
An investigation of the predictability of the Brazilian three-
modal hand-based behavioural biometric: a feature 
selection and feature-fusion approach

GONCALVES DE A. S. MARQUES, Julliana Caroline, LIMA DO 
NASCIMENTO, Tuany Mariah, VASILJEVIC, Brenda, ALVES DOS SANTOS 
SANTANA, Laura Emmanuella and DA COSTA ABREU, Marjory 
<http://orcid.org/0000-0001-7461-7570>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/27097/

This document is the author deposited version.  You are advised to consult the 
publisher's version if you wish to cite from it.

Published version

GONCALVES DE A. S. MARQUES, Julliana Caroline, LIMA DO NASCIMENTO, 
Tuany Mariah, VASILJEVIC, Brenda, ALVES DOS SANTOS SANTANA, Laura 
Emmanuella and DA COSTA ABREU, Marjory (2020). An investigation of the 
predictability of the Brazilian three-modal hand-based behavioural biometric: a 
feature selection and feature-fusion approach. Journal of the Brazilian Computer 
Society, 26 (1), p. 8. 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/328747053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Journal of the
Brazilian Computer Society

Marques et al. Journal of the Brazilian Computer Society            (2020) 26:8 
https://doi.org/10.1186/s13173-020-00102-6

RESEARCH Open Access

An investigation of the predictability of
the Brazilian three-modal hand-based
behavioural biometric: a feature selection
and feature-fusion approach
Julliana Caroline Goncalves de A. S. Marques1, Tuany Mariah Lima Do Nascimento1, Brenda
Vasiljevic1, Laura Emmanuella Alves dos Santos Santana2 and Márjory Da Costa-Abreu3 *

*Correspondence:
m.da-costa-abreu@shu.ac.uk
3Sheffield Hallam University (SHU),
Sheffield, UK
Full list of author information is
available at the end of the article

Abstract
New security systems, methods or techniques need to have their performance
evaluated in conditions that closely resemble a real-life situation. The effectiveness with
which individual identity can be predicted in different scenarios can benefit from
seeking a broad base of identity evidence. Many approaches to the implementation of
biometric-based identification systems are possible, and different configurations are
likely to generate significantly different operational characteristics. The choice of
implementational structure is, therefore, very dependent on the performance criteria,
which is most important in any particular task scenario. The issue of improving
performance can be addressed in many ways, but system configurations based on
integrating different information sources are widely adopted in order to achieve this.
Thus, understanding how each data information can influence performance is very
important. The use of similar modalities may imply that we can use the same features.
However, there is no indication that very similar (such as keyboard and touch keystroke
dynamics, for example) basic biometrics will perform well using the same set of
features. In this paper, we will evaluate the merits of using a three-modal hand-based
biometric database for user prediction focusing on feature selection as the main
investigation point. To the best of our knowledge, this is the first thought-out analysis
of a database with three modalities that were collected from the same users,
containing keyboard keystroke, touch keystroke and handwritten signature. First, we
will investigate how the keystroke modalities perform, and then, we will add the
signature in order to understand if there is any improvement in the results. We have
used a wide range of techniques for feature selection that includes filters and wrappers
(genetic algorithms), and we have validated our findings using a clustering technique.

Keywords: Hand-based biometrics, Keyboard keystroke dynamics, Touch keystroke
dynamics, Handwritten signature, Feature selection, Feature fusion, Filters, Genetic
algorithms, k-means
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1 Introduction
The design of a biometric-based classification system is a particularly challenging pattern
recognition task [40]. The fundamental nature of this type of data and the application
domain make biometric data very specialised. The effectiveness with which individual
identity can be predicted in different scenarios can benefit from seeking a broad base of
identity evidence. Many approaches to the implementation of biometric-based identifica-
tion systems are possible, and different configurations are likely to generate significantly
different operational characteristics.
At the very least, it is generally necessary to include an appropriate strategy for excep-

tion handling in any significant biometric application scenario. Yet, the design of these
systems normally focuses on one particular issue rather than analysing the problem as a
whole. Exploiting a broader range of information about the task offers improved levels of
accuracy, while also increasing the resilience of a system to, for example, spoofing attacks,
or inclusiveness. Also, in order to test the accuracy and overall performance of security
systems, it is necessary to subject them to similar conditions as what they would find in a
real situation [7].
The issue of improving performance can be addressed in a number of ways, but

system configurations based on integrating different information sources are a widely
adopted means of achieving this [45]. Nevertheless, the often complex analysis required
to choose an optimal modality (or many) for an application in the face of such conflict-
ing demands has been a major factor, as has been trying to identify the best classification
structures [25].
A very popular solution to deal with security issues in biometric-based systems is to

use more than one modality. Multimodal systems are most often tested with a com-
bination of different biometric databases—one for each modality. As these databases
do not have the same subjects, the multimodal databases end up with ‘fictional’
subjects—each ‘person’ will have a mix of the biometric characteristics of two or
more different databases (meaning different users). Such combinations can be done
at the feature level, classification level or decision level, and there is no investigation
that shows if their differences can have a great impact on the performance of the
systems [47].
One approach that is being disregarded, specially with the advent of deep learning tech-

niques, is the selection of features, since such approach uses all the raw data as input
[18], but needs a huge quantity of data, which in the current research of biometrics is still
non-realistic.
Thus, the present work aims to analyse several important differences in the feature-

level fusion and if such a combination provides test conditions that are close enough to a
real-life situation. Moreover, we have chosen to investigate the feature selection process
of three hand-based biometric modalities. Two are very theoretically similar modali-
ties: keyboard keystroke dynamics and touchscreen keystroke dynamics and the other
one is the well-known handwritten signature. Our investigation aims to explore the ben-
efits of feature selection by analysing the performance of filter and wrapper methods.
We will then validate our findings by applying a clustering technique. We also have
investigated how fundamentally different strategies for implementation can increase the
degree of choice available in achieving particular performance criteria in the hand-based
modalities.
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This paper is organised as follows: Section 2 will present the main background nec-
essary to understand how signature and keystroke dynamics work in their different
acquisition approaches and characteristics. Section 3 will present the different ways in
which we have performed feature selection. Section 4 will present our results for feature-
level fusion with our filter and wrapper approaches as well as an in-depth analysis using
our k-means and statistical tests, and, finally, Section 5 will present our final remarks
about this work as well as open issues we believe are worth investigating.

