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1

I N T RO D U C T I O N

According to the Oxford dictionary, instance, when used as a noun, means an example or
a single occurrence of something. This is a sharp definition as it reflects two essences of
an instance, namely generality and specificity. “An example of something” emphasizes
the generality. Instances or examples are often used to describe the kind, and they do so
much better as instances are more concrete than abstract references. “A single occurrence
of something”, on the other hand, emphasizes the specificity of an instance, close to the
original meaning of the word1.

In Chinese, there is no such a single word that has the exact meaning of the English
word instance. Rather, in Chinese, there are two separate words. One is实例 which
refers to an example of something, and the other one is个例 which refers to a single
occurrence of something. Other than the division over two words, the two meanings of
instance are the same in both languages.

The generality of an instance is the property inherited from the kind of which it is
an example. Hence, in one aspect, the generality of an instance does not exist without
being a member of a kind. And, the generality of an instance varies when the kind under
consideration changes2. Since the generality is a group property, all instances will inherit
group identification aspects from the group. Hence, one can predict the generality of an
instance without seeing it by transferring aspects from other instances of the same kind.
For example, without seeing your friend’s newly bought car, you can already predict
confidently that it has wheels, doors and alike.

Specificity is the exclusive property of an instance. One cannot predict the specificity
of an instance without seeing it. You cannot tell the color of your friend’s newly bought
car and the size of the doors without seeing it.

A way of approaching the specificity of an instance could be to derive from adding a
modifier to the generality. For example, having door is the generality of an instance of
car. Adding a modifier, e.g., having the name of the owner engraved on the door, results
in the specificity of the instance. In the sequel, we will explore this property.

Likewise, specificity can be divided into relative specificity and absolute specificity.
Relative specificity is what makes the instance distinct from other instances of the same
kind. Relative specificity, same as generality, varies when the kind under consideration
changes. Absolute specificity, on the other hand, is what makes the instance distinct from
anything else in the world, regardless of the kind.

This point of view suggests two tactics to explain what makes an instance unique.
One tactic is to first describe what makes the instance being an example of a kind, i.e.,

1 According to the Oxford dictionary, in the late 16th century, the word instance denoted a particular case
used to disprove a general assertion.

2 An entity can be an instance of multiple kinds.
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I N T RO D U C T I O N

Figure 1: Following the two-step procedure to explain the uniqueness of the instance
in the left picture (the car), one first explains what makes the instance distinct from
instances which are not cars, namely the instance is 2-3 meters wide, with four wheels,
windshield, head lamps, radiator grille, able to carry a couple of people, etc. Then one
explains what makes the instance different from other instances of car, namely it has an
exotic camouflage-like pattern, black wheels with ten spokes, four round lamps in the
front, etc. As humans share a good understanding of car, we simplify the first step by
just mentioning that the instance is a car. Employing the second tactic which directly
describes what makes the instance distinct from anything else, one needs to describe the
identifying aspects as many as possible to ensure that the description does not apply to
any other things such as the instance in the right picture.

its generality, and then to describe what makes it different from other instances of the
same kind, i.e., its relative specificity. As an instance can be an example of multiple
kinds, there exist multiple combinations of generality and relative specificity to explain
the uniqueness of an instance. This tactic will be referred to as the two-step identification
procedure later. The other tactic is to directly describe what makes the instance distinct
from anything else, i.e., its absolute specificity. This may also be considered as the
extreme combination of generality and relative specificity, where the kind is the one
that contains everything in the world. Regarding the second tactic, often one cannot be
certain whether everything has been taken into account, i.e., one cannot be absolutely
sure whether the description of the instance indeed does not apply to any other instance
in the world. As humans we almost always use the first tactic, since we share a good
understanding of common kinds, like car, and hence can skip the step of describing the
generality by simply mentioning the instance is an example of that kind. See Figure 1 an
example of explaining the uniqueness of an instance of car using the two tactics.

The question can be raised: can an instance be a kind? Following the meaning
“an example of something”, it seems plausible to say human is an instance of mammal.
However, the meaning “a single occurrence of something” implies an instance is an
individual. Following this meaning, it seems not proper to say human is an instance of
mammal as human is not an individual but a kind. It is perhaps debatable whether an
instance can be a kind. Here we divide instances into primary instance, i.e., individuals,
and secondary instances, i.e., kinds, as Aristotle distinguished primary substance from
secondary substance. And we focus on primary instances in this thesis.

And, can an instance be abstract? For example, is an embarrassing moment at
Arnold’s office at 5:27 pm, 26 May, 2016 an instance of embarrassing moment? It is

8



I N T RO D U C T I O N

Figure 2: Barack Obama has unique visual characteristics which make him distinct from
anything else, whereas a set of cars may have identical visual appearance and hence are
not visually distinguishable.

perhaps also debatable. Within this thesis, as we study instances that can be perceived
through visual sense, we only consider physical instances.

We departed from two essences of an instance, generality and specificity. Thus
far, the definition of instance was discussed as an abstract notion. In reality, both the
generality and the specificity of an instance can take different forms: visual, acoustic,
tactile and others. As this thesis is about machine vision, only visual properties are
considered. With this consideration, a more precise definition of visual instance is
needed.

Certain entities in the world are visually unique, such as the Brooklyn Bridge and
Barack Obama (Figure 2: left). They have unique visual characteristics based on which
humans can distinguish them from anything else in the world. Some are not visually
unique, like pencils, clothes and cars (Figure 2: right). Manufacturers often produce
thousands of or even more visually identical copies for one model. For this type of
entities, other non-visual information is required to uniquely identify individuals. You
know the TV set in your living room is yours because it is right there in your living room.
When it is placed in a street, you cannot tell whether or not it is your TV. Having that
discussed, we give the definition of visual instance as follows. A visual instance is a
visually unique entity or a set of entities that have identical visual appearance and hence
are not visually distinguishable. In other words, two things are deemed different visual
instances if and only if they can be differentiated solely based on visual signals.

Any visual instance has a finite spatial extent. Some instances are small, like an
instance of ant or an instance of button. Some instances are big, like an instance of
dam or an instance of mountain. Recreated in pictures, different instances cover image
regions of different portions of the images. Of course, the spatial extent of an instance in
images does not only depend on its spatial extent in the physical world, but also depends
on the camera settings and the intent of the photographer. However, what is generally
true is that, due to the finite spatial extent and common aesthetic sense, an instance, in
images, often covers a part of the image instead of the whole image, like an instance of
car. Exceptions are instances of landscape and instances with interior space where the
camera can be positioned such as instances of room. See Figure 3.

A visual instance can have many and perhaps infinite number of pictorial instan-
tiations. Photos of the same instance may look very different. Such variations come
from two sources. One is that the instance can have appearance changes. Barack Obama
surely will wear different clothes at different occasions. The same dog can be running,
or being curled on a cushion. The other source is that the imaging conditions can be

9



I N T RO D U C T I O N

Figure 3: On the left, an instance of landscape covers the entire image. On the right, an
instance of car covers a portion of the image. The part of the image covered by the car
has the identifying information of the instance, while the rest of the image is in general
uninformative unless this car often comes to this place at sunset.

different. The Brooklyn Bridge can be recorded in rainy days or sunny days. It can be
shot from a helicopter or by a person standing on the bridge. From one point of view, a
particular picture of an instance is considered to be an instance of the instance. In this
thesis, we do not consider a picture as an instance. And visual instance search is the task
of retrieving all images of a target visual instance specified by a query, regardless the
appearance variations in different recordings.

As many other search problems, in visual instance search, a query can be given in
different forms. A query can be a textual description, e.g., ‘Brooklyn Bridge’, known as
query-by-text. Query-by-text allows one to search images from nothing. However, with
a textual query, the images in the collection to be searched through need to have textual
labels obtained manually or automatically [91], or the textual description needs to be
transformed to some meta-representation, which allows for straightforward comparison
with the image data [21]. An obvious limitation of query-by-text is that many visual
instances cannot be specified precisely in textual descriptions. Alternatively, a query can
also be specified by providing example images in what is known as query-by-example.
Giving examples is equivalent to telling the machine that ‘I want to search this visual
instance’. The images in the collection do not need to be labeled. Query-by-example
allows one to search any visual instances, including those that cannot be precisely
described verbally. In this thesis, we focus on visual instance search from example
images. In particular, we consider the extreme case where only 1 example is available.

Visual instance search has strong connections with several other fields in computer
vision. It is important to 3D reconstruction from 2D images. Reconstructing a 3D object
requires images of the object captured from different angles to have a good cover of the
object. A powerful instance search algorithm can help find a diverse set of images of
the target to facilitate the reconstruction [145]. Tasks like video description, generating
a story automatically for a video, can also benefit from a good instance recognition
and search algorithm, as often what is interesting in a video is something happening to
a particular instance like this person and that car. Tracking may be considered as an
instance search problem where the search set is composed of a set of images ordered by
time. We will return to tracking later.

There are also many practical applications that motivate visual instance search. In
the search for a suspect, footage from surveillance cameras in streets can be used to find
the suspect. The same scenario can be generalized to sending a fleet of drones to locate
one suspect. The core technology here is visual instance search. Or, imagine you are

10



I N T RO D U C T I O N

Figure 4: The left and middle images in each row depict the same instance while the right
image shows a different instance. Images of the same instance can look very different
while images of different instances can sometimes look very similar.

visiting a museum and you are very interested in one piece of art. You can simply take a
photo of the art and the instance search algorithm can help find it automatically on the
Internet with all affiliated information.

As humans we can instantaneously recognize visual instances with almost perfect
recognition accuracy. We are amazingly good at searching visual instances. For machines,
however, it is a challenging task. Although compared to humans, machines have the
advantage of being capable of efficiently searching through millions of images, so far the
searching accuracy of an automatic system has been nowhere near human performance.
On the one hand, the same instance can vary tremendously in appearance in different
recordings due to scale change, rotation, illumination variation, viewpoint change, occlu-
sion, self-deformation and other factors. As a consequence, the visual appearance lacks
the visual invariant characteristics ascribed verbally to typical examples. On the other
hand, although a visual instance has its unique visual characteristics, different instances,
especially those belonging to the same or nearby classes of objects, share similar aspects
of appearances and therefore cause the hardness of distinction. See Figure 4.

The powerful human vision is at least partially the consequence of a lifelong process
of seeing and learning. In image categorization, the current best algorithms [60,150,153]
can perform as well as humans under clear circumstances via learning from hundreds
of or even more examples per category. However, the fact that one wants to search for
images of a visual instance implies that the requestor does not have many images of
that instance. In the query-by-example instance search problem, the number of example
images that the machine can learn from is usually very limited. It is an extremely
challenging case when there is only 1 example available as we consider here. One
example can only show one side of an instance while the instance can have several sides.
See Figure 5 an example.

As the main question for this thesis, given 1 image of a visual instance, how to find
all the examples of the instance automatically from a collection despite all appearance
variations it may have and despite the confusion with other similar instances? The main
question generates special cases. A relatively easy case is where there are only one-sided
views of an instance. In such case, matching the query image and the target suffices. This
is still a formidable problem considering that there is no clue in what image and where

11
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Figure 5: One image can only show one side of an instance while the instance can have
several sides. It is a very challenging case when there is only 1 query example available.

in the image the target instance would appear. See Figure 6a. A particularly hard case is
a query specified in frontal view while the relevant images in the search set show a view
from the back which has never been seen before. See Figure 6b.

Since the introduction of the bag of visual words (BoW) formulation in 2003 [151],
BoW and its improved variants have become the most popular paradigm to address
instance search from one example [8, 73, 76, 133, 136, 158]. Approaches belonging to
this paradigm match the appearance of local image patches in the potential image to the
query image. In other words, this paradigm relies on gathering in the potential image
local evidence of the presence of the target instance. Existing approaches search for the
evidence over the entire image, ignoring an important fact that the target instance often
occupies a (small) portion of the image. When the entire image is considered, the sup-
portive evidence might drown in the sea of disturbing information from the background.
With this in mind, we pose our first research question:

Can we exploit locality for better instance search accuracy?

This research question is addressed in Chapter 2. Instead of searching globally
over the entire image, we propose to search locally in the image by evaluating many
bounding boxes holding candidates for the target instance. An efficient storage and
evaluation mechanism is proposed to efficiently evaluate hundreds of or even thousands
of boxes per image. Furthermore, in Chapter 2, we also bring locality in the feature
space, by efficiently employing a large visual vocabulary and an exponential similarity
metric, to better measure the local evidence. This line of approaches resembles the
tactic of directly identifying the ‘absolute specificity’, where the risk, as discussed, is
that it is hard to ensure what is thought to be the absolute specificity of an instance
is indeed so. Therefore, we introduce locality in the feature space to impose a strict
matching criterion so that only very precise matches of local patches between the tar-
get image and the query count, as a way to reduce confusion from other, similar instances.

A type of instances that has received much attention are logos and other iconic visual
symbols [80, 139–141]. Companies, organizations and even individuals use logos to
promote public recognition. An accurate logo search system is useful as it can help
measure the exposure by for example searching through the images uploaded to the
social websites. Chapter 3 puts an emphasis on logos. When restricting the search to
certain types of instances, as humans we often use specific domain knowledge. For
example, when searching for a specific bird, we would focus on the beak, belly and tail

12
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(a)

(b)

Figure 6: (a) Two images of the postnl logo. Logo is an example of 2D objects with only
one-sided views. Instance search of 2D objects is relatively easy since the viewpoint
difference is often limited as a consequence of being one-sided. However, this is still a
formidable problem as there is no clue in what image and where in the image the target
instance would appear. (b) Three images of an instance of shoe. Shoe is an example of
3D objects with views from multiple sides. A hard case is that the left image showing the
frontal view of the instance is given as the query and the goal is to find the middle image
showing the back view of the shoe.

13
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as we know it is the unique detail on these local parts that makes a specific bird unique
in appearance [45, 181, 190]. We pose the research question:

Can we exploit domain knowledge for better search accuracy on logos?

But what is the domain knowledge for logos? Logos are a special type of instances.
Text is often a part of a logo. Companies and organizations usually put their names in
the logo for better public recognition. In Chapter 3, we exploit the recognized text in the
image to improve logo search.

In the first two chapters, we focus on particular types of visual instances, mainly
buildings and logos. In the next chapters, we pursue instance search on a much broader
set of visual instances. The ultimate goal is arbitrary instance search where any visual
instance is searchable. We phrase the research question

Can we design a generic method capable of searching for an arbitrary visual in-
stance?

This research question is initially addressed in Chapter 4. Here we first investigate
how the state-of-the-art methods perform on generic instance search from 1 example
where the query instance can be an arbitrary object. Can we search for other objects like
shoes using the same method that has been shown promising for buildings? To that end,
we evaluate several existing instance search algorithms [76, 77, 120, 138, 156] on both
buildings and shoes, two very different types of objects. The conclusion is that none of
the existing methods work well on both buildings and shoes. Interestingly, the method
proposed in Chapter 2 achieves the best performance on buildings, but loses its generality
on shoes, performing worse than all other methods. And a method that works best on
shoes performs worst on buildings.

Why is it so difficult to perform well on both buildings and shoes? The root is the
different characteristics of buildings and shoes. Buildings, especially the famous ones,
like those in the Oxford dataset [133], usually have one main side where people often
take photos. Therefore, buildings are approximately 2D and one-sided objects. The
consequence of being one-sided is that the viewpoint variations of these instances in the
images are limited. And, instances like building often have rich textures. The limited
viewpoint variations and the rich visual details render methods which rely on matching
unique local details suited, as the local details can be reliable matched across different
images under limited viewpoint variations [109]. To the contrary, objects like shoes
are real 3D objects, and when photographed from every possible viewing angles, have
large viewpoint variations. Moreover, shoes usually do not have rich textured patterns.
These properties make methods based on matching local details inferior. Rather, certain
methods that capture general information how such objects in general look from all sides
are desired.

A generic method for instance search has to be able to extract different levels of
information when dealing with different types of instances. When searching for instances
like buildings, the extracted information has to capture the specifically identifying de-
tails for that building. When searching for instances like shoes, however, the extracted
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information needs to capture the general view of the shoe informative from all sides, as
it is yet unknown which of the views will be present in the dataset. In Chapter 4, we
present a generic, data-driven, method, aiming to handle various types of instances. The
proposed method learns, from a set of instances of the same category, a group of visual
aspects. These visual aspects are learned to be invariant to occasional recording factors
like viewpoint change. And, these aspects are generalizable to new, previously unseen,
instances of the same category. The aspects are a useful basis to derive the relative
specificity of an instance in the two-step identification procedure to make within-category
distinction. In fact, these aspects are category-specific attributes. For example, in the
case of shoe search where shoe is the category, the attributes roughly coincide with what
humans would call high-heel, boot and openness, to name a few. Given the aspects as
learned automatically, the specificity of an instance is derived by precisely quantifying
the visual aspects of the example image, e.g., heel of this height and openness to this
extent. This is a direct consequence of the discussion above that specificity of an instance
can be seen as a modifier to general aspects.

In the fifth chapter of the thesis, we make a connection between generic instance
search from 1 example and visual object tracking. In tracking, the goal is to follow an
instance throughout the video by predicting its locations in frames, starting from one
observation of the target instance, usually provided in the initial frame of the sequence.
The main challenge is to cope with the appearance variations the target may undergo
over time due to scale changes, in and out-of-plane rotation, camera motion, uneven
illumination, deformation, occlusion and other factors. As mentioned earlier, one way
of viewing tracking is to think tracking as an instance search problem where the dataset
to search through contains a set of images ordered by time. The temporal coherence in
tracking videos has motivated many tracking algorithms with a focus on motion [19, 66]
and sequential modeling [57,61,189]. As a result, the connection between visual instance
search and tracking has been obfuscated. Tracking and instance search have been two
independent research topics for a long time without interaction. This brings us to the
next research question of the thesis.

Can we address tracking as an instance search problem (over the video at hand)?
That is, can we handle tracking without taking the temporal coherence into account?

The question is addressed in Chapter 5. From the standpoint of the conventional
standard tracking literature the proposed tracker is simple: it tracks the target instance
simply by retrieving in each incoming frame the patch that is most similar in appearance
to the initial patch of the target. This simple way of tracking is similar to the simplicity of
the normalized cross-correlation (NCC) tracker which was proposed 40 years ago [17,34].
However, from the point of view of answering what is really relevant to detect the same
instance in several different images, the proposed algorithm is highly sophisticated and
flexible, as it externally learns all the possible visual variations of any object, even if
this object has never been seen before by the tracker. The proposed tracker only has an
instance search core with a powerful similarity metric which is learned in an end-to-end
manner using a Siamese deep convolutional neural network [18, 25]. The tracker does
not apply on-the-fly sequential learning [57, 61, 189], occlusion detection [66, 127, 129],
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combination of trackers [65, 173], geometric matching [65, 129] and alike.

