24,408 research outputs found

    An Empirical Analysis of the Medical Informed Consent Doctrine: Search for a Standard of Disclosure

    Get PDF
    Informed consent and its conceptual equivalents, e.g., right-to-know, are increasingly important. The author discusses the development of the informed consent doctrine in tort cases and attempts to evaluate the consistency of its application. He concludes that it is difficult to separate that which must be disclosed from that which need not be. He also argues that much remains to be done in achieving the objectives of the informed consent doctrine

    Evolvability signatures of generative encodings: beyond standard performance benchmarks

    Full text link
    Evolutionary robotics is a promising approach to autonomously synthesize machines with abilities that resemble those of animals, but the field suffers from a lack of strong foundations. In particular, evolutionary systems are currently assessed solely by the fitness score their evolved artifacts can achieve for a specific task, whereas such fitness-based comparisons provide limited insights about how the same system would evaluate on different tasks, and its adaptive capabilities to respond to changes in fitness (e.g., from damages to the machine, or in new situations). To counter these limitations, we introduce the concept of "evolvability signatures", which picture the post-mutation statistical distribution of both behavior diversity (how different are the robot behaviors after a mutation?) and fitness values (how different is the fitness after a mutation?). We tested the relevance of this concept by evolving controllers for hexapod robot locomotion using five different genotype-to-phenotype mappings (direct encoding, generative encoding of open-loop and closed-loop central pattern generators, generative encoding of neural networks, and single-unit pattern generators (SUPG)). We observed a predictive relationship between the evolvability signature of each encoding and the number of generations required by hexapods to adapt from incurred damages. Our study also reveals that, across the five investigated encodings, the SUPG scheme achieved the best evolvability signature, and was always foremost in recovering an effective gait following robot damages. Overall, our evolvability signatures neatly complement existing task-performance benchmarks, and pave the way for stronger foundations for research in evolutionary robotics.Comment: 24 pages with 12 figures in the main text, and 4 supplementary figures. Accepted at Information Sciences journal (in press). Supplemental videos are available online at, see http://goo.gl/uyY1R

    Neural correlates of post-traumatic brain injury (TBI) attention deficits in children

    Get PDF
    Traumatic brain injury (TBI) in children is a major public health concern worldwide. Attention deficits are among the most common neurocognitive and behavioral consequences in children post-TBI which have significant negative impacts on their educational and social outcomes and compromise the quality of their lives. However, there is a paucity of evidence to guide the optimal treatment strategies of attention deficit related symptoms in children post-TBI due to the lack of understanding regarding its neurobiological substrate. Thus, it is critical to understand the neural mechanisms associated with TBI-induced attention deficits in children so that more refined and tailored strategies can be developed for diagnoses and long-term treatments and interventions. This dissertation is the first study to investigate neurobiological substrates associated with post-TBI attention deficits in children using both anatomical and functional neuroimaging data. The goals of this project are to discover the quantitatively measurable markers utilizing diffusion tensor imaging (DTI), structural magnetic resonance imaging (MRI), and functional MRI (fMRI) techniques, and to further identify the most robust neuroimaging features in predicting severe post-TBI attention deficits in children, by utilizing machine learning and deep learning techniques. A total of 53 children with TBI and 55 controls from age 9 to 17 are recruited. The results show that the systems-level topological properties in left frontal regions, parietal regions, and medial occipitotemporal regions in structural and functional brain network are significantly associated with inattentive and/or hyperactive/impulsive symptoms in children post-TBI. Semi-supervised deep learning modeling further confirms the significant contributions of these brain features in the prediction of elevated attention deficits in children post-TBI. The findings of this project provide valuable foundations for future research on developing neural markers for TBI-induced attention deficits in children, which may significantly assist the development of more effective and individualized diagnostic and treatment strategies