2 Understanding hand-based behavioural biometric data: feature extraction
and selection

According to [39], biometrics can be defined as a set of unique physical or behavioural
characteristics. Physical biometrics make use of human body traits, for example, the iris,
fingerprint, palmprint and retine [20]. Behavioural biometrics use patterns of human
behaviour, such as handwritten signature, keystroke dynamics and voice [5].
The use of behavioural biometrics aiming to recognise fraud can be a complex task,

since the manners and body language of users are a combination of social and psy-
chological factors. Thus, it is quite common to use a combination of two or more
biometric modalities [29]. Therefore, one of the most used biometric data fusions is
the combination of biometric data of both modalities in one single database (feature-
level fusion) [29]. The combination of biometric modalities must be done carefully
because the merge between the databases can introduce irrelevant and/or redun-
dant information. So, it is necessary to use tools that help on removing this kind of
information.
The field of biometrics provides an extensive and diverse literature reporting studies

on several approaches for data combination as well as multimodal systems. Discussion of
various modalities, fusion techniques, sensor development, security issues and usability
problems, as well as the use of revocable biometrics and soft biometrics, can be found
in [46].
Despite all the work that has been carried out using biometrics, it is still quite often

very difficult to make strong claims about performance which can be statistically signifi-
cant, mostly because it can be difficult to find large enough databases [18]. Moreover, the
experiments which are used to validate any proposed techniques are normally executed
in a very controlled environment which does not represent real-world scenarios, while
the complexity of some techniques would probably cause usability concerns in practical
situations.
When dealing with very similar modalities, one tends to assume that the set of config-

urations, ranging from features selected to classification chosen, should be the same. So
far, no other work has focused on investigating the real reliability of feature-level fusion
(or any other fusion) of modalities from different users and its impact on the security of
the system.
Thus, we will investigate the feature selection process in the context of similar gen-

erated and collected modalities, in our case, a three hand-based biometric modalities:
keyboard keystroke dynamics, touchscreen keystroke dynamics and online handwritten
signature. Thus, in the next two sections, we will present the most recent works focusing
on the feature-level fusion of keystroke (touch and keyboard) dynamics and handwritten
signature as well as their main databases available.
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2.1 Keystroke dynamics

Keystroke dynamics analysis is a behavioural biometric-based technique. In [3], the
authors introduce keystroke dynamics analysis as a low-cost, non-intrusive authentica-
tion method that has a clear advantage over password-based authentication: it cannot
be lost, forgotten or stolen. While the same can be said about physiological techniques,
these generally require expensive and, sometimes, intrusive hardware to collect the
biometric data.
As explained in [40], the analysis of typing patterns can be made statically or dynam-

ically. In the static approach, the system verifies the identity of the user before granting
them access to the system, generally using typing features collected while the password is
typed. In the dynamic approach, the typing patterns are analysed continuously during the
work session with data being extracted from arbitrary text input (free-text).
According to Morales et al. in [37], the most popular typing pattern features are as

follows:

• Hold time is the difference between the time of pressure and release of the same key.
• Release-press latency, or RP-latency, is the difference between the time of release of a

key and the time of pressure of the next one.
• Press-press latency, or PP-latency, is the difference between the time of pressure of a

key and the time of pressure of the next one.
• Release-release latency, or RR-latency, is the difference between the time of release of

a key and the time of release of the next one.
• Press-release latency, or PR-latency, is the difference between the time of pressure of

a key and the time of release of the next one.

As already mentioned, we will investigate two different ways of collecting keystroke
dynamics data depending on whether the system uses keystrokes in physical or vir-
tual keyboards (touchscreens). Sections 2.1.1 and 2.1.2 will present the main literature
references of each case, focusing on when the authors use both data.

2.1.1 Keyboard keystroke dynamics

The interest on studying keyboard keystroke dynamics is not new, and it has started
mostly with the popularisation of personal computers.
In [3], a static approach to keystroke dynamics authentication is used to improve the

conventional login—password authentication method, analysing a combination of hold
time, PP-latency and RP-latency. They found that the familiarity with the password
impacts the performance, with the false rejection rate increasing when a password is
imposed to the user instead of chosen by them. They collected data on three machines
from 30 test subjects and the user’s samples were collected in different periods of time,
instead of all at once.
Ngugi et al. [38] obtained their data through the typing of a provided personal iden-

tifying number (PIN), ‘1234’. There were twelve participants, and they repeated the
experiment two more times, a week and then a month after the first session, finding
evidence that the hold time and RP-latency lowers over time, impacting negatively the
classification as legitimate or impostor attempts, since the samples collected during enrol-
ment no longer reflect the user’s typing rhythm. In [37], the proposed system collects
keystroke patterns from 63 users typing their personal information (such as family name
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and ID) six times to enrol, and after at least 24 h, six more times to try and get access
to their accounts, plus twelve times to try and get access to the account of another user.
Their results proved the feasibility of the method and found a correlation between hold
time and RP-latency, since their combination improved the performance of classifiers.
In order to compare 14 anomaly-detection algorithms, in [28], keystroke dynamics data