This thesis is dedicated to visual instance search from 1 example. The thesis starts
with developing methods for particular types of visual instances, continues with design-
ing generic algorithms for a much broader set of instances, and ends on connecting visual
instance search and tracking. Findings of this thesis may lead to a better understanding of
what makes an instance an example of something and a single occurrence of something
in the visual scope.

1.1 M AT E R I A L S F O R T H E R E M A I N I N G C H A P T E R S

• Chapter 2 is based on “Locality in Generic Instance Search from One Example”,
published in IEEE Conference on Computer Vision and Pattern Recognition, 2014,
by Ran Tao, Efstratios Gavves, Cees Snoek and Arnold Smeulders [156].

Contribution of authors
Ran Tao: all aspects
Efstratios Gavves: helped with designing the method
Cees Snoek: supervised the research
Arnold Smeulders: supervised the research

• Chapter 3 is based on “Words Matter: Scene Text for Image Classification and
Retrieval”, under review for publication in IEEE Transactions on Multimedia, by
Sezer karaoglu, Ran Tao, Theo Gevers and Arnold Smeulders [83].

Contribution of authors
Sezer Karaoglu and Ran Tao equally contributed to this work. Theories and algo-
rithms were developed together. Sezer Karaoglu focused on implementing textual
cue extraction, whereas Ran Tao focused on implementing visual cue extraction for
fine-grained classification and logo retrieval tasks. The experiments, the analysis
and paper writing were performed by Sezer Karaoglu and Ran Tao.
Theo Gevers and Arnold Smeulders supervised the research.

• Chapter 4 is based on “Attributes and Categories for Generic Instance Search from
One Example”, published in IEEE Conference on Computer Vision and Pattern
Recognition, 2015, by Ran Tao, Arnold Smeulders and Shih-Fu Chang [157].

Contribution of authors
Ran Tao: all aspects
Arnold Smeulders: supervised the research
Shih-Fu Chang: supervised the research
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1.1 M AT E R I A L S F O R T H E R E M A I N I N G C H A P T E R S

• Chapter 5 is based on “Siamese Instance Search for Tracking”, published in
IEEE Conference on Computer Vision and Pattern Recognition, 2016, by Ran Tao,
Efstratios Gavves and Arnold Smeulders [155].

Contribution of authors
Ran Tao: all aspects
Efstratios Gavves: supervised the research
Arnold Smeulders: supervised the research
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L O C A L I T Y I N I N S TA N C E S E A R C H F RO M O N E E X A M P L E

2.1 I N T RO D U C T I O N

1 In instance search the ideal is to retrieve all pictures of an object given a set of query
images of that object [7, 73, 125, 135]. Similar to [8, 26, 133, 139, 160], we focus on
instance search on the basis of only one example. Different from the references, we focus
on generic instance search, like [9, 76, 131], in that the method will not be optimized for
buildings, logos or another specific class of objects.

The challenge in instance search is to be invariant to appearance variations of the
instance while ignoring other instances from the same type of object. With only one
example, generic instance search will profit from finding relevant unique details, more
than in object categorization, which searches for identifying features shared in the class
of objects. The chances of finding relevant unique details will increase when their
representation is invariant and the search space is reduced to local and promising areas.
From this observation, we investigate ways to improve locality in instance search at two
different levels: locality in the picture and locality in the feature space.

In the picture, we concentrate the search for relevant unique details to reasonable
candidate localizations of the object. Spatial locality has been successfully applied in
image categorization [59, 161]. It is likely to be even more successful in instance search
considering that there is only one training example and the distinctions to the members of
the negative class are smaller. The big challenge here is to keep the number of candidate
boxes low while retaining the chance of having the appropriate box. The successful
selective search [162] is still evaluating thousands of candidate boxes. Straightforward
local picture search requires a demanding 1,000s-fold increase in memory to store the
box features. We propose efficient storage and evaluation of boxes in generic instance
search. We consider this as the most important contribution of this work.

In the feature space, local concentration of the search is achieved in two ways.
The first tactic is using large visual vocabularies as they divide the feature space in
small patches. In instance search, large vocabularies have been successfully applied
in combination with Bag of Words (BoW), particularly to building search [110, 133,
134]. Without further optimizations to buildings [27, 133], BoW was shown inferior in
performance in instance search to VLAD and Fisher vector [76]. Therefore, we focus
on the latter two for generic instance search. Yet the use of large vocabularies with
these methods is prohibited by the memory it requires. We propose the use of large
vocabularies with these modern methods.

1 Published in IEEE Conference on Computer Vision and Pattern Recognition, 2014 [156].
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Localized instance search resultLocality in the feature space
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Locality in the imageOne example
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Figure 7: We propose locality in generic instance search from one example. As the first
novelty, we consider many boxes as candidate targets to search locally in the picture by
an efficient point-indexed representation. The same representation allows, as the second
novelty, the application of very large vocabularies in Fisher vector and VLAD to search
locally in the feature space. As the third novelty, we propose the exponential similarity
to emphasize local matches in feature space. The method does not only improve the
accuracy but also delivers a reliable localization.

As a second tactic in the feature space, we propose a new similarity function, named
exponential similarity, measuring the relevance of two local descriptors. The exponential
similarity enhances locality in the feature space in that the remote correspondences are
punished much more than the closer ones. Hence this similarity function emphasizes
local search in the feature space.

As the first novelty in this work, we aim for an efficient evaluation of many boxes
holding candidates for the target by a point-indexed representation independent of their
number. The representation allows, as the second novelty, the application of very
large vocabularies in Fisher vector and VLAD in such a way that the memory use is
independent of the vocabulary size. The large vocabulary enables the distinction of local
details in the feature space. Thirdly, we propose the exponential similarity function
which emphasizes local matches in the feature space. We summarize our novelties in
Figure 7. We demonstrate a drastic increase in performance in generic instance search,
enabled by an emphasis on locality in the feature space and the image.

2.2 R E L AT E D W O R K

Most of the literature on instance search, also known as object retrieval, focuses on
a particular type of object. In [8, 133, 134] the search is focused on buildings, for
which vocabularies of 1M visual words successfully identify tiny details of individual
buildings. For the same purpose, building search, geometrical verification in [133],
improves the precision further, and query expansion in [26, 27] with geometrically
verified examples further improves recall. For the topic of logos specifically, in [139], a
method is introduced by utilizing the correlation between incorrect keypoint matches
to suppress false retrievals. We cover these hard problems on buildings and logos, but
at the same time consider the retrieval of arbitrary scenes. To that end, we consider the
three standard datasets, Oxford5k [133], BelgaLogos [80] and the Holidays dataset [73]
holding 5,062, 10,000 and 1,491 samples each. We do the analysis to evaluate one and
the same generic method. Besides, we define a new dataset, TRECVID50k, which is a
50,000 sample of the diverse TRECVID dataset [125] for generic instance search.
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BoW quantizes local descriptors to closest words in a visual vocabulary and produces
a histogram counting the occurrences of each visual word. VLAD [76] and Fisher
vector [130] improve over the performance of BoW by difference encoding, subtracting
the mean of the word or a Gaussian fit to all observations respectively. As VLAD and
Fisher vector focus on differences in the feature space, their performance is expected to
be better in instance search, especially when the dataset grows big. We take the recent
application to instance search of VLAD [9, 76] and Fisher vector [76, 131] as our point
of reference.

In [110,123,133], the feature space is quantized with a large BoW-vocabulary leading
to a dramatic improvement in retrieval quality. In VLAD and Fisher vector, storing the
local descriptors in a single feature vector has the advantage that the similarity between
two examples can readily be compared with standard distance measures. However,
such a one-vector-representation stands against the use of large vocabularies in these
methods, as the feature dimensionality, and hence the memory footprint, grows linearly
with the vocabulary size. Using a vocabulary with 20k visual clusters will produce
a vector with 2.56M dimensions for VLAD [9]. In this study, we present a novel
representation independent of the vocabulary size in memory usage, effectively enabling
large vocabularies.

Spatial locality in the picture has shown a positive performance effect in image
categorization [59, 161]. Recent work [5, 35, 162] focuses on generating candidate object
locations under a low miss rate. Selective search [162] oversegments the image and
hierarchically groups the segments with multiple complementary grouping criteria to
generate object hypotheses, achieving a high recall with a reasonable number of boxes.
We adopt selective search for instance search, but the method we propose will function
for any other location selection method.

Spatial locality has been applied in retrieval [79, 88, 96]. [88] applies BoW on very,
very many boxes inserted in a branch and bound algorithm to reduce the number of
visits. We reduce their number from the start [162], and we adopt the superior VLAD
and Fisher vector representations rather than BoW. [79] randomly splits the image into
cells and applies BoW model. [96] proposes a greedy search method for a near-optimal
box and uses the score of the box to re-rank the initial list generated based on global
BoW histograms. The reference applies locality after the analysis, relying on the quality
of the initial result. The method in the reference is specifically designed for BoW, while
we present a generic approach which is applicable to VLAD, Fisher vector and BoW
as well. The authors in [9] study the benefits of tiling an image with VLADs when
searching for buildings which cover a small portion of an image. In the reference, an
image is regularly split into a 3 by 3 grid, and 14 boxes are generated, 9 small ones, 4
medium ones (2 x 2 tiles), and the one covering the entire image. A VLAD descriptor is
extracted from each of the boxes and evaluated individually. In this work, we investigate
the effect of spatial locality using the candidate boxes created by the state-of-the-art
approach in object localization rather than tiling, and evaluate on a much broader set of
visual instances.

The exponential similarity function introduced in this work is similar to the thresh-
olded polynomial similarity function recently proposed in [158] and the query adaptive
similarity in [136] in that all pose higher weights on closer matches which are more likely
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to be true correspondences. However, our proposal has fewer parameters than [158] and
does not need the extra learning step of [136].

2.3 L O C A L I T Y I N T H E I M AG E

Given the query instance outlined by a bounding box, relevant details in a positive
database image usually occupy only a small portion of the image. Analyzing the entire
database image in the search is suboptimal as the real signal on the relevant region will
drown in the noise from the rest. The chance of returning an image which contains the
target instance is expected to be higher if the analysis is concentrated on the relevant part
of the image only. To this end, we propose to search locally in the database image by
evaluating many bounding boxes holding candidates for the target and ranking the images
based on the per-image maximum scored box. Generating promising object locations
has been intensively researched in the field of category-level object detection [5, 35, 162].
We adopt selective search [162] to sample the bounding boxes.

Evaluating many bounding boxes per database image, however, is practically infeasi-
ble in combination with VLAD or Fisher vector, since the VLAD or Fisher representations
for all the boxes are either too expensive to store or too slow to compute on-the-fly. On
the 5,062 images of the Oxford5k dataset [133], selective search will generate over 6
million boxes. With VLAD encoding this will generate over 700 gigabytes even with
a small vocabulary consisting of 256 clusters. We therefore propose to decompose the
one-vector representations into point-indexed representations, which removes the linear
dependence of the memory requirement on the number of sampled boxes. Furthermore,
we decompose the similarity function accordingly for efficient evaluation, saving on an
expensive online re-composition of the one-vector representation. In the following we
first briefly review VLAD and Fisher vector, and then describe the decomposition of the
appearance models and the similarity measure, which allows to evaluate boxes efficiently
in a memory compact manner.

2.3.1 Global appearance models

Let P = {pt, t = 1...T } be the set of interest points and X = {xt, t = 1...T } be the
d-dimensional local descriptors quantized by a visual vocabulary C = {ci, i = 1...k} to
its closest visual word q(x) = argminc∈C‖x − c‖2, where ‖.‖ is the `2 norm.

Where BoW counts the occurrences of each visual word into a histogram VB =
[w1, ...wk] with wi =

∑
xt∈X:q(xt)=ci

1, VLAD sums the difference between the local
descriptor and the visual word center, which results in a d-dimensional sub-vector per
word vi =

∑
xt∈X:q(xt)=ci

(xt − ci), concatenated into:VV = [v1, ..., vk]. VLAD quantifies
differentiation within the visual words and provides a joint evaluation of several local
descriptors.

Fisher vector models the local descriptor space by a Gaussian Mixture Model,
with parameters λ = {ωi,µi,σi, i = 1, ..., k} where ωi,µi,σi are the mixture weight,
mean vector and the standard deviation vector of the ith component. Fisher vector
describes how a set of local descriptors deviates from the universal distribution of the
local descriptor space via taking the gradient of the set’s log likelihood with respect
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to the parameters of the GMM, first applied to image classification by Perronnin et
al. [130,132]. Later the gradient with respect to the mean was applied to retrieval [76,131]:
gi =

1√
ωi

∑T
t=1 γt(i)

xt−µi
σi

where γt(i) is the assignment weight of xt to Gaussian i. We
drop T from the denominator as mentioned in [76], as it will be canceled out during
normalization. The Fisher vector representation VF is the concatenation of gi for i = 1...k
: VF = [g1, ..., gk].

2.3.2 Decomposition of appearance models

Decomposing a VLAD vector into point-indexed features is straightforward. The de-
scription of an interest point pt with local descriptor xt in VLAD is simply represented
by the index of the closest visual word plus the difference vector with the word center

{qind(xt); dt = xt − q(xt)}. (2.1)

Before we can decompose Fisher vectors, we note that in the original implementation
each local descriptor contributes to all k Gaussian components, which imposes a serious
memory burden as each point will produce k different representations. We thereby modify
the original formulation by allowing association with the largest assignment weights only.
A similar idea has been explored for object detection in [24], where only the components
with assignment weights larger than a certain threshold are considered. After rewriting
the above equation for gi into gi =

∑
xt∈X:γt(i),0

γt(i)
√
ωi

xt−µi
σi

, the description of a point in

the truncated Fisher vector, tFV, is given by the index r j
t of the Gaussian component with

jth largest soft assignment weight, the assignment weight divided by the square root of
the mixture weight and similar to the VLAD-case, the difference to the mean. Point pt is
represented by

{[r j
t ;
γt(r

j
t )√
ωr j

t

; dt j =
xt − µr j

t

σr j
t

], j = 1...m}. (2.2)

Apparently, the memory consumption of the point-indexed representations is inde-
pendent of the number of boxes. However, as in VLAD and tFV the difference vectors
have the same high dimensionality as the local descriptors, the memory usage of the
representations is as yet too large. Hence, we propose to quantize the continuous space
of the difference vectors into a discrete set of prototypic elements and store the index
of the closest prototype instead of the exact difference vector to arrive at an arbitrarily
close approximation of the original representation in much less memory. As in [74], the
difference vectors are split into pieces with equal length and each piece is quantized
separately. We randomly sample a fixed set of prototypes from real data and use the same
set to encode all pieces. Denote the quantization function by q̃ and the index of the as-
signed prototype by q̃ind. Each difference vector dt is represented by [q̃ind(dts), s = 1...l],
where dts is the sth piece of dt. The quantized point-indexed representations are memory
compact, and box independent. To allow the evaluation of bounding boxes, we also store
the meta information of the boxes, such as the coordinates, which costs a small extra
amount of space.
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2.3.3 Decomposition of similarity measure

Cosine similarity is the de facto similarity measure for VLAD [9, 76] and Fisher vec-
tor [76, 131], and hence for tFV. We propose to decompose accordingly the similarity
measure into pointwise similarities, otherwise the one-vector-representation of a box has
to be re-composed before being able to measure the similarity score of the box.

To explain, first consider the decomposition of the cosine similarity for BoW his-
tograms. Let Q be the query box with XQ = {xQ

1 , ..., xQ
nQ} local descriptors and let

XR = {xR
1 , ..., xR

nR
} be the local descriptors of a test box R. The cosine similarity between

histograms VQ
B = [wQ

1 , ..., wQ
k ] and VR

B = [wR
1 , ..., wR

k ] is:

S QR
B =

1

‖VQ
B‖‖V

R
B‖

k∑
i=1

wQ
i wR

i . (2.3)

For the sake of clarity, we will drop the normalization term 1
‖VQ

B ‖‖V
R
B‖

in the following

elaboration. By expanding wQ
i , wR

i with
∑nQ

z=1 qind(xQ
z ) == i,

∑nR
j=1 qind(xR

j ) == i and
reordering the summations the equation turns to

S QR
B =

nR∑
j=1

nQ∑
z=1

(qind(xR
j ) == qind(xQ

z )) · 1. (2.4)

We define the term (qind(xR
j ) == qind(xQ

z )) · 1 in Equation 2.4 as the pointwise

similarity between xR
j and xQ

z . Denoting (qind(xR
j ) == qind(xQ

z )) by δ jz we derive the
pointwise similarity for BoW as

Ŝ B(xR
j , xQ

z ) = δ jz · 1. (2.5)

The VLAD-similarity S QR
V can be decomposed in a similar way into a summation of

pointwise similarities, defined as

ˆS V(xR
j , xQ

z ) = δ jz < dR
j , dQ

z >, (2.6)

where dR
j and dQ

z are the differences with the corresponding visual word centers. Replac-
ing the exact difference vectors with the quantized versions, we derive

ˆS V(xR
j , xQ

z ) = δ jz

l∑
i=1

< q̃(dR
ji), q̃(dQ

zi ) > . (2.7)

As the space of the difference vectors has been reduced to a set of prototypical
elements, the pairwise dot products D(i, j) between prototypes can be pre-computed.
Inserting the pre-computed values, we end up with

ˆS V(xR
j , xQ

z ) = δ jz

l∑
i=1

D(q̃ind(dR
ji), q̃ind(dQ

zi )). (2.8)
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In the same manner, the pointwise similarity measure for tFV approximated up to
the mth Gaussian, can be derived as follows:

Ŝ A(xR
j , xQ

z ) =
m∑

f ,h=1

ψ
f h
jz < dR

j f , dQ
zh >, (2.9)

where

ψ
f h
jz = (r f

j == rh
z )
γ j(r

f
j )γz(rh

z )√
ωr f

j

√
ωrh

z

. (2.10)

Inserting the pre-computed values, we arrive at

Ŝ A(xR
j , xQ

z ) =
m∑

f ,h=1

ψ
f h
jz

l∑
i=1

D(q̃ind(dR
j fi), q̃ind(dQ

zhi
)). (2.11)

The evaluation of sampled bounding boxes is as follows. The approach computes
the score of each interest point of the database image through the pointwise similarity
measure described above, and obtains the score of a certain bounding box by summing the
scores over the points which locate inside the box. Considering that the pointwise scores
only need to be computed once and the box scores are acquired by simple summations,
the proposed paradigm is well suited for evaluating a large number of boxes.

