seamless Integration: An AF that fulfils this requirement can integrate

with existing system or device without requiring major changes or recon-

figurations.

(U8) Mature: An AF that fulfils this requirement should have an established

track record of successful deployment of the AF in a real-world setting

(beyond a laboratory setting).
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(U9) Non-Proprietary: An AF that fulfils this requirement is free from intellec-

tual property protection. The implementation details of the AF are openly

available (i.e. not protected by patents, trade secrets and copyright), and

the deployment does not require the use of proprietary hardware or soft-

ware.

2.8 Comparative Analysis of AFs

This section presents a comparative analysis of the different AFs (as discussed in

Section 2.3) against the requirements specified above. To perform the analysis,

we have introduced and used a scoring system. The scoring system provides a

quantitative way of measuring how well the AFs fulfil the requirements. The

scoring system uses a five-step approach as follows.

Step 1: The first AF is evaluated against the first requirement to determine the

level of fulfilment of the requirement. There are three levels of fulfilment: (i) fully

fulfil, (ii) partially fulfil, and (iii) do not fulfil.

Step 2: Depending on the level of fulfilment, a scoring point is allocated to the

AF. The point allocation is based on the following rules:

• Fully fulfils the requirement, 2 points are allocated.

• Partially fulfils the requirement, 1 point is allocated.

• Do not fulfil the requirement, 0 points are allocated.

In some cases, a particular requirement (e.g. smudge resistant) just does not

apply to a particular AF. For example, there is no leftover oily residues to analyse

where the user do not need to touch the face against the touchscreen device. To

make comparative analysis as simple as possible, we define the AF as fully fulfil

the requirement, instead of introducing a ”not applicable” value. This measure

is taken in the basis that nothing can go wrong, for that AF, with respect to the

corresponding threat.

Step 3: Step 2 is repeated for the remaining requirements.

Step 4: The points for each of the requirements are aggregated to form an overall

score. The score indicates how well the AF concern fulfils the requirements. The
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higher the score, the better the AF is at fulfilling the requirements, and thus the

more desirable the AF.

Step 5: Steps 1 to 4 is repeated for the remaining AFs.

We are aware that the requirements are not all of equal weight. Some require-

ments are clearly more important and deserve more weight than others. The

importance of any particular requirement depends strongly on the specific goal

of a security system or an application scenario. For this reason, we used a more

qualitative approach in our scoring system, i.e. the scoring point assigned to each

AF are not a continuous value but a coarsely quantised value (i.e. fully, partially

and do not fulfil). Nevertheless, we refer readers to [70] for a framework that can

be adapted to extend our scoring system to use weights.

Table 2.1 gives a list of AFs used on mobile devices. For each AF, the table

also gives their corresponding scoring points against each requirement and overall

scores. The table offers a comprehensive overview and allows us to discover high

level patterns. From the table, we can make two clear observations. Firstly,

biometrics-based AFs score noticeably higher in terms of security requirements

than knowledge-based AFs, indicating that the former offer a higher level of

security protection than the latter. This observation is supported by the work

reported in [72,73]. Secondly, character and digit passcodes are the only two AFs

that fully fulfil all (except for one) the usability requirements, indicating that

they are ideal for large-scale deployments. This observation is also supported by

the work reported in [70].

Based on these observations, and taking into consideration that the level of

security protection of a MFA system is higher than a SFA system, we have identi-

fied that touch dynamics biometrics and passcode as the two most desirable AFs

that should be used in the design of a secure and usable authentication system for

mobile devices. The justification for the selection of touch dynamics biometrics

instead of the others biometrics-based AFs are further discussed in Section 3.2.2.

2.9 Chapter Summary

This chapter has presented an overview of authentication on mobile environment.

Through a security model, the security threats are identified and analysed. Based

on the analysis, we have specified a number of security and usability requirements
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to guide the selection of AFs for the design of an authentication system that

counters the identified threats. The chapter also presented a comparative analysis

of the different types of AFs using the specified requirements. The analysis has

led to the identification of two AFs, i.e. touch dynamics biometrics and passcode,

as most desirable for the system.

The next chapter presents an investigative study of published work in the

topic area of touch dynamics biometrics to identify the gaps in these work and

propose a way forward to address the identified gaps.
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Chapter 3

An Investigative Study of Touch

Dynamics Biometrics

Authentication on Mobile

Devices

3.1 Chapter Introduction

This chapter presents an investigative study of published work in the topic area

of touch dynamics biometrics highlighting the contributions and technological

advances in the topic area. It critically analyses them from a range of perspectives,

leading to the identification of research gaps and outlines a possible way forward

to address these gaps. The thorough investigative study of the existing work in

the topic area of touch dynamics biometrics is our first novel contribution in this

thesis.

In detail, Section 3.2 provides an overview of touch dynamics biometrics.

Sections 3.3-3.7, respectively, compares the related work in terms of their experi-

mental designs, data acquisition procedures, feature extraction methods, feature

classification techniques and fusion approaches (the discussions in Section 3.2.4,

3.2.5, 3.3.1 and 3.3.2 are applicable to other biometrics AFs in general as well).

Their performances are discussed in Section 3.8. Section 3.9 provides further dis-

cussion on the related work most relevant to ours. Section 3.10 discusses what is

missing in the most related work. Section 3.11 outlines a way forward to address

the missing bits. Finally, Section 3.12 summarises this chapter.

54
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3.2 Touch Dynamics Biometrics

This section first provides an overview of touch dynamics biometrics, followed by

its benefits and limitations. It then describes the primary operational processes

of a touch dynamics authentication system and the evaluation criteria used to

assess this system.

3.2.1 Overview

Touch dynamics biometrics refers to the digital signatures generated when a hu-

man interacts with a touchscreen mobile device. The signatures generated by

different individuals are believed to be rich in distinctive properties, which hold

potentials as personal identifiers [22]. The technological advancement in informa-

tion and communication technology sector plays a vital role in the development

of touch dynamics biometrics research. Figure 3.1 shows the timeline of touch

dynamics biometrics research as influenced by technological developments in the

sector.

Figure 3.1: Evolution of touch dynamics biometrics research

Before mobile devices existed, there were some predecessors. In the 1860’s,

the primary method for long distance communication was the telegraph machines.

Telegraph operators were able to ‘identify’ each other through ways in which

they tapped on telegraph keys [74]. Today, telegraph keys have been replaced by

computer keyboards, cell phone keypads and touchscreen virtual keyboards.

Before the emergence of touch dynamics, one of the earliest research work
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on using keystroke dynamics (i.e. the patterns of interactions between human

input and a computer keyboard) to identify users was by [75]. They attempted

to recognise six professional secretaries by analysing the way they typed three

passages of text consisting of 300 to 400 words each. Since then, keystroke dy-

namics either on workstations [76,77] or in a web-based environment [78,79] have

been the major topic of research. Crawford [80], Karnan et al. [81] and Teh et

al. [82] have, independently, written surveys of the published work on keystroke

dynamics authentication. However, these early work largely focused on keystroke

dynamics authentication on computer keyboards.

With the rapid development of mobile communication technologies, research

efforts in the area have been focusing on mobile devices with physical keypads

[21, 83]. Since 2007, there has been growing efforts on examining the possibility

of applying the concept of keystroke dynamics to user authentication on mobile

devices [82]. More recently, the research activities are largely carried out in the

context of touchscreen mobile devices [84–87]. The availability of more advanced

sensors in recently released mobile devices provides added opportunities to the

development of touch dynamics biometrics, as these sensors allow the extraction

of more feature data types.

3.2.2 Benefits

A touch dynamics authentication system can offer a number of benefits compared

to the other types of biometrics-based authentication system. These benefits are

as follows:

Transparency: A touch dynamics authentication system requires little or no

additional interventions from a mobile device user. This is because the captur-

ing and processing of touch dynamics data can be carried out in the background

while the user is using the device. Users may not even be aware that they are

being authenticated periodically or are being protected by an extra layer of au-

thentication. This is in stark contrast to other biometrics-based authentication

systems that usually require explicit alignment of a biometrics feature to a spe-

cific sensor. For example, in the case of iris-based authentication, a user needs

to look straight into an intra-red camera to take an iris image, and in the case

of fingerprint-based authentication, a user needs to put one of his/her fingers on

the fingerprint sensor to scan a fingerprint pattern.
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Familiarity: The touch dynamics data used for authentication is acquired during

mobile users routine input activities. This is a process which mobile users are

already familiar with, so the data acquisition process tends to have a gentler

learning curve with a higher usability level.

Revocability: The touch dynamics data can be replaced should a passcode as-

sociated with a touch dynamics pattern is compromised, as a new touch dynamics

template can be associated to a new passcode. This is not the case for other phys-

iological biometrics, e.g. for iris or face biometrics, once they are compromised,

there will be no replacement (unless cancelable biometrics are used [88]), and for

fingerprints, the number of replacements is limited (there are only ten fingers to

use after all).

Non-dependency: The data acquisition of touch dynamics is less sensitive to

environmental factors. Therefore, it is more suited to, and can be more easily

deployed in, a mobile device context. A mobile device is usually operated in

an on-the-go manner, so the conditions of some environmental factors, such as

the environmental condition and background noise level, are constantly changing.

Other biometrics features such as iris or voice biometrics are sensitive to these

environmental factors.

Cost Effectiveness: In contrast to other physiological-based biometrics authen-

tication systems such as iris and fingerprint-based authentication recognitions,

which typically require the use of some specialised hardware, a touch dynamics

authentication system uses only built-in mobile device sensors. This can reduce

device costs, and it is ideal for large-scale deployments.

3.2.3 Limitations

While a touch dynamics authentication system can offer a number of benefits, it

also introduces a number of limitations. These limitations are as follows:

Lower Accuracy: The accuracy performance of touch dynamics authentication

system is relatively lower in comparison to other physiological biometrics authen-

tication system (e.g. fingerprint and iris).

Lower Permanency: Usually, human behavioural characteristics change more
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frequently than physiological characteristics. Similarly, a user’s touch dynam-

ics pattern may change gradually, as the user is getting more familiar with the

passcode, input method, device and other external factors.

Longer Training Time: A user’s touch dynamics pattern can change over time

and requires some time to become stable. Therefore, it may require more time

to train an accurate authentication model.

Non-Disabled Friendly: A touch dynamics authentication system may not

work effectively with users with certain disabilities (e.g. users who do not have

hands, or are blind).

3.2.4 Operational Processes

Figure 3.2 shows a typical framework of a touch dynamics authentication system.

From the figure, we can see that the operation of this system can largely be

captured in two operational phases: user enrolment and user authentication. In

the enrolment phase, a set of touch dynamics input samples (or training samples)

are acquired from a user, processed and stored as a reference template. In the

authentication phase, a presented touch dynamics input sample (or test sample)

is compared against the stored reference template to determine whether the test

sample is indeed originated from the owner of the device. The two operational

phases are accomplished by a number of functional blocks, each of which performs

a well-defined function or operation. These functional blocks and their respective

operations are described below.

Data Acquisition: Data acquisition is an operation by which raw touch dynam-

ics data are acquired. This is usually carried out as the first step and during the

enrolment phase of a touch dynamics authentication system. The acquired raw

data typically consist of repetitive input samples or collections of input samples

over a specified period. These raw data will later be used for feature extraction.

Section 3.4 provides further discussions on the data acquisition operation.

Feature Extraction: Feature extraction is another mandatory operation which

is carried out in both the enrolment and authentication phases. The main task

of this operation is to identify and extract distinctive touch dynamics features

common to a user from the acquired raw data. These features will later be used
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Figure 3.2: A touch dynamics authentication system framework

for feature classification. Section 3.5 provides further discussions on the feature

extraction operation.

Feature Classification: This is the major operation for most biometrics sys-

tems, where the extracted features are used to create a reference template or

model that uniquely represent a user’s touch dynamics pattern. This unique

model is stored in a database and will later be used for feature matching. Section

3.6 provides further discussions on the feature classification operation.

Feature Matching: This is an operation carried out by a touch dynamics au-

thentication system to authenticate a user. It is to decide whether a test sample

is indeed originated from the owner of the device. Before the final decision is

made, a number of fusion approaches may be applied to increase the accuracy

performance of the system (further discussions in Section 3.7).

3.2.5 Evaluation Criteria

To assess the suitability of a biometrics authentication system to real-world appli-

cations, two main criteria should be used to evaluate the system, system accuracy

and system usability.
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3.2.5.1 System Accuracy

To evaluate the accuracy performance of a biometrics authentication system,

three metrics are commonly used: (i) False Rejection Rate (FRR), (ii) False Ac-

ceptance Rate (FAR), and (iii) Equal Error Rate (EER). The relationship among

these metrics is shown in Figure 3.3 and their definitions are given below.

Figure 3.3: Relationship between the FRR, FAR and EER

False Rejection Rate (FRR): FRR is calculated as the ratio of the number of

legitimate user trials that are falsely rejected and the total number of legitimate

user trials. A lower FRR value indicates fewer legitimate user trails are falsely

rejected, thus the higher the usability of the biometrics authentication system.

FRR is also referred to as false negative rate [62], false alarm rate [89], false

non-match rate [90] or Type II error [91].

False Acceptance Rate (FAR): FAR is calculated as the ratio of the number

of illegitimate user trails that are falsely accepted and the total number of ille-

gitimate user trials. Again, a lower FAR value indicates fewer illegitimate user

trails being falsely accepted, thus the higher the security level of the biometrics

authentication system. FAR is also referred to as false positive rate [62], impostor

pass rate [89], false match rate [90] or Type I error [91].



3.2. TOUCH DYNAMICS BIOMETRICS 61

Equal Error Rate (EER): EER is a single-number accuracy performance met-

ric, which is commonly used to measure and compare the overall accuracy perfor-

mance of different biometrics authentication system. It is calculated by averaging

the FRR and FAR values under the condition that the absolute value of the dif-

ference between FRR and FAR is minimal [92]. In other words, EER is the

interception point of two graphs, one for FRR and the other for FAR. Typically,

the lower the FRR and FAR values, the lower the EER value, which in turn

indicates a better accuracy performance of a biometrics authentication system.

However, FRR and FAR are negatively correlated, so lowering both FRR and

FAR values at the same time is not possible. Therefore, in real-life applications,

FRR and FAR are usually adjusted and determined based on the usability and

security requirements of the applications. In some literature [93–97], the term

‘accuracy ’, rather than EER, is used as an accuracy performance metric. This

term is the inverse of EER. In other words, a higher accuracy value indicates a

better accuracy performance of the biometric authentication system.

The accuracy performance can also be graphically visualised by using the

Detection Error Trade-off (DET) curve or the Receiver Operating Characteristic

(ROC) curve as shown in Figure 3.4 and Figure 3.5, respectively. To plot the

DET curve of a biometric authentication system, a set of FRR and FAR values

of each system is needed. The values are obtained by setting the threshold to

different values. The curve is formed by plotting the FRR values on the y-axis

and the FAR values on the x-axis. The optimal point of a DET curve is at the

origin of the graph (0,0). In other words, the closer the curve to the bottom left

corner, the better the accuracy performance of the system. Figure 3.4 shows a

DET graph with three DET curves. Each of the curves represents the accuracy

performance of a specific system.

The ROC curve is obtained by plotting Genuine Acceptance Rate (GAR)

against FAR at different matching threshold values. GAR is the ratio between

the correctly accepted legitimate user trials against the total number of legitimate

user trials. It is also referred to as the inverse of FRR (100-FRR) or true positive

rate [96]. The closer the curve to the top left corner of the graph (or the larger

area under the curve), the better the accuracy performance of the biometric

authentication system.
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Figure 3.4: DET curves of three performance scenarios

Figure 3.5: ROC curves of three performance scenarios
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3.2.5.2 System Usability

The system usability (or user acceptance) of an authentication system is also an

important criterion in the successful deployment of a new authentication system.

System usability consists of two factors: (i) the ease of use offered by a biometrics

authentication system; and (ii) the computational cost imposed by a biometrics

authentication system. With regards to the first factor, a number of research

efforts have investigated the adoption of authentication systems on mobile de-

vices [98–101]. A common finding across the surveys is that users will eventually

abandon or be reluctant to use any system that is tedious or slow to use, even

if it can offer a higher level of security protection. Therefore, an authentication

system should be convenient or easy to use. Satisfying the second factor is partic-

ularly important for computational resource-limited mobile devices. A complex

authentication system may impose a higher level of computational overhead, in-

creasing authentication delays and reducing system usability. Therefore, it is also

important to design authentication systems that introduce as low computational

overhead as possible.

3.3 Experimental Design

To conduct touch dynamics biometrics experiments, we need to acquire some

touch dynamics data. The setup of an experiment carried out to acquire a touch

dynamics dataset concerns a number of issues: (i) deployment modes, (ii) working

modes, (iii) degree of control when carrying out the experiment, (iv) acquisition

devices, (v) application development platform, (vi) subject size, and (vii) subject

demography. They are discussed in detail in the following sections. Note that,

hereafter, the discussions and statistics shown are based on our review of 69 papers

accessed from reputable digital libraries, i.e. IEEE Xplore, ACM, ScienceDirect

and SpringerLink.

3.3.1 Deployment Modes

A touch dynamics authentication system can be deployed in one of the two modes:

identification or verification. These modes function uniquely and serve different

purposes and application scenarios. The purpose served by the identification
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mode is to classify or identify some unknown identity. It is used to answer ques-

tions such as “who is this person” or “is this person in the database”. This mode

is typically deployed for forensic investigations or intrusion detections. Its use

on mobile devices is rather limited. The purpose served by verification mode,

on the other hand, is to verify or prove a claimed identity. It is used to answer

the question “is this person whom he/she claims to be”. The authentication of a

mobile device user fits into this mode.

Figure 3.6: Deployment modes of a touch dynamics authentication system

As shown in Figure 3.6, the fundamental difference between the two modes

is that, in the identification mode, the checking between the touch dynamics

samples submitted by a user and the database is 1-to-Many, whereas, in the

verification mode, this checking is 1-to-1. According to our literature survey, the

number of papers published on the study of the verification mode (78%) is much

higher than the identification mode (19%).

3.3.2 Working Modes

The verification deployment mode can operate in two working modes: static mode

or dynamic mode. These modes are used in different application scenarios. In

the following, we discuss the two working modes.

Static Mode: One application scenario of this mode is static authentication, also

known as one-off authentication [90]. In static authentication, a user is verified
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at the initial instance of, or at some predefined intervals during, a user-to-system

interaction.

Dynamic Mode: One application scenario of this mode is dynamic authentica-

tion, also known as continuous authentication [102]. In dynamics authentication,

a user may be verified at any instant of a user-to-system interaction or for every

service access (i.e. continuously) throughout a service access session (in addition

to the initial verification). In addition to countering unauthorised device sharing

and device lost/theft, dynamic authentication is also useful in countering threats

such as session hijacking.

The functions performed in both working modes are complementary, which

means that they can be deployed independently, or alongside with each other to

enhance the security protection level of mobile devices or the security of service

access using mobile devices. The focus of this thesis is on investigating how to

strengthen the authentication on mobile device at the initial instance of a user-

to-system interaction, so hereafter our analyses focus on the static working mode

of the verification deployment mode.

3.3.3 Degree of Control

The degree of control refers to restrictions or constraints imposed when carrying

out an experiment. It covers three different aspects: (i) device selection, (ii) ex-

perimental setting control, and (iii) input string selection. Generally, the number

of experiments that imposes restrictions outnumbered those that do not, and this

is the case for all three aspects, as shown in Figure 3.7.

3.3.3.1 Device Selection

The devices used in experiments can be selected with one of the two approaches.

One is to use a predetermined device and the other is to use a subject (here-

after, the term subject refers to a mobile device user recruited for an experiment)

specific device. Based on our literature survey, a majority of the experiments pub-

lished in literature (96%), with the exception of the work reported in [87,103,104],

were undertaken by using the first approach. The primary reason for using a pre-

determined device, rather than the devices chosen by subjects, is to prevent any

inconsistencies in the touch dynamics data acquired. For example, the availability
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Figure 3.7: Distribution of publications on reporting the degree of control of different
aspects imposed in experiments

of device sensors and the variations in sensor resolution or sensitivity between dif-

ferent devices may cause inconsistencies in the data acquired [105]. Additionally,

as subjects are usually more familiar with their own devices, allowing subjects to

use their own devices to acquire data may introduce bias in experimental results.

This can be avoided by requiring subjects to use a predetermined device for the

entire data acquisition operation [106].

3.3.3.2 Experimental Setting Control

The experimental setting control refers to the degree of restrictions that are im-

posed on an experiment during a data acquisition operation. Data acquisition

operation may be conducted under two settings: (i) supervised with a stringent

protocol (e.g. under a controlled laboratory environment), or (ii) unmonitored

without imposing any restrictions (e.g. while the subjects carry out their activities

as usual). The papers by [12,87,107,108] reported experiments that were carried

out under the unmonitored setting. A majority of experiments (90%) reported

in literature were carried out under the supervised setting. The primary reason

to control an experiment is to reduce the level of variations in touch dynam-

ics data which may be caused by external factors such as device functionalities,

cognitive load, distractions and sickness, etc. Controlling an experiment with a
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stringent protocol can prevent these external factors from inflicting noise to the

data acquired [109], allowing primary experimental variables (i.e. the discrim-

inative capabilities of touch dynamics features and the classifiers) be evaluated

more accurately [110]. Also, the unmonitored setting may risk the data acquired

being distorted or tampered with, resulting in the reduction of data quality and

inaccurate experimental results.

There are also views that touch dynamics data should be acquired in a nat-

ural manner without imposing any restrictions, or in an environment that can

resemble a real-life device usage scenario [111]. The reason given by the authors

was that a subject’s interactivity with his/her device might differ in different cir-

cumstances, e.g. when performing a task at hand or doing a job in a controlled

environment. The authors of [112] suggested that experimental results obtained

under a controlled environment are over optimistic compared to those acquired

in uncontrolled environments.

3.3.3.3 Input String Selection

How to select the input strings or which input strings should be used during

experiments is another factor one should consider when carrying out touch dy-

namics related experiments. In the majority of the experiments reported in lit-

erature (70%), the subjects were asked to provide a predetermined set of input

strings during a data acquisition operation. In other words, the input strings

used in these experiments are identical across all the subjects. This means that

the samples acquired from different subjects in the same dataset can be reused

for evaluation purposes (not just for model creation), and as a result, a larger

number of test samples can be acquired without acquiring them separately. How-

ever, in certain experiments, this approach is not practical. For example, the

data acquisition experiments conducted by [113–115] were aimed at acquiring all

the touch dynamics data over an entire interaction session with a device. Due

to the nature and objective of these experiments, predetermining a set of input

strings would not be practical.
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3.3.4 Acquisition Devices

To acquire touch dynamics data, we need to use some data acquisition devices.

Different devices may be equipped with different sensors that may have the abil-

ity to acquire different types of features. For example, a conventional mobile

device with a physical keypad is only able to acquire timing feature. In con-

trast, a recently manufactured touchscreen mobile device is more likely to have

multiple more powerful built-in sensors that can acquire more features (such as

pressure and motion). So, acquisition device selection is an important experimen-

tal variable that should be considered in touch dynamics biometrics research. As

the focus of this thesis is on touch dynamics biometrics, hereafter, we shall only

scope our discussions on mobile devices with touchscreens. For existing work on

keystroke dynamics on mobile devices with physical keypads, readers are referred

to review articles such as [80,82].

Based on our literature study, researchers mainly use smartphones (86%),

rather than digital tablets (14%), as their data acquisition devices. There are

two reasons why smartphones are given the priority. Firstly, a larger population

of mobile device users use smartphones rather than digital tablets [116]. Secondly,

smartphones are cheaper than tablets. Researchers have been using more recent

and more powerful mobile devices to carry out their research work. Modern de-

vices usually come with higher precision and resolution sensors that can capture

higher quality features. Modern devices also have greater computational capabil-

ities and resources, which can better support the use of more complex algorithms

and more able sensors. Another device selection criterion is the intended applica-

tion development platform associated with a mobile operating system, and this

is discussed in the following section.

3.3.5 Application Development Platform

To acquire touch dynamics data, we need to use a data acquisition application

(or app), and, for the development of the app, we need to choose an application

development platform. Based on our literature study, Android is the most popular

development platform used to develop data acquisition app, which is followed by

iOS and then by Windows. When selecting a development platform, these four

factors should be considered, i.e. its customisability, flexibility, cost and market

shares. These four factors are further discussed in the following.
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Customisability: To acquire touch dynamics data, the ability to log various

touchscreen input events (or touch event) is essential. However, the native input

methods, such as a virtual keyboard or a virtual numeric keypad, used by a

mobile operating system do not provide any method to acquire these data [117].

This is typically part of the security measure used to protect against the easy

implementation of spyware or touch-logger apps [118]. Therefore, to acquire touch

dynamics data, researchers have to create their own custom input methods with

the necessary functionalities. Unlike its competitors (iOS and Windows), Android

has made this easier by providing open source library functions, which allows

researchers to modify the app framework [113], giving them greater flexibility in

their app design and customisation.

Flexibility: Flexibility in terms of cross-platform development, sideloading and

file system accessibility is among the criteria that contribute to the popularity of

a chosen development platform. Android supports cross-platform development,

and this means that developers have the flexibility to develop apps using any

operating systems and to make use of existing resources in their developments.

Also, both Android and Windows allow sideloading, which means that an app

can be directly installed on a device without first publishing it to the app store or

marketplace. App publishing involves publishing fee, rigid procedures and could

be time-consuming. Therefore, sideloading can reduce the cost, time and effort

on app development and testing. Furthermore, native file explorers have been

provided by both Android and Windows providers. This means that data and

system files can be accessed directly without additional configurations or instal-

lations of any third party apps. This provides a convenient way for researchers

to transfer acquired data files between different devices for further analysis.

