7 research outputs found

    A new genetic algorithm for multi-label correlation-based feature selection.

    Get PDF
    This paper proposes a new Genetic Algorithm for Multi-Label Correlation-Based Feature Selection (GA-ML-CFS). This GA performs a global search in the space of candidate feature subset, in order to select a high-quality feature subset is used by a multi-label classification algorithm - in this work, the Multi-Label k-NN algorithm. We compare the results of GA-ML-CFS with the results of the previously proposed Hill-Climbing for Multi-Label Correlation-Based Feature Selection (HC-ML-CFS), across 10 multi-label datasets

    A lexicographic multi-objective genetic algorithm for multi-label correlation-based feature selection

    Get PDF
    This paper proposes a new Lexicographic multi-objective Genetic Algorithm for Multi-Label Correlation-based Feature Selection (LexGA-ML-CFS), which is an extension of the previous single-objective Genetic Algorithm for Multi-label Correlation-based Feature Selection (GA-ML-CFS). This extension uses a LexGA as a global search method for generating candidate feature subsets. In our experiments, we compare the results obtained by LexGA-ML-CFS with the results obtained by the original hill climbing-based ML-CFS, the single-objective GA-ML-CFS and a baseline Binary Relevance method, using ML-kNN as the multi-label classifier. The results from our experiments show that LexGA-ML-CFS improved predictive accuracy, by comparison with other methods, in some cases, but in general there was no statistically significant different between the results of LexGA-ML-CFS and other methods

    Information gain feature selection for multi-label classification.

    Get PDF
    In many important application domains, such as text categorization, biomolecular analysis, scene or video classification and medical diagnosis, instances are naturally associated with more than one class label, giving rise to multi-label classification problems. This fact has led, in recent years, to a substantial amount of research in multi-label classification. And, more specifically, many feature selection methods have been developed to allow the identification of relevant and informative features for multi-label classification. However, most methods proposed for this task rely on the transformation of the multi-label data set into a single-label one. In this work we have chosen one of the most wellknown measures for feature selection ? Information Gain ? and we have evaluated it along with common transformation techniques for the multi-label classification. We have also adapted the information gain feature selection technique to handle multi-label data directly. Our goal is to perform a thorough investigation of the performance of multi-label feature selection techniques using the information gain concept and report how it varies when coupled with different multi-label classifiers and data sets from different domains

    An Efficient Feature Subset Selection Algorithm for Classification of Multidimensional Dataset

    Get PDF
    Multidimensional medical data classification has recently received increased attention by researchers working on machine learning and data mining. In multidimensional dataset (MDD) each instance is associated with multiple class values. Due to its complex nature, feature selection and classifier built from the MDD are typically more expensive or time-consuming. Therefore, we need a robust feature selection technique for selecting the optimum single subset of the features of the MDD for further analysis or to design a classifier. In this paper, an efficient feature selection algorithm is proposed for the classification of MDD. The proposed multidimensional feature subset selection (MFSS) algorithm yields a unique feature subset for further analysis or to build a classifier and there is a computational advantage on MDD compared with the existing feature selection algorithms. The proposed work is applied to benchmark multidimensional datasets. The number of features was reduced to 3% minimum and 30% maximum by using the proposed MFSS. In conclusion, the study results show that MFSS is an efficient feature selection algorithm without affecting the classification accuracy even for the reduced number of features. Also the proposed MFSS algorithm is suitable for both problem transformation and algorithm adaptation and it has great potentials in those applications generating multidimensional datasets

    Multi-label Rule Learning

    Get PDF
    Research on multi-label classification is concerned with developing and evaluating algorithms that learn a predictive model for the automatic assignment of data points to a subset of predefined class labels. This is in contrast to traditional classification settings, where individual data points cannot be assigned to more than a single class. As many practical use cases demand a flexible categorization of data, where classes must not necessarily be mutually exclusive, multi-label classification has become an established topic of machine learning research. Nowadays, it is used for the assignment of keywords to text documents, the annotation of multimedia files, such as images, videos, or audio recordings, as well as for diverse applications in biology, chemistry, social network analysis, or marketing. During the past decade, increasing interest in the topic has resulted in a wide variety of different multi-label classification methods. Following the principles of supervised learning, they derive a model from labeled training data, which can afterward be used to obtain predictions for yet unseen data. Besides complex statistical methods, such as artificial neural networks, symbolic learning approaches have not only been shown to provide state-of-the-art performance in many applications but are also a common choice in safety-critical domains that demand human-interpretable and verifiable machine learning models. In particular, rule learning algorithms have a long history of active research in the scientific community. They are often argued to meet the requirements of interpretable machine learning due to the human-legible representation of learned knowledge in terms of logical statements. This work presents a modular framework for implementing multi-label rule learning methods. It does not only provide a unified view of existing rule-based approaches to multi-label classification, but also facilitates the development of new learning algorithms. Two novel instantiations of the framework are investigated to demonstrate its flexibility. Whereas the first one relies on traditional rule learning techniques and focuses on interpretability, the second one is based on a generalization of the gradient boosting framework and focuses on predictive performance rather than the simplicity of models. Motivated by the increasing demand for highly scalable learning algorithms that are capable of processing large amounts of training data, this work also includes an extensive discussion of algorithmic optimizations and approximation techniques for the efficient induction of rules. As the novel multi-label classification methods that are presented in this work can be viewed as instantiations of the same framework, they can both benefit from most of these principles. Their effectiveness and efficiency are compared to existing baselines experimentally

    Feature Selection for Multi-label Classification Problems

    No full text
    This paper proposes the use of mutual information for feature selection in multi-label classification, a surprisingly almost not studied problem. A pruned problem transformation method is first applied, transforming the multi-label problem into a single-label one. A greedy feature selection procedure based on multidimensional mutual information is then conducted. Results on three databases clearly demonstrate the interest of the approach which allows one to sharply reduce the dimension of the problem and to enhance the performance of classifiers
    corecore