2.4 L O C A L I T Y I N T H E F E AT U R E S PAC E

In this section we continue on localizing the search in the feature space with two different
tactics.

2.4.1 Large vocabularies

We employ large vocabularies in order to shrink the footprint of each word to a local
comparison of close observations. This will suppress the confusion from irrelevant ob-
servations as they are less likely to reside in the same small cells as the query descriptors.
Moreover, small visual clusters can better capture the details in the local feature space,
enabling distinction between very similar observations.

It is practically infeasible to apply very large vocabularies directly in the standard
VLAD and Fisher vector as the dimensionality of VLAD and Fisher representation grows
linearly with the size of the vocabulary. However, the point-indexed representation
described in the previous section allows the application of very large vocabularies in
VLAD and Fisher vector effortlessly. Its memory consumption is independent of the size
of the vocabularies, as for each point it only requires storing m numbers for tFV (and 1
for VLAD) to indicate the associated visual clusters.
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2.4.2 Exponential similarity

In instance search it is reasonable to reward two descriptors with a disproportionally
high weight when they are close, as we seek exact unique details to match with the detail
of the one query example. The pointwise similarities in equations 2.6 and 2.9 do not
meet this property. We enhance locality in the feature space by exponential similarity.

Without loss of generality, we consider the VLAD case as an example to elaborate.
The exponential pointwise similarity for VLAD coding is expressed as

ˆS exp
V (xR

j , xQ
z ) = δ jz · exp(β · f (dR

j , dQ
z )), (2.12)

where f (dR
j , dQ

z ) measures the cosine similarity of the two difference vectors, and β is a
parameter which controls the shape of the exponential curve.

The rate of the change is captured by the first-order derivate. The derivate of the
above exponential similarity function with respect to the cosine similarity is

∂ ˆS exp
V (xR

j , xQ
z )

∂ f (dR
j , dQ

z )
= δ jz · exp(β · f (dR

j , dQ
z )) · β. (2.13)

Indeed, the rate of similarity change increases as the two observations get closer.
The proposed exponential similarity emphasizes locality in the feature space, putting

disproportionally high weight on close matches.

2.5 E X P E R I M E N T S

2.5.1 Experimental setup

Datasets. We evaluate the proposed methods on 3 datasets, namely Oxford build-
ings [133], Inria BelgaLogos [80]and Inria Holidays [73]. Oxford buildings contains
5,062 images downloaded from Flickr. 55 queries of Oxford landmarks are specified,
each by a query image and a bounding box. BelgaLogos is composed of 10,000 press
photographs. 55 queries are defined, each by an image from the dataset and the logo’s
bounding box. Holidays consists of 1,491 personal holiday pictures, 500 of them used as
queries. For all datasets, the retrieval performance is measured in terms of mean average
precision (mAP).
Local descriptors. We use the Hessian-Affine detector [108, 128] to extract interest
points on Oxford5k and BelgaLogos while the public available descriptors are used
for Holidays. The SIFT descriptors are turned into RootSIFT [8], and the full 128D
descriptor is used for VLAD as in [9], while for Fisher vector and tFV, the local descriptor
is reduced to 64D by PCA, as [76,144] have shown PCA reduction on the local descriptor
is important for Fisher vector, and hence also for tFV.
Vocabularies. The vocabularies for Oxford buildings are trained on Paris buildings [134],
and the vocabularies for Holidays are learned from Flickr60k [73], the same as in [9].
For BelgaLogos the vocabularies are trained on a random subset of the dataset.
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Figure 8: Impact of the parameter m on the performance of tFV. The parameter m
controls the number of Gaussian components each point is assigned to. The straight
line is for m = 256, the standard Fisher vector implementation. It is clear that the first
assignment is by far the most important one.

2.5.2 Truncated Fisher vector

We first evaluate the performance of tFV with different values of m, which controls the
number of Gaussian components each SIFT descriptor is associated with. We compare
tFV with the original Fisher vector under the same setting, where a GMM with 256
components is learned to model the feature space and the full database image is used
during the search.

As shown in Figure 8, m has little impact on the result. tFV and the original Fisher
vector have close performance. In the following experiments, we set m = 2 for tFV.

2.5.3 Spatial locality in the image

In this experiment we test whether adding spatial locality by analyzing multiple bounding
boxes in a test image improves the retrieval performance, as compared to the standard
global retrieval paradigm where only the full image is evaluated. For the localized
search, we use the highest scored box as the representative of the image to rank the test
examples. We use the same vocabulary with 256 visual clusters for both global retrieval
and localized retrieval. In order to ensure a fair comparison and show the influence of
spatial locality, we apply `2 normalization in all cases. The results are shown in Table 1.

Localized search has a significant advantage on Oxford5k (landmarks) and BelgaLo-
gos (small logos), in short for fixed shape things, while on the scene-oriented Holidays
dataset, global search works slightly better.

When searching for an object which occupies part of the image, see Figure 9,
introducing spatial locality is beneficial, as the signal to noise ratio within the bounding
box is much higher than the entire image, especially for small non-conspicuous objects.
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VLAD tFV
global [76] local global [76] local

Oxford5k 0.505 0.576 0.540 0.591
BelgaLogos 0.107 0.205 0.120 0.219
Holidays 0.596 0.597 0.620 0.610

Generic 0.403 0.460 0.427 0.473

Table 1: The influence of spatial locality. Localized search evaluates multiple locations
in a database image and takes the highest scored box as the representative, while
global search [76] evaluates the entire image. To ensure a fair comparison and show
the influence of spatial locality, we use the same vocabularies with 256 clusters and
`2 normalization for both localized search and global search. Localized search is
advantageous on object-oriented datasets, namely Oxford5k and BelgaLogos, while on
scene-oriented Holidays, global search works slightly better. As the average mAP over
the three datasets in the last row shows, the proposed localized search is generic, working
well on a broad set of instances.

Figure 9: The effect of spatial locality. Query instances are shown on the left, delineated
by the bounding box. On the right are the top 5 retrieved examples. For each query
example, the upper row and lower row are results returned by global search and localized
search respectively. Positive (negative) samples are marked with green (red) borders.
Focusing on local relevant information, localized search has successfully ranked and
discovered the instance despite the presence of a noisy background.

However, when looking for a specific scene which stretches over the whole picture,
adding spatial locality cannot profit. As whether it is an edifice, a logo, an object or
alternatively a scene is a property of the query, it can be specified with a simple question
at query-time whether to use locality or globality in the search.
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VLAD tFV
256 2048 20k 256 2048 20k

Oxford5k 0.576 0.670 0.724 0.591 0.673 0.734
BelgaLogos 0.205 0.246 0.271 0.219 0.241 0.280
Holidays 0.597 0.667 0.727 0.610 0.684 0.737

Generic 0.460 0.528 0.574 0.473 0.533 0.584

Table 2: The influence of vocabulary size. Three sets of vocabularies are evaluated
for box search, with 256, 2048 and 20k visual clusters respectively. Increasing the
vocabulary size leads to better performance for all datasets.

2.5.4 Feature space locality by large vocabularies

In this section we evaluate the effectiveness of large vocabularies which impose locality
in feature space by creating small visual clusters. Table 2 lists the retrieval accuracy. It
shows increasing the vocabulary size improves the performance in all cases.

Large vocabularies better capture the small details in the feature space, advantageous
for instance search where the distinction between close instances of the same category
relies on subtle details. However, there is no infinite improvement. We have also tested
VLAD200k on Oxford5k and BelgaLogos, and the mAP is 0.723 and 0.266 respectively,
no further increase compared to VLAD20k. Creating a GMM with 200k Gaussian
components is prohibitively expensive in terms of computation, but we expect the same
behavior as VLAD. The quantified differentiation within the visual clusters will be
superfluous or even adverse when the visual cluster is so small that the hosted local
descriptors represent the same physical region in the real world. Before reaching the
gate, large vocabularies are beneficial.

2.5.5 Feature space locality by exponential similarity

In this experiment we quantify the add-on value of the proposed exponential similarity,
see equation 2.12, which emphasizes close matches in feature space, as compared to the
standard dot product similarity. We set β = 10 for all datasets without further optimiza-
tion. We embed the evaluation in the box search framework using 20k-vocabularies. As
shown in Table 3, the exponential similarity consistently improves over dot-product simi-
larity by a large margin. Exploring a similar idea, the thresholded polynomial similarity
in the concurrent work [158] achieves a close performance. We have also experimented
with the adaptive similarity [136]. Giving much higher weights to closer matches has the
most important effect on the result. Both [136] and our proposal provide this, where our
proposal does not need the extra learning step. Putting disproportionally high weights on
close matches in the feature space is advantageous for instance search, which relies on
matches of exact unique details.
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VLAD tFV
dot exp poly dot exp poly

Oxford5k 0.724 0.765 0.773 0.734 0.770 0.778
BelgaLogos 0.271 0.291 0.296 0.280 0.302 0.304
Holidays 0.727 0.772 0.749 0.737 0.787 0.767

Generic 0.574 0.609 0.606 0.584 0.620 0.616

Table 3: The effect of exponential similarity. The value of the exponential similarity,
denoted by ‘exp’, is evaluated within the box search framework using 20k-vocabularies.
As compared to the dot-product similarity, denoted by ‘dot’, the exponential similarity
improves the search accuracy in all cases. ‘poly’ denotes the thresholded polynomial
similarity function proposed in the recent work [158].

VLAD Fisher vector
[9] [30] 20kexp [76] [131] tFV20kexp

Oxford5k 0.555 0.517 0.765 0.418 - 0.770
BelgaLogos 0.128∗ - 0.291 0.132∗ - 0.302
Holidays 0.646 0.658 0.772 0.634 0.705 0.787

Generic 0.443 - 0.609 0.395 - 0.620

Table 4: State-of-the-art comparison. The entries indicated with a ∗ are our supple-
mentary runs of the reported methods on that dataset. Our combined novelty, localized
tFV20k with exponential similarity outperforms all other methods by a considerable
margin.

2.5.6 State-of-the-art comparison

To compare with the state of the art in generic instance search from one example, in
Table 4 we have compiled an overview of the best results from [9, 30, 76, 131] which
employ VLAD or Fisher vector. For BelgaLogos where VLAD and Fisher vector
have not been applied before, we report results acquired by our implementation. The
proposed localized tFV20k with exponential similarity outperforms all other methods by
a significant margin. The method is followed by localized VLAD20kexp.

For the newly defined TRECVID50k dataset, which is a factor of 5 to 30 bigger than
the other three datasets, and covering a much larger variety, the performance improvement
of our subsequent steps is indicated in the rows of Table 5.

2.6 C O N C L U S I O N

We propose locality in generic instance search from one example. As the signal to
noise ratio within the bounding box is much higher than in the entire image, localized
search in the image for an instance is advantageous. It appears that continuing on the
localization in the feature space by using very large vocabularies further improves the
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VLAD tFV

Baseline (global search) 0.075 0.096

+ Spatial locality 0.084 0.116

+ 20k vocabulary 0.103 0.131

+ Exponential similarity 0.124 0.144

Table 5: The performance improvement by the three novelties on the TRECVID50k
dataset. The dataset is a 50k subset of the TRECVID 2012 instance search dataset [125]
with annotations for 21 queries, here applied with 1 example each.

results considerably. Finally, localizing the similarity metric by exponential weighting,
improves the result significantly once more.

The combination of spatial locality and large vocabularies either will pose heavy
demands on the memory or on the computation. In the standard implementation even a
vocabulary of 256 clusters with box search will require a huge 777 gigabytes and over
2,000s of computation to finish one query for Oxford5k. The implementation of [76]
achieves an mAP of 0.490 using PCA and product quantization on a 256 vocabulary
with a memory of 1.91 gigabytes. This will explode for larger vocabularies. Our
implementation with point-indexed representation requires only 0.56 gigabytes for a 20k
vocabulary, achieving a vast increment to an mAP of 0.765 with a computing time of
5s. The computation time can be improved further by the use of hierarchical sampling
schemes, a topic of further research.

On the newly proposed TRECVID50k dataset, we have set an mAP with one query
example of 0.144. On the commonly used datasets Oxford5k, BelgaLogos, and Holidays
we achieve an average performance increase from 0.395 for the recent [76], and 0.443 [9]
to 0.620 for our generic approach to instance search with one example proving the value
of locality in the picture and feature space for this type of search. The method does not
only improve the accuracy but also delivers a reliable localization, opening other avenues,
most notably complex queries asking for spatial relations between multiple instances.
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W O R D S M AT T E R : S C E N E T E X T F O R I M AG E
C L A S S I F I C AT I O N A N D R E T R I E VA L

3.1 I N T RO D U C T I O N

1Fine-grained classification is the problem of assigning images to classes where instances
from different classes differ slightly in the appearances e.g., flower types [122], bird [177]
and dog species [97], and aircraft models [103]. In contrast to coarse object category
recognition e.g., cars, cats and airplanes, low-level visual cues are often not sufficient to
make distinction between fine-grained classes. Even for human observers, fine-grained
classification tasks usually require expert and domain specific knowledge. Accordingly,
most recent works also integrated such domain specific knowledge into their solutions.
For instance, dogs have ears, nose, body, legs etc., and the differentiation of dog species
relies on the subtle differences in these parts. Different bird species have different wing
and beak appearances, and such differences in local parts provide the critical information
to categorize different bird types. [97, 181, 190] exploit the part information and extract
features from particular parts for better birds and dogs recognition. In this work, we make
use of the domain specific knowledge of buildings. We exploit the recognized text in
images for fine-grained classification of building types. The building types studied in this
work are places-of-businesses (e.g., bakery, cafe, bookstore etc.). Automatic recognition
and indexing of business places will be useful in many practical scenarios. For instance,
it can be used to extract information from Google street view images and Google Map
can use the information to provide recommendations of bakeries, restaurants close to the
location of the user.

Most of the time, the stores use text to indicate what type of food (pizzeria, diner),
drink (tea, coffee) and service (drycleaning, repair) they provide. This text information is
helpful even for human observers to understand the content of the store. For instance, in
Figure 10, the images of two different buildings (pizzeria and bakery) have a very similar
appearance. However, they are different types of business places. It is only possible with
text information to identify what type of business places these are. Moreover, text is
also useful to identify similar products (logo) such as Heineken, Foster and Carlsberg.
Therefore, we propose a multimodal approach which uses recognized text and visual
cues to do better fine-grained classification and logo retrieval.

The common approach to text recognition in images is to detect text first before
they can be recognized [71, 175]. The state-of-the-art word detection methods [92,
100, 119, 169, 178] focus on obtaining a high f-score by balancing precision and recall.

1 Under review for publication in IEEE Transactions on Multimedia [83]
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Figure 10: bakery and pizzeria example images. The two buildings are visually similar.
Text can be used to differentiate the two shops.

However, instead of using the f-score, our aim is obtain a high recall. A high recall
is required because textual cues that are not detected will not be considered in the
next (recognition) phase of the framework. Unfortunately, there exists no single best
method for detecting words with high recall due to large variations in text style, size
and orientation. Therefore, we propose to combine character candidates generated
by different state-of-the-art detection methods. To obtain robustness against varying
imaging conditions, we use color spaces containing photometric invariant properties such
as robustness against shadows, highlights and specular reflections.

The proposed method computes text lines and generates word box proposals based
on the character candidates. Then, word box proposals are used as input of a state-
of-the-art word recognition method [70] to yield textual cues. Finally, textual cues are
combined with visual cues for fine-grained classification and logo retrieval. The proposed
framework is given in Figure 11.

The work has the following contributions. First, this work combines textual and
visual cues for fine-grained classification and logo retrieval. In contrast to [85] which
extracts textual cues at character level, the proposed method extracts textual cues at word
level. The proposed method reaches state-of-the-art results on both tasks. Second, to
extract the textual cues, a generic and computationally efficient word proposal algorithm
which aims at high recall is proposed without any training involved. The proposed
algorithm obtains state-of-the-art recall for word detection for a limited number of
word box candidates. Third, contrary to what is widely acknowledged in text detection
literature, we experimentally show high recall in word detection is more important
than high f-score at least for both applications considered in this work. Last, this work
provides a large text detection dataset (10K images with 27601 word boxes). This dataset
will be made publicly available.

3.2 R E L AT E D W O R K

Word Detection. Word detection consists of computing bounding boxes of words in
images. Existing word detection methods usually follow a bottom-up approach. Character
candidates are computed by a connected component [36, 119] or a sliding window
approach [71, 169, 175]. Candidate character regions are further verified and combined
to form word candidates. This is done by using geometric, structural and appearance
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Figure 11: Pipeline of our multimodal approach. Text is encoded at a word level
and utilized for fine-grained classification and logo retrieval. A generic and fully
unsupervised word box proposal method is proposed to detect words in images. The
method uses different color spaces and character detection algorithms (MSER [105]
and text saliency [84]). The word box candidates are used as input for a state-of-the-art
word recognition method [70] to perform word-level encoding. An English vocabulary
consisting of around 90k words is considered [70]. For the visual cues, bag-of-words
(BOW) and GoogLeNet features [153] are used. The multimodal approach combines the
visual and textual cues.

properties of text and is based on hand-crafted rules [36] or learning schemes [71, 169].
State-of-the-art word detection methods [92, 119, 169] focus on high f-score by the
trade-off between recall and precision. Strict rules are used in character detection and
word formation to keep only boxes that most likely contain words. As a consequence,
methods aiming for high f-score may miss a number of correct word boxes. In contrast,
we propose to generate word boxes with the goal to include all words, i.e., high recall.
We use recall in text detection because our aim is not to miss correct word boxes with
the cost of introducing false detections.