Cost: The cost required for acquiring a development tool and device should

also be taken into account when making the selection. The official integrated

development environments (IDEs) required for app developments for Android

and Windows devices are Android Studio and Visual Studio, respectively. They

are both available for download free of charge. This is not the case for the Xcode

IDE for iOS devices. Until recently (Xcode version 7 and later), the IDE is only

available once an annual fee has been paid for [119], and the cost of the fee is

shown in Table 3.1. In addition, Android has been used by a wide range of

mobile devices. Among the largest manufacturers of Android-powered devices
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are Samsung, Huawei, Xiaomi and LG [120]. This wider range of devices can

provide researchers with a cheaper option to conduct their experiments.

Market Share: Selecting a development platform with a larger market share

(used by more people) allows greater accessibility to users. To date, Android

devices have the strongest end-user demand worldwide, followed by iOS and

Windows [121]. The similar trend is reflected in the selection of development

platforms by researchers, as shown in Figure 3.8 (N/A in the figure indicates

unspecified).

Properties Android iOS Windows

Development Tool Free
99/annual [122]

Free

Registration Fee (USD) 25 one-off [123] 19 one-off [124]

Programming Language Java Swift C#/Visual Basic

Open Source Yes No No

Cross-Platform Development Yes No No

Sideloading Yes No Yes

File System Accessibility Yes No Yes

Market Share High High Low

Table 3.1: Properties of different application development platforms

3.3.6 Subject Size

The subject size refers to the number of subjects from whom data are acquired.

The subject size used in an experiment is known to have an impact on the obtained

results of an experiment [125, 126]. Using a larger subject size can provide more

data to verify the scalability of a study [127], and to reflect the true accuracy

performance of a biometrics authentication system when deployed in real-world

[128].

Typically a subject size of greater than 100 subjects is regarded as a very

large subject size [82]. This number is supported by the work conducted by [129].

In this work, the authors conducted a statistical power analysis to determine the

optimal subject size for an experiment. The result of the analysis shows that
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Figure 3.8: Distribution of application development platforms used in touch dynamics
biometrics research

a subject size of 96 is required to detect the effect of an experiment at the 0.05

level of significance. Most experiments recruited less than 50 subjects [85,86,118],

with some less than five subjects [130, 131]. Only a handful of published work

[106,132,133] use a subject size greater than 100 subjects. Figure 3.9 summarises

the subject sizes used in the experiments published in literature (N/A in the

figure indicates unspecified).

In most of the experiments (93%), subjects were recruited on a voluntary

basis, i.e. without receiving any monetary benefits. Only in a few experiments,

subjects were awarded cash [86], vouchers [134] or some form of prizes [104].

The awards or prizes were used to motivate the subjects to take part in the

experiments, increasing the participation rates. A data acquisition operation

could be a resource-intensive process that requires dedication and effort from the

subjects. To increase the participation rate or the number of subjects taking part

in an experiment, the data acquisition tools can be distributed via a mobile app

store [135] or via crowdsourcing platform [136]. This may be a possible way of

recruiting a larger number of subjects, but, by doing so, control over the data

acquisition operation will certainly become limited, and the risk of data being

tampered with becomes higher.
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Figure 3.9: Distribution of subject sizes used in touch dynamics biometrics research

3.3.7 Subject Demography

Experimental subjects are typically selected based on some criteria. The com-

monly used criteria are age distribution, population mixture and profession di-

versity. Subjects from different age groups, with different backgrounds and/or

different professions tend to use their devices at different frequencies. Therefore,

if subjects are not selected properly, there may be unintentional biases in the

experimental results.

Most of the published works are based on subjects that are selected from: (i)

a narrow age distribution (i.e. 19-26) [85, 118, 137], (ii) confined to only people

within the same organisation (i.e. within a research institute) [86, 103, 138], or

(iii) restricted to limited profession (i.e. students) [113, 114, 139]. However, it

may be argued that the data acquired from this special group of population may

not realistically represent the wider community. The papers [135, 140–142] are

among the few pieces of work we were able to find in literature, which recruited

subjects from wide age groups, and diverse population groups and professions.

Their goal is to diversify the dataset’s subject demography so that the obtained

results of the experiments can better resemble real-world scenarios.
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3.4 Data Acquisition

Data acquisition operation is usually the first step in a touch dynamics biomet-

rics research. This operation is used for acquiring subject’s input samples and

for extracting raw touch dynamics data from the samples. The design of this op-

eration involves a number of issues, including determining the input string type,

input sample size, number of acquisition session and session interval, and how to

acquire the legitimate and illegitimate subject samples. In the following sections,

we first discuss each of these issues in detail and then describe the public dataset

available for touch dynamics biometrics research.

3.4.1 Input String Type

The input string type is an important experimental variable in a data acquisition

operation, as the touch dynamics features used for analysis are extracted from

a subject’s input string. Generally, subjects are required to provide some input

string during a data acquisition operation, and the input string can broadly be

categorised into two types: non-keyboard-based and keyboard-based input. Non-

keyboard-based input string includes a random acquisition of some continuous

touch actions [114,143], a random multi-touch gesture input [144] or touch input

interactions with a common user interface element (e.g. buttons, checkboxes and

sliders) [84, 135], made over a period of time. For keyboard-based input string,

there are further two types, character-based (i.e. alphabetic, special character or

alphanumeric string) and digit-based (i.e. only numerical string). The majority of

touch dynamics experiments published required a subject to provide a keyboard-

based input string as shown in Figure 3.10. As the focus of this thesis is on

keyboard-based input string, hereafter we shall focus our discussions on this input

string type.

A character-based string can be further categorised into short and long char-

acter strings. A short character string usually consists of a username or a pass-

word [47, 145], a random character combination [102, 137] or a set of dictionary

words [85, 138]. A long character string is usually a segment of texts [117, 133]

or several paragraphs of texts [22, 146]. Likewise, a digit-based string can also

be classified into short and long digit strings. A short digit string is typically 4

to 6 digits long. It usually resembles a mobile device unlock code or an ATM
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Figure 3.10: Distribution of input string types used in touch dynamics biometrics
research

PIN number [147,148]. The length of a long digit string, on the other hand, usu-

ally exceeds ten digits, similar to, e.g. a social security number [104] or a phone

number [149,150].

3.4.2 Input Sample Size

The input sample size affects the accuracy, robustness and outcome of an experi-

ment [151,152]. A larger number of samples used would allow us to gain a better

representation of a subject’s touch dynamics pattern, and, as a result, achieve a

higher level of accuracy [153].

There are two ways of acquiring multiple samples in one data acquisition

session. One is to acquire a fixed input string repeatedly (usually for keyboard-

based input string), and the other is to continuously acquire touch events over

a fixed period of time (usually for non-keyboard-based input string). According

to the literature, the benchmark for the number of samples collected per subject

per session is somewhere 10 to 20 repetitions for keyboard-based input string [85,

118,132,152]and 5 to 10 minutes for non-keyboard-based input string [113,126].

Requesting a large number of samples from a subject in one data acquisition

session is impractical. This is because subjects may not be available for a long

stretch of time, or may feel uncomfortable with a lengthy acquisition session [153].

Therefore, selecting an optimal input sample size for each data acquisition session

is necessary. Alternatively, instead of acquiring a large number of samples in
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one lengthy acquisition session, we can carry out the data acquisition operation

in multiple shorter sessions spread over a period of time. This approach can

reduce the level of discomfort imposed on a subject and also better capture any

inter-session variability on the data acquired (further discussions in the following

section).

3.4.3 Acquisition Session and Session Interval

As mentioned above, a data acquisition operation can be carried out and com-

pleted either within a single session or spread over several sessions separated by

a predefined interval. In the majority of the reported experiments (60%), data

from each subject were acquired within a single session.

Though the first approach is relatively cheaper, it is not always practical to

request a large number of samples from each subject in a single session. More

importantly, touch dynamics biometrics, like other behavioural biometrics (i.e.

voice, gait and signature), is not stable over time [126]. This implies that there

may be some variations between different input samples in different sessions, even

if the input samples are provided by the same subject. These variations are also

known as the inter-session variability [154]. If samples are acquired in a single

session, the inter-session variability may not be captured properly. This is evi-

dent in the experimental work reported by [85], where the accuracy performance

evaluated using data acquired in a single session is two times better than those

obtained in different sessions. This means that experimental evaluation using

data acquired in single sessions may be over-optimistic and may not reflect the

true accuracy of a biometrics authentication system when deployed in real-world.

Ideally, a data acquisition operation should be divided into multiple sessions

separated by some intervals. In this way, inter-session variability can better be

captured. This approach has been adopted in several experiments reported in

literature, and, in these experiments, the selected intervals separating different

sessions vary from minutes [104], hours [86], days [87,106,126] to weeks [150,153].

It is worth noting that careful considerations should be given when determining

the lengths of intervals separating different sessions because this factor may in-

fluence the subject participation rate of an experiment. For example, a data

acquisition operation that spans across a longer period of time is more likely to

receive a lower subject participation rate (due to subjects’ availabilities) or may

result in a higher subject dropout rate (due to a greater commitment required of
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the subjects) [155]. Therefore, there is a balance between better capturing sub-

jects’ inter-session variability and preserving the subject participation rate and

commitment to the data acquisition operation.

3.4.4 Legitimate and Illegitimate Subject Sample

The degree of accuracy of a touch dynamics authentication system is measured

by using the accuracy performance metrics values discussed in Section 3.2.5.1. To

compute these values, two categories of samples are required, legitimate and ille-

gitimate samples. Acquiring the legitimate samples is a straightforward process

that has been described above. However, for acquiring the illegitimate samples,

there are three approaches. The first approach (denote as A1) is to partition

the already acquired subjects’ samples into two subsets, one used as the legiti-

mate samples, and the other (legitimate samples) acting/used as the illegitimate

samples. The second approach (denote as A2) is to acquire additional samples

from a subset of the subjects involved in a dataset, and use these additional sam-

ples as the illegitimate samples. The third approach (denote as A3) is to recruit

additional subjects to provide the illegitimate samples.

Based on our literature research, A1 is most frequently adopted (87%) in

comparison with A2 and A3. For example, in these experiments [132,138,143,151],

A1 were used to acquire the illegitimate samples. In these experiments, t out of

i samples acquired were used as the illegitimate samples, with the rest used

as the legitimate ones. The subset of illegitimate samples can be selected in a

randomised [132, 151] or a predefined order [138, 143]. With this approach, an

equal number of the legitimate and illegitimate samples can be obtained with

minimal or no additional resources. However, this approach is not practical when

the input string is not the same across all subjects, as it is not possible to compare

the touch dynamics patterns of two input strings when they are different.

The experiments that do not use the same input string across all the subjects

can use A2 to acquire the illegitimate samples. For example, the authors of [153]

recruited 100 subjects to provide the legitimate samples. Then, ten subjects were

randomly selected from the 100 subjects and were given the PINs of all the other

subjects. Each of these ten subjects was given the additional task of providing

five impersonated samples of each of the other 99 subjects. With this approach,

the ten selected subjects need to devote more time and effort to the experiment,

and this may discourage voluntary participation. For this reason, the number of
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the illegitimate samples acquired is usually smaller than that acquired using A1.

A3 is to recruit a separate pool of subjects specifically for providing the ille-

gitimate samples. Take the published works of [133,156,157] for example, instead

of requesting the subjects recruited for providing the legitimate samples, the re-

search team recruited additional subjects for providing the illegitimate samples.

In this way, it is more likely to obtain a balanced number of the legitimate and

illegitimate samples than using A2. It is worth mentioning that, with this ap-

proach, for each increment of the subject size in a dataset, two subjects should

be recruited. This means that the resource and effort needed to obtain a dataset

is doubled.

3.4.5 Public Dataset

The availability of a public dataset for touch dynamics biometrics research is vital.

For example, with such a dataset, we could do comparisons of different algorithms

on the same dataset and/or different experimental settings. The availability of

a public dataset also allows researchers to focus on more challenging research

issues, spending less time on data acquisitions. However, the availability of open

dataset (with a large subject size) in the domain of touch dynamics biometrics is

still limited. This may be due to that the creation or acquisition of such data is

a time and resource consuming process. At the time of this writing, we are only

able to find four public datasets in relation to touch dynamics. These datasets

are summarised in Table 3.2 and described in the following.

Dataset 1: The data acquisition experiment conducted by [140] involved 51

subjects. The input is a fixed character-based string “rhu.university” entered

on a window touchscreen smartphone (Nokia Lumia 920). Each subject attended

three sessions with an interval of five days apart for each session. The first session

was used as a practice session, so the actual data acquisition started from the

second session. A total of 15 samples were acquired from each subject over the

second and third sessions.

Dataset 2: Another dataset, published by [153], was based on digit-based strings.

The device used for acquiring the data was an early generation smartphone run-

ning on Android 2.0.1 (Éclair) Application Programming Interface (API) level

6, which was released in December 2009. The subjects were only required to

provide two samples per session, and five sessions were used with an interval of
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at least one week apart for each session to capture any inter-session variability.

Input strings were not predefined; subjects were allowed to freely choose a de-

sired digit-based string, and most of the chosen strings are 4 to 8 digits long. The

subject size used in this dataset is 100 subjects, the largest of the four public

datasets. The age distribution of the subjects involved is biased towards young

people, where 85% of the subjects have the age of 25 or younger. Different from

the usual practice, illegitimate samples were collected separately from those sub-

ject who provided the legitimate samples. Ten subjects are randomly chosen to

act as impersonators. These impersonators were given the PINs of every other

subject and were asked to impersonate the subjects by providing five samples for

each subject. Note that, at the time of writing, the dataset is no longer available

for download.

Dataset 3: Another related effort on acquiring and sharing their datasets publi-

cally was made by [137]. The number of subjects involved is the smallest among

the four public datasets. The entire subject population recruited in this work

were students. The data acquisition in this experiment was done via the use of

two types of devices. 37 subjects provided their inputs on a Nexus 7 phablet (a

hybrid of both a phone and a tablet with a screen size between 5-7 inches [158]),

while the remaining five via the use of a LG Optimus L7 P700 smartphone. The

paper did not explain why two different device types were used and whether the

use of different device types would have any performance implications. The input

string used for the data acquisition was predefined as “.tie5Roanl”. Additionally,

the touch actions captured include not only the input string but also shift key

(toggle between lower and uppercase characters) and keyboard switch key (toggle

between characters and numerical keys). These secondary key events may cap-

ture valuable and distinctive information about a subject touch dynamics pattern.

Also, in this dataset, most of the subjects provided their input strings 30 times

each on two separated sessions in two weeks (the duration between the two ses-

sions was not mentioned in the paper). As some invalid inputs were removed, so

the resulting dataset only contains 51 input samples per subject (instead of 60

from both sessions).

Dataset 4: Another dataset based on character strings were published by [159].

Unlike their previous dataset [137], this dataset is different in four ways. Firstly,
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three character-based input strings were used for the data acquisition: “kicsikuty-

atarka”, “.tie5Roanl”, and “Kktsf2!2014”. Secondly, only one type of device, a

Nexus 7 phablet, was used for acquiring the data. Thirdly, more subjects were re-

cruited in this dataset. Lastly, for each input string, the subjects provided at least

20 input samples per session, and three sessions were used with an inter-session

interval of at least one week.

Properties Dataset 1 Dataset 2 Dataset 3 Dataset 4

Input String Type C D C C

Subject Size 51 100 42 54

Acquisition Sessions 3 5 2 ≥3

Inter-Session Interval 3-30 Days 1 Week - 1 Week

Input Sample Size per
Session

5 2 30 ≥20

Total Session Duration
per Subject

- 5 Weeks 2 Weeks 3 Weeks

Total Sample Size per
Subject

15 10 51 ≥60

Illegitimate Sample
Acquisition Approach

A1 A2 A1 A1

C: Character-based; D:Digit-based

Table 3.2: Four public touch dynamics biometrics datasets

3.5 Feature Extraction

Human touch dynamics pattern contains unique features that can be used to dis-

tinguish one another. In the feature extraction phase, these features are extracted

by processing the raw touch dynamics data acquired from a subject. Common

features discussed in literature can broadly be classified into three categories: (i)

timing, (ii) spatial, and (iii) motion. Figure 3.11 summarises the research efforts

made on these features. Note that this figure gives a general idea of the usage

distribution of each feature against all the papers we have reviewed, there are
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papers that use more than one feature. These features are further described in

the following sections.

Figure 3.11: Distribution of touch dynamics feature types used in touch dynamics
biometrics research

3.5.1 Timing Feature

The timing feature is the most widely used feature in touch dynamics biometrics

research. A touch action (finger touching down or lifting up) on a virtual keyboard

generates digital interrupts that can be detected by the mobile operating system

API functions [118]. Each of these actions can be coupled with a timestamp

value. Based on these timestamp values, two types of timing feature can be

extracted: dwell time and flight time. Dwell time refers to the duration between

the touch actions of the same key. It is also known as press [22] or hold time [147]

in literature. Flight time refers to the interval between the touch actions of two

or more keys. It is also known as latency [145] or interval time [139].

3.5.2 Spatial Feature

The spatial feature is a characteristic associated with physical interactions be-

tween a fingertip and a device touchscreen surface, and it can be acquired when

a touch action is performed. Three most commonly reported spatial features in
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literature are the touch pressure size, touch pressure intensity and touch position.

A visual illustration of these features is reported in [143].

Touch Pressure Size: The touch pressure size represents an approximation of

the screen area being touched in a touch action. Each touch action is associated

with a touch pressure size value. The touch pressure size value captured from a

subject is determined by the subject’s fingertip size. For example, the authors

of [160] observed that an adult male subject usually produces a larger touch

pressure size value than a child or an adult female subject.

Touch Pressure Intensity: The touch pressure intensity is another feature that

is often used along with the touch pressure size. Each touch action is associated

with a touch pressure intensity value. A touch pressure intensity value measures

the approximated force asserted on the screen upon each touch event. A touch

pressure intensity value is linked to a subject’s finger muscle that is unique to

each subject.

Touch Position: The touch position is a two-dimensional matrix feature that

captures a fingertip landing position on a device screen (or key). Each touch

action can be associated with an x- and y-coordinate measured in pixel units [135].

The touch position of a key varies with a subject’s fingertip size and cognitive

preference. Also, by some mathematical manipulations, additional features can

be derived. These include the distance [86], speed [118] or angle [106] between two

touch actions. However, there is a concern with this coordinate representation of

touch position values [111], that is, the coordinate system of a screen is device

dependent. Using different devices, the captured touch position values are not

consistent [149].

3.5.3 Motion Feature

The motion feature is the small amount of movement and/or rotation inflicted to

the device during a touch action. These motions can be captured by two hard-

ware sensors embedded in modern mobile devices: accelerometer and gyroscope.

Figure 3.12 shows a graphical representation of the different motions captured by

both sensors.

The accelerometer sensor measures the linear movement rate applied to a

device over time. It is designed to detect the movement along the x-, y- and
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z-axis in both positive and negative directions. These three values are measured

in the unit of meters per second squared (m/s2) [12]. On the other hand, the

gyroscope sensor measures the rotation rate applied to a device against the three

axes: (i) tilt forward and backward (Pitch), (ii) twist from side to side (Roll),

and (iii) turn from portrait to landscape (Yaw). These values are measured in

the unit of radian per second (rad/s) [138]. Note that the availability of these

sensors and the variations in sensor resolution or sensitivity between different

devices may cause inconsistencies in the data acquired may prevent these sensors

from being used effectively for user authentication purposes [105].

Figure 3.12: Raw motion data captured by two motion sensors

3.6 Feature Classification

Feature classification operation is the major operation for a touch dynamics au-

thentication system. This operation is carried out to transform the extracted

features into reference template or model that uniquely represent each user’s

touch dynamics pattern. Feature classification is usually carried out using ma-

chine learning techniques. A number of such techniques have been used in touch

dynamics biometrics research reported in literature: (i) Probabilistic Modelling

(PM), (ii) Cluster Analysis (CA), (iii) Decision Tree (DTR), (iv) Support Vector

Machine (SVM), (v) Neural Network (NN), (vi) Distance Measure (DM), and

(vii) Statistical (ST). Figure 3.13 summarises the machine learning techniques

used in touch dynamics biometrics research. Note that this figure gives a general

idea of the usage distribution of each technique against all the papers we have
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reviewed, there are papers that use more than one technique. We describe each

technique in the following.

Figure 3.13: Distribution of machine learning techniques used in touch dynamics bio-
metrics research

Probabilistic Modelling (PM): The main idea behind the PM technique is

to predict the likelihood of a given test sample belonging to a particular subject

using the prior probability calculated from training samples. One widely used

PM technique is the Bayesian Network [22, 161]. It uses an acyclic graph model

to find the probabilistic relationship between the parent and child node [137].

For example, feature data from a reference template will be used as the parent

node and the associated subject identity as a child node. Then, given a test

sample, the intended child node is determined by the probability of the parent

node [162]. Other variants of the PM technique include the Naive Bayes [56,148]

and the Gaussian Probability Density Function [47].

Cluster Analysis (CA): The CA technique assumes that samples belonging

to the same subject have similar properties [113]. The aim is to group sample

with similar properties to form a homogeneous cluster. Then, the class label

of a test sample is decided by the degree of proximity towards a cluster [137].

Samples from different clusters are highly dissimilar but very similar among the

samples in the same cluster. There are variants of the CA technique, including

the K-means [132,163], K-Star [152,164] and k-Nearest Neighbours [138,139].
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Decision Tree (DTR): The concept of the DTR technique is to create a tree-

like model that predicts the class label of a given test sample based on previously

known training samples. A decision tree is constructed by continuously splitting

feature data into subsets represented as tree nodes so that the information gain

ratio at each node is maximised. This iterative process stops when a node has

only one single label, or when further splitting a tree node no longer provides

additional information gain. The DTR technique such as the J48 [84, 131, 164]

and the Random Forest [22,118,165] are widely used in touch dynamics biometrics

research.

Support Vector Machine (SVM): The SVM is another technique commonly

used in many studies [146,149,163]. The fundamental concept of this technique is

first to determine how two classes of feature data differ from each other and then

create a boundary that best separates them. Having this boundary, subsequent

test samples can be classified as either legitimate or illegitimate according to

which side of the boundary they are located. The search for this boundary can

be performed within a 2-dimensional hyperplane using a linear kernel function

or a higher dimensional feature space using a non-linear kernel function such as

Radial Basis Function [106,163].

Neural Network (NN): The NN technique simulates the information process-

ing structure of biological neurons. Typically, a NN architecture consists of three

interconnected layers: input, hidden and output layer. To start with, the feature

data from all subjects are fed into the input layer of the network as a set of

neurons. An activation function is used to assign weights to each neuron. Then,

the information of the activated neurons is passed from one to another within

the hidden layer. This process iterates until an output is produced. Finally,

based on the output values, a learning process is used to update the weights of

each neuron in the hidden layer to improve the network. Some commonly used

NN techniques are Radial Basis Function Networks [113, 164] and Multi-Layer

Perceptron [106, 131, 152]. A NN technique generally produces a higher level of

accuracy in identifying a subject but is more computationally expensive [114] and

more time consuming to be used [166]. According to [118], running this technique

on mobile devices with less than 512MB of memory is impractical.

Distance Measure (DM): The DM technique calculates a dissimilarity or sim-

ilarity score between a test sample and the training sample of a given subject.
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The score is then compared against a threshold to determine if the test sam-

ple belongs to the target subject. Most frequently used DM techniques include

Euclidean [56, 166, 167], Manhattan [104, 150, 168], Mahalanobis [137, 138] and

Bhattacharyya [151].

Statistical (ST): Several ST techniques have been used in touch dynamics

biometrics research. These techniques include the mean and standard devia-

tion [153,169] and the deviation tolerance [145,170].

The output of feature classification operation is normally associated with a

matching score, and this score is used for feature matching. Feature matching

is an operation responsible for deciding whether or not the test sample is indeed

originated from the target user. The decision is usually made by comparing the

score against a predefined threshold. Before the final decision is made, a number

of fusion approaches may be applied to improve the accuracy performance of

a touch dynamics authentication system. These fusion approaches are further

described in the following section.

3.7 Fusion

Fusion is an approach used to combine information from multiple sources to

improve the accuracy performance of a biometrics authentication system. The

multiple sources may be from multiple sets of features or by using multiple ma-

chine learning techniques. The information from these sources may be combined

using four different approaches: (i) Feature Fusion (FF), (ii) Ensemble Fusion

(EF), (iii) Score Fusion (SF), and (iv) Decision Fusion (DF).

Feature Fusion (FF): The FF approach is the most used fusion approach in

touch dynamics biometrics research. FF involves concatenating more than one

set of features into a superset of features and is performed before the feature

classification operation. Fusion may be performed on features extracted from

the same [162] or different sensors [138, 147]. FF is simple to implement and

it enables the utilisation of additional properties of multiple sets of features.

Despite its benefits, it can result in an overly large set of features known as the

curse of dimensionality [171]. Some machine learning techniques, such as the

DTR technique, may not work well with a high dimensional feature set [172].
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Therefore, the number of feature set fused may influence the selection of machine

learning technique.

Ensemble Fusion (EF): The EF approach, unlike the FF approach, is per-

formed after the feature classification operation. Fusion is performed by training

two or more models and then combine the structure or output of the models to

improve the overall accuracy performance of the models. The Random Forest

technique used in touch dynamics biometrics research is a typical example of the

EF approach [22,118,165].

Score Fusion (SF): The SF approach, like the EF approach, is performed after

the feature classification operation. For example, in the published work of [103],

two different machine learning techniques were used independently on one set

of features, resulting in two matching scores, one from each technique. The two

scores are then combined into a single score for decision making. Methods such as

the sum, weighted-sum and product rules are commonly used to combine multiple

scores [156]. If the scores from different techniques are not comparable, they will

need to be normalised before fusion [52].

Decision Fusion (DF): The DF approach is the least complex among the four

fusion approaches. It requires minimum changes being applied to the internal

structure of each machine learning techniques. Fusion is performed by combining

decisions (accept or reject) made by multiple machine learning techniques using

voting rules, such as the majority, AND and OR rules [156].