was collected from 51 subjects, each providing 400 samples—the password was typed
50 times per session, during eight sessions. Loy et al. [33], similarly, provided all users
with the same password and keyboard, this one modified to be sensitive to pressure, thus
capturing typing pressure patterns along with the typing latency. A hundred users partici-
pated in the data collection, providing 10 samples each—amuchmore reasonable number
of samples to require from an actual user without causing annoyance.
The work presented in [46] collected data from three typing activities: password entries,

freestyle typing and transcription of fixed text. Among the discussed databases, this one
had the largest amount of text per user. The BeiHang database [31] was acquired under
real application assumptions: the user could choose their own password, repeating it
during the enrolment phase four or five times; the data collection was done without super-
vision in two different environments, and the number of samples collected varied from
subject to subject.
A dynamic approach can be found in [6], with keystroke dynamics extracted from free-

text—or more specifically from recurring digraphs and trigraphs (combination of two and
three letters) in free-text. Also investigating the use of continuous user authentication,
[14] made an analysis of the performance of four keystroke dynamics features in the most
frequent letters, digraphs and words in English, finding evidence of their relevance as
features for classification algorithms. Corder and Foreman [10] studied the feasibility of
using keystroke analysis to continuously authenticate users in mobile devices. The exper-
iment was based on a physical numeric keyboard and involved 32 participants and two
scenarios: entry of a 4-digit PIN and entry of an 11-digit ‘telephone number’. Each partici-
pant repeated both entries 30 times in a single session. Another dataset was generated for
the same work, this one requiring 30 subjects to enter a total of 30 ‘text messages’ (longer
passages of text) split during three sessions. While promising, the results of [10] were of
questionable relevance to the present situation due to the vast changes in mobile devices
since then.
Table 1 summarises the databases discussed in this section, including the number of

test subjects each employed and the type of text entry required from them—whether the
subjects had to type a password, a PIN or a longer text, if it was chosen by the user or if a

Table 1 Keystroke dynamics databases (physical keyboards)

Paper of origin Subjects Type of entry Error rate

[28] 51 Fixed password 9.6% EER

[33] 100 Fixed password 11.8% EER

[46] 39 Many 0.75% FAR, 3.93% FRR

[31] 117 User’s password 11.83% EER

[3] 30 User’s password 1.6% EER

[38] 12 Fixed PIN 2.0% EER

[37] 63 Personal data 2.3% EER

[10] 32 Fixed PINs 12.8% EER

[10] 30 Fixed text 17.9% EER
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fixed entry was provided to all users. The table also shows the equal error rate (EER), false
rejection rate (FRR) and false acceptance rate (FAR) of the proposed system that used that
database to measure their performance.
In none of the cited studies can we find an in-depth discussion about the feature selec-

tion or feature-level fusion in a two-modal keystroke-based database or even the use of
three-modal databases with signature. In the following section, we will discuss works
related to authentication systems in more modern devices. These systems are also based
on keystroke dynamics, but make use of touchscreen technology.

2.1.2 Touch keystroke dynamics

Due to the increase in popularity and, thus, frequent use of mobile devices, it is possible
to note a rise in the number of studies related to touch dynamics. The most recent works
will be described in this section.
Jeanjaitrong and Bhattarakosol [26] have found that keystroke dynamics can be used as

an authentication method in touchscreen devices with similar accuracy rates as in actual
keyboards. The comparison was made using only features that can be measured in both
virtual and physical keyboards, namely the hold time and RP-latency. Additionally, they
had found that touch-specific features, like the distance between touch events, increased
the performance of classifiers.
Touch-specific keystroke features were evaluated in [7], some of which often outper-

formed the RP-latency, one of the most used features in related works. The EER reported
in Table 2 is the lowest equal error rate found when the user’s hand posture was one dur-
ing enrolment and another during authentication, a novel variable in literature that highly
increased error rates. Their systemwas tested through 28 subjects typing fixed passwords.
Two of the listed works proposed classification methods based on vector proxim-

ity: [1] tested it on a database with keystroke dynamics from 17 experienced users of
touchscreen-based smartphones; they typed a message of their choice five times each. On
the other hand, [35] tested their method on the dataset used in [2]—collected from a fixed
password given to 42 people, and typed 51 times by each one of them. The RHUKeystroke
Database [16] was a benchmark dataset with features collected from touchscreen devices,
but without touch-specific features. With the goal of analysing tapping behaviours during
the input of PINs, [50] collected data from over 80 users in a Samsung Galaxy Nexus. Data
collected from iPhones had already been gathered by [26] where 10 randomly selected
subjects from iPhone users were asked to input a fixed symbol password.

Table 2 Keystroke dynamics databases (touchscreens)

Paper of origin Subjects Type of entry Error rate

[26] 10 Fixed password 2.0% FAR

1.8% FRR

[16] 53 Fixed password None

[2] 42 Fixed password 7.0% EER

[50] 80+ Fixed PIN 3.7% EER

[7] 28 Fixed passwords 33% EER

[1] 17 User’s text 12% EER

[35] 42 Fixed password 6.8% EER

[9] 100 User’s password 6.9% EER
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Finally, [9] asked 100 participants to enter a graphical-based password of their choice
five times; the password was a sequence of taps on an apparently undivided image chosen
by the user (both the image and the sequence). Then, 10 participants in possession of the
other users’ passwords tried to attack the system, entering each legitimate user’s password
five times. The database collected timing and pressure features through an interface that
would remain the same even if used on different devices, like the one in [26].
Again, no work can be listed that compares touch with keyboard or combined them, or

even included the combination of either with handwritten signature. Keystroke dynam-
ics (keyboard and touch) is, perhaps, the very first case where the basic characteristics
of each modality are seen as the same. Thus, our paper aims to investigate how well fea-
ture selection and feature-level fusion of the two different ways of collecting keystroke
dynamics (keyboard and touchscreen) can be done.