Our work is similar to the recent works [51, 69] in terms of providing word box
proposals. [69] combines two generic object proposal outputs, namely Edge Boxes [198]
and Aggregate Channel Feature Detector [32], as preliminary word box proposals.
Then, these proposals are filtered using the HOG [29] feature with a Random Forest
text/non-text classifier [16]. Finally, the remaining word box proposals are processed
using a convolutional neural network regressor to refine the coordinates of these word
boxes. [51] performs an over-segmentation using maximally stable extremal region
(MSER) algorithm with flexible parameters. Then, the segments are grouped together
using distance metrics related to text (e.g. color, stroke width etc.). Finally, weak
classifiers are used to obtain a text-likeliness measure for these word candidates. In
contrast, our word box generator is uniquely designed to detect text in images without
any training involved. Moreover, [51, 69] in the end aim at high f-score word recognition
whereas this work aims only at high recall. We experimentally verify high recall is more
important than high f-score for the applications considered in this work. Further, different
from [51, 69] which address word recognition, the aim of this work is to combine textual
and visual cues for better fine-grained recognition and logo retrieval.

Text Recognition. Text recognition approaches can be categorized into two groups:
character and word based methods. Character based methods first recognize single
characters, then form words [112, 113, 124]. Recent work [6, 50, 70] shows that entire-
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word recognition performs better than recognizing characters first and then forming
words. In this work, we follow the state-of-the-art word recognition approach [70] to
encode the textual cues.

Textual Cues. Mishra et al. [111] propose to use textual cues for query-by-text
image retrieval. Given a query text, the method assigns scores to images based on
the presence of the query characters. Additional pairwise spatial constraints between
characters are used to refine the ranking. Karaoglu et al. [85] propose to use textual cues
in combination with visual cues for fine-grained classification. Bi-grams are computed
based on recognized characters in images. These bi-grams are used to encode the textual
cues. In contrast, this work performs a word-level textual cue encoding. Moreover, the
proposed method aims at high recall word detection which leads to combine state-of-the-
art text detectors performed in various color spaces.

Fine-grained Classification. Many recent works in fine-grained classification ex-
ploit domain specific knowledge. Dogs and birds are composed of a number of semantic
parts, such as head, body and tail. [181, 190, 192] use parts for better fine-grained recog-
nition. [190] learns part detectors and localizes the parts to isolate the subtle differences
in specific parts. [181] shows the hidden layers of a deep neural network are actually
part detectors and uses the filters in the hidden layers to detect specific bird and dog
parts. [192] generates multi-scale part proposals and selects useful parts. [45] presents
another successful use of domain specific knowledge for bird species recognition. It
exploits the fact that birds have rather fixed poses and fits an ellipse to represent the
overall shape of a bird. In this work, we exploit the domain specific knowledge for
building types classification. In our case, the domain knowledge is the scene text in
the building images. We propose a multimodal approach to fine-grained building type
classification by fusing the textual and visual cues. A recent paper from Google [114]
also studies the classification of different business places. [114] only considers visual
cues for classification while in our work we show that adding textual cues significantly
outperforms methods that only use visual information.

3.3 W O R D - L E V E L T E X T UA L C U E E N C O D I N G

In order to extract the textual cues from the image, a two-step procedure is followed.
In the first step, word box proposals are generated to locate the words in the image. In
the second step, the word proposals are used as input to a word recognizer to form the
word-level representation.

3.3.1 Word Box Proposals

High recall. When a word in an image is not detected or localized incorrectly, it is not
possible to identify it. Our aim is to obtain high recall with the cost of false positives. To
this end, the proposed method uses a complementary set of character detection algorithms
and color invariant spaces.

Low computational cost. The word box proposal method needs to be efficient
especially for large scale scenarios. Further, the number of possible word box candidates
(i.e., proposals) should be as low as possible.
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Generic. We aim for a generic word proposal method. No need for tuning the
method for different alphabets or datasets.

Therefore, we propose an efficient and fully unsupervised bottom-up approach. First,
characters are detected by a text-independent approach. Then, these detected characters
are filtered based on geometric and appearance properties. Finally, they are grouped to
generate word box proposals.

Character Detection

As stated earlier, there exists no single character detection algorithm that is robust
against all variations in text style, size and orientation and imaging conditions. Therefore,
we propose to compute character candidates using two methods with different strengths,
i.e., text saliency [84] and Maximally Stable Extremal Regions(MSERs) [105].

In [84], a text saliency map is computed using scene background. It is assumed
that background pixels are uniformly colored e.g., windows, boards, roads, buildings,
fences etc., and that they contrast with text regions. Accordingly, the method uses
background homogeneity to form connectivity between background pixels. The method
selects initial background seeds and grows these seeds iteratively until all background
pixels are covered (detected). Assuming that text regions have strong contrast with the
background [15], text regions will remain uncovered by the region growing algorithm.
Finally, the background image is subtracted from the original image to obtain a text
saliency map, which is further binarized using [42] to obtain character candidates.

Detecting background relies heavily on correctly selecting initial seeds. As text
is salient [81, 168], the background that highly contrasts with text is assumed to be
non-salient. Moreover, text rarely appears at image borders. Therefore, seeds are selected
from non-salient image regions which are refined by image boundary information.

Color and Curvature Saliency. Color edges are useful to detect if a region belongs
to the background. Color is usually homogeneous for different backgrounds such as
roads, fences and skies. Furthermore, color edge responses correlate with colorful
text/background transitions. To exploit this, we use the color boosting algorithm [164] to
enhance the saliency of colorful text/background transitions and to select the background
seeds based on non-salient regions in the color saliency map.

The color saliency measure is inappropriate for colorless edge transitions, see the
right two images in Figure 12. Therefore, in addition to color, curvature (L) is used
for colorless edges. Because of the text/background contrast, text regions result in
high curvature even for colorless edge transitions. Non-salient regions in the curvature
saliency map are used to select the background seeds.

Saliency Refinement Using Background Priors. The image regions which do not
have strong responses in color and curvature are considered to be background pixels.
However, some of the regions which have high saliency response may also belong to
the background. Therefore, salient regions which are unlikely to belong to text are
suppressed using background priors, i.e., text is mostly located in the center of the
image [84]. Hence, salient regions, which are connected to the borders, are suppressed in
the color and curvature saliency maps.

The refined saliency maps are used to select the background seeds. Specifically, the
refined saliency maps are normalized to [0, 1] and linearly combined. Regions without
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Figure 12: Saliency map samples: Original images, color saliency and curvature saliency
(top to down order). It is shown that text edges are detected better with color saliency for
the first two images whereas curvature saliency works better for the last two images.

any response on this combined saliency map are considered as background seeds. The
background of the input image is reconstructed using morphological operators [166].
The reconstruction is performed by a conditional dilation (δ). Conditional dilation is a
basic dilation which is conditioned by a mask image (i.e., the single-channel image I in
our case). The conditioning is obtained by defining the output as the intersection of the
dilation and I, formulated by:

δI(J) = (J ⊕ B) ∧ I , (3.1)

where J ⊕ B stands for the dilation of J (the image consisting of only background
seeds) and B (the structuring element), and ∧ denotes the element-wise minimum.

To obtain a reconstructed background image (ρ) of image I, given the image
consisting of the initial background seeds, J0, Eqn. 3.1 is executed until stability is
reached. That is, starting from the initial background seeds J0 repeat Jn = δI(Jn−1) until
Jn = Jn−1, (n = 1, 2, 3...) and obtain ρ by ρ = Jn.

Text saliency computation does not require any tuning for varying text size, style and
orientation, and is robust to image noise. However, due to the information loss caused
by the image boundary priors and the binarization, the method may miss characters. To
compensate for this, we enable MSER as another character detection algorithm. MSERs
define an extremal region as a connected component of which image values remain
stable within the boundary and highly contrast against boundary pixels [105]. MSER
regions are widely in use for character detection [23, 119]. MSER is suited for character
detection because text regions are usually designed to have uniform appearance (color).
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Figure 13: Original images (up), text saliency (middle) and MSER character detections
(down) obtained. Text saliency method is robust against changes in text size and noise
while MSER detects characters at image boundaries.

Further, they usually have high contrast with their surroundings. However, MSER has
certain shortcomings for character detection such as detecting characters in blurry and
noisy images [23]. Moreover, MSER is sensitive to character sizes due to the parameters
used to define stable regions. In fact, the MSER and text saliency results are, to a certain
extent, complementary. Figure 13 illustrates complementary properties of MSER and
saliency methods.

Complementary Color Spaces

Images are captured under uncontrolled illumination conditions. Therefore, text
regions may be influenced by different photometric changes such as shadows and specular
reflections. A uniformly colored character may vary in intensity due to shadows or
highlights. Hence, these shadows or highlights may negatively influence the pixel
connectivity for a uniformly colored character.

To compensate for this, the proposed method computes the character candidates
using a variety of color spaces containing a range of invariant properties. The two
channels, (O1, O2), from the opponent color space [38], Saturation (S ) and Hue (H)
from HSV [162], and (I) from gray scale are considered in the proposed method (see
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(a) (b) (c) (d) (e) (f)

Figure 14: Examples of different color channel responses: (a) Original image, (b) Gray-
scale, (c) Hue, (d) Saturation, (e) O1 and (f) O2. It is shown that color channels have
different responses to photometric changes e.g. shadow and highlights, based on their
invariant properties.

I O1 O2 S H

Highlights - + + - +

Shadows - - - + +

Table 6: Color spaces and their invariant properties. I is the gray scale. (O1, O2) are
the two channels from the opponent color space [38]. Saturation (S ) and Hue (H) are
from the HSV color space [162]. ‘+’ means invariant. In this work, we use all these
color spaces with different invariant properties to cope with the photometric changes in
natural images.
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Figure 14). The invariant properties are summarized in Table 6. Figure 14 illustrates the
color channel responses for photometrical changes.

Character Filtering

The character candidates provided by the method described before may consist of
non-character regions. Our method for character filtering is based on state-of-the-art text
detection systems [23, 36] to filter out non-character regions efficiently.

Size. The proposed method limits the height of a character candidate to be greater
than 5 pixels and the area to contain more than 50 pixels [36]. If the character is too
small, the information it carries is limited. Therefore, it is likely that even if these regions
are not eliminated, recognition on these regions would fail.

Aspect ratio. Most of the real characters have a width-height ratio close to 1 [36].
Therefore, the proposed method limits the aspect ratio of character candidates to be a
value between 0.1 and 10. These values are reported in [36] to be conservative enough
to still keep characters such as ‘i’, ‘I’ or ‘1’. This process filters out text-like items in
images such as fences and branches of trees.

Solidity. The solidity is defined as the proportion of the number of character pixels
to the convex area which covers the text candidate. It has been observed that text regions
have low solidity [23]. Therefore, the proposed method eliminates character candidates
which have high solidity (>0.95) and longer width than height. Longer width is to avoid
removing characters like ‘i’ and ‘l’. This process filters out brick-like image regions
which have solidity close to 1. Solidity threshold is set to be conservative enough to keep
characters like ‘w’ and ‘m’.

Contrast. Pixels at character borders usually have high contrast and the contrast
decreases with the distance to the borders. As a result, the box which neatly covers a
character will have a higher average contrast than its slightly expanded version. Therefore,
the proposed method eliminates the character candidates which do not meet this condition.

Contrast (C) of an image pixel (p) is calculated by Cp =
√

I2
x(p) + I2

y (p) + Ix(p)Iy(p),
where Ix, Iy are the first order image derivatives (x and y dimensions) in intensity I.

A character candidate satisfying all these conditions is remained for further pro-
cessing. This filtering step removes those obvious non-character candidates to reduce
computational cost in following steps. Figure 15 shows filtered character candidates for
each condition.

Word Box Proposal Generation

The next step is to compute word box proposals using character candidates. We
consider combinations of character candidates as potential words. However, it is
computationally expensive if all possible combinations are considered. And, due
to the nature of text, characters within a word cannot have arbitrary positions and
sizes [36, 39, 92, 104, 117, 118]. Therefore, as the first step of computing word box
proposals, we generate text lines to restrict the selection of combinations by linking
character candidates based on five pair-wise constraints. In Figure 16, the two boxes
stand for two character candidates with (x1, y1), height1 and width1 being the coordinates
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Size Aspect Ratio Solidity Contrast

Figure 15: Samples for character candidate filtering. The green, red and yellow (different
colors are used to highlight boxes) boxes represent filtered character candidates after
corresponding filtering condition is applied (i.e. size, aspect ratio, solidity and contrast).

of the top-left corner, height and width of the box covering the first character. The box of
the second character is defined likewise.

The five pairwise constraints are as follows:

(a) Distance between two character centers is smaller than 2.5 times of the longer axis
of the character box [36,39,118]. Distance < max([height1, width1, height2, width2])×
2.5 where Distance = (x2 +

width2
2 ) − (x1 +

width1
2 ). 2.5 is considered to allow

one missed character in between.

(b) The ratio of the vertical displacement and horizontal offset is no greater than
0.2 [92, 118], formally expressed by VD

Distance ≤ 0.2 where VD = |(y2 +
height2

2 ) −

(y1 +
height1

2 )| and Distance as defined in (a). Text is mostly horizontally aligned.

(c) The height ratio of two characters is not greater than 2 [36, 39, 118], i.e., 0.5 ≤
height1
height2

≤ 2. Two characters of a word should have similar height and 2 is considered
to allow the case of a lower-case character following a capital.

(d) Two characters must not overlap more than 0.1, formally, Area(Char1∩Char2)
Area(Char1∪Char2)

≤ 0.1.
Characters of a word usually do not overlap except in special cases, e.g., italic.

(e) The bottom of one character is below the center of the other [118], i.e., (y1 +
height1) ≥

y2+height2
2 and (y2 + height2) ≥

y1+height1
2 .Two consecutive characters

of a word are usually well aligned for easy reading.

As the second step, we compute word box proposals by considering all possible
combinations of character candidates within a text line. A combination of character
candidates corresponds to the box covering the union of the character candidates. The
proposed method starts with a single character candidate as a word proposal. The reason
is that when the characters of a word are connected the word is covered by only one
character candidate.

Word box proposals are generated from each character detection algorithm and color
space independently and then combined.
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Figure 16: An illustration on the notions of two character candidates. This illustration is
used to elaborate the pairwise constraints.

3.3.2 Word Recognition and Textual Cue Encoding

Section 3.3.1 generates word box proposals. To recognize words, we employ a state-of-
the-art word recognition approach [70]. [70] formulates word recognition as a multi-class
classification problem, where a word from a predefined English vocabulary is treated as
one class. A convolutional neural network classifier with four convolutional layers and
two fully-connected layers is used to solve the classification problem. We refer to [70]
for the details of the network. The network takes a word box proposal b as input and
produces for each word w a probability of the word being present in the box, P(w|b).
The probability is modeled by the softmax scaling of the final multi-way classification
layer. As a result, each word box proposal is represented by a n-dimensional feature,
where n is the number of words in the vocabulary. In this work, we use the model2

provided by the authors of [70]. The model considers a vocabulary of 88, 172 words and
is trained using synthetic data. We encode the textual cues in an image by summarizing
the representations of word box proposals with average pooling. Each dimension of
the resulting image feature represents the probability of the corresponding word being
present in the image.

3.4 FI N E - G R A I N E D C L A S S I FI C AT I O N

Fine-grained classification is the problem of the categorization of subordinate-level
categories such as bird species [177], flower types [122] and building types [85]. The
small inter-class visual differences and the large intra-class variations make fine-grained
classification challenging. In this section, in addition to visual features, we exploit the
use of textual cues in the images for fine-grained image classification.

2 http://www.robots.ox.ac.uk/˜vgg/research/text
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3.4.1 Dataset and Implementation Details

Dataset. We use the Con-Text dataset proposed in [85]. The dataset is for fine-grained
classification of business places e.g., Cafe, Bookstore and Pharmacy. The dataset consists
of 24, 255 images from 28 categories. The dataset is divided into three folds. Experiments
are repeated three times, each time using two folds as training and the other as testing. We
report the mean performance over the three runs. Average precision is used to measure
the performance.

Dataset Annotation. To study the influence of precision and recall for word detec-
tion in the context of fine-grained classification, we have annotated text regions for the
first 10 classes of the dataset (in alphabetical order). All the text (Latin alphabet) visible
and recognizable has been annotated. The annotated dataset consists of 9131 images.
5219 of these images contain at least one word box. In total there are 27601 word boxes
annotated.

Implementation notes. Three visual-only classification baselines are considered.
All the three visual baselines employ one-versus-rest SVM classifiers for classification,
while the differences lie in the employed visual representations. First, as in [85], we
use a standard bag of visual words representation with 3 × 1 and 2 × 2 spatial pyramid,
denoted as BOW.

Second, as image representation, we use the L2 normalized output of the last average
pooling layer of the ImageNet-pretrained GoogLeNet [153], denoted by DEEP. The
network is pre-trained on the 1000 ImageNet categories3 [143], available in the Caffe
library [78].

Third, we fine-tune the pretrained GoogLeNet with a 28-way softmax classifier on
the Con-Text dataset. After fine-tuning, the last average pooling layer output of network
is used as the image representation. This visual baseline with features from fine-tuned
GoogLeNet is denoted by DEEP-FT. The details of the fine-tuning are as follows. The
learning rate is initially set to be 0.001, and is decreased by a factor of 10 every 5 epochs.
The network is fine-tuned for 20 epochs. The weight decay parameter equals 0.0005.
The network is fine-tuned using SGD with momentum which is set to be 0.9.

For text-based classification, the textual cues are extracted as described in Section 3.3.
Libsvm [20] is used for classification. The histogram intersection kernel is employed

for BOW, following [85], while linear kernel is adopted for DEEP, DEEP-FT and
the proposed textual cues. Textual and visual cues are combined by kernel fusion.
Specifically, the visual-based kernel and textual-based kernel matrices are computed
independently. Then the two kernel matrices are summed up with equal weights to
generate the final kernel matrix. In all experiments, we use the default value for the C
parameter (=1) without tuning.

3.4.2 The Influence of Word Detection Precision and Recall on Fine-grained Classifi-
cation

We use the annotated 10 classes to analyze the effect of word detection precision and
recall on fine-grained classification. Therefore, we systematically change recall or preci-

3 http://www.image-net.org/challenges/LSVRC/2012/
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Figure 17: The influence of the precision and recall change in word detection on fine-
grained classification performance (evaluated on the 10 annotated classes). Left: In-
creasing precision by removing the false positive detections (FP) from the automatically
generated set of proposals does not improve the classification performance. ‘-FP20’
denotes removing 20% of the false positives. Middle: We systematically increase the
recall by adding the missed ground-truth word boxes (mGT) on top of the automatically
generated set of proposals. The classification performance keeps increasing as the word
detection recall increases before it saturates. ‘+mGT20’ denotes adding 20% of the
missed ground-truth word boxes. Right: Decreasing the word detection recall by re-
moving the true positive detections (TP) from the automatically generated set negatively
influences the classification performance. ‘-TP20’ denotes removing 20% of the true
positives. This set of experiments show that word detection recall is more crucial than
precision for the classification performance.

sion and evaluate the classification performance. Within this section, only textual cues
are used.