3.8 Analysis and Discussion

This section provides an overview of the performances achieved by related work,

i.e. touch dynamics authentication solution, reported in literature. For the sake

of clarity, the performances are discussed based on the working modes that they

support, static or dynamic modes, input string lengths used, feature discrimi-

native capabilities, fusion approaches used and the system overheads they each

impose.
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3.8.1 Static Working Mode

In the static mode, the identity of a subject is verified based on the input provided

by the subject in the first instance of accessing a system. This is the first line of

protection and also the most common security protection measure deployed on

mobile devices. According to our literature research, character-based and digit-

based passcode are the most used input string types in the static mode. In the

following, we select and discuss one work from each input string type.

To test the viability of integrating touch dynamics biometrics with a character-

based passcode, the authors of [118] has conducted experiments to acquire pass-

words from 20 subjects. The passcode is a predefined alphanumeric character

string (“7q56n5ll44”). To acquire each passcode, a subject is required to complete

the passcode input by touching on different keys on the touchscreen keyboard.

The feature extraction was performed using two different methods, individual

key-based extraction and overall key-based extraction. With the first method,

the feature data of every single touched key are extracted and analysed by the

classifier. With the second method, the average feature data of all the touched

keys is calculated before analysed by the classifier. Experimental results show

that regardless of the classifiers used, the first method always outperforms the

second. This is because more fine-grained information can be captured in the fea-

ture data of individual touched key than the average feature data of all touched

keys.

The work conducted by [153] attempt to use touch dynamics biometrics to

enhance digit-based passcode. In the experiment, ten subjects were asked to pro-

vide 100 input samples of a predefined PIN (“1593”) each. Using a NN classifier,

they were able to achieve an FRR of 14%. The FAR test was conducted some-

what differently. Two additional subjects were recruited (acting as an attacker)

to imitate the PIN input pattern of the all the ten legitimate subjects. To fa-

cilitate the impersonation attempt, the two attackers were given a visualisation

tool. The tool is designed to reveal the correct timing and pressure information

of each digit of the PIN input of the legitimate subjects. Even by deliberately

exposing the timing and pressure feature data of the PIN, the authors were still

able to archive a FAR of 16%.

As can be seen from Table 3.3, the work conducted by [162] is the only one

that uses a symbolic passcode instead of a character-based or digit-based pass-

code. The symbolic passcode consisted of spade, heart, diamond and club. Each
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Studies Subject
Sizes

Input
Types

Input
Lengths

Features Classifiers EERs (%)

[86] 12 C 6 TM, SP CA 6

[164] 16 C 11 TM, SP DTR 2.03†, 2.67#

[118] 20 C 10 TM, SP DT 26

[138] 20 C 8-9 TM, MO DM 0.08

[173] 25 C 34 TM NN 9.3

[85] 28 C 6-8 TM, SP PM 21.02

[145] 40 C 11 TM ST 7.5

[137] 42 C 10 TM, SP DM 12.9

[170] 56 C 10 TM, SP ST 5.79†, 5#

[152] 10 D 4 TM, SP NN 15.2

[148] 12 D 6 TM, SP, MO NN 91.2*

[168] 55 D 4 TM, SP, MO SVM 4.4†, 5.3#

[147] 80 D 4 TM, SP, MO ST 3.65

[153] 100 D 4-10 TM, SP ST 8.4

[174] 100 D 8 TM, SP, MO SVM 0.556

[132] 152 D 17 TM, SP CA 4.19†, 4.59#

[162] 10 O 4 TM, SP NN 82.18*

C: Character-based; D: Digit-based; O: Other

TM: Timing; SP: Spatial; MO: Motion
*Accuracy; †FAR; #FRR

Table 3.3: Research work conducted in static mode
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of the symbols can be represented in four different colours. A total of 16 symbols

arranged in a 4x4 matrix block were designed as the input screen layout. To

control the screen size inequality of different mobile devices, the data acquisi-

tion tool is developed as a web application so that the input screen layout can

automatically scale to the screen size of different mobile devices. An accuracy

of 82.18% was achieved by using the Bayesian Network classifier to classify the

timing and spatial features of the ten subjects.

3.8.2 Dynamic Working Mode

In the dynamic mode, a subject’s identity is continuously verified throughout the

active session of a mobile device. To authenticate a subject in the dynamic mode,

a longer input string is normally required than in the static mode. The longer

input string is commonly acquired by researchers using three different ways: (i)

requiring subject to input a long input string, (ii) accumulating touch actions

over a predefined period of time, or (iii) setting a predefined number of touch

actions to accumulate.

The authors of [22] attempt to identify a subject based on the character strings

commonly used in emails and chat messages. It is noted that storing feature

data of each character combination of the character string may impose system

overhead on a mobile device. Therefore, only the 40 most frequently used English

language character combinations were stored and used for analysis. The subjects

input were analysed through a series of character strings with the lengths of 20, 40

and 60. If the touch dynamics pattern within the character string is unrecognised,

the subject is declared as an impersonator and a reauthentication request will be

invoked. The result shows that the best accuracy performance achieved was 1%

EER by using the Random Forest classifier based on a 40 character string. The

author also suggested that for authentication in the dynamic mode, maintaining

high usability should be given a higher priority. This means that achieving a low

FRR value is important.

The experiment conducted by [133] is rather different from the one discussed

above, as in the input strings are some predefined 160 characters pangrams (words

or sentences containing every letter of the alphabet at least once). One example

given was “the quick brown fox jumps over the lazy dog”. As shown in Table 3.4,

the number of subjects recruited in the experiment is the largest (315 subjects)

among the research works conducted in the dynamic mode. The FRR test was
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conducted somewhat differently, among all the 315 subjects’ samples, only 12

subjects’ samples were used to calculate the FRR value, with the remaining 303

subjects’ samples used for the FAR test. An accuracy performance of 1% FAR

and 18% FRR was obtained by using a SVM classifier with the linear separating

function.

Studies
Subject
Sizes

Input Lengths Input
Freedom

Classifiers
EERs
(%)

[135] 5 15 touch actions Yes PM 80*

[114] 13 6000 touch actions Yes NN 86*

[113] 20 10-minutes touch actions Yes NN 2.92

[126] 32 5-minutes touch actions No SVM < 10

[102] 36 ∼8974 characters No DTR 4.25†, 6#

[22] 40 14-53 characters No DTR 1

[143] 50 120 touch actions Yes NN 2.46

[108] 51 800 touch actions Yes SVM < 8

[106] 190 80 touch actions No PM ∼13.8

[133] 315 160 characters No SVM 1†, 8#

*Accuracy; †FAR; #FRR

Table 3.4: Research works conducted in dynamic authentication mode

Data acquisition operation conducted by [143] did not use a predefined input

string. Data acquired was in the form of touch actions generated during sub-

jects’ routine input activities. For example, subjects were requested to use an

Android smartphone to perform their usual activity, such as text messaging and

web browsing. Unlike their previous study [113], where a time-based session (ten

minutes) was used to acquire touch actions, their latest study predefined a fixed

number of touch actions to be acquired in each data acquisition session. The

changes were made because the number of touch actions acquired by using the

time-based session were unpredictable. The latter approach was able to supply a

more consistent and sufficient number of touch actions for analysis, and thus im-

proves the effectiveness of the experiment. In the experiment, the performances

of five different classifiers were compared. The results show that the Radial Basis
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Function Network classifier achieved the best EER of 2.46%.

3.8.3 Input String Length

Previous studies suggested that the input string length has a direct relation-

ship with the accuracy performance of a classifier. For example, the experiment

conducted by [147] compared the accuracy performance between a 4-digit and a

8-digit PIN. The dissimilarity scores between the legitimate and the illegitimate

subjects have been calculated and plotted in a frequency distribution graph. The

authors discovered a clear gap in the dissimilarity scores graph of the 8-digit PIN,

but an overlap for the 4-digit PIN. This shows that the longer the PIN, the better

it is at representing a subject’s touch dynamics pattern, and the higher the ac-

curacy performance of the classifier. The authors of [114] also discovered that by

increasing the number of touch events (from 5 to 15) used for data classification,

the accuracy performance could be improved by 27%. Table 3.5 shows similar

observation by other research work.

3.8.4 Feature Discriminative Capability

The timing feature has been the most frequently used feature since the early stage

of keystroke dynamics research (predecessor to touch dynamics). More recent mo-

bile devices are embedded with various sensors that are capable of providing ad-

ditional features that can be used to describe a subject’s touch dynamics pattern.

It is interesting to compare the discriminative capabilities of these new features

(i.e. the spatial feature and the motion feature) against the timing feature.

In the experiment conducted by [85], the spatial feature, such as the touch

pressure size, touch pressure intensity and touch position, were extracted from

the capacitive sensor of a mobile device. The result shows that these spatial

features always perform better than the timing feature in most of the experi-

mental settings. The best EER was obtained using the touch position and the

touch pressure size feature, and it was approximately 14% better than the timing

feature.

The motion feature extracted from the motion sensor provides additional

movement information that can be used to describe a touch action performed

by a subject on a mobile device. The experiment conducted by [138] reported

that the EER of their proposed method was reduced from 4.97% (by using the
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Studies Working
Modes

Input
Types

Input
Lengths

EERs (%) Improvements
(%)

[118] Static C
10 26

+47.69
47 13.6

200 90.7*

[103] Static C
300 95.7*

+5.51

[147] Static D
4 5.98

+24.75
8 4.5

6 23
[175] Static D

10 18
+21.74

[22] Dynamic C
20 8.93†, 5.6#

+88.8, +46.43
40 1†, 3#

5 67.7*

[114] Dynamic O
15 86*

+27.03

C: Character-based; D: Digit-based; O: Other
*Accuracy; †FAR; #FRR

Table 3.5: Accuracy performance of short and long input string lengths
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timing feature) to 0.08% after using the motion feature. Whilst the EER values

may seem to be unusually low (possibly due to the small number of subjects and

the higher number of training samples used in the experiment), the EER reduc-

tion did show that the motion feature provides better discriminative capability

than the timing feature.

Table 3.6 clearly shows that some of the features perform better than the

other. However, this does not mean that the lower performed features are not

useful. Studies [85, 103] suggested that by combining multiple features (using

fusion approaches), the accuracy performance of the classifier can be further

improved (further discussions in the following section).

Studies Input Strings
EERs (%)

Better off by (%)

TM SP MO

[103] 300 Characters 39* 38* - +2.56

[85] 6-8 Characters 21.75 18.65 - +14.25

[149] 10 Digits 10.5 3.5 - +66.67

[147] 16 Digits 16.5 11.5 15 +30.03 (TM), +23.33 (MO)

[174] 8 Digits 71.3* 69.03* 98.26* +3.18 (TM), +29.75 (MO)

[138] 8 Characters 4.97 - 0.08 +98.39

TM: Timing feature; SP: Spatial feature; MO: Motion feature
*Accuracy

Table 3.6: Accuracy performance of different feature data types

3.8.5 Fusion

To increase the overall accuracy performance of a touch dynamics authentication

system, researchers have attempted to use different fusion approaches. For ex-

ample, the authors of [147] suggested that different feature captures a different

aspect of a touch dynamics pattern and combining them allows a subject’s touch

dynamics pattern to be more precisely represented. To prove this assumption,

the authors conducted four experiments using four different features: (i) accel-

eration, (ii) touch pressure intensity, (iii) touch pressure size, and (iv) timing.

When the features are used individually, each of the features obtained the EER
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of 19%, 12%, 25% and 21%, respectively, whereas, when all four features are used

together, the EER has decreased to 4.5%. This shows that using the combination

of all features produces a better result than using the features individually.

As has been discussed in Section 3.7, there are four different types of fusion

approaches, i.e. FF, EF, SF and DF. We can use more than one of the approaches

simultaneously to improve the accuracy performance of a classifier. For example,

the authors of [103] use both the FF and SF approaches in their experiment. To

start with, they first combined different features extracted from a 300 character

input text (FF). Then, the individual score produced by two different classifiers

are combined (SF) to collectively make an authentication decision. The accuracy

performance was successfully improved from 55% (before fusion) to 95.7% (after

fusion).

Table 3.7 summarises the research work in touch dynamics biometrics that

uses different fusion approaches. All of the experiments shows an improved ac-

curacy performance after applying fusion approach.

3.8.6 System Overhead

The accuracy performance has been the primary evaluation metric for a touch

dynamics authentication system. Nevertheless, system overhead in terms of com-

putational speed and resource consumption is also an important evaluation cri-

terion. The lower the system overhead of a proposed authentication system, the

less the impact it has on the performance of a mobile device [113]. The trade-off

between these two metrics was normally not reported. This is because only a

small number of research work (12%) conducted both the data acquisition and

the feature classification operation on a mobile device. Most of the research work

conducted the feature classification operation on a desktop computer.

To evaluate the computational speed and the resource consumption of a pro-

posed method, one has to implement both the data acquisition and feature classi-

fication operation on a mobile device. For example, the authors of [118] conducted

their experiment entirely on a Sony Ericsson Xperia smartphone. The Random

Forest and the k-Nearest Neighbor classifiers were implemented to identify sub-

jects based on a 47 character input string. The experimental result shows that the

k-Nearest Neighbor classifier not only achieves a better EER but also consumes

relatively the same amount of computational time, memory and CPU resource

than the Random Forest classifier.
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The number of features used to represent a subject’s touch dynamics pattern

can also influence the computational time and the resource consumption of a

mobile device. The more the number of features used to represent a subject’s

touch dynamics pattern, the more the computational time and the resource con-

sumption incurred by a mobile device. Ideally, one would want to minimise the

number of features used and yet maintaining a reasonable accuracy performance.

This has been shown in an experiment conducted by [143], where, even when

the number of features was reduced from 37 to 8, the accuracy performance was

maintained at a reasonable level. By reducing the number of features used, the

computational time and the resource consumption has been reduced.

3.9 Further Analysis and Discussion on Most

Related Work

This section provides further critical analyses of the related work most relevant

to ours, i.e. touch dynamics authentication based-on digit-based input strings.

Depending on the input strings used, the related work can largely be classified

into two groups: i) work on digit-based input strings (or PINs), and ii) work on

character-based input strings. As the digit-based authentication method has so

far been the most widely used authentication method for mobile devices [177],

so our further critical analysis here will focus on i). The work most relevant to

ours has largely been focusing on studying the applicability of, or improving the

performance in, using touch dynamics as a means of verifying subjects. Several

studies have been published. We here discuss the most notable ones.

The work reported in [166] was carried out to test the applicability of verifying

subjects based on touch dynamics using digit-based input strings. In their ex-

periments, timing, touch pressure size and touch pressure intensity features were

extracted by using device built-in capacitive sensor, and, in addition, linear and

angular motion features were extracted by using the more advanced accelerom-

eter and gyroscope sensors. As the features extracted by the accelerometer and

gyroscope sensors have high feature dimension, the authors applied the Principal

Component Analysis method to reduce the feature dimension. With lower fea-

ture dimension, feature classification consumes less computational resources. By

using an Euclidean Distance classifier, they obtained an accuracy performance of

20% EER on a 4-digit PIN. However, the performance comparisons of individual
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features were not reported in this paper. It would be interesting to see whether

or not one feature performs better than the other or which is the best perform-

ing feature. Also, relying on the use of advanced sensors to extract some of the

features means that the method can only be deployed on mobile devices that are

equipped with these sensors, limiting the scale of its deployment. This is also the

case for the work reported in [134], where the authors only used features extracted

from a 3D touch sensor. This type of sensor is only available on certain brands of

mobile devices (i.e. iPhone 6s and later releases), making their proposed method

only applicable to some mobile devices.

The authors of [152] also investigated the accuracy performance of touch dy-

namics using a digit-based input string. In their investigation, they recruited ten

subjects. Each subject was asked to provide 100 input samples of a predefined

4-digit PIN. They used the Multi-Layer Perceptron classifier to classify the le-

gitimate subjects, and these subjects are correctly classified up to 86% of the

time. The results are encouraging, but to achieve the reported level of accuracy

performance, they have made use of 100 input samples per subject to train the

classifier, and this sample amount is considered to be large. Acquiring such a

large number of samples from the subjects is time-consuming and not always

practical during an enrolment phase. It is not clear if the same level of accuracy

performance could still be achieved when a smaller number of input samples are

used. A similar case can be said for the work reported in papers [150,163,178].

The paper [153] reported an experiment carried out on a small number of

input samples than those described above. Input PINs ranging from 4 to 8 digits

in length were used. By using a simple statistical classifier, the authors were

able to achieve an EER of 8.4%. They have also studied the time taken to

perform the training and testing phase of different PINs. The average total time

taken to complete both phases is less than 12ms. This result is encouraging when

considering the deployment of touch dynamics biometrics on power limited mobile

devices. In addition, the experiment was carried out on 100 subjects, more than

many of the experiments reported in literature. For example, the experiments

reported in papers [142, 148, 152, 161, 178–180], were carried out on 15 or fewer

subjects. Carrying out an experiment on a larger number of subjects allows us

to draw more conclusive conclusions.

The authors of [147] conducted their experiments using 4- and 8-digit PINs. In

their experiments, they employed a statistical classifier and obtained EER values
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of 3.65%, 6.96% and 7.34% using three different 4-digit PIN numbers, “3244”,

“1111” and “5555”, respectively. These results show that when a higher repetition

of digits is used, the accuracy performance is reduced. They also compared

the accuracy performances of two different 8-digit PINs (i.e. “12597384” and

“12598416”). Surprisingly, for one of the 8-digit PIN (“12598416”), the EER

value was 4.45%, marginally worse than the 4-digit PIN (“3244”). This finding

is in contrary to previous studies [142,163,175] which have suggested that longer

input strings produce a better accuracy performance.

The work reported in [175] was rather unique. The authors proposed a method

to allow subjects to change their PINs without rebuilding a new authentication

model. The subjects were asked to input ten different randomly selected 10-

digit PINs. Based on the samples collected, they produced a table of all possible

feature data for each digit. Using this method, they were able to achieve EER

values of 23%, 21% and 18% on three different PINs with the string lengths of

6, 8 and 10, respectively. However, the majority of the subjects taking part in

this experiment were at the age of 17-20, it is not clear whether the experimental

findings apply to other age groups.

In most of the experiments reported in literature, timing features were ex-

tracted using two shortest feature lengths (further discussed in Section 4.5.2.1.1).

An exception to these is the work carried out by [132]. In this work, the authors

used three different feature length values (i.e. 1-graph, 2-graph and 3-graph)

for extracting timing features and investigated their accuracy performances on

a 17-digit PIN. The experimental results suggested that 1-graph achieved the

best accuracy performance. They also remarked that, by combining the fea-

tures extracted using 1-graph and 2-graph, they could achieve an even better

accuracy performance. A similar observation has also been reported in pa-

pers [141, 147, 149, 153, 168]. It would be interesting to investigate the accuracy

performances of timing features extracted using larger feature lengths such as

those investigated in our work.

More recently, the authors of [163] investigated the accuracy performance of

touch dynamics on 4-, 5- and 6-digit PINs across different operational scenar-

ios. Unlike other related work, they used only motion features extracted from

accelerometer and gyroscope sensors. The authors pointed out that the raw data

recorded by these sensors could not be used directly as features to build an au-

thentication model. To make the raw data useable as features, they computed a
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set of statistical metrics (min, max, mean, variance, etc.) from the raw data and

used the computed metrics as motion features. A similar method has also been

used in other experiments such as [147, 161, 168]. By far, this method has only

been used to extract motion features. It would be interesting to see how well this

method works when used to extract other types of features, such as timing and

spatial features. To investigate the effects of operational scenarios on accuracy

performance, they designed three types of scenarios (i.e. hand-hold, table-hold

and walk-hold) for collecting subjects touch dynamics data. The results show

that the hand-hold scenario achieves the best accuracy performance. A simi-

lar observation has also been reported in [148, 178]. Also, the results of these

three pieces of work consistently show that the table-hold scenario achieves the

lowest accuracy performance. These results can be explained as follows. In the

table-hold scenario, subjects input their PINs with the device placed horizontally

on the table. With the support of the table, the amount of movement inflicted

on the device while the subjects are inputting their PINs is small. When the

amount of movement is small, the data recorded by the accelerometer and gyro-

scope sensors will have a small-value range, indicating that the features extracted

from these sensors capture less information about the subjects’ touch dynamics

patterns, thus leading to a lower level of accuracy. This means that the features

extracted from the accelerometer and gyroscope sensors may not be effective for

user authentication purposes.

By far, the best accuracy performance was reported by [174]. The authors

achieved an EER value of 0.56%. They trained an authentication model by using

the SVM classifier using both legitimate and illegitimate subject samples. In their

experiments, each subject provided four different 8-digit PINs. They discovered

that the PIN with repeated digits, e.g. “11111111”, resulted in a lower accuracy

performance than those without, e.g. “16843752”. In their experiments, they

imposed a condition that the experimental subjects were selected from those who

were very familiar with touchscreen smartphones. This condition was imposed

to ensure that the subjects were able to complete the experiment of inputting

the PIN in a natural way. This condition might have played a role in achieving

the high accuracy performance. It is not clear if the same level of accuracy

performance could still be achieved if this condition is removed. Also, in this work,

a two-class classification approach is used in building the model, i.e. samples from

both legitimate and illegitimate subjects are used to build the model. However,
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in real-life, as mobile devices are very much personal devices, illegitimate subject

samples may not always be available. Therefore, this approach is less practical.

This is also the case for the work reported in papers [87,168,174].

3.10 What is Missing

There are a number of studies on the use of touch dynamics biometrics for mobile

user authentication. However, these studies have largely focused on improving

accuracy performance of the system, but the characteristics of mobile devices and

the way they are typically used are not given due consideration. These character-

istics are as follows. Firstly, both short and long input strings are used in real-life,

but the short string inputs are used more often as they are easier to remember.

Secondly, mobile devices are rarely shared among multiple users. Therefore the

use of two-class classification techniques may not be the most efficient way of

training an authentication model. Thirdly, mobile devices are typically battery

powered, so the use of sophisticated sensors (e.g. accelerometer and gyroscope

sensors) to capture touch dynamics data or the use of large amount of data when

training an authentication model is less efficient. To make such a system more ac-

curate as well as more usable, these characteristics should be taken into account.

In addition, more work is necessary to gain a better understanding with regard to

how to achieve a better accuracy performance, while, at the same time, keep the

overhead costs as low as possible. For example, it is not clear whether a device

with a larger screen size would allow us to capture touch dynamics features more

effectively, whether using fewer but less overlapping features would allow us to

achieve the same level of accuracy performance but with less cost, and whether

the use of adaptive learning method would allow us to capture better users’ touch

dynamics patterns.

3.11 A Way Forward

To investigate how to achieve a better accuracy performance, while, at the same

time, keep the overhead costs as low as possible in a touch dynamics authen-

tication system, we have designed and evaluated a novel solution, called Touch

Dynamics based Two-factor Authentication (ToDiTA) system with the following

measures and ideas:
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• Support the use of both short and long input string, making it easier for

users to remember the string thus achieving a higher usability level.

• Use the capacitive sensor built-in on most, if not all, touchscreen mobile

devices to extract raw touch dynamics data, instead of more sophisticated

sensors, making the system applicable to a wider range of mobile devices,

less costly and maximising the scale of its deployment.

• Use a device with larger screen size than an average mobile device (i.e.

larger than 7 inches) to acquire touch dynamics data, leveraging the higher

variation in touch dynamics data (as a result of the additional finger move-

ment space afforded by the device) to train a more accurate authentication

model.

• Use feature selection methods to analyse and select only the most distinctive

features for model training, reducing the storage space of the features and

the model training time.

• Use fewer samples for model training, reducing the amount of time and

effort required by the user to complete an enrolment phase thus achieving

a higher usability level as well as reducing model training time.

• Use classification techniques that can train a model with only legitimate

samples, so that the system can be more efficient in a mobile device context.

• Use an adaptive learning method to update the model, so that the updated

model can adapt itself to any changes in a user’s touch dynamics pattern.

• Use a more comprehensive dataset to evaluate the system

3.12 Chapter Summary

This chapter has presented an investigative study of the related work in the liter-

ature in the area of touch dynamics biometrics. The chapter started by providing

an overview of touch dynamics biometrics in general. It then presented a detailed

comparison on the related work from a range of perspectives and discussed their

performances. The chapter has also provided a further analysis and discussion of

the work most relevant to ours. It has highlighted their strengths and limitations.
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Finally, the chapter outlined our prospective measures and ideas in designing a

touch dynamics based two-factor authentication (ToDiTA) system.

The next chapter presents the design and evaluation of ToDiTA.



Chapter 4

A Novel Touch Dynamics Based

Two-Factor Authentication

(ToDiTA) System

4.1 Chapter Introduction

This chapter presents the design and evaluation of a touch dynamics based two-

factor authentication (ToDiTA) system. The ToDiTA system is designed to

strengthen user authentication on mobile device and do so in a usable and ef-

ficient manner. The design has made use of the following five measures: (i) use

an additional more usable AF, (ii) use a more cost-efficient way to the extract ad-

ditional feature data without using additional sensors, (iii) use a feature selection

process to select and use the most important set of features, (iv) use one-class

classifiers to train the authentication model, and (v) use a more comprehensive

dataset to more accurately evaluate the system. Experiments were carried out to

evaluate the performance of the ToDiTA system under different parameter value

settings to investigate the impacts of different settings on the performance of the

system. The design and evaluation of the ToDiTA system is our second novel

contribution in this thesis.

The chapter starts by describing the measures used in the ToDiTA design in

Section 4.2. It then gives the design preliminaries (threat model, assumptions

and notations) in Section 4.3. Section 4.4 outlines the ToDiTA architecture.

Section 4.5 describes the designs and operations of core functional units of the

architecture in detail. Section 4.6 presents the evaluation methodology used.