2.2 Online handwritten signature

As opposed to the investigation of keystroke dynamics, the handwritten signature (spe-
cially the online version) has been under study due to the growing tendency to use devices
to authenticate individuals. The most recent works will be described below.
In [21], the authors proposed a wearable device called Handwriting Watcher, a wrist-

worn sensor to authenticate a user through his/her handwriting. From the device’s
accelerometer and gyroscope data, they extracted 364 features based on the x, y and z
components. A selection of 60 features was calculated and classified using SVM andMLP
classifiers, obtaining an error rate as low as 6.56%
In [19], a method based on self-taught learning was present. In this method, sparse

autoencoders attempted to learn features called discriminative features from a dataset of
unlabelled 17,500 signatures (ATVS dataset). In the next step, a model user was created by
each original user signature where a one-class classifier was used to classify the features.
The verification process was evaluated using the datasets SVC2004 and SUSIG contain-
ing original and forgery signatures. A significant error reduction and increase in accuracy
was obtained compared with the state of the art. Xia et al. [48] presented two methods
based on full factorial and optimal orthogonal experiment design to select discrimina-
tive features. The features were analysed to improve the robustness, and then, the more
consistent were selected as discriminative candidates. A signature curve constraint was
presented, in order to improve the verification step. The experiments based on MCYT
and SVC2004 Task2 databases verified the effectiveness and robustness of the methods.
Yang et al. [49] proposed a writer-dependent verification technique for online signature
systems. The verification process consisted of two phases applied to each user: the train-
ing phase and the test phase. In the training phase, pairs of true and counterfeit signatures
were created and these characteristics were combined for each pair that forms a group,
then the most stable group was selected by the Relief algorithm during the test phase, the
grouping was completed using the k-nearest neighbour. The experiments also used a pri-
vate database, such as the SVC2004 database. As a result, lower FAR and FRR errors were
obtained when compared to the state of the art.
The authors of [24] proposed an online signature verification approach using the prin-

cipal component analysis (PCA) to select the features and the neural network Multilayer
Perceptron (MLP) as the classifier. The proposed approach illustrated a reduction in error
rate through discarded information by the PCA process. A total of 4000 signatures from
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SIGMA database were used and generated results that showed an FAR error of 7.4% and
an FRR of 6.4%.
Table 3 summarises the papers previously discussed, including databases used as well

as the features extracted from each database, the feature selection approach used and the
error rate of the experiments.
Although the works presented in [21, 49] do use the RELIEF filter, in none of the cited

studies, we can find a significant discussion about the feature selection or feature-level
fusion on a multimodal hand-based situation.

3 Methodology for feature selection
From what we have seen in the previous section, there is no work focusing on analysing
how feature selection and feature-level fusion can affect systems with keystroke dynamics
and handwritten signature biometric modalities. In order to perform this analysis, we will
be using a specific database and a set of well-known classifiers.
Our experiments were conducted using a Brazilian hand-based behavioural biomet-

ric database [13] that collected both keyboard keystroke dynamics and touchscreen
keystroke dynamics data as well as online signature samples.
The data used on this experiment was collected from 76 individuals in a controlled

environment. For the keystroke data (keyboard and touch), they were asked to type the
same carefully chosen text—a mix of frequently used words in Brazilian Portuguese that
included English cognates and, when possible, important digraphs from both languages.
The list of words usedwere america, felicidade, internet, pequeno, coisa, primeiro, normal,
zoom, fazer, selfie, homem, ultimo, carro, mulher, porque, cuba, case andmouse [13].
For the keystroke databases, the collection protocol for both modalities was similar. For

the keyboard mode, the users entered the given word set on a desktop keyboard. For the
touchscreen mode, the same set of words was used, being entered by the users on the
virtual keyboard of a tablet. From each digraph, the dwell time was extracted from the
first letter of the digraph, the flight time between releasing the first one and pressing the
second letter of the digraph and the dwell time of the second letter were collected. Thus,
the extraction process of features occurred as follows:

Table 3 Handwritten signature main works

Paper of origin Feature approach Feature selection
approach

Error rate

[24] x, y and z coordinates Relief 6.56% EER

[25] Sparse autoencoders PCA 0.83 EER

0.77 EER

[26] Full factorial and optimal orthogonal
experiment design

Consistent and
discriminative features

2.17% EER

2.60% EER

[27] Similarity matrix of features PCA 7.4% FAR

6.4% FRR

[28] Signature writing time, total number
of signatures, horizontal and vertical
coordinates, pressure value, height
angle, inclination angle, and
length-width ratio of a signature x
and y coordinates

Relief 1.25% FAR, 1.25% FRR
5.12% FAR, 5.5 FRR
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• Initially all the times, of all the digraphs, of all the words of the protocol
• The words were separated into digraphs when possible
• As some digraphs were repeated, they were ordered by frequency of occurrence
• The samples were formed by the most frequent digraphs
• Each sample contained the time of each digraph’s occurrence, without repetition

The keyboard used to capture the words was aQWERTY. This keyboard layout is widely
used which facilitates the replication of experiments. The authors of [13] did not consider
capital letters, special characters and accents as it wouldmake the collection process more
complex and could also interfere with data analysis. When typing errors occurred, their
entries were discarded and the user had to re-type the word sequence again [13].
In order to obtain three samples from each user, the database gathered three occur-

rences of the same digraph in different words or considered two or three digraphs as one
due to the proximity of their keys in the keyboard. In the end, a total of 14 digraphs was
included in the database: ME, ER, RI, IC, CA, IM, IR, SE, MO, OO, DE, EL, RM and UE.
The features extracted from each digraph were the RP-latency and hold time of both keys
in the physical keyboard, and the RP-latency and hold time of the digraph’s second key in
the virtual keyboard.
In the handwritten database, the samples were collected by having the users signing