Performance on images without text

Not all images in the dataset contain text. However, the proposed method may
generate candidate word proposals in non-textual regions in the image. The method
uses the character candidate detector using MSER and saliency. Consequently, regions
of interest, other than text, may also be detected. We have evaluated the classification
performance using the ‘textual cues’ encoded by the proposed method on images without
text. Interestingly, it achieves 28.9% in mAP, significantly better than random guessing,
although the textual cues are much more effective on images with text (67.7% in mAP).
This indicates some salient non-text patterns within the same class could be consistently
detected and similarly encoded. In the following analysis, we consider two cases, one
with images containing text and the other considering all images.

The influence of word detection precision

To study the influence of word detection precision on fine-grained classification, we
increase the precision while keeping the recall unchanged by removing the false positive
detections (FP) from the generated word proposals. Figure 17 (left) shows that increasing
the precision does not improve the classification performance.
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Interestingly, this experiment has brought the following additional insight. The
classification performance actually decreases when too many false positives are removed
from the generated word proposals, especially when all images are considered (‘All
images‘). There are two reasons for this. (1) The proposed word proposal method may
detect salient but non-text regions. And some salient non-text patterns within the same
class could be consistently detected and similarly encoded. Consequently, some false
positive word proposals may contribute positively to the classification, especially for
those images without text. This has been discussed before. This is also the reason
for the decrease in classification performance when removing too many false positives.
This is more significant on ‘all images‘ than ‘images with text‘ as shown in Figure 17.
(2) The boxes, that cover the text regions for less than 50% overlap with the ground-
truth, are treated as false positives. These boxes may contain parts of words or contain
complete words with extra background regions. Removing such boxes may have a
negative influence on the classification results.

Additionally, we study the influence of precision decrease by adding the generated
word proposals (Ours) on top of the manually annotated word boxes (GT). The classifi-
cation performance of GT+Ours (with a precision of 6.2%) is 75.7% whereas GT (with
a precision of 100%) is 76.1%. The significant drop in precision from 100% to 6.2%
results in a marginal decrease in classification performance.

These experiments indicate that the false positive word proposals generated by the
proposed method do not negatively influence fine-grained classification. However, it is
worth to mention that it is still desirable to produce a limited number of word proposals
for memory and efficiency concerns.

The influence of word detection recall

First, we evaluate the influence of a recall increase on the classification rate. We
systematically increase the recall by adding the missed ground-truth word boxes (mGT)
on top of the automatically generated set of proposals. As shown in Figure 17 (middle),
the classification performance keeps increasing as the word detection recall increases
before it saturates.

Second, we decrease the recall by removing the true positive word proposals (TP)
from the automatically generated set. The results in Figure 17 (right) show that decreasing
the word detection recall negatively influences the classification performance.

Note that even when 90% of the true positive word proposals are removed, the
classification performance is acceptable. There are two reasons for this. (1) As discussed
before, the word proposal method is able to consistently detect a number of salient
but non-text patterns which are contributing positively to the classification. (2) The
boxes that cover the text regions, with less than 50% overlap with the ground-truth, are
treated as false positive. Therefore, even when all true positives are removed, these boxes
contribute positively to the classification result.

Additionally, we evaluate the performance only using ground-truth boxes. In the
case where only images containing text are considered, the performance is 76.1%. When
all images are considered, the performance is 54.2%, outperformed by Ours (56.2%).
When using the ground-truth boxes, the performance on images with no text is random,
while when using our generated word proposals, the classification on images with no text
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Performance (mAP%)
Ours Characterness [92]

Images with Text 67.7 37.8

All Images 56.2 30.6

Table 7: Comparison to state-of-the-art text detection [92]. [92] aims at a high F-score.
The recall, precision and F-score values of the proposed method are 64.7%, 4.7% and
8.7% respectively while the values of [92] are 19.3%, 25.3% and 21.9%. A high recall
value is more effective than a high f-score for the fine-grained classification problem.

is 28.9% in mAP, much better than random guessing. This is why when all images are
considered, including both images with text and images without text, the performance of
using our generated boxes is slightly better than the result of using ground-truth boxes.

Comparison to state-of-the-art text detection

We compare the proposed word detection method with a recent state-of-the-art
text detection approach [92]. The textual cue encoding and the classification steps
are kept same. [92] aims for a high f-score, like other state-of-the-art text detection
methods [119, 169].

The recall, precision and f-score values of the proposed method are 64.7%, 4.7%
and 8.7% respectively while the values of [92] are 19.3%, 25.3% and 21.9%. Compared
to [92], the proposed method achieves a significantly higher recall but a lower precision
and F-score. In terms of fine-grained classification performance, as shown in Table 7, the
proposed method (Ours) significantly outperforms [92].

3.4.3 Performance evaluation on 28 classes

In this section, we use all 28 classes for evaluation and conduct two experiments. First,
we evaluate the effectiveness of the textual cues encoded by the proposed method on the
28-class classification problem. Second, we compare the classification performance of
word-level and character-level textual cue encoding.

Experiment I. Three different ways to generate word box proposals are considered:
(1) the proposed method using all color channels, denoted by full, (2) the proposed
method using only the gray scale, denoted by gray-only, and (3) a state-of-the-art text
detection approach [92] aiming at a high f-score, denoted by characterness. We evaluate
the sets of word box proposals generated by these three different ways separately while
keeping the textual cue encoding and classification steps the same.

As shown in Table 8, full always outperforms gray-only and characterness thanks to
a higher recall in word detection. The proposed textual-only classification method obtains
a mean average precision of 38.3%, outperforming BOW (34.0%). The combination of
textual and visual cues improves the visual-only baseline by 21.8%, 17.7% and 14.2%
for BOW, DEEP and DEEP-FT respectively. It can be derived that recognized words in
images contain discriminative information and that it is complementary to visual cues.
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Performance (mAP%)

Textual-only (full) 38.3±0.9
Textual-only (gray-only) 33.1±0.5

Textual-only (characterness [92]) 20.2±0.6

Visual-only (BOW) 34.0±0.3

Visual-only (DEEP) 53.3±0.08

Visual-only (DEEP-FT) 60.3±0.2

Textual (full) + Visual (BOW) 55.8±1.0

Textual (gray-only) + Visual (BOW) 52.0±0.6

Textual ( [92]) + Visual (BOW) 42.7±0.4

Textual (full) + Visual (DEEP) 71.0±0.5

Textual (gray-only) + Visual (DEEP) 68.7±0.3

Textual ( [92]) + Visual (DEEP) 62.0±0.2

Textual (full) + Visual (DEEP-FT) 74.5±0.8
Textual (gray-only) + Visual (DEEP-FT) 72.7±0.5

Textual ( [92]) + Visual (DEEP-FT) 67.5±0.6

Table 8: Fine-grained classification performance on Con-Text dataset. The textual cue
encoded by the proposed method is effective. It is complementary to the visual informa-
tion. Textual-only (full), Textual-only (gray-only) and Textual-only (characterness [92])
only differ in word detection. Textual cue encoding and classification steps are kept the
same. ‘full’ outperforms ‘gray-only’ and ‘characterness’ [92] thanks to a higher recall
in word detection.
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Performance (mAP%)
text only visual only text and visual

Word Level [this work] 38.3 34.0 55.8
Character Level [85] 15.6 32.9 39.0

Table 9: Comparison to the state-of-the-art [85] which encodes textual cues at character
level. Numbers are taken from [85]. Where the visual-only performance is compatible, the
proposed method outperforms [85] by a large margin. It can be derived that representing
the textual information at word level is more effective than at a character level.

Figure 18 shows the per-class performance. The low performance of textual cues is
due to the lack of scene text, e.g., for classes as Bistro and Massage Center. However,
combining visual and textual cues improves visual-only on all classes. The performance
improvement is the highest on the classes where visual cues are not sufficient and textual
cues are discriminative, e.g., Pawn Shop, Dry Cleaner and Steak House.

Experiment II. We compare our approach with the state-of-the-art [85] which
extracts the textual information at a character level. To ensure a fair comparison, in this
experiment we use BOW for the visual-based classification as [85]. Table 9 summarizes
the results. Our method outperforms [85] by a large margin (16.8%). It shows that
representing the textual information at a word level is more effective than at a character
level.

3.5 L O G O R E T R I E VA L

In logo retrieval, the objective is to retrieve all images of a specific logo from an
image collection, e.g., Heineken, given one image example of that logo as query. Logo
retrieval is useful for measuring brand exposure. Logo is a special type of objects where
text can be part of the object. Examples are Starbucks, Ford and Google. Previous
works [80, 139, 140, 156] do not consider the recognized text of the logo. These methods
treat the text of the logos the same as other visual patterns. In contrast, we explicitly
extract the word-level textual cues in the logos and utilize it for logo retrieval.

3.5.1 Dataset and Implementation Details

Dataset. We evaluate our approach on FlickrLogos-32 [141]. FlickrLogos-32 has 32
brand logos, e.g., Google, Coca-cola and DHL. We follow the retrieval setting of [140],
which defines a set of 960 queries, 30 per logo, and a search set of 4280 images in total.
The search set consists of 1280 logo images, 40 per logo, and 3000 non-logo images.

Implementation notes. The common method for logo retrieval is to use low level
feature matching. In line with this paradigm, two visual baselines are considered. First,
we use the available BOW representations with a visual vocabulary of 1 million visual
words [140], denoted by BOW. Second, we implement another visual baseline based
on aggregated selective match kernels [158], denoted by ASMK. The visual vocabulary
has 20000 visual words. The kernel we use is a thresholded 4-degree polynomial kernel
expressed by σ(µ) = [µ > 0]µ4, where the square bracket stands for the Iverson bracket.
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Figure 18: Fine-grained classification performance for each class. Adding textual cues
improves the performance on all classes. The proposed multimodal approach improves
the visual-only baseline (DEEP-FT) from 60.3% to 74.5% in mean average precision.
Textual-only has average precision values from 10% to 60% and visual-only has values
from 0% to 80% largely, whereas multimodal approach guarantees at least 50% except
two classes (Bistro and DiscountHouse) up to 90%.
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For textual cues, we encode the images in the same way as in the previous fine-
grained classification application, detailed in Section 3.3. For the query images, we
use the query bounding boxes to only keep the word box proposals that overlap with
the query boxes. The textual representations are normalized to unit length and cosine
similarity is used to rank the images.

To combine the visual and textual cues, we perform a late fusion on the similarity
scores obtained from the two modalities. Both sum fusion, expressed by S f usion =
S visual + S textual, and product fusion, expressed by S f usion = S visual ∗ (S textual + ε) are
tested. S f usion, S visual and S textual are the fused score, visual-based score and textual-
based score respectively. ε is a small constant value added to handle cases where no
text has been detected. Sum fusion requires the two scores to be roughly in the same
numerical range while product fusion does not. For this reason, only the product fusion
is considered for fusing with ASMK as the similarity scores produced by ASMK lie in a
very different range from the scores generated based on the textual cues. The product
fusion is also different from the sum fusion because the product fusion has a higher
requirement than the sum fusion on the quality of both modalities to derive a decent final
result. In general, the product fusion requires both modalities to be reasonably good.

3.5.2 Experiments and Results

This section experimentally evaluates the proposed multi-modal approach to logo re-
trieval. We quantify the added value of the proposed textual cues on top of the visual
baselines. Moreover, we compare with several state-of-the-art text detection methods for
the purpose of logo retrieval.

Table 10 summarizes the results. Adding the proposed textual cues ‘Textual (full)’
and ‘Textual (gray-only)’ always improves the visual baselines. The best performance,
62.7% in mAP, is achieved by combining the proposed textual cues (full) with the
visual baseline (ASMK) using product fusion. Interestingly, fusing the textual cues from
other text detection methods with the visual baselines using the product fusion does not
improve the performance because the performance of the textual part is too modest in
these cases. From the experiments, it can be concluded that the proposed textual cue
extraction that focuses on high recall word detection is effective, resulting in a textual
cue complementary to the visual cues for logo retrieval.

Analysis. Adding the textual cues improves the retrieval performance on 641 queries
out of 960 (‘Textual (full) + Visual (ASMK)’). Text is helpful when it is in standard
fonts and orientations. Figure 19a shows 4 example queries where combining textual and
visual cues improves the performance of visual-only. On the other hand, when text is not
there or it is in exotic fonts or orientations, adding textual has a negative effect on the
accuracy. Figure 19b shows 4 example queries where considering textual information
decreases the performance of visual-only. For the query of Ferrari, considering textual
information is not helpful because there is simply no text. The example of Cocacola is
due to the exotic font style which makes it unrecognizable. For Foster and Guinness, the
vertical text makes detection and recognition fail.
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mAP%

Textual-only (full) 32.2
Textual-only (gray-only) 28.4

Textual-only ( [92]) 12.3

Textual-only ( [183]) 13.2

Textual-only ( [175]) 12.7

Visual-only (BOW) 54.8

Visual-only (ASMK) 58.4

Textual (full) + Visual (BOW) [sum fusion] 59.4

Textual (gray-only) + Visual (BOW) [sum fusion] 57.8

Textual ( [92]) + Visual (BOW) [sum fusion] 56.0

Textual ( [183]) + Visual (BOW) [sum fusion] 56.2

Textual ( [175]) + Visual (BOW) [sum fusion] 55.9

Textual (full) + Visual (BOW) [product fusion] 59.5

Textual (gray-only) + Visual (BOW) [product fusion] 56.9

Textual ( [92]) + Visual (BOW) [product fusion] 36.2

Textual ( [183]) + Visual (BOW) [product fusion] 34.5

Textual ( [175]) + Visual (BOW) [product fusion] 30.8

Textual (full) + Visual (ASMK) [product fusion] 62.7
Textual (gray-only) + Visual (ASMK) [product fusion] 61.0

Textual ( [92]) + Visual (ASMK) [product fusion] 41.5

Textual ( [183]) + Visual (ASMK) [product fusion] 40.1

Textual ( [175]) + Visual (ASMK) [product fusion] 36.5

Table 10: Logo retrieval performance on FlickrLogos-32 [141]. Adding the proposed
textual cues always improves the retrieval performance. The proposed textual cues are
more effective than the textual cues from other text detection methods due to the focus on
high recall word detection.
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(a) Improved cases

(b) Failure cases

Figure 19: (a) Example queries where adding textual cues improves the retrieval per-
formance of visual-only. (b) Example queries where adding textual cues decreases the
performance. The reasons are no text (Ferrari), exotic font style (Cocacola) and vertical
text (Foster and Guinness).
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3.6 W O R D B OX P RO P O S A L E VA L UAT I O N

Dataset. We evaluate the performance of our word box proposal method on the SVT
dataset [169]. The dataset consists of 249 images which are downloaded from Google
Street View of road-side scenes. The dataset has word-level box annotations.

Evaluation measures. The performance is measured in terms of recall, number
of proposals and average maximum overlap (AMO) (See Table 11). We calculate the
overlap between each groundtruth box and its best overlapping word box proposal. AMO
is the average of these overlap values.

3.6.1 Experiments and Results

We conduct three experiments. First, we evaluate the effect of the color spaces and
the character detection algorithms on the word detection performance. Second, we
compare our method with state-of-the-art word box proposal methods [51, 69]. Third,
we analyze the influence of ground-truth overlap threshold on word detection recall and
word recognition accuracy.

Experiment I. The proposed method generates word box proposals using different
color spaces and character detection algorithms. Word box proposals are generated for
each color space independently and then combined. The same candidate regions may
be detected for the different color spaces or character detection algorithms. To filter out
these duplicate regions, non-maximum suppression is applied.

Table 11 shows that adding more color spaces improves the performance in terms of
recall and AMO. When a single character detection algorithm is used, the recall values
for MSER and text saliency are 85.47% and 90.88% respectively, whereas the recall
is 96.14% when both algorithms are considered. Hence, the use of color spaces with
different invariant properties, and complementary character detection algorithms results
in a high recall.

Experiment II. We compare the performance of our word proposals with the state-
of-the-art word proposal methods [51, 69]. [69] uses generic object proposal methods to
generate preliminary word box proposals. However, the number of boxes is prohibitively
large (> 104). Therefore, [69] filters out most of these boxes using a Random Forest
text/non-text classifier. As their recognition step is based on the preciseness of the word
boxes, a convolutional neural network regressor is learned to refine the coordinates of the
remaining word boxes. [51] uses MSER with flexible parameters and a grouping strategy
to generate word proposals. These proposals are also further scored by a weak classifier
for word-likeliness. Table 11 shows that our method achieves a slightly higher recall
than [51, 69] while requiring fewer boxes.

Experiment III. As is common practice in text detection, a candidate word-box is
considered as a true positive if it overlaps more than 0.5 with the ground-truth word-box.
However, a 0.5 overlap does not guarantee a correct word recognition. In particular,
not all true positives are correctly recognized. We analyze the relation between the
recognition accuracy and the overlap. The lexicon word with the maximum probability
returned by [70] is considered as the word recognition result for each word proposal.
Given the word proposals that pass the overlap threshold, the recognition accuracy is
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#proposals recall(%) AMO(%)

[This work] MSER+TSAL, I 338 84.23 70.40
[This work] MSER+TSAL, I+O1, O2+S 806 95.21 77.08
[This work] MSER+TSAL, I+O1, O2+S , H 968 96.14 77.54
[This work] MSER, I+O1, O2+H, S 568 85.47 70.90
[This work] TSAL, I+O1, O2+H, S 500 90.88 75.12

TextProposals [51] 17358 94.00 -
Jaderberg et al. [69] without (RF+CNN-reg) > 104 97.00 77.00
Jaderberg et al. [69] without CNN-reg 900 94.80 -
Jaderberg et al. [69] 900 - -

Table 11: Evaluation of the word box proposals on SVT dataset. MSER and TSAL are the
MSER based and text saliency based character detection algorithms. I, O1 ,O2, H and S
are the color models. The recall increases as more color invariant models are combined
because of their complementary photometric invariant properties. Using both character
detection algorithms results in a higher recall than using a single algorithm. RF and
CNN-reg of [69] are the Random Forest classifier for non-text box filtering and the
convolutional neural network regressor for box refinement. The values for [51, 69] are
taken from the references, and empty blocks are not reported in the references. Different
from [51, 69] the proposed method is fully unsupervised.
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Figure 20: The relation between the ground-truth overlap threshold (i.e., the IoU thresh-
old) and the word recognition accuracy, evaluated on SVT dataset [169]. Proposals with
higher IoU values are better recognizable.
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Figure 21: The influence of the ground-truth overlap threshold (i.e., the IoU threshold)
on word detection recall, evaluated on SVT dataset [169]. Recall decreases as IoU
threshold increases.

computed as the percentage of correctly recognized proposals. Concretely, for a specific
overlap threshold, e.g., 0.7, we take all the word proposals that have at least 0.7 overlap
with ground-truth, and compute how many of them are correctly recognized. The results
are summarized in Figure 20. The results show that the candidate word-boxes (proposals),
which have higher overlap with ground-truth, also have higher recognition accuracy.
Therefore, not only higher recall but also higher AMO is important for accurate textual
cue extraction. Further, we vary the ground-truth overlap threshold and evaluate the
word detection recall. As expected, increasing the threshold has a negative effect on the
recall, see Figure 21. However, the proposed method still performs well for a threshold
of (> 0.75). For this threshold value, the recall and recognition accuracy is around 70%.