103
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Section 4.7 analyses and discusses the evaluation results. Section 4.8 compares

the ToDiTA system with the most related work. Finally, Section 4.9 concludes

this chapter.

4.2 Design Measures

In this section, we discuss the measures used in the design of the ToDiTA system

(as mentioned above) in detail. The remaining part of this chapter then describes

how these measures are implemented, leading to the design of the ToDiTA system.

4.2.1 Using an Additional More Usable AF

The success of a biometric-based authentication system depends on how well the

system is accepted by users [181]. Users are less likely to use a system that has

a low level of usability even if the system offers a higher level of security protec-

tion [16]. One way to design a secure and also usable authentication system is

to use two-factor authentication by integrating touch dynamics biometrics with

a knowledge-based authentication method. A two-factor authentication system

provides a stronger level of protection than a single factor system, as compro-

mising two factors requires more efforts than compromising a single factor. In

terms of usability, the benefit of using touch dynamics biometrics, as one of

the AFs, have been discussed in Chapter 3 Section 3.2.2. With regards to the

knowledge-based AF, the second AF, there are three options, a character-, a

digit-, or a graphical-based passcode. Studies [182–184] have shown that the

digit-based passcode is the most preferred among the three options. This is be-

cause it is more usable in the following two ways. Firstly, the input difficulty of

a digit-based passcode is lower than a character-based passcode. This is because

a digit-based passcode uses a smaller set of keys (i.e. only ten keys, 0 through

to 9), whereas a character-based passcode requires the use of a much larger set

of keys (i.e. A through to Z, 0 through to 9 and often other symbols). Having

a smaller set of keys allows all the keys to be fitted into a virtual keyboard of

a mobile device with each key having a larger size, making it easier for users to

press the keys. Secondly, the input speed of a digit-based passcode is faster than

a graphical-based passcode [185].
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4.2.2 Extracting Additional Feature Data

One way to improve the accuracy performance of an authentication model is to

increase the number of feature data used in training classification algorithms (or

classifiers) when building an authentication model [186]. One method to increase

the number of feature data is to obtain additional raw data from additional

sensors and then extract additional feature data from these raw data. However,

this method has three limitations. Firstly, the method is more costly as the

use of mobile devices equipped with additional and more sophisticated sensors

(e.g. accelerometer and gyroscope sensors) are required. Secondly, the method

is more energy-consuming. For example, it consumes more energy to obtain

readings from an accelerometer sensor [187]. Thirdly, the method can only be

deployed on mobile devices that are equipped with those sensors, limiting the

scale of its deployment. Another method that can prevent these limitations is to

extract additional feature data from the already-obtained feature data, and these

already-obtained feature data are extracted from the raw data captured using

a basic sensor (i.e. the capacitive sensor) built-in on most touchscreen mobile

devices. The second method can make the authentication system less costly,

more applicable to a wider range of mobile devices, maximising the scale of its

deployment. For the reasons explained above, we have used the second method

to extract additional feature data.

4.2.3 Optimising Feature Data

As mentioned above, extracting additional feature data from already-obtained

feature data can increase the number of feature data, and the use of a larger

number of feature data may allow us to build a more accurate authentication

model. However, increasing the number of feature data indiscriminately may not

always be beneficial as using more feature data to train a classifier will result in

more processing time and CPU overhead, and using more feature data requires

more storage space. In addition, not all of the feature data offer the same degree

of discriminative capability; some of the feature data provide a higher degree of

discriminative capability, thus more important than the others. To build a more

accurate model with as low cost as possible, we should optimise the feature data

used, and this can be done by using a feature selection technique that can select

the most important set of features. This set of features is optimised and used to
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train the classifier.

4.2.4 Using One-Class Classifiers

A mobile device is a highly personal device and is rarely shared among multiple

users, so obtaining touch dynamics data from more than one class (e.g. data from

multiple users on the same device) is harder in practice. In other words, in real-

life cases, only the data from the owner of a mobile device are available. Based

on this observation, we have used one-class classifiers to train an authentication

model.

4.2.5 Using Comprehensive Dataset

To evaluate the proposed authentication system, a touch dynamics dataset that

is as comprehensive as possible is needed so that the conclusion drawn from the

evaluation results are more conclusive. We have acquired the dataset taking into

account the following criteria:

• Data should be acquired from a very large number of subjects. Using a

larger subject size can provide more data to verify the scalability of the

authentication system.

• The demography of the subjects taking part in the data acquisition process

should be as diverse as possible. In other words, people from different

age groups, with different device usage frequencies and working in different

professions should be represented as much as possible. In this way, the

evaluation results can be as unbiased as possible and can be generalised to

a wider population as much as possible.

• The input strings used for data acquisition should not be chosen randomly.

Instead, the strings should be carefully designed to cover as many key po-

sitioning strategies as possible. In this way, a broad variety of finger move-

ments across the touchscreen can be captured.

The public datasets that we have identified in Section 3.4.5 did not fulfil all the

above criteria. Therefore, we have acquire our own dataset (further discussions

on the dataset in Section 4.5.1.1).
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4.3 Design Preliminaries

This section details the threat model, assumptions and notations used in the

design of ToDiTA.

4.3.1 Threat Model

The threat model we use defines an attack scenario where an attacker (or imper-

sonator) tries to gain access to a user’s mobile device in an unauthorised manner.

In this attack scenario, the following assumptions are used:

• The impersonator has physical access to the device (e.g. by accessing a lost

device or stealing a device from its owner).

• The device is locked by a knowledge-based authentication method (e.g. a

passcode).

• The device is free of malware. Therefore, threats from malware attacks are

not considered.

• The device will be disabled after a specific number of unsuccessful authen-

tication attempts in a row. The device will be re-enabled (to allow further

authentication by the user) after a specific amount of time delay. The delay

should increase upon further unsuccessful authentication attempts, making

it difficult for an impersonator to succeed in brute force attacks. Therefore,

threats from brute force attacks are not considered.

• The ToDiTA system is designed for User-to-Device/App authentication and

not for User-to-Remote-Site authentication. The user’s touch dynamics

data and authentication model are stored securely on the device and are not

transferred over the network. Therefore, threats from network interception

attacks are not considered.

The primary aim of the evaluations is to investigate and assess the added

security protection level provided by the biometrics component. In this attack

scenario the impersonator has unrestricted access to the device. With this access

privilege, the impersonator may compromise the security and privacy of the owner

of the device by performing the following actions:
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• Steal any account information associated with the apps installed on the

device.

• Access sensitive and private data stored on the device.

• Masquerade as the owner and engage in communication with people in the

contact list on the device to perform further attacks or malicious activities.

We will demonstrate that, by integrating touch dynamics biometrics with

the knowledge-based authentication method, forming a so-called two-factor au-

thentication system, it is harder for the impersonator to successfully bypass the

authentication system, as, in this case, the impersonator would have to correctly

input the passcode as well as to correctly reproduce the owner’s touch dynamics

biometrics to perform a successful attack.

4.3.2 Assumptions

To scope our design, the following assumptions are used:

A1. The device is used solely by the owner and not shared among multiple users

(e.g. family members and friends).

A2. The device is a touchscreen type of mobile device with a basic built-in ca-

pacitive sensor. The device is not equipped with other more sophisticated

sensors such as the accelerometer, gyroscope and fingerprint sensors.

A3. The device has the minimum hardware specifications (i.e. 1.3GHz CPU,

1GB RAM and 8GB internal storage space) required to run standard ma-

chine learning algorithms on the device for building authentication model.

A4. The users’ touch dynamics patterns are stable and do not change over time.

A5. The ToDiTA system is deployed in a verification mode, and the verification

mode is operated in a static working mode.

4.3.3 Notations

The main notations used in the description of the ToDiTA design are summarised

in Table 4.1. These notations are used throughout the thesis.
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Notations Definitions

4D A 4-digit input string “5560”

16D A 16-digit input string “1379666624680852”

m The number of keys in an input sample

ki The ith key in an input sample, i ∈ {1, 2, . . . ,m}

p A timestamp recorded on the action of a finger pressing down on a
key

r A timestamp recorded on the action of a finger releasing from a key

ps A touch pressure size recorded on the action of a finger pressing
down on a key

n A timing feature length

fi The ith feature extracted from an input sample, i ∈ {1, 2, . . . , d}

v A feature vector or a set of all the f extracted from an input sample

d The feature dimension of v

τ A training sample or a set of all the v acquired from an enrolment
attempt

τ̂ A testing sample or a set of all the v acquired from an authentica-
tion attempt

δ A classsification score

τ̂L τ̂ classified as belonging to the owner of the device

τ̂I τ̂ classified as belonging to an impersonator

Dauth An authentication decision

θauth A predefined authentication threshold

Table 4.1: Notations
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4.4 Architecture Design Overview

This section presents an overview of the ToDiTA system architecture. As shown

in Figure 4.1, the architecture consists of six functional units: an App Interface

Unit (AIU), a Raw Data Acquisition Unit (RDAU), a Feature Construction Unit

(FCU), a Model Training Unit (MTU), an Authentication Decision-Making Unit

(ADMU), and a Data Storage Unit (DSU). All the six units are run on a user’s

mobile device.

Figure 4.1: ToDiTA system architecture

AIU is an input facility for users to provide their touch dynamics input sam-

ples. DSU is a database used to store authentication model. The rest four units

provide the core functions of ToDiTA. These units along with their functions are

highlighted below and described in more depth in the next section.

RDAU: This unit acquires touch dynamics input samples from users via AIU

and extracts raw touch dynamics data from the samples. These raw data are

passed to FCU for feature construction.

FCU: This unit identifies and extracts touch dynamics features from the raw

data. The extracted features are passed to MTU for model training.

MTU: This unit analyses and trains the extracted features to build an authen-

tication model. The built model is stored in DSU and will be used by ADMU for
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authentication decision-making.

ADMU: This unit makes an authentication decision by matching a claimant’s

touch dynamics features against the model stored in DSU.

The ToDiTA operations can broadly be captured in two phases: enrolment

and verification. In the enrolment phase, the touch dynamics input samples of

the owner of a mobile device are acquired, processed and transformed into an

authentication model that is stored in the DSU. In the verification phase, the

touch dynamics input samples of a test subject (i.e. a claimant) is acquired,

processed and compared against the model retrieved from DSU to verify if the

claimant is indeed whom he/she claims to be (i.e. the owner of the mobile device).

The two operational phases along with the units involved are illustrated in Figure

4.1. In the next section, we describe the ToDiTA design in more detail.

4.5 Architecture Design in Detail

This section describes the ToDiTA system design in more detail, focusing on the

designs of the four core functional units (i.e. RDAU, FCU, MTU and ADMU)

and discusses the issues involved.

4.5.1 Raw Data Acquisition Unit (RDAU)

RDAU is responsible for extracting raw touch dynamics data from subjects’ input

samples. This section describes the design of this unit, giving detailed discussions

with regard to how the raw data acquisition experiment is setup (Section 4.5.1.1),

how input samples are acquired (Section 4.5.1.2), how raw touch dynamics data

are extracted from the input samples (Section 4.5.1.3), and how the raw data are

processed into a proper format for further analysis (Section 4.5.1.4).

4.5.1.1 Raw Data Experimental Setup

The setup of an experiment carried out to acquire a touch dynamics dataset con-

cerns a number of issues, and they are: (i) defining a data acquisition procedure,

(ii) determining a physical environment, (iii) recruiting subjects, (iv) selecting

a data acquisition device, and (v) selecting input strings. In the following, we
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discuss these issues in detail.

Defining a data acquisition procedure

The use of an improper data acquisition procedure could cause a subject’s touch

dynamics data to be captured improperly. Improperly captured data may have

adverse effects on the quality of the data acquired, which could lead to inaccurate

study results. To ensure that a subject’s touch dynamics data are captured

properly, a proper data acquisition procedure should be used. To design a proper

data acquisition procedure, two issues should be considered.

The first issue is how to ensure data are acquired after a subject is in a stable

state (i.e. after he/she is familiar with the data acquisition procedure, device

and app). According to [188], a subject’s input pattern, style and/or speed can

change over time and they stabilise after some time. To ensure data are acquired

after a subject is in a stable state, we have added a familiarisation time at the

start of each data acquisition session. During this time, subjects were asked to

familiarise themselves with the data acquisition procedure, device and app. They

could use as much familiarisation time as necessary before inputting their data.

We have observed that subjects who spent less familiarisation time are those who

have used mobile devices more frequently. This correlation may be due to the fact

that subjects who use mobile devices more frequently tend to be more familiar

with the facility and functionality of their mobile devices, so they can familiarise

with, or learn how to use, a new device and app more quickly.

The second issue is how to best capture inter-session variations for each sub-

ject. According to literature [85], if all the samples from a subject are acquired

in a single session, inter-session variations in the touch dynamics pattern of the

subject may not be captured properly. To overcome this limitation, some au-

thors [140, 153] suggest breaking a single data acquisition session into multiple

sub-sessions that are separated by intervals and then combine the data acquired

in the sub-sessions into a single set. However, breaking a single data acquisition

session into multiple sub-sessions may mean that the sessions will span across a

longer period, and this may lead to a higher subject withdrawal rate or a lower

subject participation rate [155]. As a result, the sample size of the dataset may

be reduced.

To balance these considerations, i.e. to achieve a higher subject participa-

tion rate, while, at the same time, to better capture inter-session variations of
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the subjects, we have chosen to acquire data in a single session, but to add a

familiarisation time to each subject’s data acquisition session. On average, each

subject took less than 5 minutes to complete a single session in addition to the

familiarisation time.

Determining a physical environment

Data acquisition may be conducted under two main physical environments. The

first is in an uncontrolled environment, i.e. while subjects use their mobile devices

as usual in an uncontrolled or a natural manner and without any restrictions. The

second is in a controlled environment, i.e. under strict supervision in a controlled

laboratory environment at a fixed location. These two options come with their

respective advantages and disadvantages.

The first option is expensive, as due to the ubiquitous nature of mobile devices,

subjects are likely to be on-the-move and following the subjects while collecting

the data may not be convenient and could be costly. Also, data acquired in this

manner may be of poorer quality, as there is a risk of the data being distorted or

tampered with. On the positive side, data acquired naturally without imposing

any restrictions may better capture a subject’s touch dynamics pattern. This

is because a subject’s interactivity with his/her device may differ in different

circumstances, e.g. when performing a task at hand or doing a task in a controlled

environment.

The second option is less costly in terms of setting up and running the experi-

ments, and data acquired may be of better quality, as the subjects are supervised,

so the chances of data being tampered with are lower. Also, when data acqui-

sition is conducted under a controlled environment, external factors that may

inflict noise to data can be prevented. However, there have been suggestions

that experimental results obtained from data acquired under a controlled envi-

ronment may be overly optimistic compared to those acquired in an uncontrolled

environment [112].

To balance between preserving data quality and better capturing subjects’

touch dynamics patterns, we have made a hybrid use of the first and second

option in our experiments. We have established a semi-controlled data acquisi-

tion environment and let subjects to choose their preferred locations where their

touch dynamics data were acquired. The locations used included offices, homes,

classrooms, inside vehicles and public areas. To prevent inconsistent inputs or
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outliers mid-way into the data acquisition task, subjects were told to perform the

required task continuously without breaks, avoid distractions and stay focused

while performing the task. To avoid distracting the subjects and to allow them to

perform the data acquisition task naturally, we left the subjects alone when they

are performing the task and monitor them from a safe distance. Also, to prevent

subjects from deliberately altering the way they interact with their devices and

to capture their touch dynamics patterns in a natural manner, we explained the

purpose of the study to the subjects only after they have completed the entire

data acquisition session.

Recruiting subjects

Recruiting subjects for an experiment involves two issues. One is to determine

the subject size used in the experiment. The other is to select the subjects.

The subject size refers to the number of subjects from whom data will be

acquired. The subject size is known to affect the results of the experiment [125].

Typically a subject size of greater than 100 subjects is regarded as a very large

size [82]. The larger the subject size, the more the data that could be acquired for

the dataset and the more accurate the experimental results. Most of the studies

carried out in the field of touch dynamics research used subject sizes smaller than

this value, with two exceptions [106,132], both of which recruited more than 100

subjects. However, in these two studies, the subjects recruited were restricted to a

certain profession (i.e. mainly students), and the datasets were not made public.

In our experiments, 150 subjects were recruited. All the subjects were recruited

on a voluntary basis, i.e. without receiving any monetary benefits. Formal ethics

approval was not required as the data acquisition was conducted outside Europe

and all the subjects are Non-EU nationals. However, we have taken the required

steps to ensure that no personally identifiable data or information were collected.

This is achieved by taking the following measures:

• All subjects were requested not to use their real names but instead to use

a pseudonym or random string as an identifier.

• Age-related data were collected in the form of categorical data (e.g. between

20 and 40) instead of discrete data (e.g. 28).

• No contact or personal information was collected.
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• The input strings were predefined; they are unlikely to be used by the

subjects in real life.

• Other demographic data collected such as hand preference, device usage

frequency and affiliation were also not sufficient to reveal the identity or

other private information of a particular subject.

• The raw touch dynamics data acquired are arbitrary numerical values.

• Any identifiable data are further anonymised if necessary.

With regards to subject selections, three criteria are usually used, age, affili-

ation and profession. In most of the published work [114,137,138], subjects were

selected from a specific age group, confined to people within the same organisa-

tion (e.g. within the same research institute) or restricted to limited profession

(e.g. students). Datasets acquired under such conditions are often considered

as convenience samples, as it is relatively easier and less costly to acquire data

from nearby population groups [189]. Sometimes data acquired from convenience

samples may be biased; they may not properly represent the biometric features

from a wider population or the conclusions drawn from convenience samples may

not realistically generalise to a wider population. To ensure study results are

as unbiased as possible, and can be generalised to a wider population as much

as possible, the subjects recruited in our experiment are from diversified groups,

from different age groups, have different device usage frequencies and are people

from the general public working in different professions. Table 4.2, summarised

the demography of the subjects recruited in our experiment.

Selecting data acquisition devices

Devices used in data acquisition may be selected in one of the two methods. The

first is to predetermine a device and let all the subjects use this predetermined

device. The second is to let subjects use their own devices. The second method

imposes fewer constraints on how a data acquisition experiment should be car-

ried out. For example, the subjects do not need to be physically present during,

or be supervised throughout, the data acquisition process. Without these con-

straints, data acquisition can be conducted on a larger scale and can reach out

to wider population groups. However, using the second method also means that

the devices used by different subjects are likely to be different, and the use of dif-

ferent devices may have implications. Firstly, the variations in sensor resolution,
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Properties Categories Number of
Subjects

Distributions
(%)

Age

Below 20 28 19

Between 20 and 40 66 44

Above 40 56 37

Rarely 49 33

Average 32 21Device Usage Frequency

Often 69 46

Affiliation
Academia 18 12

General Public 132 88

Male 45 30
Gender

Female 105 70

Hand Preference
Right-hand 136 91

Left-hand 14 9

Table 4.2: Subject demography of our experiments
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program compatibility and functionality across different devices may introduce

inconsistencies in the data acquired [105]. Inconsistent data may introduce bias

into experimental results, which, in turn, may lead to inaccurate experimental

observations, thus incorrect conclusions. Secondly, as subjects are usually more

familiar with their own devices, allowing subjects to use their own devices in

data acquisition may also introduce bias into experimental results. Based on

these considerations, we have chosen to use the first method for our data acqui-

sition experiments. This method is also commonly used in related work reported

in literature [103,104,111].

The device used in our experiments is a Samsung Galaxy Tab (GT-P7510)

with a 10.1-inch screen, a 1GHz dual-core processor, and a 1-GB RAM, and it

operates on Android 4.0.4 (Ice Cream Sandwich). The device has a larger screen

size than an average mobile phone (screen size below 5 inches) and phablet (screen

size between 5 and 7 inches). The decision for using a device with large screen size

is based on the following observations. Firstly, the average size of mobile devices

in the market is getting bigger year after year [190]. Secondly, a subject’s touch

dynamics pattern may vary with different device sizes [84]. Thirdly, a majority

of the devices used in literature have a screen size of approximately 5-inch or

less [12, 85, 132, 147, 150]. The use of a device with a larger screen may allow us

to discover unknown.

Selecting input strings

What input strings should be used (and their lengths) is an important variable

one should consider when designing a data acquisition experiment. There are

two ways of selecting input strings. The first is to predefine input strings for

the subjects to use. The second is to allow the subjects to choose their own

input strings. The second way imposes fewer constraints and better resembles

real-life situations. However, input strings chosen by different subjects are likely

to be different both in terms of the content and length, and the use of different

strings by different subjects may have the following three implications. Firstly,

it is harder to compare the effects of input strings. Secondly, it is more costly

and time-consuming to acquire testing samples, as, in this case, there is a need

to acquire testing samples for each subject separately. Thirdly, it may be more

difficult to make a more unbiased analysis of the experimental results, as, with

different input strings, input difficulty or familiarity experienced by subjects may



118 CHAPTER 4. THE TODITA SYSTEM

be different. Based on these considerations, we have chosen to use the first option

in our experiments. This option is also commonly used in related work reported

in literature [85, 147].

We have selected two PIN input strings with different lengths. The first is

a 4-digit string “5560” (hereafter referred to as 4D). This input string length

is chosen to represent a PIN commonly used to unlock a mobile device or a

debit/credit card. The second is a 16-digit string “1379666624680852” (hereafter

referred to as 16D). This input string length is chosen to resemble a debit/credit

card number commonly used when making a card-based on-line payment. The

use of these two PINs allows us to empirically study the effects of different input

string lengths on the performance of ToDiTA. All subjects are requested to input

the same PIN for each string length. Here, the “Enter” key is included as part

of the input string, as we believe that the touch actions of this key also provide

essential touch dynamics characteristics, which is distinct for each individual.

The two PINs are carefully selected so that a broad variety of finger movements

across the touchscreen can be captured. To select these two PINs, we have used

a key positioning strategy with four rules. This strategy ensures that all the rules

are captured in the chosen two PINs. The strategy is graphically illustrated in

Figure 4.2 and explained below:

• Apart: Keys that are separated by one key.

• Repetition: Keys that are repeated.

• Adjacent: Keys that are located diagonally to each other.

• Sequence: Keys that are located next to each other.

Figure 4.2: Key positioning strategy used in the selection of our input strings
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Our dataset

The entire dataset we have acquired consists of 3,000 samples and 33,000 touch ac-

tions from 150 subjects. Each subject contributed a total of 20 samples (10 for the

4D string, and 10 for the 16D string) from 220 touch actions (50 for the 4D string,

and 170 for the 16D string). The dataset is here at https://goo.gl/sNACU8.

4.5.1.2 Raw Data Sensing

Raw data sensing is the first-step processing applied in RDAU. This is a process

in which a user’s raw touch dynamics data are obtained and via user-to-device

interactions. These interactions are also known as touch actions. They refer to

the actions of a user pressing on and releasing from input keys on a touchscreen

device. A touch action generates digital interrupts that can be captured by the

touchscreen of a mobile device, and these captured interrupts are referred to as

raw touch dynamics data.

To acquire the raw data we used a specially developed software with a cus-

tomised keyboard, i.e. a Data Acquisition App. The App was developed using

Java and Android API level 15. Figure 4.3 shows a screen capture of the App.

Figure 4.3: A sample Data Acquisition App screen capture

During a data acquisition session, the subjects were requested to complete

two rounds of data acquisition, one using the 4D string and the other using the

16D string. In each round, the App displays the required string and a numeric

keypad interface in a full-screen mode, and the subjects are asked to input the

string. All subjects were required to repeat each string ten times, resulting in

ten input samples per string. This number of repetitions is chosen based on the

https://goo.gl/sNACU8
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benchmark value used in experiments reported in literature [118,152]. To help the

subjects keep track of the input sample count, a counter is displayed between the

string and the keypad. If a subject made an input error when keying in an input

sample, that sample would be discarded, and the subject would be prompted to

repeat that particular sample. This error handling approach is also commonly

used in experiments reported in literature [191,192].

For each key input of a sample, the App logs a set of raw data. The raw data

are classified into two categories: timing and spatial. Both categories of raw data

are captured when a touch action is performed. For timing raw data, each touch

action is associated with a timestamp. The timestamp value represents the time

when the action is taking place. A timestamp is recorded using the nanoTime()

API function [193]. It returns a time value with the highest timing precision (up

to nanoseconds precision) that is available on the device. The spatial raw data

have further two variants, a touch pressure size and a touch pressure intensity

(as describe in 3.5.2). The touch pressure size and the touch pressure intensity

are recorded using the getSize() [194] and getPressure() [195] API functions,

respectively. Both functions return a decimal value between 0 and 1.

4.5.1.3 Raw Data Extraction

Once input samples are acquired from each subject, raw touch dynamics data

are extracted from the samples. Each sample consists of m number of keys, and

each key, ki, i ∈ {1, 2, . . . ,m}, contains two touch actions. The first is the finger

pressing down on the key, referred to as touch action press (TAP). The second is

the finger releasing from the key, referred to as touch action release (TAR). The

raw data are associated to these two actions, i.e. a timestamp, p, and a touch

pressure size, ps, are recorded on each TAP, and a timestamp, r, is recorded on

each TAR. Figure 4.4 illustrates the raw data along with their respective touch

actions. The raw data extracted from each key are recorded using the format

[ki, pi, ri, psi], and the recorded data are stored in a separate file for each subject.

In our experiments, the touch pressure intensity raw data were not extracted

due to the following reasons. First, we have noticed that the getPressure() func-

tion always returns a value of 1. We have tried to resolve this issue but with

no success. We have discovered that some other devices also encounter the same

problem. This function cannot be used before this problem is resolved by the

mobile operating system’s provider. Secondly, the getPressure() function is not
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Figure 4.4: Touch actions and their associated raw touch dynamics data

fully supported by some devices in the market [148].