their full name three times after their collection of both the keyboard and touch keystroke
dynamics samples. The extracted features were obtained considering the x and y coor-
dinates of the signature, the pressure of the pen and the time in each point of signature.
Thus, 34 features were calculated in to form the database, which were SIGDIST, TOTAL-
TIME, AVXV, AVYV, VELXZERO, VELYZERO, VEL1Y, VEL1X, AVPRESS, VEL2, VEL3,
PIXELCENX, PIXELCENY, VEL4X, VEL4Y, PTD, VEL5, VEL6, HWRATION, VELCOR,
SET, INITDIR, DCHANGE, XSIZE, DIST1, YSIZE, DUR1, DUR3, DUR2 and DUR4.
In order to compare the impact of the feature selection techniques and the feature-

level fusion of the datasets described in this work, we have decided to use the same three
classification algorithms used in [13] all of which are available in the WEKA toolkit [22],
as well as two variations of the SVM and MLP, named LibSVM andWiSARD. For each of
the algorithms described below, a stratified 3-fold cross-validation was used, since there
are only three samples per user in the database.
The k-nearest neighbours classifier, abbreviated to KNN, is an algorithm that deter-

mines the distance between two templates by representing them as vectors with n
attributes (being n the number of features in a template) and placing them in a n-
dimensional plane. KNN predicts if a template will belong to the same user as their closest
neighbour(s) in the n-dimensional plane; after conducting empirical tests, our experi-
ments were configured to consider only a single neighbour for classification purposes as
well as the Euclidean distance.
The Support Vector Machine (or SVM) classifier builds a hyper-plane in an n-

dimensional space to separate training data points by class; the hyper-plane is deliberately
placed in the point where it will be furthest away from the nearest training data point—or
in our case, the nearest user template—to diminish the risk of mis-classification. Mul-
ticlass problems such as the one presented in this paper can be solved by Weka’s SVM
algorithm using pairwise classification, that is, through dividing the problem into binary
classification problems and classifying the user template as belonging to the class that it
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was most often labelled as in the classification sub-problems. The settings used in this
algorithm were C = 10 and kernel being the Puk.
The third classifier is the Multilayer Perceptron Neural Network, also known as MLP.

The algorithm has multiple layers of processing nodes that map the inputs (user tem-
plates) to a set of outputs (users) through a neural network model. The algorithm uses
backpropagation to train the neural network; when the input vector is propagated all
the way to the output layer, the algorithm compares the user assigned to the tem-
plate to the correct user, calculates the error value and goes backwards through all
the layers, assigning each of the processing nodes in the network a weight based on
their contribution to reaching that output. The settings used in this algorithm were
learning rate = 0.01, momentum = 0.9, 5000 iterations and 72 neuron in the hidden
layers.
The Library for SVM abbreviated to LIBSVM is a library developed by [8] for SVM.

Differently from the SVM, the LIBSVM supports both the regression and distribution
estimations. The library allows the selection of variants of the SVM algorithm, such as
kernels, and its parameters. There are five variations implemented of the algorithm (C-
SVM, v-SVM, one-class SVM, epsilon-SVR and v-SVR) and also four types of the kernel:
linear, polynomial, Gaussian and Sigmoid [44]. The algorithm has both faster training and
testing times [8].
The fifth classifier is theWilkes, Stonham, and Aleksander Recognition Device (or WiS-

ARD). At first, it was proposed to be applied for image-based applications, and later, it
was adapted to perform pattern recognition. It is a neural network composed of binary
inputs and outputs and implemented with Random Access Memory (RAM) [12]. There
are no weights between the nodes, and the neuron functions are stored into tables. The
process of adjusting weights consists of changing the table entries, making the algorithm
more flexible and efficient. One can perform both supervised and unsupervised learning
with this algorithm [34]. As settings used for LIBSVM and WiSARD, they were used as
default settings.
A larger set of features in a database can, in theory, provide more information to the

classifier. However, if the features are simply chosen without any analysis or consideration
to the problem, this hypothesis is more often untrue. This has to do with the presence
of some irrelevant or redundant features that can provide a biased model to the learning
algorithm [42]. The computational time can also increase exponentially with the growth
of the number of features, making the building of the model more difficult [17]. Hence,
the selection of the features has been one of the main steps of preprocessing for poste-
rior applications in tasks such as data mining or pattern recognition. Its main purpose
is to select a subset of relevant features among all the available features without losing
precision [41].
With this aim in mind, we have divided our investigation in two categories of

experiments:

• Three filter-based feature selection techniques, which is a method used before the
application of the learning algorithm to select a subset of features [17]

• One wrapper feature selection technique, which is characterised by being linked to a
method of machine learning in an embedded way. In other words, the accuracy of the
classifier is used to evaluate the aptitude of the solutions that were found [17]
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In addition, in order to provide more information for our analysis, we have performed a
statistical test. For this, we have chosen the non-parametric statistical test Kruskal-Wallis
[11]. This test verifies if there is a statistical difference between the samples of the same
group coming from the same distribution.
We have used also the k-means with the best subset of features, according to the accu-

racy of the classifiers tested to identify if features were sufficiently representative to allow
the clustering algorithm to group samples of each individual together, as we will describe
in Section 3.3.

3.1 Filter-based approach

The filter approach is a pre-processing step and it makes the feature selection indepen-
dently from the learning algorithm [42]. This approach tends to select a larger number
of attributes in their subsets and have a much lower computational cost compared to a
wrapper approach discussed in Section 4 [27].
With the intent of analysing the impact of feature selection on the performance of each

classifier when applied to the multimodal database, three different methods of feature
selection based on [36] were explored, namely:

• Manual feature selection: It consists of removing each feature from the multimodal
database, one at a time, and putting the remaining features that increased the
classifiers accuracy rate as the input to the classifiers again.