Efficiency. The matlab implementation of the proposed method (without optimiza-
tion) takes 4s (on average) on a standard laptop to process one image from the SVT
dataset.

3.7 C O N C L U S I O N

We have demonstrated the effectiveness of textual cues for fine-grained (building) classi-
fication and logo retrieval. To capture textual information in images, a generic, efficient
and fully unsupervised word box proposal approach which aims at high recall has been
proposed. For fine-grained building classification, the proposed method outperforms
the state-of-the-art [85] from 39.0% to 55.8% in mean average precision. It shows that
encoding the textual cues at the word level is superior to using characters. To validate
the influence of recall, precision and f-score changes on fine-grained classification, we
have annotated a large set of 27601 word boxes. Furthermore, the work explores textual
cues for logo retrieval. Combining the textual and visual cues improves the retrieval
performance to 62.7% from 58.4% of visual-only. Moreover, we show that high recall in
word detection is more relevant than high f-score for fine-grained classification and logo
retrieval. The proposed unsupervised word box proposal method achieves state-of-the-art
recall for word detection on SVT with a limited number of word box proposals (< 1000).

56



4

AT T R I B U T E S A N D C AT E G O R I E S F O R G E N E R I C I N S TA N C E
S E A R C H F RO M O N E E X A M P L E

4.1 I N T RO D U C T I O N

1In instance search, the objective is to retrieve all images of a specific object given a few
query examples of that object [7, 73, 125, 135, 197]. We consider the challenging case
of only 1 query image and admitting large differences in the imaging angle and other
imaging conditions between the query image and the target images. A very hard case
is a query specified in frontal view while the relevant images in the search set show a
view from the back which has never been seen before. Humans solve the search task by
employing two types of general knowledge. First, when the query instance is a certain
class, say a female, answers should be restricted to be from the same class. And, queries
in the frontal view showing one attribute, say brown hair, will limit answers to show the
same attribute, even when the viewpoint is from the back. In this chapter, we exploit
these two types of knowledge to handle a wide variety of viewpoints, illumination and
other conditions for instance search.

In instance search, excellent results have been achieved by restricting the search
to buildings [7, 8, 46, 133]. Searching buildings can be used in location recognition
and 3D reconstruction. Another set of good results has been achieved in searching
for logos [80, 139, 156] for the estimation of brand exposure. And, [176] searches for
book and magazine covers. All these cases of instance search show good results for
near-planar, and one-sided objects which are recorded under a limited range of imaging
angles. In this work, we aim for broader classes of query instances. We aim to perform
generic instance search from 1 example. Generic implies we consider arbitrary objects,
and not just one-sided objects. And, generic implies we aim to use one approach not
specially designed for a certain kind of instances, such as RANSAC-based geometric
verification for rigid and highly textured objects. In our case, instances can be buildings
and logos, but also shoes, clothes and other objects. In this work, we illustrate on a
diverse set of instances, including shoe, car, building and person. In this work, we treat
person re-identification [52] as a special case of generic instance search, and address the
problem using the same method as for other kinds of instances.

The challenge in instance search is to represent the query image invariant to the
(unknown) appearance variations of the query while maintaining a sufficiently rich
representation to permit distinction from other, similar instances. To solve this, most
existing approaches in instance search match the appearance of local spots [11, 99] in

1 A preliminary version of the chapter is published in IEEE Conference on Computer Vision and Pattern
Recognition, 2015 [157].
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the potential target to the query [73, 77, 133, 156, 158]. The quality of match in these
approaches between two images is the sum of similarities over all local descriptor pairs.
The difference between the cited approaches lies in the way local descriptors are encoded
and in the computation of the similarity. Good performance has been achieved by this
paradigm on buildings, logos and scenes from a distance. However, when searching for
an arbitrary object with a wider range of viewpoint variability, more sides, and possibly
having self-occlusion and non-rigid deformation, these methods are likely to fail as local
descriptor matching becomes unreliable in these cases [109].

In this work we propose to use automatically learned attributes [40, 89] to address
generic instance search. Attributes, as higher level abstractions of visual properties, have
been shown advantageous in classification when training examples are insufficiently
covering the variations in the original feature space [4, 40, 184], surely present in the
one-example challenging case. By employing attributes, we aim to be robust against
intra-instance appearance variations. Further, we optimize the attributes such that they
are meanwhile discriminative among different instances. Concretely, in this work, we
learn a set of category-specific non-semantic attributes that are optimized to recognize
different instances of a certain category, e.g., shoes. With the learned attributes, an
instance can be represented as a specific combination of the attributes, and instance
search boils down to finding the most similar combinations of attributes.

In order to address the possible confusion of the query with instances from other
categories, we further propose to supplement the learned category-specific attributes
with category-level information. The category-level information are incorporated to
reduce the search space by filtering instances of other categories. It is advantageous when
there is only 1 query image, to use slightly more user provided information. In addition
to the interactive specification of the object region in the query image, we require the
specification of the category the query instance belongs to.

4.2 R E L AT E D W O R K

Most approaches in instance search rely on gathering matches of local image descrip-
tors [73, 77, 133, 151, 156, 158], where the differences reside in the way the local descrip-
tors are encoded and the matching score of two descriptors is evaluated. Bag-of-words
(BoW) [133, 151] encodes a local descriptor by the index of the nearest visual word.
Hamming embedding [73] improves upon BoW by adding an extra binary code to better
describe the position of the local descriptor in space. The matching score of a pair of
descriptors is 1 if they are encoded to the same word and the Hamming distance between
binary signatures is smaller than a certain threshold. VLAD [75] and Fisher vector [131]
improve over BoW by representing the local descriptor with an extra residual vector, ob-
tained by subtracting the mean of the visual word or the Gaussian component respectively.
In VLAD and Fisher vector, the score of two descriptors is the dot product of the residuals
when they are encoded to the same word, and 0 otherwise. [156, 158] improve VLAD
and Fisher vector by replacing the dot product by a thresholded polynomial similarity
and an exponential similarity respectively to give disproportionally more credits to closer
descriptor pairs. [77] encodes a local descriptor by only considering the directions to the
visual word centers, not the magnitudes, outperforming Fisher vector on instance search.
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With these methods, good performance has been achieved on buildings, logos, and scenes
from a distance. These instances can be conceived as near-planar and one-sided. For
buildings, logos, and scenes from a distance the variation in the viewing angle is limited
to a quadrant of 90 degrees at most out of the full 360 circle. For limited variations in
viewpoint, matches of local descriptors can be reliably established between the query
and a relevant example. In this work, we consider generic instance search, where the
instance can be an arbitrary object with a wider range of viewpoint variability and more
sides. We evaluate existing methods for approximately one-sided instance search on this
problem of generic instance search.

Attributes [40, 43, 89] have received much attention recently. They are used to repre-
sent common visual properties of different objects. Attribute representation has been used
for image classification [4,40,184]. Attributes have been shown to be advantageous when
the training examples are insufficiently covering the appearance variations in the original
feature space [40, 184]. Inspired by this, we propose to use attribute representation to
address generic instance search, where there is only 1 example available and there still
exists a wide range of appearance variations.

Attributes have been used for image retrieval [86,137,149,184,185]. In [86,149,185],
the query is defined by textual attributes instead of images and the goal is to return images
exhibiting query attributes. In the references, the query attributes need to be semantically
meaningful such that the query can be specified by text. In this work, we address instance
search given one query image, which is a different task as the correct answers have to
exhibit the same instance (not just the same attributes), and we use automatically learned
attributes which as a consequence may or may not be semantic. [137, 184] consider
non-semantic attributes for category retrieval, while this work addresses generic instance
retrieval.

The use of category-level information to improve instance search has been explored
in [33, 53, 191]. [53] uses category labels to learn a projection to map the original fea-
ture to a lower-dimensional space such that the lower-dimensional feature incorporates
certain category-level information. In this work, instead of learning a feature mapping,
we augment the original representation with additional features to capture the category-
level information. In [33], Fisher vector representation is expanded with the concept
classifier output vector of the 2659 concepts from Large Scale Concept Ontology for
Multimedia (LSCOM) [116]. In [191], a 1000-dimensional concept representation [1]
is utilized to refine the inverted index on the basis of semantic consistency between
images. Both [191] and [33] combine category-level information with low-level repre-
sentation. In this work, we consider the combination of category-level information with
category-specific attributes rather than a low-level representation. We argue this is a more
principled combination as the category-level information by definition makes category-
level distinction and the category-specific attributes are optimized for within-category
discrimination.

Person re-identification is a well-studied topic [13, 52, 165], where the work mainly
branches into two aspects, feature designing [55, 102, 182] and metric learning [22, 62,
126]. Among the vast amount of work in literature, most related to this work are papers
focusing on building a good representation [3, 12, 55, 94, 102, 148, 182, 193, 194]. [55]
uses AdaBoost to select features from an ensemble of localized features. [102] encodes
the local descriptors using Fisher vector. [12] exploits the symmetry and asymmetry
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properties of human body to capture the cues on the human body only, pruning out
background clutters. [193] learns human saliency in an unsupervised manner to find
reliable and discriminative patches. [194] proposes to learn mid-level patch filters that
are viewpoint invariant and discriminative in differentiating identities. [182] employs a
salient color names based representation. [94] records the maximal local occurrence of a
pattern to achieve invariance to viewpoint changes. [3] simultaneously learns features
and a similarity metric using deep learning. [148] proposes to learn semantic fashion-
related attribute representation from auxiliary datasets and adapt the representation to
target datasets. In this work, we propose to learn a non-semantic attribute representation
without using auxiliary data to handle the large appearance variations caused by viewpoint
differences, illumination variations, deformation and others. Furthermore, in this work,
inspired by [195], we treat person re-identification as a special case of the generic instance
search problem, where the instance of interest is now a specific person, and address the
problem using the same attribute-based approach as for other types of instance search,
e.g., shoes and buildings.

4.2.1 Contributions

Our work makes the following contributions. We propose to pursue generic instance
search from 1 example where the instance can be an arbitrary 3D-object recorded from a
wide range of imaging angles. We argue that this problem is harder than the approximately
one-sided instance search of buildings [133], logos [80] and remote scenes [73]. We
evaluate state-of-the-art methods on this problem. We observe what works best for
buildings loses its generality for shoes and reversely what works worse for buildings may
work well for shoes.

Second, we propose to use automatically learned category-specific attributes to
handle the wide range of appearance variations in generic instance search. Here we
assume we know the category of the query instance which provides critical knowledge
when there is only 1 query image. Information of the query category can be given
through interactive user interface or automatic image categorization (e.g., shoe, dress,
etc.). On the problem of searching among instances from the same category as the query,
our category-specific attributes outperform existing instance search methods by a large
margin when large appearance variations exist.

Third, inspired by [195], we treat person re-identification as a special case of generic
instance search, where the instance of interest is a specific person. On the popular VIPeR
dataset [54], we reach state-of-the-art performance with the same attribute-based method.

As our fourth contribution, we extend our method to search instances without
restricting to the known category. We propose to augment the category-specific attributes
with category-level information which is carried by high-level deep learning features
learned from large-scale image categorization and the category-level classification scores.
We show that combining category-level information with category-specific attributes
achieves superior performance to combining category information with low-level features
such as Fisher vector.
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4.3 T H E D I FFI C U LT Y O F G E N E R I C I N S TA N C E S E A R C H

The first question we raise in this work is how the state-of-the-art methods perform on
generic instance search from 1 example where the query instance can be an arbitrary
object. Can we search for other objects like shoes using the same method that has been
shown promising for buildings? To that end, we evaluate several existing instance search
algorithms on both buildings and shoes.

We evaluate the following methods. ExpVLAD: [156] introduces locality at two
levels to improve instance search from one example. The method considers locality in
the picture by evaluating multiple candidate locations in each of the database images.
It also considers locality in the feature space by efficiently employing a large visual
vocabulary for VLAD and Fisher vector and by an exponential similarity function to give
disproportionally high scores on close local descriptor pairs. The locality in the picture
was shown effective when searching for instances covering only a part of the image. And
the the locality in the feature space was shown useful on all the datasets considered in the
reference. Triemb: [77] proposes triangulation embedding and democratic aggregation.
The triangulation embedding encodes a local descriptor with respect to the visual word
centers using only directions, not magnitudes. As shown in the paper, the triangulation
embedding outperforms Fisher vector [144]. The democratic aggregation assigns a weight
to each local descriptor extracted from an image to ensure all descriptors contribute
equally to the self-similarity of the image. This aggregation scheme was shown better
than the sum aggregation. Fisher: We also consider Fisher vector as it has been widely
applied in instance search and object categorization where good performance has been
reported [76, 144]. Deep-FC: It has been shown recently that the activations in the
fully connected layers of a deep convolutional neural network (CNN) [87] serve as good
features for several computer vision tasks [10,48,138]. VLAD-Conv: Very recently, [120]
proposes to apply VLAD encoding [76] on the output of the convolutional layers of CNN
for instance search.

Datasets. Oxford buildings dataset [133], often referred to as Oxford5k, contains
5062 images downloaded from Flickr. 55 queries of Oxford landmarks are defined, each
by a query example. Oxford5k is one of the most popular datasets for instance search,
which has been used by many works to evaluate their approaches. Figure 22a shows
examples of two buildings from the dataset.

As a second dataset, we collect a set of shoe images from Amazon2. It consists
of 1000 different shoes and in total 6624 images. Each shoe is recorded from multiple
imaging angles including views from front, back, top, bottom, side and some others.
One image of a shoe is considered as the query and the goal is to retrieve all the other
images of the same shoe. Although these images are with clean background as often
seen on shopping websites, this is a challenging dataset mainly due to the presence of
considerably large viewpoint variations and self-occlusion. We refer to this dataset as
CleanShoes. Figure 22b shows examples of three shoes from CleanShoes. There is a
shoe dataset available, proposed by [14]. However, this dataset is not suited for instance
search as it does not contain multiple images for one shoe. [147] also considers shoe

2 The properties are with the respective owners. The images are shown here only for scientific purposes.
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(a)

(b)

Figure 22: (a) Examples of two buildings from Oxford5k, and (b) Examples of three shoes
from our CleanShoes dataset. There exists a much wider range of viewpoint variability
in the shoe images.
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Figure 23: Performance of various state-of-the-art methods for instance search mea-
sured in mean average precision%: ExpVLAD [156], Triemb [77], Fisher [76], VLAD-
Conv [120] and Deep-FC [87]. For Fisher vector, we consider two versions. Fisher
denotes the version with interest points and SIFT descriptors, and Fisher-D uses densely
sampled RGB-SIFT descriptors. ExpVLAD achieves better performance than others on
Oxford5k, but gives lowest result on CleanShoes. On the other hand, Deep-FC obtains
best performance on CleanShoes, but has lower result than others on Oxford5k.

images, but the images are well aligned, whereas the images in CleanShoes provide a
much wider range of viewpoint variations.

Implementation details. For ExpVLAD, Triemb and Fisher, we use the Hessian-
Affine detector [128] to extract interest points. The SIFT descriptors are turned into
RootSIFT [8]. The full 128D descriptors are used for ExpVLAD and Triemb, follow-
ing [77, 156], while for Fisher, the local descriptor is reduced to 64D using PCA, as the
PCA reduction has been shown important for Fisher vector [76, 144]. The vocabulary
size is 20k, 64 and 256 for ExpVLAD, Triemb and Fisher respectively, following the
corresponding references [76, 77, 156]. We additionally run a version of Fisher vector
with densely sampled RGB-SIFT descriptors [163] and a vocabulary of 256 compo-
nents, denoted by Fisher-D. For Deep-FC, we use an in-house implementation of the
AlexNet [87] trained on ImageNet categories, and take the `2 normalized output of the
second fully connected layer as the image representation. For VLAD-Conv, we apply
VLAD encoding with a vocabulary of 100 centers on the conv5 1 responses of the
VGGNet [150], following [120]. For Triemb, Fisher, Fisher-D and VLAD-Conv, power
normalization [132] and `2 normalization are applied.

Results and discussions. Figure 23 summarizes the results on Oxford5k and Clean-
Shoes. ExpVLAD adopts a large vocabulary with 20k visual words and the exponential
similarity function. As a result, only close local descriptor pairs in the feature space
matter in measuring the similarity of two examples. This results in better performance
than others on Oxford5k where close and relevant local descriptor pairs do exist. However,
on the shoe images where close and true matches of local descriptors are rarely present
due to the large appearance variations, ExpVLAD achieves lowest performance. Both
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Triemb and Fisher obtain quite good results on buildings but the results on shoes are
low. This is again caused by the fact that local descriptor matching is not reliable on
the shoe images where large viewing angle differences are present. Triemb outperforms
Fisher, consistent with the observations in [77]. In this work, we do not consider the RN
normalization [77] because it requires extra training data to learn the projection matrix
and it does not affect the conclusion we make here. Fisher-D works better than Fisher
on CleanShoes by using color information and densely sampled points. Color is a useful
cue for discriminating different shoes, and dense sampling is better than interest point
detector on shoes which do not have rich textural patterns. However, Fisher-D does not
improve over Fisher on Oxford5k. VLAD-Conv is in the middle on both sets. Deep-FC
has lowest performance on buildings, but outperforms others on shoes.