Up to this point, we have discovered that the raw data among subjects are

different, even if the input strings used by different subjects are the same. These

differences may be because different subjects tend to have different input speeds,

chunking patterns (breaking up an input string into multiple smaller subsets (i.e.

chunks) to make it easier to memorise [196]), fingertip sizes, finger muscles and

device holding positions.

4.5.1.4 Raw Data Processing

Once the raw touch dynamics data are obtained, the data are processed into a

format that is suitable for analysis and subject verification. As discussed in Sec-

tion 4.5.1.2, one of the raw data, the touch action timestamp, has a time value up

to nanoseconds precision. This precision might be too high to properly capture

a subject’s touch action speed, as a human’s touch action speed is usually at a

slower pace than this order. If the timestamps are not set to an appropriate pre-

cision, the accuracy performance of the timing features, which are extracted from

the timestamps, may be affected. So, it is important to choose an appropriate

precision for the timestamps before extracting any timing features from them.

To choose an appropriate precision, we used a scaling factor, α. A default times-

tamp, t, can be scaled by α to produce a scaled timestamp, t̂, with the chosen
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precision, and this is done by using the following equation:

t̂ =
t

10α
(4.1)

4.5.2 Feature Construction Unit (FCU)

FCU is responsible for extracting a subject’s touch dynamics features from the

subject’s raw touch dynamics data. This section describes the design of this

unit, giving detailed discussions with regard to the types of features that are

extracted from the raw data and how they are extracted (Section 4.5.2.1), the

normalisation of the extracted features to the same value range (Section 4.5.2.2)

and the selection of a subset of optimal features from the extracted features

(Section 4.5.2.3).

4.5.2.1 Feature Extraction

In our design, two categories of features are extracted, first-level features (FLF)

and second-level features (SLF). The FLF features are a basic set of features

extracted directly from the raw touch dynamics data. The SLF features are an

extended set of features extracted from FLF features. In the following sections,

we give details on how these two categories of features are extracted.

4.5.2.1.1 First-Level Feature (FLF)

This section describes the process of extracting FLF features from a subject’s raw

touch dynamics data and constructing a cumulative FLF feature vector for the

subject. For each subject, seven FLF features are extracted, one spatial feature

and six timing features.

A spatial feature is an attribute capturing the physical-related properties dur-

ing a touch action. The pressure size (PS) is a spatial feature capturing the ap-

proximated size of the screen area being touched during a TAP of a key. The

touch pressure size raw data (as discussed in Section 4.5.1.3) is directly used as

the PS feature without further manipulation.

A timing feature is an attribute capturing a time interval between two touch

actions of one or more keys. Depending on how the intervals are measured, there

are three types of timing features, i.e. dwell time (DT), flight time (FT) and

input time (IT), and for FT, there are further four variants, i.e. FT1, FT2, FT3

and FT4. The definitions of these timing features are illustrated in Figure 4.5.
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Figure 4.5: Types of timing feature

These timing features are extracted from timing raw data, i.e. timestamps.

Each action is associated with a timestamp recording the time when the touch

action is taking place. Timestamps do not have semantic meaning and are not

readily usable as timing features. To make the timestamps usable as features,

we should apply some mathematical computations on the timestamps, and the

results of these computations can be used as timing features. The mathematical

methods used to extract the timing features from the respective timestamps are

given in Table 4.3. The variable n in the equations refers to the timing feature

length (to be discussed below) used to extract timing features and m refers to

the number of keys in the input string.

A timing feature can be extracted at different feature lengths. A feature

length is measured in terms of the number of graphs, i.e. the number of keys

involved in each measurement. It is represented in the form of n-graphs, where n

denotes the number of graphs. Figure 4.6 shows the different feature lengths for

a given input string. The shortest feature length is 1-graph (or uni-graph), and

the subsequent feature lengths are 2-graph (or di-graph), 3-graph (or tri-graph)

and so on. With 1-graph, the only timing feature that can be extracted is DT.

With a larger feature length, for example, when n ≥ 2, the timing feature from

two or more keys can be extracted, i.e. FT and IT.

Table 4.4 shows the feature dimensional spaces of all the timing features that

could be extracted at all possible feature lengths of a 4D string. From the table,

it can be seen that the feature dimension of DT and IT features remains the
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Timing
Features

Descriptions Equations

DT
The time interval between the TAP and TAR
of a key.

dti = ri − pi

FT1
The time interval between the TAR of a key
and the TAP of the next key.

ft1i = pi+(n−1)−ri

FT2
The time interval between the TAR of a key
and the TAR of the next key.

ft2i = ri+(n−1)−ri

FT3
The time interval between the TAP of a key
and the TAP of the next key.

ft3i = pi+(n−1)−pi

FT4
The time interval between the TAP of a key
and the TAR of the next key.

ft4i = ri+(n−1)−pi

IT
The time interval between the TAP of the first
key and the TAR of the last key.

it = rm − p1

Table 4.3: Descriptions and definitions of timing features

Figure 4.6: Different feature length values
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Timing Features
Feature Lengths

1 2 3 4 5

DT 5 - - - -

FT1 - 4 3 2 1

FT2 - 4 3 2 1

FT3 - 4 3 2 1

FT4 - 4 3 2 1

IT - - - - 1

Table 4.4: Feature dimensions of timing feature extracted at various feature
lengths from a 4D string

same regardless of what feature length is used. For the case of DT, the feature

dimension is always the same as the input string length (in the case of a 4D string,

this is 5, four digits and one enter key). For the case of IT, the feature dimension

always equals to 1 (the total time used to enter the whole of an input string).

In other words, the feature dimensions of DT and IT feature are not correlated

with the feature length. However, this is not the case for FT. For the case of FT,

the larger the feature length, the smaller the feature dimensional space of FT

features. The properties discussed above also apply to the 16D string. For the

reasons explained above, we have carried out an experiment to examine the effects

of different feature lengths on the accuracy performances of FT features. In this

experiment, different feature lengths are used, but in our other experiments, a

feature length of 2 is used to extract FT features.

Once FLF features, fi, i ∈ {1, 2, . . . , d}, are extracted from the raw data, they

are organised into the form of an FLF feature vector, i.e. vTFLF = [f1, f2, . . . , fd],

where T indicates a particular type of feature, and d refers to the feature di-

mension of vTFLF . Table 4.5 gives a list of the types of feature considered in our

experiments along with their corresponding feature vectors, IDs and dimensions.

The variables n and m in the feature vectors refers to the timing feature length

used to extract timing features and the number of keys in the input string, re-

spectively. As shown in the table, two input string lengths are used. When all

the feature vectors are formed for a subject, a cumulative FLF feature vector,
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VFLF , is generated. This is done by concatenating the FLF feature vectors, i.e.

VFLF = [vDTFLF , v
FT1
FLF , . . . , v

PS
FLF ].

4.5.2.1.2 Second-Level Feature (SLF)

This section describes the process of extracting SLF features from FLF features,

constructing a cumulative SLF feature vector and forming a feature set for the

subject.

Some classifiers perform better with a larger number of features [186], so in-

creasing the number of features used in training a classifier to build an authentica-

tion model can improve the accuracy performance of the model. For this reason,

we extract a new category of features, known as the second-level features (SLF),

from FLF features, and use both of them in training a classifier. As discussed

in the previous section, FLF features extracted from raw touch dynamics data

are organised into FLF feature vectors. For each of these vectors, a set of SLF

features is extracted. The set consists of 19 features, and each feature represents

a descriptive statistics metric of the FLF feature vector concerned. Descriptive

statistics metrics are used to quantitatively summarise or describe a collection

of data in a meaningful way [197]. Table 4.6 lists the 19 metrics used in our

experiments. For each metric, the table also gives the metric IDs, descriptions

and equations used to extract the metric. The variable v in the equations refers

to a FLF feature vector and d refers to the feature dimension of v.

Metrics IDs Descriptions Equations

Minimum mn
The smallest value in

v.
MIN(v) = arg min(v)

Maximum mx The largest value in v. MAX(v) = arg max(v)

Arithmetic

Mean
am The average value of v. µ(v) = 1

d

d∑
i=1

vi

Quadratic

Mean
qm

The average value of

v giving higher weights

to the larger values.

µQ(v) =

√
1
d

d∑
i=1

|vi|2

Continued on next page
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Table 4.6 – Continued from previous page

Metrics IDs Descriptions Equations

Harmonic

Mean
hm

The average value of v

emphasising on the ra-

tio between the values.

µH(v) = d
d∑

i=1

1
vi

Geometric

Mean
gm

The average value of v

by using the product of

their values.

µG(v) = (
d∏
i=1

vi)
1
d

Median md
The value at the centre

of a sorted v. MD(v) =

v(d+1)÷2 if d is odd

vd÷2+vd÷2+1

2
if d is even

Range rg

The difference between

the maximum and the

minimum of v.

R(v) = MAX(v)−MIN(v)

Variance vr

The spread between

the values in v and the

mean expressed as the

squared units of the

mean.

V AR(v) = 1
d

d∑
i=1

(vi − µ(v))2

Standard

Deviation
sd

The spread between

the values in v and

the mean expressed as

the same units as the

mean.

σ(v) =

√
1
d

d∑
i=1

(vi − µ(v))2

Continued on next page
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Table 4.6 – Continued from previous page

Metrics IDs Descriptions Equations

Skewness sk

This value represents

how asymmetry the

values of v are around

the mean.

SKEW (v) =

1
d

d∑
i=1

(vi−µ(v))3

σ(v)3

Kurtosis ku

The degree of outlier-

prone of the distribu-

tion of the values in v.

KURT (v) =

1
d

d∑
i=1

(vi−µ(v))4

σ(v)4

First Quar-

tile
fq

The median of the up-

per half values of v.
Q1(v) = {d+1

4
}th value in v

Third

Quartile
tq

The median of the

lower half values of v.
Q3(v) = {3(d+1)

4
}th value in v

Interquartile

Range
ir

The difference between

the upper quartile and

the lower quartile val-

ues of v.

IQR(v) = Q3(v)−Q1(v)

Mean Ab-

solute De-

viation

ma

The average absolute

difference between the

values in v and the

mean.

MAD(v) = 1
d

d∑
i=1

|vi − µ(v)|

Median

Absolute

Deviation

mi

The median of the ab-

solute difference be-

tween the values in v

and the median.

MID(v) = MD(|vi −MD(v)|)

Coefficient

of Varia-

tion

cv

The relative variation

between the values in v

and the mean.

CV (v) = σ(v)
µ(v)

Continued on next page
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Table 4.6 – Continued from previous page

Metrics IDs Descriptions Equations

Standard

Error of

Mean

se

This value measures

how precisely the sam-

ple mean of the values

in v estimates the pop-

ulation mean.

SEM(v) = σ(v)√
d

Table 4.6: List of descriptive statistics metrics used to extract SLF features from
FLF features

Similar to the case for FLF features, SLF features, fi, i ∈ {mn,mx, . . . , se},
once extracted from FLF features, are organised into the form of a SLF feature

vector, i.e. vTSLF = [fmn, fmx, . . . , fse], where T indicates a particular type of FLF

feature. When all the SLF feature vectors are formed for a subject, a cumulative

SLF feature vector, VSLF , is generated. This is done by concatenating the SLF

feature vectors, i.e. VSLF = [vDTSLF , v
FT1
SLF , . . . , v

PS
SLF ]. The cumulative SLF feature

vector has a 114-dimensional feature space (6 types of FLF features multiplied by

19 descriptive statistics metrics). Unlike the FLF features, the feature dimension

of SLF features is independent of the input string length used. In other words, the

numbers of SLF features for both the 4D string and the 16D string are the same.

Note that not all the types of FLF features are used to extract the SLF features.

IT is not used, as the feature only has one value, and by using descriptive statistics

metrics, no meaningful information could be extracted from this feature.

Once both FLF and SLF cumulative feature vectors are formed for a subject,

they are combined into a form of a feature set, i.e. τ = {VFLF , VSLF}. A feature

set consists of both the FLF and SLF features extracted from the raw touch

dynamics data of one input sample of a subject.

4.5.2.2 Feature Normalisation

If different features have different value ranges, the values of the features should

be normalised. This is because, when features have different value ranges, they

may have unbalanced weights when representing the structure of the data. For

example, features with a higher value range may have a higher weight when
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representing the structure of the data. Also, some algorithms perform better and

faster if the features have the same value range [198]. For these reasons, the

values of different features should be normalised to the same value range; this is

usually done by using a process called feature normalisation.

In our experiments, we have conducted a feature normalisation process, and

in this process, we have used a method called the min-max normalisation [199].

With this method, the values of the features are scaled so that their ranges are

confined to a predefined lower and upper boundary. Let X denotes a dataset of

feature sets, τij, i ∈ {1, 2, . . . , a}, j ∈ {1, 2, . . . , d}, represented in the form of an

a− by− d matrix, where a refers the number of feature sets in the dataset and d

refers to the feature dimensions of the feature sets. The matrix is represented as:

X =

τ11 . . . τ1d

...
. . .

...

τa1 . . . τad

(4.2)

Then, the normalised dataset, X̂, is obtained by using the following equation:

X̂ =
Xij −min(Xj)

max(Xj)−min(Xj)
× (u− l) + l (4.3)

where l and u are, respectively, the lower and upper boundaries of the normalised

features. In our experiments, the value for l is set to 0, and u is set to 1.

4.5.2.3 Feature Selection

Feature selection ensures an optimal set of features is used when training an

authentication model. It may improve or maximise the accuracy performance of

the model, while, at the same time, keep the cost incurred in training the model

as low as possible. Feature selection involves two tasks, the selection of a feature

selection method, and the implementation of a feature selection process using the

selected method. The following sections describe the two tasks in detail. Before

describing these tasks, we first give an overview of the feature selection process.

Typically, there are two sets of features, a preliminary feature set (PFS) and an

optimal feature subset (OFS). PFS is a set of features that are directly extracted

from raw touch dynamics data. OFS is a subset of features that are selected
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from the features in the PFS set. Normally, different features may be different in

terms of their importance in representing the structure of the data. Some may

be more important or more relevant than others, while others may have similar

importance or relevance, and in the latter case they are regarded as redundant.

The use of redundant features increases the feature dimension of a dataset, which

may lead to three problems: (i) a higher computational complexity thus a higher

cost in training the model; (ii) a higher risk of overfitting the model, leading to

a lower level of accuracy performance of the model [200]; (iii) a larger storage

space for storing the features. To avoid these problems, feature selection is used

to select the most relevant features and to remove redundant features from a PFS

set. The resulting smaller set of features, i.e. an OFS set, is then used to train

an authentication model.

4.5.2.3.1 Feature Selection Method

As mentioned earlier, a feature selection method is used to analyse the features in

a PFS set and to select an OFS set from the PFS set. The selected OFS set should

satisfy the following two criteria: (i) the subset should contain the most relevant

features, and (ii) the subset should have the least number of redundant features.

In other words, the features in the OFS set should have maximum relevance to

the target variable (in our work, this is the identity of the subject), and, at the

same time, have minimum redundancy amongst the features in the subset. To

obtain an OFS set, we need a method to measure how well the features in the

PFS set satisfy both criteria. In our work, we have chosen to use the minimum-

redundancy-maximum-relevance (mRMR) method [201].

The mRMR method adopts the concept of mutual information [202], a variable

dependence measure commonly used in the field of information theory. Mutual

information measures the amount of information shared between any arbitrary

pair of discrete random variables, x and y, and is defined as follows:

MI(x, y) =
∑
i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
(4.4)

where p(x, y) is the joint probability distribution function of x and y, p(x) and

p(y) are the marginal probability distribution functions for x and y, respectively.

The mRMR method quantifies how well a feature, fi, satisfies the two criteria
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above, and this is done by using a scoring metric, G. This metric is defined as:

G(fi) = L(fi)−D(fi) (4.5)

where the first term, L(fi), measures the degree of relevance between fi and the

identity of the subject, and the second term, D(fi), measures the degree of re-

dundancy between fi and the other features in the PFS set. The higher the value

of G, the better fi is at satisfying both criteria.

L(fi) is calculated by using the equation below:

L(fi) = MI(fi, b) (4.6)

where MI(fi, b) represents the mutual information in common between fi and

the identity of the subject, b. The higher the value of L, the greater the amount

of information that is shared between fi and b, so the more relevant the feature.

In other words, the higher the value of L, the better.

D(fi) is calculated by using the equation below:

D(fi) =

∑
j∈F MI(fi, fj)

|F |
(4.7)

where MI(fi, fj) is the pairwise mutual information shared between fi and an-

other feature, fj, in a PFS set, F . |F | refers to the total number of features in

F . The lower the value of D, the less the amount of information that is shared

between fi and the other features in F , so the less redundant the feature. In

other words, the lower the value of D, the better.

4.5.2.3.2 Feature Selection Process

The feature selection process is based on the mRMR method described above.

The mRMR method is implemented by using the FEAST toolbox (version 1.1.4)

[203]. The process consists of the following four steps.

Step 1: The feature values in the PFS set are converted to discrete values using

the histogram bin counts method [204].

Step 2: Starting with the first feature, G is calculated and assigned to the feature
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using equation 4.5. This step is repeated for each of the remaining features in

the PFS set.

Step 3: Based on the value of G, the features are sorted into a ranked list. The

features with higher scores are ranked higher in the list.

Step 4: Finally, the features ranked at the top-z% in the list are selected as the

OFS set, where z refers to the feature selection size.

Table 4.7 shows the top-10 performing features, where two different input

string lengths are considered. The PFS sets for both input string lengths contain

all the FLF and SLF features extracted from the raw touch dynamics data. From

the table, it can be seen that, even if the features are the same, the scores of the

features are not the same for different input string lengths. Take PS (md) for

example, the score is 1.3668 for the 4D string, but 1.4598 for the 16D string. This

means that, given the same set of PFS, features may be ranked differently when

different input string lengths are used. Therefore, the resulting OFS set may

be different for different input string lengths. This indicates that, for a better

performance (i.e. higher accuracy and/or lower costs), it may be necessary to

select different sets of OFS for different input string lengths. For this reason, we

have performed a feature selection process for each of the input string lengths,

resulting with two different sets of OFS.

In our study carried out to examine the effects of feature selection sizes on the

accuracy performances, we have used different feature selection sizes. However,

in the rest of our studies, we have used a feature selection size of 20. Table 4.8

shows the respective OFS sets for the two input string lengths, where the feature

selection sizes used for both cases are set to 20.

4.5.3 Model Training Unit (MTU)

MTU analyses the touch dynamics features extracted by FCU and uses them to

train an authentication model. The trained model should uniquely represent the

corresponding subject’s touch dynamics pattern. Model training is carried out

by using a process called feature classification. The input of this process is the

extracted OFS features, the algorithm used is a classifier, and the output is an

authentication model. Feature classification involves two tasks, the selection of

the classifier and the implementation of the selected classifier. In the following

sections, we discuss these tasks in detail.
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Ranks

Input String Lengths

4D 16D

Features Scores Features Scores

1 PS (qm) 2.0155 PS (qm) 2.1576

2 FT4 (qm) 1.7608 FT4 (hm) 1.7390

3 FT3 (mn) 1.4850 DT (gm) 1.5276

4 PS (27) 1.4835 PS (tq) 1.5177

5 FT4 (20) 1.4274 FT4 (71) 1.5120

6 PS (mx) 1.3831 FT3 (cv) 1.4633

7 FT4 (19) 1.3752 PS (md) 1.4598

8 PS (md) 1.3668 FT3 (26) 1.4447

9 FT1 (cv) 1.3641 PS (mx) 1.4381

10 DT (am) 1.3638 FT4 (mn) 1.4333

Table 4.7: Ranks and scores of the top-10 performing features in the PFS set of
two input string lengths (with feature IDs (refer Table 4.5 and Table 4.6) given
in brackets)

Input
String

Lengths
OFS Features

4D
DT(am,tq), FT1(hm,cv), FT2(12,mn), FT3(16,mn,fq),

FT4(18,19,20,am,qm,md),
PS(24,25,26,27,mx,am,qm,hm,gm,md,fq,tq,cv)

16D
DT(hm,gm,md), FT1(mn,am,fq), FT2(29,30,cv),

FT3(25,26,mn,gm,cv), FT4(70,71,mn,hm,gm,md,fq,tq),
PS(83,86,89,90,92,94,95,96,97,99,mn,mx,am,qm,hm,gm,md,fq,tq,ma)

Table 4.8: OFS sets for different input string lengths (with feature IDs (refer
Table 4.5 and Table 4.6) given in brackets)
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4.5.3.1 Classifier Selections

Depending on the data used, classifiers can be classified into two groups, one-class

classifier (OCC) and two-class classifier (TCC). An OCC classifier only uses data

from a single class (e.g. data from a legitimate subject). Unlike an OCC classifier,

a TCC classifier uses data from two classes (e.g. data from both legitimate and

illegitimate subjects).

In the mobile device context, obtaining two classes of data with a similar

size is not practical. This is due to the fact that a mobile device is rarely shared

among multiple users. Also, sharing a passcode with others increases data privacy

risks and is not a recommended practice. For these reasons, only the data from

the legitimate subject are used to train a classifier. A TCC classifier may not

perform well given one class of data, as it depends on similar sized data from two

classes to train a model that separates the two classes apart [205]. In addition,

the time taken by a TCC classifier to train a model is longer than that by an OCC

classifier, as the former uses more data in training the model. Based on these

considerations, we have chosen to use OCC classifier for feature classification,

although, we have, for the purpose of our comparative study, implemented both

types of classifiers. In other words, for feature classification, we have implemented

two OCC classifiers, the one-class k-nearest neighbour (OCKNN) [206] and the

support vector data description (SVDD) [207]. For our comparative study, i.e.

the study we have carried out to examine the effectiveness of using OCC classifiers

versus using TCC classifiers, we have also implemented two TCC classifiers, the

k-nearest neighbour (KNN) and the support vector machine (SVM) [208]. The

implementation of these classifiers is described in the following section.

4.5.3.2 Classifier Implementations

The implementation of classifiers is a complex task due to the complexity in

selecting their parameter values. Most classifiers have one or more parameters

each [209]. The values assigned to these parameters control or influence the way

the classifier works, as well as the outcome of the classification. In other words, for

a given classifier, if the values of the parameters are changed, the way the classifier

works will also change, and, as a result, the accuracy performance of the model

will also change. In this section, we describe the classifier implementation details,

including the selection of parameter values for each classifier. The parameter

values will be useful for others to reproduce our experiments for comparative
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studies.

The classifiers are implemented using the Matlab programming platform (ver-

sion 8.5.0.197613) and two open source toolboxes, the dd tools [210] and the

PRTools [211]; the dd tools is used to implement the OCC classifiers and the

PRTools is used to implement the TCC classifiers. The implementation of the

classifiers involves two phases, training (or enrolment) phase and testing (or verifi-

cation) phase. In the training phase, training samples are used to train a classifier

to build an authentication model, and the built model is stored in DSU. In the

testing phase, a testing sample is compared against the stored model to generate

a classification score. This score will then be used to make an authentication

decision. In the following, we describe the implementations of the classifiers with

the focus on the two OCC classifiers. The approaches used to implement the two

TCC classifiers are similar to their corresponding OCC classifiers, so we will not

discuss it further.

OCKNN Classifier

The assumption for the OCKNN classifier is that the testing samples will have

characteristics similar to at least one or more of those training samples used to

build the model [206]. In the training phase, the classifier computes the distance

matrix of the training samples using the nearest-neighbour parameter, k. Based

on our empirical studies, we set k=1. In the testing phase, the classifier first finds

k training samples that have their distance closest to the testing sample and then

computes the average squared Euclidean distance between each of the k samples

and the testing sample. The result of the computation is the classification score.

SVDD Classifier

With the SVDD classifier, an authentication model is built by fitting a boundary

around the training samples, and any testing sample that falls outside of this

boundary is regarded as an illegitimate sample. The search for this boundary

can be performed within a two-dimensional feature space using a linear kernel

function. However, distinguishing touch dynamics samples of a legitimate subject

from those of an illegitimate subject is nonlinear [126]. When samples are not

separable by a linear boundary, the linear kernel function may not perform well,

as the boundaries created by the function is too simple to optimally split both

classes apart. To create more complex boundaries that can optimally split both



138 CHAPTER 4. THE TODITA SYSTEM

classes, a nonlinear kernel function such as Radial Basis Function (RBF) can be

used. The RBF kernel enables the classifier to project samples onto a higher-

dimensional feature space, and, as a result, it can more accurately determine

which side of the feature space a testing sample belongs to.

In the training phase, the classifier first uses the RBF kernel to project the

training samples onto a high-dimensional feature space, and then tries to fit a

closed hypersphere boundary around the training samples. The width parameter

of the RBF kernel, σ, is set to 5, and the regularisation parameter, c, is set to

0 so that the boundary contains all the training samples. In the testing phase,

the classifier first projects the testing sample onto the same high-dimensional

feature space as the training samples, and then computes the distance between

the testing sample and the boundary around the training samples. The result of

the computation is the classification score.

4.5.4 Authentication Decision-Making Unit (ADMU)

ADMU makes an authentication decision determining whether a testing sample

matches with the authentication model of the owner of the device. The design

of ADMU involves two processes: feature matching and feature thresholding. In

the feature matching process, the testing sample acquired from an authentication

attempt, τ̂ , is matched against the stored model in DSU to obtain a classification

score, δ. In the thresholding process, δ is compared to a predefined threshold,

θauth, to make an authentication decision, Dauth, based on the following rules:

Dauth =

+ if δ > θauth

− otherwise
(4.8)

If δ is over θauth, thenDauth is positive, and in this case, τ̂ is classified as legitimate,

τ̂L (i.e. belonging to the owner of the device). Otherwise, τ̂ is classified as

illegitimate, τ̂I (i.e. belonging to an impersonator), and Dauth is negative.