• Correlation-based feature selector (CFS): It selects a subset of features with high
individual predictive ability but low correlation with the other features in the subset,
eliminating redundant features the may increase the processing time but not add to
the accuracy of the classification.

• RELIEF: It ranks a feature based on how well its values differentiate among the
nearest samples. The rationale is that the most discriminative features should have
highly different values from those found in samples of different classes, and highly
similar values to those found in samples of the same class.

These are three of the most used approaches for filter-based feature selection,
and that is the reason we have chosen to investigate their performance in this
work [27].

3.2 Wrapper-based approach

As previously mentioned, the wrapper approach is linked to a learning algorithm as a
‘black box’ serving to analyse every interaction for selecting attributes, which makes it
more interesting than the filter approach that requires more computational power. This
approach gets lower error rates due to its interaction between the sorting algorithm and
the training set. This loop happens for each subset until the stop criterion is reached [43].
For this paper, we have chosen to analyse the performance of a genetic algorithm as the
wrapper.
In our context, a binary vector represents a chromosome, where each index indicates

the use of the feature (filled with 1) and the non-use of the feature (filled with 0) in
the selection process. The vector size is equal to the number of features of the original
set. Each chromosome of the initial population is generated randomly using a uniform
probability of whether or not each feature is being used.
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As operators, we have used the selection, mutation and crossover [30]. The selection
operator was performed using the roulette method, where the chromosome with the low-
est fitness value had more chance to be chosen. The crossover operator used one cut
breakpoint method. This method selects a gene of the chromosome and generates two
new chromosomes, the parents. The mutation operator works choosing randomly two
chromosome alleles and reversing their values, replacing 0 with 1 and 1 with 0. Finally,
the error is used as the fitness function; that is, the lowest value of the fitness function
is the best. The parameters of the algorithm are a mutation rate of 3%, the crossover
is always done, the population size was 30 individuals and the number of generations
was 15.
Both approaches of filter andwrapper will be analysed by a clustering technique in order

to make sure we have the correct samples being grouped together when using the respec-
tive selected features. Section 3.3 will explain how the k-means clustering technique
was used.

3.3 The k-means algorithm

One possible way of analysing if a set of features is able to represent a class well is to use
a clustering algorithm that can group the data following the classes that we already know.
In this work, we have chosen to use the k-means for this end simply because it is the most
popular technique used for clustering [15].
The k-means clustering is an algorithm of data partitioning that was first proposed by

[32]. It works by partitioning n observations in k clusters defined by centroids where the
k is chosen before the algorithm starts. The k-means version used in this work differs
from the standard version because it initialises the centre of the clusters by k-means++
as in [4].
In our version of the technique, found in MATLAB [23], we have an initial k cluster

centre which is chosen (centroid). Our parameters for the k-means algorithm were 76
as the number of clusters, the distance had varied between Euclidean Distance, CityBloc
Distance, Correlation Distance and Cosine Distance and 500 as the maximum number of
algorithm iterations.
The distance from each point to each centroid was calculated by a distance mea-

sure. Next, each observation was assigned to the cluster with the closest centroid. New
centroids were calculated based on the average of the already grouped observations to
obtain k new centroid locations. This process formed new centroids, positioning the
observations in other clusters.

4 Results and analysis
Since our main goal is to analyse feature selection and feature-level fusion for two
keystroke datasets as well as their combination with online handwritten signature, we
have tested if our results were satisfactory by applying a clustering technique to our fused
selected features.
Thus, firstly, in order to explore this approach, we have tested the five previously cited

classification algorithms in the multimodal database in three different configurations
(keyboard + touch, signature + keyboard and signature + touch). Initially, the algorithms
had as input the features selected by the filter- or the wrapper-based methods when on
their own and a fused feature vector when combined (fused).
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Table 4 shows the average accuracy (i.e. percentage of correctly classified instances) of
the five classifiers, with their standard deviation and the mean of selected features when
trained and tested with the features selected by each technique previously described.
According to the results presented in Table 4, we can observe that the average accuracy

of the classifiers was higher with the features selected using the CFS, RELIEF and GA
techniques in detriment of the sampling with all the features, indicating that the complete
database has conflicting information for the classification algorithms. Only the Manual
Selection technique had lower average performance than the complete database, which
indicates that some isolated features may not make a difference to the classification, but
when they were removed together, some important information was lost.
For the signature + keyboard and signature + touch bases, the classifiers obtained better

performance with the subsets of features selected by the wrapper-based technique, GA,
with an average difference of 27.83% in accuracy over the complete base, followed by the
RELIEF technique. For the keyboard + touch base, the filter-based technique, RELIEF,
selected the best subset of features with an average difference of 32.60% in accuracy over
the complete base, followed by the GA technique.
Observing the fusion of the selected features for each database, we can verify that

in three of the five cases analysed, the fusion of the databases of signature + keyboard
resulted in better accuracy: CFS, RELIEF and GA. The fusion of the signature + touch
databases obtained better accuracy only with the complete database. The fusion of the
keyboard + touch databases obtained better accuracy for the subset of features selected
by Relief.
On the other hand, we can see from Table 5 that by analysing the performance of the

KNN classifier with subsets of features, it can be verified that its accuracy ranged from
56.71% (Manual) to 71.49% (GA), the accuracy being lower with a greater number of
features. Meanwhile, the highest accuracy was with a small subset of only 9 features,
supporting our hypothesis that for this classifier, having data that is noisy, irrelevant or
redundant, can be damaging to the classification accuracy.
The SVM classifier had a performance ranging from 10.39% (Manual) to 66.67% (CFS),

the worst with 40 features and the best with 4 features. It is important to note that with
the Manual selection the performance was even lower than with no selection, where the
accuracy was 20.61%. In addition, it was observed that the GA selected 16 features for this
classifier, and its accuracy was 61.40%. In other words, for this classifier, the filter-based
methods CFS and RELIEF selected fewer features, but the chosen features were more
relevant for classification (providing higher accuracy).