Overall, the performance on shoes is much lower than on the buildings. More
interestingly, ExpVLAD achieves better performance than others on Oxford5k, but gives
lowest result on CleanShoes. On the other hand, Deep-FC obtains best performance on
CleanShoes, but has lower result than others on Oxford5k. We conclude that none of the
existing methods work well on both buildings, as an example of 2D one-sided instance
search, and shoes, as an example of 3D full-view instance search.

4.4 AT T R I B U T E S F O R G E N E R I C I N S TA N C E S E A R C H

Attributes, as a higher level abstraction of visual properties, have been shown advan-
tageous in categorization when the training examples are insufficiently covering the
appearance variations in the original feature space [4, 40, 184]. In our problem, there
is only 1 example available and there still exists a wide range of appearance variations.
Can we employ attributes to address generic instance search?

4.4.1 Method

In the literature, two types of attributes have been studied, manually defined attributes
with names [4, 89] and automatically learned unnameable attributes [146, 184]. Obtain-
ing manually defined attributes requires a considerable amount of human efforts and
sometimes domain expertise, making it hard to scale up to a large number of attributes.
Moreover, the manually picked attributes are not necessarily machine-detectable, and
not guaranteed to be useful for the task under consideration [184]. On the other hand,
learned attributes do not need human annotation and have the capacity to be optimized
for the task [146, 184]. For some tasks, like zero-shot learning [4] and image retrieval by
textual query [149], it is necessary to use human understandable attributes with names.
However, in instance search given 1 image query, having attributes with names is not
really necessary. In this work, we use automatically learned attributes. Specifically, we
focus on searching among instances known to be of the same category in this section
using automatically learned category-specific attributes.

Provided with a set of training instances from a certain category, we aim to learn
a list of category-specific attributes and use them to perform instance search on new
(unseen) instances from the same category. Concretely, given m training images of n
objects (m > n as each object has one or multiple examples), the goal is to learn k
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attribute detectors. In the search phase, the query image and the dataset images are
represented by k-dimensional attribute detection scores, and the search is performed by
comparing the distances in the k-dimensional feature space.

Analogous to the class-attribute mapping in attribute-based categorization [4, 40, 89],
an instance-attribute mapping A ∈ Rn×k is designed automatically. The challenge is
how to obtain a useful A. As the goal in instance search is to differentiate different
instances, the attributes should be able to make distinctions among the training instances.
On the other hand, as the attributes will be used later for instance search on new, unseen
instances, the learned attributes need to be able to generalize on unseen instances. To
that end, visually similar training instances are encouraged to share attributes. Attributes
specific to one training instance are less likely to generalize on unknown instances than
those shared by several training instances. And sharing needs to be restricted only among
visually similar training instances as the latent common visual patterns among visually
dissimilar instances are less likely to be present and detected on new instances even if
they can be learned provided with a high dimensional feature space. Besides, to make the
best out of the k attributes, it is desirable to have low redundancy among the attributes.
Formally, taking the above considerations into account, we design A by

maximize
A

f1(A) + λ f2(A) + γ f3(A), (4.1)

where f1(A), f2(A) and f3(A) are defined as follows:

f1(A) =
n∑
i, j

‖Ai· − A j·‖
2
2,

f2(A) = −
n∑
i, j

S i j‖Ai· − A j·‖
2
2,

f3(A) = −‖AT A − I‖2F .

(4.2)

Ai·, the i-th row of A, is the attribute representation of the i-th instance. f1(A) ensures
instance separability. S in f2(A) is the visual proximity matrix, where S i j represents
visual similarity between instance i and instance j, measured a priori in certain visual
feature space. The similarity between two training instances is computed as the average
similarity between the images of the two instances. f2(A) encourages similar attribute
representations between visually similar instances, inducing shareable attributes. f3(A)
penalizes redundancy between attributes. λ and γ are two parameters of the objective.
Larger λ encourages more attribute sharing among visually similar instances and larger
γ penalizes more on the redundancy in the learned attributes. This formulation was
originally proposed in [184] for category recognition. Following [184], the optimization
problem is solved incrementally by obtaining one column of A, i.e., one attribute at each
step. Next we briefly describe the optimization procedure.

The objective (Equation 4.1) can be rewritten as

maximize
A

Tr(AT PA) − γ‖AT A − I‖2F , (4.3)
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where P = Q − λL. Q is an n × n matrix with diagonal elements being n − 1 and off-
diagonal elements being −1. L is the Laplacian of S [167]. Initializing A as an empty
matrix, A can be learned incrementally, one column at one step, by

maximize
a

aT Ra s.t. aT a = 1, (4.4)

where R = P− 2γAAT . The optimal a is the eigenvector of R with the largest eigenvalue.
A is updated by A = [A, a] at every step. In this work, each attribute, i.e., a, is binarized
during the optimization.

Attribute detectors. Once the instance-attribute mapping A has been obtained, the
next step is to learn the attribute detectors. In this work, the attribute detectors are
formulated as linear SVM classifiers. To train the j-th attribute detector, images of the
training instances with Ai j > 0 are used as positive examples and the rest images are
negative examples3.

Attribute representation. Given a new image, the attribute representation is gener-
ated by applying all the learned attribute detectors and concatenating the SVM classifi-
cation scores. The attribute representation is discriminative in distinguishing different
instances as it is optimized to be so when designing A. The attribute representation
is invariant to the appearance variations of an instance as the invariance is built in the
attribute detectors which take all the images of one instance as either all positive or all
negative during learning.

4.4.2 Datasets

Evaluation sets. The category-specific attributes as learned are evaluated on shoes, cars
and buildings. For shoes, the dataset CleanShoes described Section 4.3 is used. For cars,
we collect 1110 images of 270 cars from eBay, denoted by Cars. Figure 24 shows some
images of two cars4. For buildings, a dataset is composed by gathering all 567 images
of the 55 Oxford landmarks from Oxford5k, denoted by OxfordPure. We reuse the 55
queries defined in Oxford5k.

Training sets. To learn shoe-specific attributes, we collect 2100 images of 300 shoes
from Amazon. To train car-specific attributes, we collect 1520 images of 300 cars from
eBay. To learn building-specific attributes, we use a subset of the large building dataset
introduced in [10]. We randomly pick 30 images per class and select automatically the
300 classes that are most relevant to OxfordPure according to the visual similarity. We
end up with in total 8756 images as some URLs are broken and some classes have less
than 30 examples. For all shoes, cars and buildings, the instances in the evaluation sets
are not present in the training sets.

3 We have also tried designing the instance-attribute mapping A with continuous values and learning a
regressor for each attribute. However, this is not better in terms of instance search performance.

4 The properties are with the respective owners. The images are shown here only for scientific purposes.
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Figure 24: Examples of two cars from the dataset Cars.

4.4.3 Empirical parameter study

We empirically investigate the effect of the two parameters of the learning algorithm (λ
and γ in Equation 4.1) on the search performance. We learn different sets of category-
specific attributes with different λ and γ values and evaluate the instance search perfor-
mance. The study is conducted on the shoe dataset.

Fisher vector [144] with densely sampled RGB-SIFT [163] is used as the underlying
representation to compute the visual proximity matrix S in Equation 4.2 and learn the
attribute detectors. S is built as a mutual 60-NN adjacent matrix throughout the work.

First, we study the effect of λ by fixing γ. An extreme case is setting λ to be 0, which
means no attribute sharing among training instances. As shown in Figure 25 (left), when
λ is 0, the search performance is much worse than when λ is from 1 to 5, especially when
the number of attributes is low. When there is no sharing induced, the learned attributes
on the training instances cannot generalize well on the new instances in the search set.
As long as sharing is enabled, the search performance is robust to the value of λ.

Second, we study the effect of γ by fixing λ. As can be seen from Figure 25 (right),
when γ is small (0.01), which means large redundancy in the learned attributes, the
search performance is very low, but stabilizes once γ is large enough.

The above study shows the importance of enforcing attribute sharing and low re-
dundancy during learning as well as the robustness of the learning algorithm against
the values of λ and γ, in terms of the instance search performance. In the rest of work,
we set λ and γ to be 2 and 7 respectively to be consistent with the earlier version of the
work [157].

4.4.4 Comparison with manual attributes

We compare the learned attributes with manually defined attributes on shoe search. For
manually defined attributes, we use the list of attributes proposed by [68]. We manually
annotate the same 2100 training images. In the reference, 42 attributes are defined.
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Figure 25: The impact of the parameters of the attribute learning algorithm (λ and γ)
on the search performance, measured in mean average precision. The experiments are
conducted on CleanShoes. When there is no attribute sharing enforced between instances
(λ = 0) or there is large redundancy in the learned attributes (γ = 0.01), the search
performance is low. It indicates the importance of enforcing attribute sharing and low
redundancy. The observation on the impact of λ holds when fixing γ to other values (The
same holds for the observation on γ.).

number CleanShoes

Manual attributes 40 18.99

Learned attributes 40 39.44

Learned attributes 1000 56.57

Table 12: Comparison of learned attributes and manually defined attributes on shoe
search. The performance is measured in mean average precision%.

However, we merge super-high and high of “upper” and “heel height” because it is hard
to annotate super-high and high as two different attributes. This results in 40 attributes.

Again, Fisher vector is used as the underlying representation to learn attribute detec-
tors. As shown in Table 12, with the same number of attributes, the automatically learned
attributes work significantly better than the manual attributes. Moreover, automatically
learned attributes are easily scalable, improving performance further. Figure 26 shows
four automatically learned attributes. Although the attributes have no explicit names,
they do capture common visual properties between shoes.

4.4.5 Empirical study of underlying feature representation

In theory, attributes can be learned from any underlying feature representation. In
this section, we empirically evaluate the impact of various underlying features for
attribute learning on the instance search performance. We consider 5 different feature
representations investigated in Section 4.3, i.e., Triemb, Fisher, Fisher-D, VLAD-Conv
and Deep-FC. ExpVLAD is not included as it does explicitly form a vector representation
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Figure 26: Four automatically designed attributes. Each row is one attribute and the
shoes are the ones that have high response for that attribute. Although the automatically
learned attributes have no semantic names, apparently they capture sharing patterns
among shoes. The first attribute represents high boots. The second describes the high
heels. The third is probably about colorfulness. The last one is about openness. The first
two are also found in the manually defined attributes while the other two are novel ones
discovered automatically.
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dim CleanShoes Cars OxfordPure

ExpVLAD [156] — 16.14 23.70 87.01
Triemb [77] 8064 25.06 18.56 75.33

Fisher [76] 16384 20.94 18.37 70.81

Fisher-D [76, 163] 40960 36.27 20.89 67.41

VLAD-Conv [120] 51200 29.37 27.27 69.05

Deep-FC [87] 4096 36.73 22.36 59.48

Attributes(Triemb) 1000 19.83 28.15 71.58

Attributes(Fisher) 1000 17.67 31.21 69.33

Attributes(Fisher-D) 1000 56.57 51.11 77.36

Attributes(VLAD-Conv) 1000 63.19 63.99 82.86

Attributes(Deep-FC) 1000 57.11 38.07 69.51

Table 13: Performance in mean average precision% of existing methods (top part of
the table) and the attributes learned from single underlying features (bottom part). The
attributes learned from Fisher-D, VLAD-Conv or Deep-FC outperform existing methods
significantly on shoes and cars, and achieve comparable performance on buildings.
Attributes learned from the underlying features that capture densely the visual cues
(Fisher-D, VLAD-Conv and Deep-FC) are better than those learned from the underlying
features based on sparse interest points (Triemb and Fisher).

to facilitate the learning. The proximity matrix S is measured in the same feature space
as used for learning attributes.

First, we evaluate the attributes learned from single underlying features and compare
with existing approaches. The results are summarized in Table 13. We observe that when
the underlying feature representation for attribute learning is based on sparse interest
points, including Triemb and Fisher, the learned attribute representation does not always
improve the search performance over the original representation. However, when the
underlying feature representation is based on densely extracted visual cues, including
Fisher-D, VLAD-Conv and Deep-FC, the attribute representation always outperforms the
underlying feature representation by a large margin. This indicates that the mapping from
the original feature representation to the attribute representation is selective. It selects
the useful information which is discriminative among different instances and invariant to
the variations of the same instance, while discarding other disturbing information. We
argue that a large amount of useful information has already been filtered by the internal
selection step of the interest point detector and therefore attribute representation learned
on interest point based features does not help much. The attribute representation learned
using VLAD-Conv achieves better performance than those learned from other underlying
representations. On the shoe and car datasets, the learned attribute representation signifi-
cantly outperforms existing approaches. Attributes are superior in addressing the large
appearance variations caused by the large imaging angle difference present in the shoe
and car images, even though the attributes are learned from other instances. The attribute
representation also works well on the buildings. In addition, attribute representation has
a much lower dimensionality than other representations.
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dim CleanShoes Cars OxfordPure

Fisher-D [76, 163],VLAD-Conv [120] 92160 35.64 26.18 71.29

Fisher-D [76, 163],Deep-FC [87] 45056 41.55 22.65 69.41

VLAD-Conv [120],Deep-FC [87] 55296 36.25 26.25 69.84

Fisher-D [76, 163],VLAD-Conv [120],Deep-FC [87] 96256 39.04 25.58 71.42

Attributes(Fisher-D,VLAD-Conv) 1000 63.97 69.19 83.22

Attributes(Fisher-D,Deep-FC) 1000 67.45 59.96 78.66

Attributes(VLAD-Conv,Deep-FC) 1000 67.06 69.02 83.75
Attributes(Fisher-D,VLAD-Conv,Deep-FC) 1000 67.87 71.74 83.06

Table 14: Performance in mean average precision% of combining multiple existing
representations (top part of the table) and the attributes learned from multiple underlying
features (bottom part). The learned attribute representation significantly outperforms
the underlying representation. Comparison with Table 13 shows that the attribute
representation learned from multiple underlying features outperforms those learned on
single features. Interestingly, combining the same underlying features and directly using
them for instance search without attributes does not necessarily improve over individual
features.

Second, in Table 14, we investigate the effects of using multiple underlying features
for attribute learning. Again, the attribute representation outperforms the underlying
feature representation significantly. Comparing Table 14 and Table 13, it is clear that
the attribute representation learned on the combination of multiple underlying features
outperforms those learned on single features. This demonstrates the advantage of using
multiple underlying feature representations, which as a whole can better capture the
various types of visual properties than a single representation. Interestingly, combining
the same underlying features and directly using them for instance search without attributes
does not necessarily improve over individual features, which confirms again the advantage
of attributes. The attribute representation learned on the combination of Fisher-D, VLAD-
Conv and Deep-FC achieves best performance on shoes and cars, and close to best
performance on buildings, improving the results reported in the earlier version of the
work [157] from 56.57% to 67.87% on CleanShoes, from 51.11% to 71.74% on Cars,
and from 77.36% to 83.06% on OxfordPure in mean average precision.

4.5 P E R S O N R E - I D E N T I FI C AT I O N A S I N S TA N C E S E A R C H

Person re-identification is the problem of identifying the images in a database which
depict the same person as in the probe image. The probe image and the relevant images in
the database are usually captured by different cameras with different recording settings,
causing large viewpoint and illumination variations. Besides, a person might have
different poses in different recordings and might be partially occluded. All these result
in large intra-person variations, making person re-identification a challenging problem.
In this work, we treat person re-identification as a specific person search problem, and
address the problem using the attribute-based method presented in Section 4.4.
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Figure 27: Performance on VIReR dataset [54], measured in matching rate on top ranked
images. The learned attribute representation significantly outperforms the original
underlying representation.

Dataset and evaluation protocol. We use the VIPeR dataset [54]. It has been
widely used for benchmark evaluation. It contains 632 pedestrians, each recorded by two
cameras. One view is considered as the probe image and the goal is to identify the other
view of the same person. The 632 pairs are randomly divided into two halves, one for
training and one for testing. The performance is evaluated using the Cumulative Match
Characteristic (CMC) curve [54] which estimates the expectation of finding the correct
answer in the top k results. The experiment is repeated 10 times to report an average
performance5.

Implementation details. 1000 attributes detectors are learned using the training
split. To learn the attributes, we employ multiple underlying features. We use the bag-of-
word histograms on local color histograms (CH), local color naming descriptors (CN),
local HOG (HOG) and local LBP descriptor (LBP), provided by [195]6. Besides, we
employ Deep-FC, Fisher-D and VLAD-Conv. Vocabularies with 16 components and 8
centers are used for Fisher-D and VLAD-Conv respectively. The visual proximity matrix
S in equation 4.2 is built as a mutual 60-NN adjacent matrix, the same as in previous
sections.

Results. As shown in Figure 27, the learned attribute representation significantly
outperforms the original underlying representation. The learned attributes can handle
well the large appearance variations. Table 15 summarizes the comparison with the
state-of-the-art. Although the proposed attribute-based method is not specially designed
for person re-identification, it achieves good performance, on par with the state-of-the-art.

5 We use the 10 divisions provided by [195]
6 http://www.liangzheng.com.cn/Project/project_fusion.html
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rank=1 rank=5 rank=10 rank=20

Zheng et al. [195] 30.2 51.6 62.4 73.8

Ahmed et al. [3] 34.8 — — —

Chen et al. [22] 36.8 70.4 83.7 91.7

Shi et al. [148] 31.1 68.6 82.8 94.9
Liao et al. [94] 40.0 — 80.5 91.1

Paisitkriangkrai et al. [126] 45.9 — — —

Ours 43.6 71.6 82.2 90.7

Table 15: Comparison with state-of-the-art on VIPeR dataset [54] by correct matching
rates(%). Although not being specialized for person, our method keeps up with the
state-of-the-art for all ranks.

4.6 C AT E G O R I E S A N D AT T R I B U T E S F O R G E N E R I C I N S TA N C E S E A R C H

In this section, we consider searching for an instance from a dataset which contains
instances from various categories. As the category-specific attributes are optimized
to make distinctions among instances of the same category, they might not be able to
distinguish the instance of interest from the instances of other categories. In order to
address the possible confusion of the query instance with instances from other categories,
we propose to use the category-level information also.

Ideally one could first categorize all the images in the database and then search
using category-specific attributes among the images from the same category as the query.
However, as errors made in categorization are irreversible, we choose to avoid explicit
binary classification but augment the attributes with category-level information.