4.6 Evaluation Methodology

This section describes how the accuracy performance of ToDiTA is evaluated. It

covers the evaluation method used and the implementation of the method.
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4.6.1 Method Overview

To perform the accuracy performance evaluation of ToDiTA, the following four

tasks are performed. Firstly, subjects are classified into two groups, one des-

ignated as legitimate subjects and the other as illegitimate subjects. Secondly,

some of the touch dynamics samples acquired from these subjects are used as

training samples that are used by MTU to train authentication models. Thirdly,

some of the other samples are used as testing samples that, along with the trained

models, are used by ADMU to make authentication decisions. Lastly, based on

the decisions, the evaluation metrics values which are calculated indicate the

accuracy performance of the model.

Four sets of samples are acquired: i) legitimate training set, ii) legitimate

testing set, iii) illegitimate training set, and iv) illegitimate testing set. To acquire

the first two sets, we split the samples of each subject into two subsets, one as

legitimate training set and the other as legitimate testing set. To acquire the third

set, we assign the samples of each subject that are not used as testing samples as

the illegitimate training samples for all other subjects.

With regard to the acquisition of the fourth set of samples, i.e. illegitimate

testing samples, a scenario called a zero-effort attack [212] is adapted. In this

attack scenario, an impersonator attempts to compromise a biometrics authenti-

cation system by submitting his/her own biometrics samples without any knowl-

edge of other subjects’ biometrics features stored in the system. In other words,

the impersonator attempts to perform a successful verification against other sub-

jects’ profiles using his/her own profile. Using this scenario, we assign the samples

of each subject that are not used as training samples as the illegitimate testing

samples for all other subjects. One of the advantages of this approach is that the

samples acquired from different subjects can be reused for evaluation purposes

(not just for use in model training), and in this way, we can acquire a larger

number of illegitimate testing samples. This approach has been commonly used

in previous studies [106,139,213].

Once the four sets of samples are acquired, they are used to evaluate the ac-

curacy performance of the ToDiTA system. The samples in the legitimate and

illegitimate training sets are used by MTU to train classifiers to build authenti-

cation models. The samples in the legitimate and illegitimate testing sets along

with the generated models are used by ADMU to make authentication decisions.

The decisions are made by classifying each testing sample as either belonging to
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the legitimate or illegitimate subject. The decisions are then compared against

the actual classes of the testing samples to formulate a false acceptance count

and a false rejection count. If a legitimate testing sample is incorrectly classified

as illegitimate, the false rejection count is incremented. If an illegitimate testing

sample is incorrectly classified as legitimate, the false acceptance count is incre-

mented. The false acceptance and false rejection counts are used to calculate

the evaluation metrics values, i.e. FAR, FRR and EER (as described in Section

3.2.5).

4.6.2 Method Implementation

The evaluation method implementation is summarised in Algorithm 4.1 and is de-

scribed below. In the description, it is assumed that the touch dynamics samples

acquired from a set of subjects, B, are stored in a dataset, S.

Step 1: One of the subjects in B is assumed and assigned as a legitimate subject,

b. The remaining subjects in B are regarded as illegitimate subjects.

Step 2: The samples in S are split into two subsets, S+ and S−. S+ contains

the samples of b, and S− contains the samples of the illegitimate subjects.

Step 3: S+ and S− are each randomly split into K equal-sized folds. The value

of K can be set to any integer value greater than 2. In practice, a value of 5 or

10 is typically used [214, 215]. In our evaluations, we set K=10, also known as

the 10-fold cross validation.

Step 4: Here, using the samples in the folds of both subsets, a testing set, Tts,

and a training set, Ttr, are established, where Tts contains the samples in the kth

fold, and Ttr contains the samples of the remaining folds.

Step 5: If the classifier, C, is an OCC classifier, the training samples of the

illegitimate subjects are removed from Ttr and added to Tts, as C only trains on

the samples of b. Otherwise, the samples in both sets remain unchanged.

Step 6: Ttr is used to train C to build a model, Mb, for b.

Step 7: Mb is evaluated on Tts, and the accuracy performance of Mb (for the kth

fold) is calculated and recorded as Pfd.

Step 8: Step 4 to 7 is repeated for each of the remaining folds in the K folds.
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Step 9: The average accuracy performance of the model for b (over all folds),

Psb, is calculated and recorded by dividing Pfd by K.

Step 10: Step 1-9 is repeated, assigning each of the other subjects in B as b in

turn.

Step 11: The overall accuracy performance of the model (over all subjects), P ,

is calculated by dividing Psb by B.

Algorithm 4.1: Evaluation method for ToDiTA

Input: Dataset S with B number of subjects, {d1, d2, . . . , dB}, classifier

C, folds K

Output: Accuracy performance of the model P

1 for b = 1 to B do

2 S+ ← initialise the legitimate subject samples {db}
3 S− ← initialise the illegitimate subjects samples S − {db}
4 Randomly split S+ and S− into K disjoint folds, {s+

1 , s
+
2 , . . . , s

+
K} and

{s−1 , s−2 , . . . , s−K}
5 for k = 1 to K do

6 S+
tr ← initialise the legitimate training samples, S+ − {s+

k }
7 S−tr ← initialise the illegitimate training samples, S− − {s−k }
8 Ttr ← initialise the training set, S+

tr + S−tr

9 Tts ← initialise the testing set, {s+
k }+ {s−k }

10 if C is an OCC classifier then

11 Ttr ← Ttr − S−tr
12 Tts ← Tts + S−tr

13 end

14 Train C on Ttr to build model Mb

15 Pfd ← Pfd+ (test the accuracy performance of Mb on Tts)

16 end

17 Psb ← Psb + Pfd/K

18 end

19 P ← Psb/B
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4.7 Evaluation Results and Discussions

This section describes the experiments carried out to evaluate the performance

of the ToDiTA system and discusses the evaluation results obtained. The results

are presented in the following order, the evaluation of, RDAU (Section 4.7.1),

FCU (Section 4.7.2), MTU (Section 4.7.3) and the authentication architecture as

a whole (Section 4.7.4). The experiments were conducted using the evaluation

methodology described in Section 4.6. Unless otherwise stated, each experiment

was repeated four times, each time using one of the four classifiers (as discussed in

Section 4.5.3.1) in turn, and the results reported were the average of the classifiers.

4.7.1 RDAU Evaluation

The evaluation of RDAU is carried out with different value settings for two pa-

rameters, the scaling factor and the input string lengths.

4.7.1.1 Scaling Factor

The scaling factor is used to set the timestamps to different precision levels (as

discussed in Section 4.5.1.4). Choosing different scaling factor values may affect

the accuracy performances and the storage requirements of the timing features,

as the features are extracted from the timestamps. To investigate the effect of

using different scaling factor values, we have evaluated the accuracy performances

and the storage requirements of timing features by setting the scaling factor to be

a range of values from 0 (no scaling) to 8 (maximum scaling) with an increment

of 1. For each scaling factor value, we have extracted all the timing related FLF

features from both the 4D string and the 16D string as the test cases.

Figure 4.7 shows the EER values versus different scaling factor values, where

two different input string lengths are considered. As can be seen from the figure,

for both input string lengths, the EER values stay flat before a threshold value

is reached. For the 4D string, this threshold value is 5, and for the 16D string,

it is 6. Beyond the threshold values, the EER values increase steadily for the 4D

string and sharply for the 16D string. These observations can be explained as

follows. When timestamps are scaled using a smaller to a medium scaling factor,

the timestamps have a proper precision to capture a human’s touch action speed.

As a result, the timing features extracted from the timestamps contain sufficient

information to properly capture a human’s touch dynamics pattern, resulting in
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the stable EER values as observed. However, when using a very large scaling

factor (7 or 8), the timestamps become smaller. As a result, the timing features

extracted from the timestamps contain less information, leading to an increase

in the EER values. These observations indicate that, by scaling timestamps,

the accuracy performance of the timing features extracted from the timestamps

cannot be improved, but the use of an inadequate scaling factor value can worsen

the accuracy performance.

Figure 4.7: EER values versus different scaling factor values

It should also be emphasised that the use of different scaling factor values

may have an effect on the amount of storage space required to store the timing

features. To investigate this effect further, we have recorded and compared the

storage spaces used by the timing features extracted from timestamps with dif-

ferent scaling factor values. The results showed that the larger the scaling factor

value, the less the amount of storage space that is used to store the timing fea-

tures, though the level of reduction is small. For example, when the scaling factor

value is set to a value between 0 and 5, the storage space used is reduced from

0.217KB to 0.110KB, and the reduction is only 0.107KB. This level of reduction

can be regarded as negligible, especially considering the fact that recently released

mobile devices typically have a storage space of at least 8GB to 32GB [216], and
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the space is expected to increase in newer generation devices [217].

Based on the above analyses, we can conclude that scaling timestamps does

not bring many benefits. On the contrary, the scaling process introduces addi-

tional computational overhead. For these reasons, we do not scale timestamps in

our design. For some applications, for example, where the primary requirement

is to minimise storage space, we recommend setting the scaling factor value to 5

(and not beyond).

4.7.1.2 Input String Lengths

Using different input string lengths may also affect EER values. To examine the

effect, we used two input strings with two different lengths, a 4D string and a

16D string. For both input strings, all the FLF and SLF features were extracted.

For each input string, we repeated the experiment four times, and for each time,

one of the four classifiers was used.

Figure 4.8: EER values versus two different input string lengths and four classifiers

Figure 4.8 shows the EER values versus two input strings and four different

classifiers. As shown in the figure, for all the classifiers, using the 16D string

introduces a lower EER value, indicating that the longer the input string length,
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the more accurate the authentication model. The reasons for this are three-

fold. Firstly, the length of the 16D string is four times longer than that of the

4D string, and so is the number of features that are extracted from the 16D

string. More features mean more information about a subject’s touch dynamics

pattern can be captured. Therefore a more accurate model can be built out of the

features. Secondly, when the input string length increases, the number of possible

chunk combinations also increases (as shown in Figure 4.9), and so is the ability

to better capture a subject’s touch dynamics pattern. Finally, when the input

string length increases, the number of illegitimate features required to match that

of a legitimate subject’s model will also increase, which means that the level of

difficulty in impersonating a legitimate subject successfully also increases.

Figure 4.9: Possible chunk combinations of different input string lengths

The above results have revealed a correlation between the input string length

and security. The shorter the input string length, the lower the level of authen-

tication accuracy, indicating a lower level of security. There is also a correlation

between the input string length and usability. The longer the input string, the

more the number of touch actions are required to complete the input of the string,

thus the harder and slower it is for the users to memorise the string, indicating a

lower level of usability. A similar correlation has also been reported in [218]. In

summary, the input string length influences the trade-off between security and
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usability. Therefore, in real-life applications, it should be chosen based on the

security and usability requirements of the apps.

4.7.2 FCU Evaluation

This section presents the evaluation of FCU with different parameter value set-

tings, i.e. FLF features, FLF feature combinations, SLF versus FLF features,

timing feature lengths, feature normalisation, and feature selection.

4.7.2.1 FLF Features

There are four types of FLF (as discussed in Section 4.5.2.1.1). Each type of FLF

captures a subject’s touch dynamics pattern in a different way. Some are better

than the others at representing the intrinsic properties or characteristics of a

subject’s touch dynamics pattern, and thus achieve a higher level of accuracy. To

investigate the accuracy performance of the authentication system using different

types of FLF, we have extracted all four types of FLF from the 4D string as the

test case.

Figure 4.10 shows the EER values of the four types of FLF. From the figure

it can be seen that the EER value of PS is the lowest among the four types, and

this also means that the accuracy performance of PS is better than the other

(timing) features. This result can be explained as follows. The PS values are

determined by several factors such as: i) the physical size of the fingertip used to

perform a TAP; ii) the amount of force exerted during a TAP; iii) the fingertip

position or angle during a TAP; and iv) the speed of a TAP. The combination

of these factors creates a distinctive pattern, which allows PS to better capture

each subject’s touch dynamics pattern, and, as a result, achieves a higher level

of accuracy.

With regards to the timing features, FT achieves the best accuracy perfor-

mance in comparison with IT and DT. There are two reasons for this. Firstly, FT

has a significantly larger feature dimensional space than IT and DT, and, as a

result, more features are available for use in building the model that could better

capture the subject’s touch dynamics pattern. Secondly, FT has more control in-

formation and more discriminative properties than IT and DT, which may have

originated from two sources. The first is the information embedded within the

natural short pauses between different chunks. The second is the variability of



4.7. EVALUATION RESULTS AND DISCUSSIONS 147

Figure 4.10: EER values for different types of FLF

chunk combinations. These can enable the classifiers to build models that bet-

ter distinguish touch dynamics patterns from one subject to another. For these

reasons, FT achieves a higher level of accuracy than DT.

A better way of understanding the accuracy performances achieved by differ-

ent types of FLF is to visualise the feature values from different subjects graphi-

cally. Figure 4.11 shows the feature scatter plots of three types of FLF from three

subjects. The subjects are randomly chosen. The x- and y-axis of each figure

represents a type of FLF with the feature ID given in brackets. What is striking

about the plots shown in the figure is that when PS is used (shown in Figure

4.11c), the three subjects can be clearly distinguished or separated. However,

this is not the case for FT (shown in Figure 4.11b) and DT (shown in Figure

4.11a). These observations are consistent with our discussions given above, i.e.

PS achieves the best accuracy performance, which is followed by FT and, then,

by DT.

4.7.2.2 FLF Feature Combinations

The results in Section 4.7.2.1 show that some types of FLF perform better than

others. However, this does not mean that those under-performing types of FLF



148 CHAPTER 4. THE TODITA SYSTEM

Figure 4.11: Feature scatter plots of three types of FLF: (a) DT, (b) FT and (c) PS

are not useful, as each type of FLF captures a different aspect of a subject’s

touch dynamics pattern. Previous studies [85,103] have shown that the accuracy

performance of a model could be improved by combining multiple types of FLF.

To verify this claim, we formed 15 different feature set combinations by using

the four types of FLF, and grouped them into four categories, i.e. S1(4), S2(6),

S3(4) and S4(1). The number in the brackets indicates the number of feature set

in each category. The category number represents the number of types of FLF

in each feature set of the corresponding category. Take the S3(4) category for

example, there are four feature sets, and each set is formed by using three types

of FLF, i.e. DT,FT,IT, DT,FT,PS, DT,IT,PS and FT,IT,PS.

Figure 4.12 shows the EER values and the feature dimensions for different

feature sets. For each category, only the best-performing feature set is shown.

As can be seen from the figure, the larger the category number, the lower the

EER value. In other words, the more types of FLF are combined, the better

the accuracy performance we may achieve. For example, when S1 is used, the

EER value is the highest (18.8%). However, when S2 is used, the EER value

decreases to 12.55%, which is a marked drop, and when S3 and S4 are used,

the EER value drops to 11.50% and 11.45%, respectively. These results can be

explained as follows. When more types of FLF are combined, more features are

used in building the model, thus a more accurate model is produced. However, the

accuracy performance gain between the feature set S3 and S4 is very small (only
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0.5%). An explanation for this is that the features in S3 and S4 are very similar.

The only difference is that S4 contains one additional feature, IT, which means

that the features in S4 only capture a small amount of additional information in

comparison with the features in S3, so there is only a minor improvement in the

accuracy performance.

Figure 4.12: EER values and feature dimensions for different feature sets

In summary, these experimental results suggest that the accuracy performance

of the model can be improved by combining different types of FLF, and the

combination of low- or medium-performing types of FLF can achieve a higher

level of accuracy than the best-performing type of FLF when used individually.

4.7.2.3 SLF vs FLF Features

SLF features are extracted from FLF features. To study the effectiveness of the

SLF features, we have used three categories of features: i) C1, containing the

FLF features; ii) C2, containing the SLF features that are extracted from the

features in C1; and iii) C3, containing the features in C1 and C2. Each category

consists of three feature sets formed by using DT, FT and PS, respectively. The

features in the sets are extracted from the 16D string.



150 CHAPTER 4. THE TODITA SYSTEM

Figure 4.13 shows the EER values of the feature sets of three different cate-

gories. From the figure, we can see that, with the exception of C2 for FT, the

EER values of C2 are higher than those of C1 in both cases of DT and PS.

This may be due to that, as discussed in Section 4.5.2.1.2, the SLF features are

descriptive statistics metrics, the fewer values available for use to generate the

metrics, the less meaningful the metrics are at representing the trends of the val-

ues, and, as a result, achieves a lower level of accuracy. However, in the case of

FT, the feature has a larger feature dimensional space than its counterparts, DT

and PS, so more feature values are available when it is used to extract C2 (the

SLF features) values. Therefore, we get a better accuracy performance.

Figure 4.13: EER values for different feature sets (with the feature dimensions in
brackets)

Based on the results, it seems that the accuracy performance of the authen-

tication system with the use of C2 is not as good as that of C1, but this does

not mean that they are not useful. C2 represents a subject’s touch dynamics

pattern in a different way from that of C1, and by combining the features in

C1 and C2 using the FLF approach (as discussed in Section 3.7), the number of

features available for use in training the model increases. As a result, the model

has a better accuracy performance, meaning that the model could better capture

the subject’s touch dynamics pattern. For example, the EER value of C3 for
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DT (20.4%) is lower than the corresponding values of both C1 (22.28%) and C2

(26.75%). This is also true in the case of C3 for FT and PS.

4.7.2.4 Timing Feature Lengths

FT features can be extracted with different feature lengths, and different feature

lengths may have implications on the accuracy performance of ToDiTA. To study

the correlation between the feature length and the accuracy performance, we

set the feature length as a variable with values from 2-graph to n-graph; the

minimum and maximum values correspond to the shortest and longest possible

feature length used to extract FT features, respectively. In this test case, we have

extracted the FT features from the 4D string.

Figure 4.14 shows the EER values and feature dimensions versus different

feature length values. From the figure, it can be seen that there is a steady

increase in the EER values as the value of the feature length increases. When

the feature length is set to 2-graph, the EER value is the lowest at 21.28%. As

the value of the feature length increases, the EER value increases steadily, and

when the feature length is set to 5-graph, the EER value reaches to the highest

at 32.20%. These results indicate that the accuracy performance worsens when a

longer feature length value is used. This could be due to the reason that timing

features expressed using a longer feature length value contain a lower level of

granularity, and thus capturing less information about a subject’s touch dynamics

pattern, leading to a lower level of accuracy.

These results reflect those reported in [138] where the authors also found that

the accuracy performances of the features extracted with a shorter feature length

are better than those with a longer feature length. This could be the reason why

a majority of the experiments reported in literature used a smaller feature length

value to extract FT features.

4.7.2.5 Feature Normalisation

Different features extracted from raw touch dynamics data have different value

ranges. We should normalise the values of different features so that they are

in the same value range. If different features are in the same value range, they

can be more balance in representing the structure of the data, and, as a result,

may achieve a higher level of accuracy. To investigate the effectiveness of feature

normalisation on the accuracy performance, we have produced and compared two
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Figure 4.14: EER values of FT versus different feature length values for the 4D string

sets of features, one with and the other without normalisation. Each set consists

of all types of FLF extracted from the 4D string.

Table 4.9 shows the EER values of the two sets of features along with their

accuracy performance gains. It can be seen from the table that, for all types of

FLF, the EER values with normalisation are lower than those without normal-

isation. From the table, it can also be seen that FT has the highest accuracy

performance gain, markedly higher than the other types of FLF. The reason for

this may be because the values of FT have a wider value range as compared to

the other types of FLF. The wider the value range of a feature, the more unbal-

anced the feature is at representing the structure of the data, and therefore the

better the accuracy performance after they are normalised. These results suggest

that feature normalisation can effectively improve the accuracy performance if

the features have different value ranges.

4.7.2.6 Feature Selection

In a feature selection process, the most important set of features are selected

from a feature set, PFS, to form a subset of features, OFS, that could better

represent the structure of the data. In comparison with the PFS set, the OFS set
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Types of
FLF

EERs (%) Accuracy
Performance
Gains (%)Without

Normalisation
With

Normalisation

DT 41.3 32.7 +20.82

FT 35.15 21.28 +39.47

IT 39.35 32.03 +18.61

PS 22.4 18.8 +16.07

Table 4.9: EER values of different types of FLF with and without normalisation

is better in two ways. Firstly, the accuracy performance of the model with the

use of the OFS set is usually higher. Secondly, the feature dimension of the OFS

set is smaller. To investigate the benefit of using feature selection, we have used

13 different sets of OFS and compared their EER values. To form these sets of

OFS, we first formed a PFS set consisted of the FLF and SLF features extracted

from the 16D string. Then, we applied a feature selection process to the PFS set

using 13 different feature selection sizes. The values of the size ranged from 1% to

100%. The first four size values were set to 1%, 2%, 5%, 10%, and the remaining

ones were set to values with an increment of 10%. The first 12 sets represented

the OFS sets with different feature selection sizes, and the last set was the PFS

set.

Figure 4.15 shows the EER values and feature dimensions versus the OFS

sets with different feature selection sizes. As can be seen from the figure, the

EER values are higher when the size is set to a very small or very large value.

The EER values decrease sharply as the sizes increase from 1% to approximately

10%, remain largely unchanged from 10% to 30%, before increasing slightly as

the sizes increase toward 100%. These results can be explained as follows. When

the smallest size (1%) is used, the OFS set has only 2 (out of 213) features. With

such a small number of features available for training the model, the model does

not have sufficient information to properly represent a subject’s touch dynamics

pattern, and, as a result, achieves the lowest level of accuracy (EER 17.05%).

When larger sizes are used, the OFS sets have more features, and with more

features available for training the model, the model could better represent a

subject’s touch dynamics pattern, and, as a result, the EER values decrease
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sharply. At a certain feature selection size, the EER value reverses the downward

trend and starts gradually increase as the size increases further towards 100%.

This change in trend is referred to as the “peaking phenomenon” [219], in which

the increase in the feature dimension no longer improves, but, instead, reduces

the accuracy level of the model. This phenomenon usually happens when the

feature dimension is relatively large, larger than the training sample size, such

that the ability of the classifier to build an accurate model is reduced because of

the large set of features [220].

Figure 4.15: EER values and feature dimensions versus the OFS sets at different feature
selection sizes

With the exception of the feature selection size of 1% and 2%, the accuracy

performances for the other sizes are better than that of 100% (which is the case

without feature selection or the use of the PFS set). This observation implies

that, as long as the feature selection size is not set to an extremely low value,

applying feature selection to the PFS set can improve the accuracy performance,

and reduce the feature dimension of the PFS set, which leads to an increase in

the efficiency and the robustness of the authentication system.
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4.7.3 MTU Evaluation

This section evaluates MTU under different parameter value settings, including

the use of different training sample sizes and classifier groups.

4.7.3.1 Training Sample Sizes

The training sample size refers to the number of touch dynamics samples that are

used to train a classifier to build an authentication model. The choice of a training

sample size may have implications on the accuracy performance of, and the time

taken to train (i.e. training time), the authentication model. To investigate the

effect of using different training sample sizes on the accuracy performances, and

the training times, of authentication models, we have set the training sample size

to be a range of values from 2 to 9 with an increment of 1, and investigated the

accuracy performances and training times under these value settings. For this

test case, we have extracted the FLF and SLF features from the 16D string.

Figure 4.16 shows the EER values and training times against different training

sample sizes. From the figure, we can make two major observations: i) the EER

value decreases steadily as the training sample size increases; and ii) the training

time increases steadily as the training sample size increases. The reason for

i) is that, as the training sample size increases, the classifier will have more

data to learn, and, therefore, the classifier can build more accurate model that

better represent a subject’s touch dynamics pattern. As a result, the accuracy

performance of the model will improve. The reason for ii) is that, the more

samples are used to train the model, the more training time it takes.

As shown by the above discussions, there is a trade-off between security and

usability in this authentication system. Using a larger training sample size will

improve security, as the accuracy in verifying a claimed identity will be higher,

but the time taken in training the model will also be higher, reducing usability.

How to balance this trade-off, i.e. enhance or maintain the security level, while,

at the same time, minimise the usability cost, may worth further investigation.

We leave this investigation for future work.

4.7.3.2 One-Class Classifier (OCC) vs Two-Class Classifier (TCC)

The classifiers used in our experiments can be classified into two groups, OCC

and TCC. The main difference between the two groups lies in the type of training
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Figure 4.16: EER values and training times at different training sample sizes

samples they each use in building authentication models (as discussed in Section

4.5.3.1). Because of this, the models built by the two groups of classifiers differ in

three attributes: i) accuracy performance, ii) training time, and iii) testing time.

To evaluate and compare the two groups of classifiers in terms of these three

attributes, we have chosen two classifiers for each group. For the OCC group, we

have chosen OCKNN and SVDD, and, for the TCC group, we have chosen KNN

and SVM. The input to each of these classifiers is set to be the OFS set (with

the feature selection size set to 20%) extracted from the 4D string.

Table 4.10 shows the EER values, training times and testing times produced

by using the classifiers, and Figure 4.17 presents the DET curves of the classifiers.

As shown in the table, the EER values produced when using OCC are higher than

those when using TCC. More specifically, the EER values when using OCKNN

and SVDD are 10.5% and 9.9%, respectively, whereas the corresponding values

when using KNN and SVM are 8.7% and 9.4%, respectively. This indicates that

the accuracy performances of the models built by OCC are lower than those

by TCC. This may be due to the fact that, unlike OCC, the classifiers in TCC

build the models with both legitimate and illegitimate samples, which means that

the models can capture more information about the subjects’ touch dynamics



4.7. EVALUATION RESULTS AND DISCUSSIONS 157

patterns, leading to more accurate models. However, it should be emphasised

that the level of gain in the accuracy performance by using TCC is not significant.

As shown in Figure 4.17, the DET curves of OCC and TCC are rather close to

each other.

Unlike the case for the accuracy performance, there is no clear correlation

between a particular group of classifiers, OCC or TCC, and the training time,

rather the training time appears to be classifier dependent. Among the four

classifiers, SVM is significantly more expensive than the other three classifiers;

approximately seven times more expensive than SVDD. The second most expen-

sive classifier is SVDD, consuming 3 units of time against 1 by OCKNN and

KNN. There are two factors that influence the training time. The first is the

nature (structure or approach) of a classifier, and the second is the number of

samples a classifier uses to train a model. It seems that the first factor plays a

dominant role in training time.

