1,337 research outputs found

    The AXES submissions at TrecVid 2013

    Get PDF
    The AXES project participated in the interactive instance search task (INS), the semantic indexing task (SIN) the multimedia event recounting task (MER), and the multimedia event detection task (MED) for TRECVid 2013. Our interactive INS focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our INS experiments were carried out by students and researchers at Dublin City University. Our best INS runs performed on par with the top ranked INS runs in terms of P@10 and P@30, and around the median in terms of mAP. For SIN, MED and MER, we use systems based on state- of-the-art local low-level descriptors for motion, image, and sound, as well as high-level features to capture speech and text and the visual and audio stream respectively. The low-level descriptors were aggregated by means of Fisher vectors into high- dimensional video-level signatures, the high-level features are aggregated into bag-of-word histograms. Using these features we train linear classifiers, and use early and late-fusion to combine the different features. Our MED system achieved the best score of all submitted runs in the main track, as well as in the ad-hoc track. This paper describes in detail our INS, MER, and MED systems and the results and findings of our experimen

    Audio-visual football video analysis, from structure detection to attention analysis

    Get PDF
    Sport video is an important video genre. Content-based sports video analysis attracts great interest from both industry and academic fields. A sports video is characterised by repetitive temporal structures, relatively plain contents, and strong spatio-temporal variations, such as quick camera switches and swift local motions. It is necessary to develop specific techniques for content-based sports video analysis to utilise these characteristics. For an efficient and effective sports video analysis system, there are three fundamental questions: (1) what are key stories for sports videos; (2) what incurs viewer’s interest; and (3) how to identify game highlights. This thesis is developed around these questions. We approached these questions from two different perspectives and in turn three research contributions are presented, namely, replay detection, attack temporal structure decomposition, and attention-based highlight identification. Replay segments convey the most important contents in sports videos. It is an efficient approach to collect game highlights by detecting replay segments. However, replay is an artefact of editing, which improves with advances in video editing tools. The composition of replay is complex, which includes logo transitions, slow motions, viewpoint switches and normal speed video clips. Since logo transition clips are pervasive in game collections of FIFA World Cup 2002, FIFA World Cup 2006 and UEFA Championship 2006, we take logo transition detection as an effective replacement of replay detection. A two-pass system was developed, including a five-layer adaboost classifier and a logo template matching throughout an entire video. The five-layer adaboost utilises shot duration, average game pitch ratio, average motion, sequential colour histogram and shot frequency between two neighbouring logo transitions, to filter out logo transition candidates. Subsequently, a logo template is constructed and employed to find all transition logo sequences. The precision and recall of this system in replay detection is 100% in a five-game evaluation collection. An attack structure is a team competition for a score. Hence, this structure is a conceptually fundamental unit of a football video as well as other sports videos. We review the literature of content-based temporal structures, such as play-break structure, and develop a three-step system for automatic attack structure decomposition. Four content-based shot classes, namely, play, focus, replay and break were identified by low level visual features. A four-state hidden Markov model was trained to simulate transition processes among these shot classes. Since attack structures are the longest repetitive temporal unit in a sports video, a suffix tree is proposed to find the longest repetitive substring in the label sequence of shot class transitions. These occurrences of this substring are regarded as a kernel of an attack hidden Markov process. Therefore, the decomposition of attack structure becomes a boundary likelihood comparison between two Markov chains. Highlights are what attract notice. Attention is a psychological measurement of “notice ”. A brief survey of attention psychological background, attention estimation from vision and auditory, and multiple modality attention fusion is presented. We propose two attention models for sports video analysis, namely, the role-based attention model and the multiresolution autoregressive framework. The role-based attention model is based on the perception structure during watching video. This model removes reflection bias among modality salient signals and combines these signals by reflectors. The multiresolution autoregressive framework (MAR) treats salient signals as a group of smooth random processes, which follow a similar trend but are filled with noise. This framework tries to estimate a noise-less signal from these coarse noisy observations by a multiple resolution analysis. Related algorithms are developed, such as event segmentation on a MAR tree and real time event detection. The experiment shows that these attention-based approach can find goal events at a high precision. Moreover, results of MAR-based highlight detection on the final game of FIFA 2002 and 2006 are highly similar to professionally labelled highlights by BBC and FIFA

    Boundary Proposal Network for Two-Stage Natural Language Video Localization

    Full text link
    We aim to address the problem of Natural Language Video Localization (NLVL)-localizing the video segment corresponding to a natural language description in a long and untrimmed video. State-of-the-art NLVL methods are almost in one-stage fashion, which can be typically grouped into two categories: 1) anchor-based approach: it first pre-defines a series of video segment candidates (e.g., by sliding window), and then does classification for each candidate; 2) anchor-free approach: it directly predicts the probabilities for each video frame as a boundary or intermediate frame inside the positive segment. However, both kinds of one-stage approaches have inherent drawbacks: the anchor-based approach is susceptible to the heuristic rules, further limiting the capability of handling videos with variant length. While the anchor-free approach fails to exploit the segment-level interaction thus achieving inferior results. In this paper, we propose a novel Boundary Proposal Network (BPNet), a universal two-stage framework that gets rid of the issues mentioned above. Specifically, in the first stage, BPNet utilizes an anchor-free model to generate a group of high-quality candidate video segments with their boundaries. In the second stage, a visual-language fusion layer is proposed to jointly model the multi-modal interaction between the candidate and the language query, followed by a matching score rating layer that outputs the alignment score for each candidate. We evaluate our BPNet on three challenging NLVL benchmarks (i.e., Charades-STA, TACoS and ActivityNet-Captions). Extensive experiments and ablative studies on these datasets demonstrate that the BPNet outperforms the state-of-the-art methods.Comment: AAAI 202

    Vehicle logo recognition using histograms of oriented gradient descriptor and sparsity score

    Get PDF
    Most of vehicle have the similar structures and designs. It is extremely complicated and difficult to identify and classify vehicle brands based on their structure and shape. As we requirea quick and reliable response, so vehicle logos are an alternative method of determining the type of a vehicle. In this paper, we propose a method for vehicle logo recognition based on feature  selection method in a hybrid way. Vehicle logo images are first characterized by histograms of oriented gradient descriptors and the final features vector are then applied feature selection method to reduce the irrelevant information. Moreover, we release a new benchmark dataset for vehicle logo recognition and retrieval task namely, VLR-40. The experimental results are evaluated on this database which show the efficiency of the proposed approach
    corecore