    Automatic EEG processing for the early diagnosis of traumatic brain injury

    Get PDF
    Traumatic Brain Injury (TBI) is recognized as an important cause of death and disabilities after an accident. The availability a tool for the early diagnosis of brain dysfunctions could greatly improve the quality of life of people affected by TBI and even prevent deaths. The contribution of the paper is a process including several methods for the automatic processing of electroencephalography (EEG) data, in order to provide a fast and reliable diagnosis of TBI. Integrated in a portable decision support system called EmerEEG, the TBI diagnosis is obtained using discriminant analysis based on quantitative EEG (qEEG) features extracted from data recordings after the automatic removal of artifacts. The proposed algorithm computes the TBI diagnosis on the basis of a model extracted from clinically-labelled EEG records. The system evaluations have confirmed the speed and reliability of the processing algorithms as well as the system's ability to deliver accurate diagnosis. The developed algorithms have achieved 79.1% accuracy in removing artifacts, and 87.85% accuracy in TBI diagnosis. Therefore, the developed system enables a short response time in emergency situations and provides a tool the emergency services could base their decision upon, thus preventing possibly miss-diagnosed injuries

    A Layer Decomposition-Recomposition Framework for Neuron Pruning towards Accurate Lightweight Networks

    Full text link
    Neuron pruning is an efficient method to compress the network into a slimmer one for reducing the computational cost and storage overhead. Most of state-of-the-art results are obtained in a layer-by-layer optimization mode. It discards the unimportant input neurons and uses the survived ones to reconstruct the output neurons approaching to the original ones in a layer-by-layer manner. However, an unnoticed problem arises that the information loss is accumulated as layer increases since the survived neurons still do not encode the entire information as before. A better alternative is to propagate the entire useful information to reconstruct the pruned layer instead of directly discarding the less important neurons. To this end, we propose a novel Layer Decomposition-Recomposition Framework (LDRF) for neuron pruning, by which each layer's output information is recovered in an embedding space and then propagated to reconstruct the following pruned layers with useful information preserved. We mainly conduct our experiments on ILSVRC-12 benchmark with VGG-16 and ResNet-50. What should be emphasized is that our results before end-to-end fine-tuning are significantly superior owing to the information-preserving property of our proposed framework.With end-to-end fine-tuning, we achieve state-of-the-art results of 5.13x and 3x speed-up with only 0.5% and 0.65% top-5 accuracy drop respectively, which outperform the existing neuron pruning methods.Comment: accepted by AAAI19 as ora

    Disconnection of network hubs and cognitive impairment after traumatic brain injury.

    Get PDF
    Traumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view networks as graphs. Brain regions become nodes in the graph, and white matter tracts the connections. The overall effect of an injury can then be estimated by calculating graph metrics of network structure and function. Here we test which graph metrics best predict the presence of traumatic axonal injury, as well as which are most highly associated with cognitive impairment. A comprehensive range of graph metrics was calculated from structural connectivity measures for 52 patients with traumatic brain injury, 21 of whom had microbleed evidence of traumatic axonal injury, and 25 age-matched controls. White matter connections between 165 grey matter brain regions were defined using tractography, and structural connectivity matrices calculated from skeletonized diffusion tensor imaging data. This technique estimates injury at the centre of tract, but is insensitive to damage at tract edges. Graph metrics were calculated from the resulting connectivity matrices and machine-learning techniques used to select the metrics that best predicted the presence of traumatic brain injury. In addition, we used regularization and variable selection via the elastic net to predict patient behaviour on tests of information processing speed, executive function and associative memory. Support vector machines trained with graph metrics of white matter connectivity matrices from the microbleed group were able to identify patients with a history of traumatic brain injury with 93.4% accuracy, a result robust to different ways of sampling the data. Graph metrics were significantly associated with cognitive performance: information processing speed (R(2) = 0.64), executive function (R(2) = 0.56) and associative memory (R(2) = 0.25). These results were then replicated in a separate group of patients without microbleeds. The most influential graph metrics were betweenness centrality and eigenvector centrality, which provide measures of the extent to which a given brain region connects other regions in the network. Reductions in betweenness centrality and eigenvector centrality were particularly evident within hub regions including the cingulate cortex and caudate. Our results demonstrate that betweenness centrality and eigenvector centrality are reduced within network hubs, due to the impact of traumatic axonal injury on network connections. The dominance of betweenness centrality and eigenvector centrality suggests that cognitive impairment after traumatic brain injury results from the disconnection of network hubs by traumatic axonal injury

    CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK

    Get PDF
    In our aging culture, neurodegenerative disorders like Parkinson's disease (PD) are among the most serious health issues. It is a neurological condition that has social and economic effects on individuals. It happens because the brain's dopamine-producing cells are unable to produce enough of the chemical to support the body's motor functions. The main symptoms of this illness are eyesight, excretion activity, speech, and mobility issues, followed by depression, anxiety, sleep issues, and panic attacks. The main aim of this research is to develop a workable clinical decision-making framework that aids the physician in diagnosing patients with PD influence. In this research, we proposed a technique to classify Parkinson’s disease by MRI brain images. Initially, normalize the input data using the min-max normalization method and then remove noise from input images using a median filter. Then utilizing the Binary Dragonfly Algorithm to select the features. Furthermore, to segment the diseased part from MRI brain images using the technique Dense-UNet. Then, classify the disease as if it’s Parkinson’s disease or health control using the Deep Residual Convolutional Neural Network (DRCNN) technique along with Enhanced Whale Optimization Algorithm (EWOA) to get better classification accuracy. Here, we use the public Parkinson’s Progression Marker Initiative (PPMI) dataset for Parkinson’s MRI images. The accuracy, sensitivity, specificity, and precision metrics will be utilized with manually gathered data to assess the efficacy of the proposed methodology

    Significant Association Between Punitive and Compensatory Damages in Blockbuster Cases: A Methodological Primer

    Get PDF
    This article assesses the relation between punitive and compensatory damages in a data set, gathered by Hersch and Viscusi (H-V), consisting of all known punitive damages awards in excess of $100 million from 1985 through 2003. It shows that a strong, statistically significant relation exists between punitive and compensatory awards, a relation that replicates similar findings in nearly all other analyses of punitive and compensatory damages. H-V\u27s claim that no significant relation exists between punitive and compensatory awards in these data appears to be an artifact of questionable regression methodology

    Influence of carbacetam on neurologic destruction processes under the experimental traumatic brain injury

    Get PDF
    Objective of the research. Provide the research of the influence of Carbacetam on the neurologic destruction processes in paraventricular and supraoptic nuclei of the hypothalamus under the experimental traumatic brain injury (TBI).Materials and methods of the research. The research was held by means of white outbred male rats weighing 200±10 g. The modulation of the traumatic brain injury was based on the method of V.M. Eslki and S.V. Ziablitsev (2008), where the TBI was caused due to gravity load on animals with the strike energy of 0.52 J. The lethal outcome during the first 5 days after the TBI was 84%. The control group (n=10) was administered 1 ml of saline intraperitoneally within the 10 days after TBI. The rats of experimental group (n=10) were provided Carbacetam (5 mg per 1 kg) in 1 ml of saline. After the experiment, the animals were decapitated followed by the removal of the brain, and the histological medicines were produced by means of Microtome after the appropriate histological processing. Some sections were stained with hematoxylin and eosin, others - properly prepared before applying the neuromarkers NSE, S-100 and GFAP. The morphological and immune histochemical evaluation of neurodegenerative changes in the nerve tissue were done by the produced medicines.Outcomes and discussion of them. The outcomes of the research show that Carbacetam influences the decrease of the degenerative processes in the neural tissue of paraventricular and supraoptic nuclei of the hypothalamus. The neurons of the animals after TBI being administered with the Carbacetam, are characterized by the restoration of the normal morphological features unlike the rats that did not receive the medicine. Immune histochemical research of the brain neuronal markers confirms the functional recovery of the neurons and astrocytes in the researched areas of the hypothalamus of the rats after administration of Carbacetam. The decrease in the expression of glial markers GFAP and S-100 has been observed, showing the reduction of degenerative changes in the neural tissue. Meanwhile, the expression of neuronal marker NSE has increased, showing high metabolic activity of the nerve cells. However, changes in the expression of the neural markers and glia feature the restoring of normal neuronal activity due to the administration of Carbacetam.Therefore, further research of Carbacetam effects is promising in terms of restoring the neuronal destruction under TBI
    • …
    corecore