Table 4 Average accuracy (Acc) rates in percentage, standard deviation (SD) and average of selected
features (SF) for all the combinations of signature, touch and keyboard

Feature Keyboard + touch Signature + keyboard Signature + touch

selection Acc (SD) SF Acc (SD) SF Acc (SD) SF

No selection 28.21 (13.49) 66 45.26 (12.78) 74 45.96 (11.03) 54

Manual 28.63 (25.03) 28 11.31 (7.12) 17 18.24 (13.37) 18

CFS 49.00 (24.95) 3.2 51.31 (24.26) 10 50.00 (23.27) 10

RELIEF 60.81 (9.80) 16.2 62.89 (6.41) 18 58.17 (6.79) 12

GA 52.20 (34.04) 27.2 78.94 (12.81) 31.6 67.94 (17.24) 22
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Table 5 Accuracy (Acc) rates in percentage and total of selected features (SF) for all the
combinations of signature, touch and keyboard

Feature Algorithm Keyboard + touch Signature + keyboard Signature + touch

selection Acc (FS) Acc (FS) Acc (FS)

No selection KNN 20.17 (66) 37.71 (74) 43.85 (54)

SVM 20.61 (66) 38.15 (74) 42.54 (54)

MLP 28.07 (66) 48.68 (74) 42.54 (54)

LIBSVM 20.61 (66) 35.52 (74) 35.96 (54)

WISARD 51.61 (66) 66.22 (74) 64.91 (54)

Manual KNN 56.71 (27) 9.64 (11) 10.08 (11)

SVM 10.39 (40) 13.59 (5) 32.89 (13)

MLP 54.11 (19) 21.05 (26) 16.67 (12)

LIBSVM 03.50 (20) 01.31 (37) 01.31 (39)

WISARD 18.42 (35) 10.96 (7) 30.26 (17)

CFS KNN 67.53 (4) 64.47 (10) 62.28 (10)

SVM 66.67 (4) 08.77 (10) 9.21 (10)

MLP 41.99 (4) 60.08 (10) 58.77 (10)

LIBSVM 08.33 (2) 55.26 (10) 53.50 (10)

WISARD 60.47 (2) 67.98 (10) 66.22 (10)

RELIEF KNN 67.53 (5) 60.96 (18) 57.01 (12)

SVM 66.67 (5) 60.96 (18) 58.33 (12)

MLP 59.31 (5) 60.52 (18) 56.67 (12)

LIBSVM 44.29 (33) 57.89 (18) 50.00 (12)

WISARD 66.26 (33) 74.12 (18) 68.85 (12)

GA KNN 74.33 (20) 75.26 (25) 77.63 (19)

SVM 48.02 (29) 63.41 (40) 41.83 (27)

MLP 33.94 (35) 73.28 (40) 59.60 (32)

LIBSVM 8.81 (20) 85.92 (22) 76.05 (8)

WISARD 95.91 (32) 96.84 (31) 84.60 (25)

In turn, the MLP classifier presented an accuracy 63.59% (GA). This classifier demon-
strated a different behaviour from the other two, since its performance was better with
more features. In the best case, in the GA, 29 features were selected. In this database,
this indicated that the MLP neural network needed more information, even though
redundant, to perform a good classification.
When we compare the classifiers, we can see that the KNN presents the best results

for all the feature selection techniques, concluding that this classifier is best applied in
situations where the features are relevant and not redundant or noisy. In turn, despite
the fact that the MLP had the best performance when trained and tested with all fea-
tures, it had the lowest accuracy in most feature selection techniques (CFS, RELIEF
and GA). Only in the Manual, where the SVM showed an expressively lower accuracy,
this fact did not occur. In other words, the MLP can improve with feature selection
but it still needs more features to perform well when compared to other classifiers,
which indicates that it is good to remove noisy or irrelevant attributes, but possi-
bly redundancy is important for the classifier, whereas this does not occur with KNN
or SVM.
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But more importantly, it is interesting to observe that the results from the LibSVM and
theWISARD are directly related with the quantity and the quality of the features selected
reaching an impressive accuracy of 85% and 96%, respectively. These techniques perform
way better than the original implementations of SVM and MLP which now is more than
justified to be used in problems that need to investigate feature selection and fusion.
After the classification, we have performed the statistical test to help us find which fea-

ture subset selection approach is the best to perform the identity prediction. We have
applied the test using a confidence value of 95% (p value = 0.05). A p value < 0.05
implies a statistical difference between the databases, that is, in our case, statistically a
database is more accurate than another. Table 6 presents the p value for all combinations

Table 6 p value for all the combinations using keyboard + touch, signature + keyboard and
signature + touch

p value

Classifier keytouch sigkey sigtouch

vs vs vs

sigkey sigtouch keytouch

No selection

SVM 0 0 < 0.0001

LibSVM 0 0 < 0.0001

KNN 0 0 < 0.0001

MLP < 0.0001 0 0

WiSARD < 0.0001 0 0

Manual

SVM 0 0 < 0.0001

LibSVM < 0.0001 0 < 0.0001

KNN < 0. 0001 0 0

MLP 0 0 < 0.0001

WiSARD 0 < 0.0001 0

CFS

SVM < 0.0001 0 0

LibSVM < 0.0001 0 0

KNN 0 0 < 0.0001

MLP < 0.0001 0 0

WiSARD < 0.0001 0 0

ReliefF

SVM 0 0 < 0.0001

LibSVM < 0.0001 0 0

KNN 0 0 < 0.0001

MLP 0 < 0.0001 0

WiSARD < 0.0001 0 0

GA

SVM 0 0 < 0.0001

LibSVM 0 < 0.0001 0

KNN 0 0 < 0.0001

MLP < 0.0001 0 0

WiSARD 0 < 0.0001 0
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using keyboard + touch (keytouch), signature + keyboard (sigkey) and signature + touch
(sigtouch). Using only the combinations where the p value is < 0.05, we have created
Table 7 that shows in percentage the number of times that a dataset was more accurate
(+) and less accurate (−).
Observing Table 7, we can see that most of the approaches, keyboard + touch and sig-