Figure 4.17: DET curves of four different classifiers

With regards to the testing time, TCC classifiers are more expensive than
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OCC classifiers. KNN is the most expensive one among the four classifiers; seven

times more expensive than OCKNN and SVDD. SVM is second most expensive,

costing twice as much as OCKNN and SVDD. Similar to the case for the training

time, two factors, the nature of a classifier, and the number of samples a classifier

uses to test a model, influence the testing time. Based on the results shown in

Table 4.10, it appears that the second factor plays a dominant role in testing

time. As mentioned earlier, TCC classifiers use both legitimate and illegitimate

samples when testing a model, i.e. TCC classifiers use more samples, therefore

are more expensive.

Classifiers
Classifier
Groups

EERs
(%)

Training
Times
(Unit)

Testing
Times
(Unit)

OCKNN OCC 10.5 1 1

KNN TCC 8.7 1 7

SVDD OCC 9.9 3 1

SVM TCC 9.4 22 2

Table 4.10: EER, training time and testing time values of four classifiers

Based on the above results and discussions, particularly taking into consid-

eration of the finding that, for a roughly similar level of accuracy performance,

OCC classifiers are generally more efficient than TCC classifiers, both in terms

of training and testing times, and that, in a mobile device context, usually only

the data from the owner of a device are available for use in training the classifier

to build the authentication model, and performance and usability requirements

are also important, we recommend the use of OCC classifiers in building an au-

thentication model in this application context.

4.7.4 The Architecture Evaluation

As mentioned in Chapter 3, a touch dynamics authentication method can be used

as an additional factor along with an existing knowledge-based authentication

method to form a so-called two-factor authentication system, which is more secure

than the knowledge-based authentication method when it is used alone.
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To evaluate the effectiveness and efficiency of this two-factor authentication

method, we have compared two authentication systems. One using only a PIN

authentication method (denote as AS1), and the other is the ToDiTA system

(using both a PIN and the touch dynamics authentication method). In the eval-

uation, for both AS1 and ToDiTA, we have used the assumption that the PIN

has already been exposed to an impersonator. Table 4.11 shows the probabilities

of a successful impersonator attempt using two different authentication systems,

where two different PIN lengths are considered. As shown in the table, with AS1,

the probability for the impersonator to successfully gain access to the subject’s

device is 100%. In other words, AS1 will fail to identify any impersonation at-

tempts. On the contrary, with ToDiTA, this probability is reduced to 9.9% and

can be further reduced to 7.1% if a longer PIN, i.e. a 16-digit PIN, is used. This

reduction does not apply to AS1, as, based on our evaluation assumption, even if

a longer PIN is used, AS1 still fails. These reductions are significant, indicating

that the two-factor authentication system can achieve a significantly higher level

of security in comparison with the single-factor method.

Authentication
Systems

Probabilities of a Successful
Impersonator Attempt (%)

4-digit PIN 16-digit PIN

AS1 100 100

ToDiTA 9.9 7.1

Table 4.11: Comparison between the probabilities of a successful impersonator
attempt for two different authentication systems using two different PIN lengths

To put the above results into context, assuming that there are ten imperson-

ation attempts, then AS1 will fail to detect all ten, but ToDiTA will only fail

to detect one. Of course, there is a price to pay for using ToDiTA; there is a

non-zero FRR, which impedes usability. With this level of security enhancement

offered by ToDiTA, 1 out of 10 legitimate login attempts may be incorrectly re-

jected. With AS1, the FRR is zero, as none of the login attempts will be falsely

rejected as long as the PIN is entered correctly. The results show that, with an

additional AF provided by using the touch dynamics biometrics, unauthorised

accesses to mobile devices become harder, thus strengthening the security level

of mobile devices.
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The evaluation results of the ToDiTA system also indicate that the idea of us-

ing touch dynamics biometrics to support user authentication on a mobile device

or application context is effective provided that users’ touch dynamics patterns

do not change over time. However, in many real-life cases, users’ touch dynamics

patterns do change over time. These changes often come from a number of factors

such as: (i) cognitive factors (e.g. increasing familiarity with the operations of

a device or the input string), (ii) physiological factors (e.g. finger injury), (iii)

psychological factors (e.g. drunkenness or tiredness), or (iv) environmental fac-

tors (e.g. distraction or position when using the device). The changes in a user’s

touch dynamics pattern may cause trained model (trained using the touch dy-

namics samples acquired during the enrolment phase) to deviate from the user’s

real touch dynamics pattern, reducing the accuracy performance of the model.

The ToDiTA system is not effective in such cases.

4.8 Comparison with the Most Related Work

This section presents a comparison between the ToDiTA system and the related

work most relevant to ours. Conducting a like-for-like comparison with the related

work is a challenging task. This is because each related work varies in terms of

their system architecture, dataset, classifier, experimental settings and evaluation

methodology used, making it difficult to provide a fair and direct comparison.

Therefore, in the following, we provide a high-level comparison instead of a like-

for-like comparison.

Table 4.12 summarises the most related work discussed in Section 3.9 and

compares the related work against our work presented in this chapter. Basically,

this chapter has presented a more systematic and comprehensive study of using

touch dynamics biometrics for user authentication purposes. More specifically,

1. It proposes a ToDiTA system, describing the design of the system architec-

ture and its architectural units.

2. It gives a comprehensive description of the experiment carried out to ac-

quire a touch dynamics dataset. Our experiment involves more subjects,

acquires less number of samples per subject, and uses a device with a larger

screen size than many other studies. The acquired dataset is made publi-

cally available, and unlike other public datasets [140,159], this dataset uses
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numerical-based input strings.

3. It discusses the extraction of not only a basic set of timing and spatial re-

lated features (FLF) from the dataset, but also an extended set of features

(SLF) from the FLF features (related work has mainly focused on the ex-

traction SLF from motion related features, rather than timing and spatial

related features).

4. It clearly describes the evaluation methodology used to critically evaluate

the performance of the touch dynamics authentication method.

5. It investigates extensively how to make the most efficient use of touch dy-

namics biometrics in authenticating a user, in terms of optimising accuracy

and efficiency performances. This includes the investigation and selection of

a subset of optimal features, comparative studies of different timing feature

lengths and different groups of classifier, and the evaluation of the impacts

of different parameter value settings on the performances.

4.9 Chapter Summary

This chapter has presented the design and evaluation of the ToDiTA system for

user authentication on mobile devices. To evaluate the effectiveness of this au-

thentication system, we have acquired a comprehensive touch dynamics dataset.

The method and process used to acquire this dataset have been clearly described

and discussed. This chapter has also extensively discussed how the touch dynam-

ics data may be used for mobile device authentication, described how raw touch

dynamics data may be extracted from the dataset, and how the raw data is pro-

cessed into a proper format for feature extraction. In particular, it has explained

that two types of features can be extracted, FLF, a basic set of features that

are extracted from the raw data, and SLF, an extended set of features that are

extracted from the FLF features. The chapter also described how the features

may be analysed to select a subset of optimal features, and how the features

are classified using classifiers to build an authentication model. The classifica-

tion can be done by using either OCC classifiers (training features solely from

legitimate users, i.e. device owners) or TCC classifiers (training features from

both legitimate and illegitimate users). Experimental results show that the use
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Studies Subject
Sizes

Input
Lengths

Sample
Sizes

Classifier
Groups

Device
Screen
Sizes

EERs (%)

[132] 152 17 10 OCC 4.65” 4.19†, 4.59#

[152] 10 4 100 TCC 3.7” 15.2

[166] 80 4,8 ≥ 25 OCC - 20

[147] 25 8 20 OCC 4.65” 4.45

[153] 100 4-8 10 OCC 3.7” 8.4

[175] 100 6 5 OCC 3.7” 23

[174] 20 8 50 TCC - 0.56

[163] 48 5 100 OCC 6” 4.53†, 5.89#

[148] 12 6 117 TCC 5” 91.2*

[87] 95 8 30 TCC - 0.01†, 4#

ToDiTA 150 4 10 OCC 10.1” 9.9

*Accuracy; †FAR; #FRR

Table 4.12: A summary of existing related work
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of OCC classifiers is more efficient for roughly the same level of security, making

the OCC-based classification approach more practical in real-world applications.

The evaluation of ToDiTA showed that by integrating the touch dynamics

authentication method into the PIN-based authentication method, the ability to

counter impersonation attacks is greatly enhanced. These results also indicate

that the idea of using touch dynamics biometrics to support user authentication

on a mobile device or application context is feasible and effective. However,

ToDiTA is not effective when a user’s touch dynamics pattern changes. In the

next chapter, we will present the design and evaluation of an enhanced version

of the ToDiTA system, i.e. E-ToDiTA system, which is designed to overcome

this weakness, making it effective in adapting itself to a user’s touch dynamics

pattern changes as well.



Chapter 5

Enhanced ToDiTA (E-ToDiTA)

System: with Adaptive Learning

5.1 Chapter Introduction

This chapter presents the design and evaluation of the E-ToDiTA system. The

E-ToDiTA system is an enhanced version of the ToDiTA system in Chapter 4. It

addresses the weakness of ToDiTA by adding the capability to perform adaptive

learning when a user’s touch dynamics pattern changes. E-ToDiTA has used three

ideas. The first idea is to examine whether the new touch dynamics data acquired

are suitable for use to update the authentication model. The second idea is to

minimise the frequency required to carry out the model adaptation processes.

The third idea is to update and improve the accuracy performance of the model

with a fewer number of samples. These ideas attempt to make E-ToDiTA capable

of adapting itself to any changes in a user’s touch dynamics pattern and do so

without introducing excessive overhead to the mobile device. The design and

evaluation of the E-ToDiTA system is our third novel contribution in this thesis.

The rest of this chapter is organised as follows. Section 5.2 gives the ideas

used in the E-ToDiTA system design. Section 5.3 outlines the E-ToDiTA system

architecture. Section 5.4 describes the designs and operations of E-ToDiTA and

its core functional unit in detail. Section 5.5 presents the evaluation methodology

used. Section 5.6 discusses the evaluation results of the system. Section 5.7

concludes the chapter.

164
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5.2 Design Ideas

As discussed in Section 4.7.4, the ToDiTA system is not effective when a user’s

touch dynamic pattern changes. This section presents the ideas we used to design

an enhanced version of the ToDiTA system, i.e. the E-ToDiTA system, which

is capable of adapting itself to any changes in a user’s touch dynamics pattern.

These ideas are as follows:

• Idea 1: The new touch dynamics samples acquired (i.e. during a verification

phase) contains a user’s most recent touch dynamics pattern. These samples

can be used to retrain the classifier to build an updated authentication

model. The updated model should reflect any changes in the user’s touch

dynamics pattern. This process is known as model adaptation. If the

samples used for model adaptation do not belong to the owner, the updated

model may gradually deviate from the owner’s real touch dynamics pattern,

resulting in an inaccurate model. To prevent this issue, the idea is to

examine whether the samples are suitable before they are used for model

adaptation. Here, suitable means that the samples are indeed belong to the

owner of the mobile device. In this way, the likelihood of using samples that

do not belong to the owner for model adaptation can be reduced, preventing

the model from gradually deviating from the owner’s real touch dynamics

pattern.

• Idea 2: The execution of model adaptation processes incur additional com-

putational overhead, and if carried out too frequently (e.g. carried out after

every authentication attempt), the overhead costs involved may impact the

device performance and battery consumption of the mobile device, reduc-

ing usability. To reduce the impact of such overhead costs and to improve

usability, the idea is to execute some of the model adaptation processes

only when a predefined number of samples has been acquired. In this way,

there is no need for executing the processes after every authentication at-

tempt, reducing the computational overhead costs involved, thus increasing

the usability level of the system.

• Idea 3: A straightforward approach to perform model adaptation is to use

the new samples and all the already-acquired samples in the training set to

build an updated model. However, this approach will increase the training
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set size indefinitely over time, which may then cause three problems: (i)

a higher cost in retraining the model; (ii) a higher risk of overfitting the

model; and (iii) a larger storage capacity to store the training set. To

address these problems, the idea is to prevent the training set size from

increasing indefinitely, and this can be done by using only a portion of the

samples in the training set for model adaptation. The resulting smaller set

of samples is then used to retrain the model. In this way, the computational

cost to retrain the model, the risk of overfitting the model, and the storage

requirement to store the training set, can be reduced.

5.3 Architecture Design Overview

This section gives an overview of the E-ToDiTA system architecture. Figure 5.1

shows the E-ToDiTA functional units and the interactions among them. From

the figure, it can be seen that the system architecture consists of seven functional

units. All the seven units are run on a user’s mobile device (as were the case with

ToDiTA units). One of the units is E-ToDiTA specific, i.e. the Model Adaptation

Unit (MAU). The other six units are AIU, RDAU, FCU, MTU, ADMU and DSU.

These six units are identical to those in ToDiTA which have been described in

detail in Chapter 4, so the sections in the rest of this chapter only focus on the

descriptions and discussions of MAU.

Figure 5.1: E-ToDiTA system architecture
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The operation of E-ToDiTA can broadly be captured in three phases: en-

rolment, verification and adaptation. The enrolment and verification phases are

identical to those in ToDiTA. In the adaptation phase, the most recent feature

sets, as it becomes available, is used to build an updated authentication model.

Figure 5.1 indicates the three operational phases along with the units involved.

In the following section, we describe the design of MAU and discuss the issues

involved in more detail.

5.4 Model Adaptation Unit (MAU) Design in

Detail

This section describes the design of MAU in detail. MAU is the functional unit

specifically designed to extend the capability of the ToDiTA system to support

adaptive learning. This unit is responsible for using the most recent feature set

obtained from an authentication attempt to update the stored feature sets and

then retrains the classifier with the feature sets to build an updated authenti-

cation model. The updated model should adapt itself to the user’s most recent

touch dynamics pattern. Model adaptation is carried out by using four processes:

(i) feature screening, (ii) feature spooling, (iii) feature reconstruction, and (iv)

feature classification. In the following sections, we discuss these processes in

detail.

5.4.1 Feature Screening

Feature screening is the first process in model adaptation. This process makes

an adaptation decision, i.e. whether τ̂ (the testing sample acquired from an au-

thentication attempt) is suitable for model adaptation. Model adaptation process

should be carried out only when τ̂ is classified as τ̂L (belongs to the owner of the

device), and not τ̂I (belongs to an impersonator). Otherwise, the updated au-

thentication model may gradually deviates from the owner’s real touch dynamic

pattern. This effect is known as the “creep in” effect [221], an effect that causes

a model to lose its ability to properly represent the owner’s real touch dynamic

pattern, resulting in an inaccurate model. So it is necessary to ensure, or at least

increase the likelihood, that τ̂L is used for model adaptation.
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To ensure that only the suitable τ̂ is used for model adaptation, a straight-

forward method can be used. We could simple carry out the model adaptation

process when Dauth (the authentication decision generated by ADMU) is posi-

tive. In this case, τ̂ is classified as τ̂L, so τ̂ can be used for model adaptation.

However, this method is less reliable as it solely depends on ADMU to make a

correct Dauth. In practice, there is a likelihood for ADMU to make an incorrect

decision due to feature classification error described in Section 4.6. If this is the

case, τ̂ should not be used for model adaptation, as even if ADMU outputs Dauth

as positive, τ̂ is in fact τ̂I , not τ̂L.

To increase the reliability of this method, a feature screening process is used.

This process further assesses the suitability of τ̂ for model adaptation. The

inputs of the process are Dauth and δ (the classification score), both generated

from ADMU. The output is an adaptation decision, Dadap. The two inputs along

with a predefined adaptation threshold, θadap, are used to determine Dadap based

on the following rules:

Dadap =

true if (Dauth = +) and (δ > θadap)

false otherwise
(5.1)

If Dauth is positive and δ is over θadap, then Dadap is true, and in this case, τ̂

should be used for model adaptation. Otherwise, Dadap is false, and in this case,

τ̂ should not be used for model adaptation. Note that the value for θadap is set to

a value greater than the value of θauth (the predefined authentication threshold in

ADMU). In this way, for τ̂ to be suitable for model adaptation, τ̂ has to satisfy a

stricter condition on top of the one set in ADMU. With this additional condition,

the likelihood of using τ̂I for model adaptation can be decreased, thus reducing

the likelihood of the “creep in” effect as much as possible.

5.4.2 Feature Spooling

Feature spooling is the process that follows feature screening. This process is

responsible for reducing the computational overhead incurred by the two processes

in model adaptation, i.e. feature reconstruction and feature classification.

Typically, feature reconstruction and feature classification are carried out

immediately after feature screening. However, using this process flow may in-

cur high overhead costs for the reason explained as follows. Previous studies
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by [98, 222, 223] reported that, on average, users perform an authentication at-

tempt to unlock their mobile devices 10 to 200 times per day. This statistic

suggests that, if the above process flow is used for model adaptation, the fea-

ture reconstruction and feature classification processes will have to be carried out

many times per day. Given the fact that these processes incur additional over-

head costs, and if they are carried out many times per day, the negative impacts

of such overhead costs on device performance and battery consumption will be

large, reducing usability.

To reduce the impact of such overhead costs and to improve usability, we

should reduce the frequency of carrying out feature reconstruction and feature

classification processes. This can be done by adding a process called feature

spooling. Feature spooling delays the execution of these two processes until a

predefined number of τ̂ is accumulated, reducing the number of times required

to carry out these two processes. The feature spooling operational flow is sum-

marised in Figure 5.2 and described below.

Figure 5.2: Feature spooling operational flow

In the descriptions, it is assumed that there are two inputs and one output for

feature spooling. The inputs are Dadap and τ̂ , both are from the feature screening

process. The output is an adaptation set, Sad.
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Step 1: If Dadap is true, proceed to Step 2. Otherwise, τ̂ is discarded and repeat

Step 1 with the next set of Dadap and τ̂ .

Step 2: τ̂ is stored in a buffer, B (a temporary storage space in the device’s

memory). The samples are stored following the order in which they are acquired.

Step 3: If the size of B is equals to a predefined size limit, γ, proceed to Step 4.

Otherwise, repeat Step 1 with the next set of Dadap and τ̂ .

Step 4: The stored samples in B are moved to Sad and released for feature

reconstruction and then feature classification.

To further reduce the impact of the overhead costs incurred by feature recon-

struction and feature classification processes, we could further delay the execution

of these two processes (even after Sad has been released by feature spooling) until

the period when the execution of these processes have the least effect on a device.

Examples of such period are: (i) when the device is in standby mode; (ii) when

the processor of the device is idle; (iii) when the device is plugged in to a power

source for recharging; and (iv) during a user-scheduled time.

5.4.3 Feature Reconstruction

Feature reconstruction uses Sad and the training set stored in DSU to reconstruct

an updated training set. In our design, three methods are used to carry out feature

reconstruction: (i) no adaptation (NA), (ii) accumulative adaptation (AA), and

(iii) progressive adaptation (PA). The methods are summarised in Table 5.1 and

described in the following sections.

Methods Equations

NA St+1
tr = S1

tr

AA St+1
tr = Sttr + Sad

PA St+1
tr = Sttr −{τ1, τ2, ..., τn−u}+Sad

Table 5.1: A summary of the three feature reconstruction methods

In the table and descriptions, we have used the following assumptions. Let

Sttr = {τ1, τ2, . . . , τn} represents a training set stored in DSU at a given time t,
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where n refers to the size of, or the number of samples in, Sttr. The samples

in Sttr are stored in chronological order. For example, τ1 is the earliest sample

and τn is the most recent sample in the set. Sad = {τ̂1, τ̂2, . . . , τ̂γ} represents an

adaptation set, where γ refers to the size of Sad. The samples in Sad are stored

in the same way as the samples in Sttr. S
t+1
tr represents an updated training set

after the execution of one feature reconstruction iteration. Finally, u refers to the

number of samples in Sttr that will be reused for feature reconstruction.

5.4.3.1 Method 1: No Adaptation (NA)

With this method, the stored training set and the authentication model are not

updated, as would be the case as if there is no model adaptation. It represents

the case of the ToDiTA system, using as a baseline for comparison with the AA

and PA methods. Figure 5.3 shows the concept of the NA method graphically.

The numbers in the boxes indicate the order in which the samples are acquired.

As can be seen from the figure, because Sad is not used to update Sttr, the samples

in Sttr remain unchanged for all values of t, and so are the values of n.

Figure 5.3: Feature reconstruction using the NA method

5.4.3.2 Method 2: Accumulative Adaptation (AA)

The AA method uses a straightforward approach to update the stored training

set. With this method, at each feature reconstruction iteration, the samples in
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Sad are appended to the samples in Sttr to construct St+1
tr . After each iteration,

the size of St+1
tr increases from n to (n + γ), as all the samples in Sttr are reused

to construct St+1
tr . Figure 5.4 shows the concept of the AA method graphically.

From the figure, it can be seen that the value of n indefinitely increases by a con-

stant amount, resulting in a large training set size over time. The use of a very

large training set may lead to three problems. Firstly, a higher computational

complexity thus a higher cost in retraining an updated authentication model.

Secondly, a higher risk of overfitting the updated model, leading to a lower accu-

racy performance of the model. Thirdly, a larger storage requirement for storing

the samples in the training set.

Figure 5.4: Feature reconstruction using the AA method

To prevent the problems mentioned above, we proposed a third method called

the progressive adaptation (PA) method. The method is described in the follow-

ing section.

5.4.3.3 Method 3: Progressive Adaptation (PA)

The PA method uses a more complex approach to update the stored training set.

Unlike the AA method, the PA method reuses only a predefined number (instead

of all) of the samples in Sttr to construct St+1
tr . Figure 5.5 shows the concept of

the PA method graphically.
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With this method, each feature reconstruction iteration consists of three steps

as follows.

Step 1: The number of samples to be reused, u, is determined by using the

equation below:

u = bn× ωe (5.2)

where n refers to the number of samples in Sttr and ω refers to a reuse ratio. The

value of ω is set to a decimal number between 0 and 1. The value of u is rounded

to the nearest whole number so that it properly represents the number of samples

in a training set.

Step 2: The first n− u samples in Sttr are removed from the set. The remaining

samples in the set are the u most recently acquired samples, and these samples

are used in Step 3.

Step 3: The samples in Sad are appended to the end of Sttr to construct St+1
tr .

After one feature reconstruction iteration, the size of St+1
tr increases from n

to (u+ γ), and after subsequent iterations, the size remains constant. As shown

in Figure 5.5, the value of n increases at the beginning of time and gradually

plateaus over time. This is in stark contrast to the case of the AA method, where

the size of St+1
tr increases indefinitely.

Figure 5.5: Feature reconstruction using the PA method
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The PA method has two benefits over the AA method. Firstly, after t reaches

a threshold value, the value of n stops increasing and remain constant. For

example, referring to Figure 5.5, this threshold value is 4, and the value of n

remain constant at 10 when t ≥ 4. Secondly, the training set size is smaller at all

values of t. Having these two benefits prevent the problems associated with the

AA method as discussed in the section above.

5.4.4 Feature Classification

Once the updated training set is obtained, they are used by the feature classifica-

tion to build an updated authentication model. The feature classification process

used in MAU is similar to that in MTU in Section 4.5.3. As described in that

section, feature classification involves two tasks, the selection of the classifier and

the implementation of the selected classifier. In the following, we highlight the

differences in the feature classification process used in MAU as compared to the

one used in MTU with regards to these two tasks.

For the first task, we have selected the SVDD classifier for feature classifica-

tion. The selection of the classifier is supported by the observations drawn from

the evaluation results reported in Section 4.7.3.2 as follows. Firstly, the SVDD

classifier (a type of OCC classifier) consumes less model training and testing time

than TCC classifiers. Secondly, the accuracy performance of the model built by

the SVDD classifier is the highest among the evaluated OCC classifiers.

With regards to the second task, the SVDD classifier used in our experiments

is implemented using the Matlab programming platform (version 9.0.0.370719)

and the dd tools open source toolbox [210]. Similar to the case for MTU, the

implementation of the classifier involves two phases, training and testing. The

testing phase is identical to that in MTU, so we do not discuss it further. In the

training phase, the SVDD classifier width and regularisation parameters of the

RBF kernel are empirically set. In our experiments, we have used three datasets

(to be described in Section 5.5.1). Typically, different datasets have different sam-

ples. When the samples are different, the boundaries that are required to contain

the samples are also different. This means that the RBF kernel parameters used

to fit the boundaries are also different. For this reason, in our experiments, we

set the RBF kernel parameters values for each dataset separately. Table 5.2 gives

the RBF kernel parameters values for each of the datasets.
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Datasets
Width

Parameters
Regularisation

Parameters

RHU 300 0

MBK-E 107 0

MBK-S 75 0

MBK-LS 570 0

Table 5.2: The RBF kernel parameters values for the datasets used in our exper-
iments

5.5 Evaluation Methodology

This section describes how the accuracy performance of E-ToDiTA is evaluated.

It covers three issues, the evaluation datasets, metrics and method used. In

this section, we only focus on the evaluation datasets and method used, as the

evaluation metrics used are identical to those used in ToDiTA (as described in

Section 4.6).

5.5.1 Datasets

This section describes the datasets used to evaluate the accuracy performance of

E-ToDiTA. It first gives the requirements of the datasets and then describes the

datasets in detail.

To evaluate the accuracy performance of E-ToDiTA, we need to use touch

dynamics biometrics datasets that fulfil a specific set of requirements [224]. The

requirements are as follows:

• The samples should be acquired from different data acquisition sessions.

• Each session should be separated by some interval.

• The sessions should span over a period of time.

• The sessions should be conducted in an uncontrolled environment.

• The number of samples for each subject should be sufficiently large.
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• The samples should be stored in chronological order (i.e. following the order

in which they are acquired).