nature + keyboard have achieved the highest accuracies. However, No selection and GA
techniques reached the same performances (86.67%), using 66 features (No Selection)
and 27 (GA), indicating that the feature subset selected by GA is the best to realise our
experiments.
Since the genetic algorithm obtained the best results for most of the observed cases,

we have used the k-means algorithm to verify if it is possible to uniquely identify each
one of 76 individuals from the selected sets. For this, it was necessary that every triple
sample of each user was allocated to a single cluster where each one of them represented
an individual. As distance measure, four metrics were used:

• Square Euclidean distance: At this distance, each centroid represents the average of
the points.

• Cityblock distance: This distance is obtained by the absolute sum of differences,
where each centroid composes the average of the cluster points.

• Correlation distance: This distance is the correlation between one minus the points
in the sample. After centralising and normalising the points and standard deviation,
the centroids are the average of the cluster points.

Table 7 Accuracy rates when the accuracy was higher (+) and (−) lower

No selection

% Keyboard + touch Signature + keyboard Signature + touch

+ 33.34 66.67 86.67

− 66.66 33.33 13.33

Manual

% Keyboard + touch Signature + keyboard Signature + touch

+ 63.33 33.34 53.33

− 36.67 66.66 46.67

CFS

% Keyboard + touch Signature + keyboard Signature + touch

+ 63.34 63.33 36.66

− 36.66 36.67 63.34

ReliefF

% Keyboard + touch Signature + keyboard Signature + touch

+ 48.34 73.33 33.33

− 51.66 26.67 66.67

GA

% Keyboard + touch Signature + keyboard Signature + touch

+ 26.67 86.67 36.67

− 73.33 13.33 63.33
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• Cosine distance: The cosine distance obtained by one minus the cosine angle existing
between the points represented by vectors. After normalising the points according to
the unit Euclidean length, the centroids are the average of the cluster points.

Since we know that the GA selected 9 features for the KNN, 16 for the SVM and 29
for the MLP, and there was a direct relationship between the amount of features and
the ability of the k-means algorithm to correctly group the samples of each individual.
However, this accuracy was relatively low, ranging from 38.59 to 50.63%. By comparing
the distance measure adopted in the clustering algorithm (that can be seen in Table 8), we
have found that the cityblock obtained the highest accuracy using the features selected by
the MLP as well as the 9 features selected for the KNN. Only for the 16 features selected
for the SVM is that the cosine distance obtained better accuracy (47.36%).
In this way, we can conclude that for the different distance measures applied to the k-

means algorithm, the accuracy had a correlation with the quantity of available features.
The cityblock distance measure was better able to group the individuals of the database
among the other measure distances.
Although we have done very initial experiments with this new three-modal hand-based

biometric database in order to investigate effectively the use of feature selection and
feature-level fusion, we are indeed able to note that the techniques for feature selection
have presented a considerate improvement in accuracy. Moreover, we have the KNNwith
a very significant accuracy when compared with a traditionally higher performer MLP
and using less features.

Table 8 Accuracy rates of k-means algorithm

k-means Algorithm Keyboard Keyboard Touch + signature

algorithm + touch + signature

Euclidean distance KNN 57.01 62.71 57.01

SVM 57.45 59.64 47.36

MLP 58.77 43.85 60.52

LIBSVM 53.07 63.59 65.35

WiSARD 55.70 67.54 61.40

Cityblock distance KNN 63.15 64.91 68.85

SVM 59.64 64.03 50.00

MLP 59.21 41.22 67.98

LIBSVM 58.77 72.80 66.66

WiSARD 62.28 66.66 65.35

Correlation distance KNN 56.14 64.03 59.21

SVM 49.12 59.64 46.05

MLP 57.01 53.07 64.03

LIBSVM 54.82 65.78 65.78

WiSARD 42.98 65.78 61.48

Cosine distance KNN 57.45 66.22 57.89

SVM 57.01 60.08 46.05

MLP 55.70 53.94 62.71

LIBSVM 53.07 65.78 68.42

WiSARD 54.38 64.03 59.64



Marques et al. Journal of the Brazilian Computer Society            (2020) 26:8 Page 18 of 20

5 Conclusion and future work
In this work, we have analysed the impact of two different kinds of feature selection on the
performance of five different algorithms when classifying the instances of the multimodal
and unimodal biometric hand-based databases. Also, we have tested if our results were
satisfactory by applying clustering techniques on our selected features.
When we applied genetic algorithms as a selection technique, we have managed to

reduce considerably the quantity of features for both modalities and still keep an accept-
able accuracy level (when compared with the three filter techniques). We also confirmed
that the selected features did indeed manage to group together a considerable amount of
users when we verified it using k-means. Also, the classifiers presented a varied perfor-
mance to each of the feature selection techniques being the LibSVM and theWiSARD the
two with the best overall performance.
Through all experiments, it is possible to observe that the performance of the classifica-

tion on the multimodal database can increase or decrease independently of whether the
performance of its internal unimodal databases increases, decreases, or it can show dif-
fering behaviours. In such conditions, it is essential to understand the importance of each
feature, specially when you have two very similar yet different biometric modalities.
We understand that the main importance of our work is the investigation and explo-

ration of the very first three-modal biometric database that has both touch and keyboard
keystroke dynamics and online handwritten signature from the very same users; and how
the feature selection can really impact on the performance of traditional classification
algorithms when applied at a more realistic dataset.
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