The dataset we used to evaluate ToDiTA did not fulfil all the above require-

ments, so it could not be used to effectively evaluate E-ToDiTA. Therefore, we

have to resort to find public datasets that fulfil the requirements. At the time

of this writing, we are only able to find four public datasets that fulfil the re-

quirements, and, at the same time, most relevant to our research context. These

datasets are summarised in Table 5.3 and described in the following sections.

5.5.1.1 The RHU Dataset

The RHU dataset was published by [140]. The data acquisition process conducted

to acquire this dataset involved 51 subjects. The input string used was a fixed

character-based passcode, “rhu.university”. The acquisition device used was a

Nokia Lumia 920 touchscreen phone. Each subject attended three data acquisi-

tion sessions, and each session was separated by an average interval of five days.

In each session, each subject entered five input samples of the passcode, resulting

in a total of 15 samples acquired over the three sessions (per subject). In terms

of typo error handling, any input mistake made by a subject was discarded, and

the subject was prompted to repeat that particular input sample.

After analysing the dataset, we have discovered two inconsistencies: (i) four

of the subjects have less than 15 samples, and (ii) some subjects have more than

five samples acquired for the third session. To prevent these inconsistencies from

affecting the evaluation results of our experiments, we have made two modifica-

tions to the dataset. To address inconsistency (i), we have excluded the samples

of those four subjects concerned and used only the samples from the remaining

47 subjects. To address inconsistency (ii), for those affected subjects, we have

discarded the additional samples and retained only the first five samples acquired

from the third session. After discarding the additional samples, all subjects have

the same number of samples for each of the three sessions (i.e. five samples for

each session).

We have extracted four types of timing features from the samples in the

dataset, and they are DT, FT1, FT2 and FT3. The methods used to extract

these features are the same as those described in Section 4.5.2. Similar to the

case for ToDiTA, we used the extracted features to form a PFS set and performed
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a feature selection process for the PFS set to obtain an OFS set. Table 5.4 shows

the OFS set for the dataset, where the feature selection size used is set to 20.

Dataset OFS Features

RHU
DT(am,qm,hm,gm,md,fq,tq), FT1(1,8,11,am,hm,tq),

FT2(1,5,8,10,12,mn,am,fq), FT3(1,2,5,md)

Table 5.4: OFS set for the RHU dataset (with feature IDs given in brackets)

5.5.1.2 The MBK Datasets

There are three variants of MBK datasets: MBK-E, MBK-S and MBK-LS. They

were published by [159]. The three datasets shared many common properties

and differed mainly in terms of their input string used. In the following, we first

describe the different input strings used by each of the datasets and then describe

their common properties.

The input strings used for the MBK datasets were fixed character-based pass-

codes. The passcodes were designed to represent different passcode difficulty

levels. There were three difficulty levels: easy, strong and logically strong. We

used the first letter of each level as suffixes to represent the datasets, i.e. MBK-E

for easy, MBK-S for strong and MBK-LS for logically strong. The passcode used

for MBK-E was “kicsikutyatarka”, representing an easy passcode which consists

of only lowercase characters. The passcode used for MBK-S was “.tie5Roanl”,

representing a strong passcode which consists of a combination of digits, upper,

lower and special case characters. The passcode for MBK-LS was “Kktsf2!2014”,

representing a logically strong passcode which consists of both some logic behind

the selection of the passcode as well as the properties of a strong passcode. For

example, the last four digits of the passcode refer to the year when the data

acquisition has taken place.

The common properties among the MBK-E, MBK-S and MBK-LS datasets

are as follows. The data acquisition process conducted to acquire these datasets

involved 54 subjects. The acquisition device used was a Nexus 7 touchscreen

phablet. Each subject attended three data acquisition sessions, and each session

was separated by an interval of seven days. In each session, each subject entered

at least 20 samples of the passcode, resulting in a total of at least 60 samples
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acquired over the three sessions (per subject). The typo error handling method

used was the same as the one used by the RHU dataset.

There were also some inconsistencies discovered in the MBK datasets. Some

subjects have more samples per session than some of the other subjects. Since

each subject has at least 20 samples per session, we have unified the number of

samples in each session to 20. This is done by discarding any additional samples

after the first 20 samples for each session. In other words, we used only the first

20 samples for each session.

We have extracted 11 types of features from the samples in the MBK datasets.

The methods used to extract 5 out of the 11 types of features are the same as

those described in Section 4.5.2.1. So here, we only described the remaining six

types of features, and they are: (i) pressure intensity (PI), sum of distance (DC),

(ii) input speed (IS), and (iii) mean accelerations along the x-, y- and z-axis

(ACX, ACY and ACZ). Table 5.5 gives a list of the features along with their

corresponding descriptions and the mathematical methods used to extract the

features.

Similar to the case for the RHU dataset, for each MBK dataset, we used the

extracted features to form a PFS set and performed a feature selection process

for the PFS set to obtain an OFS set. Table 5.6 shows the OFS sets for the MBK

datasets, where the feature selection sizes used are set to 20.

5.5.2 Method

The method used to evaluate the E-ToDiTA system is summarised in Algorithm

5.1 and is described below. In the description, we made three assumptions as fol-

lows. Firstly, the touch dynamics samples acquired from a set of subjects, B, are

stored in a dataset, S. Secondly, each subject has a total of K×N samples, where

K represents the number of data acquisition sessions and N represents the num-

ber of samples in each session. Thirdly, the samples are stored in chronological

order.

Step 1: One of the subjects in B is assumed and assigned as a legitimate subject,

b. The remaining subjects in B are regarded as illegitimate subjects.

Step 2: The samples in S are split into two subsets, S+ and S−. S+ contains

the samples of b, and S− contains the samples of the illegitimate subjects.
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Features Descriptions Equations

PI
The pressure intensity of
the TAP of a key.

PIi = pii

DC

The sum of the distances
between the TAP posi-
tions of two successive keys,
starting from the first key
to the last key.

DC =
m∑
i=1

dist((cxi, cyi), (cxi+1, cyi+1))

IS
The speed between the
TAP of the first key and the
TAR of the last key.

IS = DC
IT

ACX
The mean acceleration
along the x-axis of the TAP
of all keys.

ACX =

m∑
i=1

axi

m

ACY
The mean acceleration
along the y-axis of the TAP
of all keys.

ACY =

m∑
i=1

ayi

m

ACZ
The mean acceleration
along the z-axis of the TAP
of all keys.

ACZ =

m∑
i=1

azi

m

cx, cy: the x- and y-coordinates recorded on the TAP action on a key

ax, ay, az: the accelerations along the x, y-, z-axis recorded on the TAP action on a key

Table 5.5: Descriptions and definitions of touch dynamics features extracted for
the MBK datasets in addition to those described in Section 4.5.2.1

Datasets OFS Features

MBK-E
DT(am,qm,hm,md,fq,tq), FT1(3,4,11,13, hm,gm),
FT3(3,4,13,fq), PI(4,6,am,qm,hm,gm,md,sd,fq),

PS(mx,am,qm,hm,tq), IS, ACX, ACY, ACZ

MBK-S
DT(am,qm,gm,md,fq,tq), FT1(2,3,9,11,hm), FT3(10,11,fq),
PI(5,8,mx,am,qm,hm,gm,md,fq,tq), PS(mx,am,qm,tq), IS,

ACX, ACY, ACZ

MBK-LS
DT(am,qm,hm,gm,md,fq,tq), FT2(4,10,11,hm), FT3(4,11),

PI(1,7,mx,am,qm,hm,gm,md,fq,tq), PS(am,qm,hm,tq,se), IS,
ACX, ACY, ACZ

Table 5.6: OFS sets for the MBK datasets (with feature IDs given in brackets)
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Step 3: S+ is split into K equal-sized subsets. Each subset contains N samples,

and these samples are the samples acquired from the kth data acquisition session.

Step 4: The number of training samples, r, is computed by multiplying a training

sample ratio, R, by N . The value of r is rounded to the nearest whole number.

In our evaluations, we empirically set R = 0.7.

Step 5: Here, the samples in the kth subset, S+
k , are split into two subsets, a

legitimate training set, S+
tr, and a legitimate testing set, S+

ts. S
+
tr contains the first

r samples in S+
k , and S+

ts contains the rest.

Step 6: A training set, T ktr, is established. Depending on whether the feature

construction method, F , used is the NA, AA or PA method, T ktr is established by

using Step 6a, 6b or 6c, respectively. The only exception is when k is 1 (referring

to the first feature reconstruction iteration). In this special case, regardless of F

used, T ktr is initialised to the samples in S+
tr.

Step 6a: When F used is the NA method, T ktr is initialised to the samples in the

first training set, T 1
tr.

Step 6b: When F used is the AA method, T ktr is initialised to the samples in

the previous training set, T k−1
tr , plus the samples in S+

tr.

Step 6c: When F used is the PA method, T ktr is initialised to the last u samples

in T k−1
tr , plus the samples in S+

tr. u is computed by multiplying a reuse ratio, ω,

by the number of samples in T k−1
tr . In our evaluations, we empirically set ω = 0.

Step 7: T ktr is used to train C to build a model, Mb, for b.

Step 8: A testing set, T kts, is established, where T kts contains the samples in S+
ts

and S−.

Step 9: Mb is evaluated on T kts, and the accuracy performance of Mb (for the kth

subset) is calculated and recorded as Pk.

Step 10: Step 5 to 9 is repeated for each of the remaining subsets in the K

subsets.

Step 11: Step 1 to 10 is repeated, assigning each of the other subjects in B as

b in turn.
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Step 12: The overall accuracy performance of the model (over all subjects) for

each of the subsets, Pk, in K subsets, is calculated by dividing Pk by B.

5.6 Evaluation Results and Discussions

This section describes the experiment carried out to evaluate the performance of

the E-ToDiTA system and discusses the evaluation results obtained. The purpose

of the experimental study is to check the effectiveness of the ideas implemented

in the E-ToDiTA system. The experiment is carried out by comparing the per-

formance of the E-ToDiTA system against that of the ToDiTA system in terms

of accuracy performance gains and storage overheads.

In the experiment, the samples from three different data acquisition sessions

were used. The samples from the first session represent the samples acquired from

an enrolment phase (denote as S1). The samples from the remaining two sessions

represent the samples acquired from subsequent verification phases (denote as

S2 and S3, respectively). The experiment was conducted using the evaluation

methodology described in Section 5.5. The experiment was repeated three times,

each time using one of the three feature reconstruction methods (as described in

Section 5.4.3) in turn. They are each denoted as ToDiTA, E-ToDiTA (AA) and

E-ToDiTA (PA), respectively. Note that for the sake of clarity and simplicity,

we have denoted the NA method as ToDiTA instead of E-ToDiTA (NA) since

both systems are identical. These three experiments were further repeated for

four times, each time applying the experiments to one of the four datasets (as

described in Section 5.5.1) in turn.

The experimental results are presented in Table 5.7. As can be seen from the

table, there are four sets of results, each set represents the results evaluated for one

of the four datasets. In each set, there are three rows, and each row represents

one of the three systems. Note that the EERs and sample sizes columns are

further split into two columns, before adaptation and after adaptation. Before

adaptation means that the samples from S1 are used to build the authentication

models. After adaptation means that the samples from S2 and S3 are used to

update the models.

From the table, it can be seen that the ToDiTA and E-ToDiTA systems per-

form the same before adaptation in all four cases of datasets. This is because

E-ToDiTA performs in the same manner as ToDiTA when only the samples from
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Algorithm 5.1: Evaluation method for E-ToDiTA

Input: Dataset S with B number of subjects, {d1, d2, . . . , dB}, number
of data acquisition sessions K with N samples per session,
training sample ratio R, classifier C, reuse ratio ω, feature
reconstruction method F

Output: Accuracy performance of the model for K sessions
{P1, P2, . . . , PK}

1 for b = 1 to B do
2 S+ ← initialise the legitimate subject set {db}
3 S− ← initialise the illegitimate subjects set S − {db}
4 Split S+ into K subsets with N samples each,

S+
k = {s+

k,1, s
+
k,2, . . . , s

+
k,N}

5 r ← compute the number of training samples, bN ×Re
6 for k = 1 to K do
7 S+

tr ← initialise the legitimate training set, {s+
k,1, s

+
k,2, . . . , s

+
k,r}

8 S+
ts ← initialise the legitimate testing set, S+

k − S
+
tr

9 if k == 1 then
10 T ktr ← initialise the training set, S+

tr

11 else
12 if F used is the NA method then
13 T ktr ← initialise the training set, T 1

tr

14 else if F used is the AA method then
15 T ktr ← initialise the training set, T k−1

tr + S+
tr

16 else if F used is the PA method then
17 u← compute the number of samples in T k−1

tr to be reused,

b|T k−1
tr | × ωe

18 T ktr ← initialise the training set, the last u samples in

T k−1
tr + S+

tr

19 end
20 Train C on T ktr to build model Mb

21 T kts ← initialise the testing set, S+
ts + S−

22 Pk ← Pk+ (test the accuracy performance of Mb on T kts)

23 end

24 end

25 for k = 1 to K do
26 Pk ← Pk/B
27 end
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S1 are available (for use to train the authentication models). However, when the

samples from S2 and S3 are available (to update the models), the E-ToDiTA sys-

tems outperform the ToDiTA system. This means that the ideas implemented in

E-ToDiTA are effective in adapting to the subjects’ touch dynamics patterns as

their patterns changes over time. In the following, we provide further discussion

on the results.

The left half part of Table 5.7 shows the effect of model adaptation on the

accuracy performances of the authentication models. From this part of the table,

we can see that, in the case of ToDiTA, the EER values of after adaptation are

higher than those before adaptation in all four cases of datasets. This is because

ToDiTA build the models with the samples from S1 only, and the built models

remain unchanged (even when more recent samples (i.e. the samples from S2

and S3 are available), causing the models to be less accurate in representing the

subjects’ more recent touch dynamics patterns, thus resulting in the higher EER

values. For both cases of E-ToDiTA (AA) and E-ToDiTA (PA), however, we see

the opposite trend. The EER values for after adaptation are lower than those

before adaptation in all four cases of datasets. The reason is as follows. Unlike

the ToDiTA system where the models are not updated, the E-ToDiTA systems

update the model when the samples from S2 and S3 are available. The updated

models can better capture the subjects’ most recent touch dynamics patterns,

thus achieving lower EER values.

From this part of the table, we can also observe that, in the case of ToDiTA,

the accuracy performance gains are in negative values for all four cases of datasets.

This also means that the authentication models suffer accuracy performance losses

after model adaptation. What is striking in these results is that the accuracy

performance losses for both the RHU and MBK-E datasets are noticeably greater

than those for the MBK-S and MBK-LS datasets. For example, for the RHU and

MBK-E datasets, their losses are -32.5% and -47.57%, respectively, whereas, for

the MBK-S and MBK-LS datasets, their losses are only -11.63% and -10.14%,

respectively. These results can be explained as follows. The subjects’ touch

dynamics patterns (i.e. input patterns, styles and/or speed) can change over time,

and they stabilise after some time [188]. When the patterns have stabilised, the

models could no longer reflect the stabilise patterns, thus resulting in accuracy

performance losses. The lesser the amount of time needed for the patterns to

stabilise, the sooner the models incur accuracy performance losses. The amount
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of time needed for the patterns to stabilise is affected by the input string difficulty

level. The lower the difficulty level, the lesser the amount of time needed for the

patterns to stabilise. In the case of the RHU and MBK-E datasets, the input

strings (consist of only lowercase characters) have lower difficulty levels than

those in the case of the MBK-L and MBK-LS datasets (consist of a combination

of digits, upper, lower and special case characters). So, the patterns require less

amount of time to stabilise, resulting in the models incur accuracy performance

losses sooner. For the reasons given above, in the case of ToDiTA, the accuracy

performance losses for the RHU and MBK-E datasets are greater than those of

the MBK-S and MBK-LS datasets.

The right half part of Table 5.7 examines the effect of model adaptation on the

storage overheads. From this part of the table, we can make three observations,

and these observations are true for all four cases of datasets. The first observation

is that, for the case of ToDiTA, the sample sizes stay the same before and after

adaptation. This is due to the fact that the samples from S2 and S3 are not used

to update the authentication model. The second observation is that the sample

sizes of E-ToDiTA (AA) increased by approximately threefold after adaptation.

This is because of the combination of two reasons as follows. Firstly, the sample

sizes of S2 and S3 are the same as that of S1. Secondly, with the ToDiTA (AA)

system, the samples from S2 and S3 are appended to the samples in DSU without

discarding any existing samples in DSU, resulting in a larger sample size. The

third observation is that, unlike the case of the ToDiTA (AA) system, the sample

sizes of E-ToDiTA (PA) did not increase after adaptation. This is because we set

the reuse ratio to 0, which means that the existing samples in DSU are discarded

before the samples from the subsequent sessions are used for model adaptation.

Discarding all or some of the existing samples before model adaptation prevents

the sample size from growing larger indefinitely, and this also avoids overfitting

the model. This may be the reason why the accuracy performances gains for

E-ToDiTA (PA) are higher than those for E-ToDiTA (AA) after adaptation.

Based on the above results and discussions, particularly taking into consid-

eration of the finding that, E-ToDiTA (PA) are more efficient than E-ToDiTA

(AA), both in terms of accuracy performance gains and storage overheads, and

that, in a mobile device context, usually computational resources (i.e. storage

space, computational speed and battery lifespan) are limited, we recommend the

use of E-ToDiTA (PA) as the best system in this application context.
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5.7 Chapter Summary

This chapter has presented the design and evaluation of the E-ToDiTA system. E-

ToDiTA is designed to overcome the weakness in the ToDiTA system by adapting

itself to any changes in a user’s touch dynamics pattern. The design of E-ToDiTA

uses three ideas. The first idea is to use a feature screening process to examine

whether the acquired new touch dynamics data are suitable for use to update

the authentication model. The second idea is to use a feature spooling process to

reduce the number of times required to carry out the model adaptation processes,

reducing computational overhead and improving usability. The third idea is to

use a progressive adaptation method which uses a fewer number of samples to

update the model, reducing the storage overhead incurred in storing the samples

and the risk of overfitting the model.

We have conducted experiments to evaluate the effectiveness of these ideas

built in E-ToDiTA and compared the results from E-ToDiTA to ToDiTA. Our

experimental results show that E-ToDiTA outperforms the ToDiTA system in the

condition when a user’s touch dynamics pattern changes.



Chapter 6

Conclusions and Future Work

The focus of this thesis is on investigating how to best exploit the use of users’

touch dynamics biometrics to strengthen authentication on mobile devices. This

chapter summarises the work presented in this thesis, highlighting the contribu-

tions and discoveries from this research, and gives recommendations for future

work.

6.1 Thesis Conclusions

Background Research

At the start of this research, the related literature on the characteristics of au-

thentication on mobile environment and the authentication factors used in such

environment were reviewed to identify the security threats associated with the

use of the authentication factors. Based on the identified threats, a set of require-

ments that are used to guide the selection of authentication factors for the design

of an authentication system that counters these threats were specified. Then, a

comparative analysis of the authentication factors against the specified require-

ments was conducted. Upon completion of the analysis, it becomes apparent that

touch dynamics biometrics is the preferable authentication factor for the design

of the system.

Following the background study, the related work in the topic area of touch

dynamics biometrics authentication were thoroughly investigated and critically

analysed to identify their respective strengths and weaknesses, so that in our

system design we could maintain the strengths while overcoming the weaknesses.

The critical analysis has led to the conclusion that existing work mainly focused

188
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on improving accuracy performance of the system, and the characteristics of mo-

bile devices and the way they are typically used, which have implications on

usability in addition to effectiveness, could have been better considered in the de-

sign of such system. The insights gained from the analysis have led to the design

of two systems: (i) a touch dynamics based two-factor authentication (ToDiTA)

system, which supports user authentication on mobile devices in a secure and

usable manner, and (ii) an enhanced version of the ToDiTA system (E-ToDiTA),

which has the capability to adapt itself to any changes in a user’s touch dynamics

pattern.

ToDiTA: A Secure and Usable System for Strengthening User Authen-

tication on Mobile Devices

The ToDiTA system is designed to strengthen user authentication on mobile de-

vices with as high accuracy, and as low cost, as possible. This is achieved by (i)

integrating touch dynamics biometrics into a PIN-based authentication method

that has a wide social acceptance; (ii) using descriptive statistical methods to

extract additional features from the already-acquired features instead of using

features that have to be captured by using additional device sensors; (iii) re-

ducing the number of features by selecting and using the most important set of

features; and (iv) reducing the touch dynamics data required to train the model

by using one-class classification approach. To demonstrate the effectiveness and

efficiency of the ToDiTA system, we have evaluated the system using simulation

method. The implementation of the simulation-based evaluation was carried out

using MATLAB programming platform. In the evaluation, we have investigated

the effects of various parameter settings on the performances of the designed

system. In addition, we have used a more comprehensive dataset to evaluate

the ToDiTA system so that the conclusion drawn from the evaluation results are

more conclusive. The evaluation of ToDiTA showed that by integrating the touch

dynamics authentication method into the PIN-based authentication method, the

ability to counter impersonation attacks is greatly enhanced. For example, if a

PIN is compromised, the success rate of an impersonation attempt is drastically

reduced from 100% (if only a 4-digit PIN is used) to 9.9% (if both the PIN and

the touch dynamics are used). These results also indicate that the idea of using

touch dynamics biometrics to support user authentication on a mobile device or

application context is effective provided that users’ touch dynamics patterns do
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not change over time. However, in many real-life cases, users’ touch dynamics

patterns do change over time. To make ToDiTA effective under these different

cases, we have designed an enhanced version of the ToDiTA system, producing

the E-ToDiTA system.

E-ToDiTA: An Enhanced Version of the ToDiTA System

E-ToDiTA is different from ToDiTA in that it updates the authentication model

with new touch dynamics data as soon as the new data becomes available. A

number of measures or ideas have been used to make E-ToDiTA more effective

and efficient. Firstly, it uses a feature screening process to examine whether the

acquired new touch dynamics data are suitable for use to update the authenti-

cation model, reducing the likelihood that the updated model may incorrectly

deviate from the owner’s real touch dynamic pattern. Secondly, it uses a feature

spooling process to reduce the number of times required to carry out the model

adaptation processes, reducing computational overhead and improving usability.

Thirdly, it uses a progressive adaptation method which uses a fewer number of

samples to update the model, reducing the storage capacity required to store the

samples and the risk of overfitting the model. The performance of the E-ToDiTA

system has been evaluated and compared against that of ToDiTA. The evaluation

results show that E-ToDiTA is more effective without introducing excessive over-

head to a mobile device. E-ToDiTA improves the accuracy performance by an

average of 33.53% in comparison with ToDiTA, but with virtually zero increase

in overhead cost.

6.2 Future Work

The following gives recommendations for future research.

Accuracy Performance Enhancement

The accuracy performance achieved by the E-ToDiMA system can be further im-

proved. There are a number of ways of achieving this. For example, additional

features may be used, such as those extracted by using contextual information

(e.g. login time, frequency and location). Representing features in a different

form may also worth further investigation. For example, by plotting the feature

values in a graph and then use the graph in the form of an image as the features
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to build an authentication model. Alternatively, instead of searching for features

manually, we could automate this process by using state-of-the-art deep learning

techniques. These techniques have been widely used in the field of computer vi-

sion to automatically extract representative features from image data [225–227].

Perhaps they can also be used to automatically extract representative features

from touch dynamics data to build an accurate model.

Further Performance Evaluation

The E-ToDiMA system can be further evaluated to further validate the scala-

bility and feasibility of the system. This can be done in the following ways: (i)

evaluate the system against more complex threat scenarios (e.g. when the im-

personator knows both the PIN and touch dynamics pattern of the owner); (ii)

investigate the energy consumption and computational overhead introduced by

the system on devices equipped with different CPU speed, battery and storage

capacity; (iii) extending the experiment to cover more use cases (e.g. to include

textual passcodes as input string); (iv) evaluate the system against more realistic

scenarios (e.g. when the input string is chosen by the subjects); (v) conduct

experiments on an even larger subject size, and the subjects should ideally be

recruited from people across different geographical locations; and (vi) acquire a

more comprehensive dataset (e.g. data should be acquired over more than ten

sessions spread over a longer period and acquired via device with different screen

sizes) to evaluate the system.

Supporting Dynamic Identification Mode

In the research presented in this thesis, it is assumed that a mobile device is

used solely by the owner and not shared among multiple users. Therefore, the E-

ToDiTA system is designed for a verification mode (one-to-one matching) instead

of an identification mode (one-to-many matching). However, in some application

scenarios, e.g. a mobile device sharing scenario, there is a need to establish an

authentication credential (e.g. an ID, a PIN and touch dynamics data) for an

unknown guest. In such a scenario, the identification mode could be a better

option.

An identification mode can be implemented on a mobile device in such a way

that when a guest is observed, a privacy protection mechanism will be activated.

The mechanism prevents unauthorised access or modification to the owner’s data,
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files and system settings. After the guest leaves and the device returns to the

owner’s possession, the mechanism will be deactivated, returning full access of

the device to the owner. If an impersonator is detected, the device will be locked,

and the owner will be alerted through email notification.

Implementing an effective and robust authentication system that supports the

identification as well as verification mode on a mobile device is not a straightfor-

ward task. Unlike the other biometrics identification systems (e.g. forensic in-

vestigation or intrusion detection systems) that involve searching for a matched

identity across a large number of subjects/classes, the identification task in a

mobile device is usually limited to three classes, i.e. the owner, guest and imper-

sonator. Despite the much smaller number of classes involved, which may seems

to have reduced the complexity of the identification task, two issues need to be

resolved: (i) the touch dynamics data for the owner need to be incrementally

acquired, and (ii) the touch dynamics data for the guest and impersonator are

often very limited or even unavailable, so data classification operation carried out

to identify the owner/guest/impersonator is rather challenging and needs future

research.
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