We consider two ways to capture the category-level information. First, we adopt
the 4096-dimensional output of the second fully connected layer of a CNN [87] as an
additional feature, as it has been shown the activations of the top layers of a CNN capture
high-level category-related information [188]. The CNN is trained using ImageNet
categories. Second, we build a general category classifier to alleviate the potential
problem of the deep learning feature, namely the deep learning feature may bring
examples that have common elements with the query instance even if they are irrelevant,
such as skins for shoes. Combining the two types of category-level information with the
category-specific attributes, the similarity between a query q and an example d in the
search set is computed by

S (q, d) = S deep(q, d) + S class(d) + S attr(q, d), (4.5)

where S deep(q, d) is the similarity of q and d in the deep learning feature space, S class(d)
is the classification response on d and S attr(q, d) is the similarity in the attribute space.
The three scores are normalized to be [0, 1].

Datasets. We evaluate on shoes. A set of 15 shoes and in total 59 images is collected
from two fashion blogs7. These images are recorded in streets with cluttered background,

7 http://www.pursuitofshoes.com/ and http://www.seaofshoes.com/. The properties are with the respective
owners. The images are shown here only for scientific purposes.
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Query Target Images

Figure 28: Examples of two shoes from StreetShoes. As there is only 1 query example, by
manual annotation, we only consider the object region to ensure the object to search is
clear, as shown in the second column. The goal is to retrieve from an image collection the
target images which depict the same shoe. Note large differences in scale and viewpoint
between query and target images.

different from the ‘clean’ images in CleanShoes. We consider one image of a shoe as
the query and aim to find other images of the same shoe. The shoe images are inserted
into the test and validation parts of the Pascal VOC 2007 classification dataset [37]. The
Pascal dataset provides distractor images. We refer to the dataset containing the shoe
images plus distractors as StreetShoes. Figure 28 shows two examples. To learn the shoe
classifier, we use the 300 ‘clean’ shoes for attributes learning in Section 4.4 as positive
examples and consider the training part of the Pascal VOC 2007 classification dataset as
negative examples.

Implementation details. As there is 1 query image, by manually annotation we
only consider the object region to ensure the target is clear. It is worthwhile to mention
that although only the object part in the query image is considered, we cannot completely
get rid of skins for some shoes, as shown in Figure 28. We use selective search [162] to
generate many candidate locations in each database image and search over these local
objects in the images as [156]. We adopt a short representation with 128 dimensions.
Specifically, we reduce the dimensionality of the deep learning features and the attribute
representations with a PCA reduction. And for Fisher vectors, we adopt the whitening
technique proposed in [72], proven better than PCA. We reuse the attribute detectors
from Section 4.4.

Results and discussions. The results are shown in Table 16. On StreetShoes, the
proposed method of combining category-specific attributes with two types of category-
level information achieves the best performance, 30.45% in mean average precision. We
observe that when considering deep features alone as the category-level information, the
system brings many examples of skins. The shoe classifier trained on clean shoe images
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StreetShoes

Deep(128D) 21.68

Fisher(128D) 9.38

Attributes(128D) 3.10

Deep + Fisher 19.76

Deep + Attributes 18.43

Deep + Classifier + Fisher 22.70

Deep + Classifier + Attributes 30.45

Table 16: Performance in mean average precision% on StreetShoes. The proposed method
of combining the category-specific attributes with two types of category-level information
outperforms the combination of category-level information with Fisher vector.

help eliminate these irrelevant examples. We conclude that the proposed method of
combining the category-specific attributes with two types of category-level information
is effective, outperforming the combination of category-level information with Fisher
vector. Figure 29 shows the search results of three query instances returned by the
proposed method, two success cases and a failure case.

4.7 C O N C L U S I O N

In this chapter, we pursue generic instance search from 1 example. Firstly, we evaluate
existing instance search approaches on the problem of generic instance search, illustrated
on buildings and shoes, two contrasting categories of objects. We observe that what
works for buildings does not necessarily work for shoes and what works worse for
buildings may work well for shoes.

Secondly, we propose to use category-specific attributes to handle the large appear-
ance variations present in generic instance search. We assume the category of the query
is known, e.g., from the user input. When searching among instances from the same
category as the query, attributes outperform existing approaches by a large margin on
shoes and cars at the expense of knowing the category of the instance and learning the
attributes. For instance search from only one example, it may be reasonable to use more
user input. On the building set, the category-specific attributes obtain a comparable
performance.

Thirdly, we consider person re-identification as a special case of generic instance
search where the query is a specific person. We show the same attribute-based ap-
proach achieves competitive performance, on par with the state-of-the-art in person
re-identification.

Fourthly, we consider searching for an instance in datasets containing instances
from various categories. We propose to use the category-level information to address
the possible confusion of the query instance with instances from other categories. We
show that combining category-level information carried by deep learning features and the
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18 21 53

Query Image Query Segment Top 5 Results Missed Target Images in Top 5

113

None

Figure 29: Search results of three query instances, two success cases (the first two) and a
failure case (the third one). Only the segment is used as query. For the first instance, it
has 5 relevant images in the search set, and 4 of them are returned in the top 5 positions.
For the second instance, there is only 1 relevant example in the search set and it is
returned at the first position. For the instance at the bottom, it has 3 relevant images and
none of them are returned in the top 5. It is a very hard case, as the shoe is partially
visible and the majority of the query segment is about the bare feet. Images of bare footed
people appear in the top results. The correct images are ranked at 18, 21 and 53, and
they are actually retrieved based on wrong information.

categorization scores with the learned category-specific attributes outperforms combining
the category information with Fisher vector.

Going back to the experiments using attributes alone, the proposed same method
achieves 67.87% in mean average precision (mAP) on CleanShoes for shoe search
(Table 14), 71.74% in mAP on Cars for car search (Table 14), 83.06% in mAP on
OxfordPure for building search (Table 14) and 43.6% in matching rate at rank 1 on VIPeR
for person search (Table 15), while the best performance of existing methods are 36.73%
(Table 13), 27.27% (Table 13), 87.01% (Table 13) and 45.9% (Table 15) respectively.
The method is generic for instance search indeed.
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5.1 I N T RO D U C T I O N

1 At the core of many tracking algorithms is the function by which the image of the target
is matched to the incoming frames. The matching function for tracking ideally provides
good matching even if the target in the video is occluded, changes its scale, rotates in
and out-of-plane or, undergoes uneven illumination, camera motion and other disturbing
factors [152, 180]. One way to proceed is to model each of these distortions explicitly in
the matching by introducing affine transformations [101], probabilistic matching [28],
eigen images [142], illumination invariants [121], occlusion detection [127]. While one
explicit matching mechanism may be well-fitted to solve one distortion, it is likely to
disturb another.

In this work, rather than explicitly modeling the matching for particular distortions,
we propose to learn the matching mechanism. More specifically, we suggest that we
learn from external videos that contain various disturbing factors the invariances without,
however, explicitly modeling these invariances. If the set of external videos is sufficiently
large, the goal is to learn a generically applicable matching function a priori. We take
extra care that there is absolutely no overlap between the videos we use for training
and any of the tracking videos for evaluation. Namely, we do not aim to do any offline
learning of the tracking targets, since in that case we would essentially learn an object
detector. Instead, in the learning we focus on the generic set of object appearance
variations in videos. In this way, we optimize the matching function between an arbitrary
target and patches from subsequent frames. Once the matching function has been learnt
on the external data we do not adapt it anymore and, we apply it as is to new tracking
videos of previously unseen target objects.

We focus on learning the matching function suited for application in trackers. Hence,
our aim is not to build a fully fledged tracker which might need explicit occlusion
detection [129], model updating [57, 63, 189], tracker combination [189], forget mecha-
nisms [57, 121] and other. We rather focus on the matching function alone, similar to the
simplicity of the normalized cross-correlation (NCC) tracker [17, 34]. In this work, we
simply match the initial target in the first frame with the candidates in a new frame and
return the most similar one by the learnt matching function, without updating the target,
tracker combination, occlusion detection and alike. Figure 30 illustrates the tracking
algorithm.

1 Published in IEEE Conference on Computer Vision and Pattern Recognition, 2016 [155].
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Figure 30: The tracker simply finds the patch that matches best to the original patch of
the target in the first frame, using a learned matching function. The matching function
is learned once on a rich video dataset. Once it has been learned, it is applied as is,
without any adapting, to new videos of previously unseen target objects. We do not apply
offline target learning and the target is not included in the training video dataset.

This approach to tracking bears some similarity to instance search [133, 156, 157,
159], where the target specified in the query image is searched for in a pile of images.
Introducing matching learning [157] allows for accurate instance search of generic
objects even when the relevant images in the search set show drastically different views
of the target object from the query image. Here we intend to learn a generic matching
function to cope with all sorts of appearance variations from tracking examples. After
learning, the matching function is capable of comparing patches recorded under very
different conditions for new objects, or, even for new object types that the function has
not seen before.

We summarize the contributions of the work as follows. First, we propose to learn
a generic matching function for tracking, from external video data, to robustly handle
the common appearance variations an object can undergo in video sequences. The learnt
function can be applied as is, without any adapting, to new tracking videos of previously
unseen target objects. Second, on the basis of the learnt generic matching function, we
present a tracker, which reaches state-of-the-art tracking performance. The presented
tracker is radically different from state-of-the-art trackers. We apply no model updating,
no occlusion detection, no combination of trackers, no geometric matching and alike. In
each frame, the tracker simply finds the candidate patch that matches best to the initial
patch of the target in the first frame by the learned matching function. Third, to learn
the matching function, we use a two-stream Siamese network [18], which we design
specifically for tracking. Further, in the absence of any drifting that one would expect
by on-the-fly model updating, the proposed tracker allows for successful target object
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re-identification after the target was absent for a long period of time, e.g., a complete
shot.

5.2 R E L AT E D W O R K

Matching functions in tracking One of the most basic concept of tracking is the direct
matching between the intensity values of the target patch and the patches taken from
the incoming image. The oldest tracking algorithm does just that by normalized cross-
correlation [17, 34]. Its simplicity is also its strength, still being in use as part of the
TLD-tracker [82]. Subsequent trackers have reconsidered the matching function by
focusing on the various distortions to the target image faced in tracking. The Lucas and
Kanade tracker [101] adds an affine transformation to the matching function. MST [28]
relies on probabilistic matching. FRT [2] uses the earth mover’s distance matching. And
IVT [142] matches by the metric of eigen images obtained during tracking. L1T [106] is
successful with L1-metric matching on graphs of fragments. SPT [174] uses super-pixels
for matching, HBT [49] uses HOG-features in a probabilistic approach, and FBT [121]
uses color invariants for robustness against illumination variations. Different from all
methods above, which pursue explicit modeling of the matching function, this work aims
to learn the matching function from example videos annotated with the correct boxes.

Recent tracking methods In recognition of the hardness of the task, composite
trackers have been introduced. TLD [82] integrates the NCC matching for recovery with
a differential tracker and a complex updating model. Struck [57] is based on structural
SVM with the displacement as the continuous output, with a cautious update mechanism.
More recently, MEEM [189] successfully learns and updates a discriminative tracker,
keeping a set of historical snapshots as experts who derive the per frame prediction based
on an entropy regularized optimization. Alien [129] is a successful long-term tracker
relying on oversampling of local features and RANSAC-based geometric matching. In
the very recent MUSTer [65] one component stores short-term memories of the target
for short-term tracking using integrated correlation filters, where the long-term memory
is based on RANSAC matching again. Finally, the AND-OR tracker [179] proposes a
discriminative learning of hierarchical, compositional and-or graphs that account for
the appearance and structural variations of the object. In this work, we focus on simple
tracking inference scheme, namely finding the patch that matches best to the initial
target in the first frame. The complexity, instead, is incorporated externally, where
the matching function is trained to be robust against appearance variations. Hence,
rather than learning on-the-fly, we learn what can be encountered in general without
requiring target-specific learning. Once learned, the matching function can be built in
the successful, aforementioned composite trackers to enhance their performance.

Deep learning in tracking [172] uses a stacked denoising autoencoder to learn
tracking features. The features are performing poorly, however. [90] learns a target
classifier online, which is fundamentally hampered by a lack of data. [64] focuses on
learning target-specific saliency map using pre-trained ImageNet network. [170] pre-
trains a convolutional neural network for measuring generic objectness on ImageNet
2014 detection set and adapts the network online to predict the target-specific objectness.
Compared to previous works, this work focuses on a different part of a tracker. We
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employ deep neural networks to learn a generic matching function from rich external
data to compare patches for use in tracking.

Instance Search Instance search from one example, also known as particular object
retrieval, is related to object tracking, especially when localized [79, 156]. The most
popular paradigm is based on matching local image descriptors between the query and
the candidate image [73, 133, 136, 151, 156, 158] and is especially accurate for build-
ings [133]. Recently, [157] proposed to learn a robust representation for instance search
of less textured, more generic objects, showing good accuracy despite the significant
appearance changes between the query and the database images. We derive some inspira-
tion from [157]. We propose to learn a robust matching function for matching arbitrary,
generic objects that may undergo all sorts of appearance variations. We focus, however,
on tracking. Instead of focusing on a specific category e.g., shoes, and learning from
images with a white background [157], we learn in this work a universal matching model
suited for tracking that applies to all categories and all realistic imaging conditions.

Siamese architecture [18] proposes the two-stream Siamese architecture for sig-
nature verification. Later, the two-stream network architecture has been applied to
face verification [25, 154], ground-to-aerial image matching [95], local patch descriptor
learning [56,186] and stereo matching [187]. In this work, we design a Siamese network-
architecture to learn robust and generic representation for object tracking, aiming to be
invariant to all sorts of appearance variations in practical tracking scenarios.

Fast localization Tracking also bears resemblance to the object localization problem.
Usually, it requires efficient processing of multiple regions in one frame. [93] proposes
efficient region computation by reordering the encoding, pooling and classification
steps for the ‘shallow’ representations such as Fisher vector [132]. Recent work by
Girshick [47] proposes an efficient way of processing multiple regions in one single
pass through the deep neural network for fast object detection. Inspired by [47], we
incorporate the region-of-interest pooling layer into our network for fast processing of
multiple regions in one frame for tracking.

5.3 S I A M E S E I N S TA N C E S E A R C H T R AC K E R

In the following we describe the proposed method for tracking, which is coined Siamese
INstance search Tracker, SINT for abbreviation. We first present the matching function,
which is the core of the tracker. Then we describe the simple online tracking inference.

5.3.1 Matching Function

To learn a matching function robust to all sorts of distortions as described earlier, we
need a model that operates on pairs of data, (x j, xk). A network architecture that
has been successfully shown to work well on pairs of data is the two-stream Siamese
architecture [18, 25]. A Siamese architecture builds on top of convolutional networks.
Next, we analyze the different components of the proposed two-stream network which
we coin Siamese Invariance Network.
Network architecture We use a Siamese architecture composed of two branches. The
Siamese network processes the two inputs separately, through individual networks
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that usually take the form of a convolutional neural network. For individual branches,
we design and compare two different network architectures, a small one similar to
AlexNet [87] and a very deep one inspired by VGGNet [150] (Figure 31). In the
following we highlight the distinctive designs of the networks as compared to the
successful AlexNet and VGGNet.

Being largely a localization task the tracking problem is naturally susceptive to rough
discretizations. Aiming for precise localization, we design our network with very few
maxing pooling layers, fewer than the networks in [87, 150]. Indeed, as max pooling
maintains only the strongest of the activations from a local neighborhood to use as input
for the subsequent layers, the spatial resolution of the activations is aggressively reduced,
at the very least by 50% only in the simple case of 2 × 2 local neighborhoods. An
advantage of max pooling is it introduces invariance to local deformations. However, this
is more important for object categorization, where the objects vary a lot in appearance.
In tracking even if the target object changes its appearance over time, it still remains
the same object in all frames. Moreover, it is important to be able to follow the small
appearance changes, such as local deformations, of the object over time. Regarding the
two architectures we propose, for the AlexNet-like small net we do not include any max
pooling layer (see Figure 31a), while for the VGG-like large net, we only have two max
pooling at the very early stage (see Figure 31b), as the lower level layers learn filters
of very small receptive fields and their max pooling layers are important to maintain
robustness to local noise.

In tracking one typically needs to evaluate hundreds of candidate regions for the
next frame. Although one can simply pass the candidate regions into the network for
processing independently, this would lead to a severe computation overhead, especially
since there is a significant overlap between the candidate regions. Therefore, we employ
a region pooling layer [47] for the fast processing of multiple overlapping regions. Each
branch of the Siamese architecture takes as input one image and a set of bounding
box regions. The network first processes the entire image for a few layers, then the
region pooling layer converts the feature map from a particular region into a fixed-
length representation. Having a fixed length representation, one can now proceed to the
subsequent layers.

The layers in a deep network capture progressively more abstract representations [188].
Typically, the filters of the lower layers get activated the most on lower level visual pat-
terns, such as edges and angles, whereas higher layers get activated the most on more
complex patterns, such as faces and wheels. Also, the deeper one layer is, the more
invariant it is to appearance changes but also less discriminative, especially for instance-
level distinction. In tracking we do not know the type of target object we want to track,
whether it is highly textured with rich low level patterns or not. We do not know either
the complexity of the background, whether there are confusing objects in which case
higher discrimination would probably be more helpful. For this reason we propose to
use the outputs from multiple layers as the intermediate representation that is then fed
to the loss function. Similar observations have also been made in [58, 98] for different
tasks, semantic segmentation and fine-grained localization specifically. All activations
are pooled using the region pooling layers.

Given that modern convolutional neural networks use rectified linear units that do
not bound the output values, the nonlinear activations can vary a lot in the range of
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(a)

(b)

Figure 31: The proposed two-stream Siamese networks to learn the generic matching
function for tracking. ‘conv’, ‘lrn’, ‘maxpool’, ‘roipool’ and ‘fc’ stand for convolution,
local response normalization, max pooling, region-of-interest pooling [47] and fully
connected layers respectively. Numbers in square brackets are kernel size, number of
outputs and stride. The fully connected layer has 4096 units. All conv layers are followed
by rectified linear units (ReLU) [115].
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values they produce. As such and without considerations, the network output and the loss
function will be heavily influenced by the scale of the generated features and not their
representation quality. To avoid this we propose to add an `2 normalization layer before
the loss layer. The normalization layer is applied on each of the layer activations that
are fed to the loss layer and has the property of maintaining the direction of the feature,
while forcing features from different scales to lie on the same unit sphere.

Compared to standard convolutional neural networks, AlexNet and VGGNet [87,
150], our architecture has several differences, highlighted above. However, we also
explicitly design our networks to be compatible to AlexNet and VGGNet. In this way,
we are able to initialize the weights of our networks using the ImageNet-pretrained
AlexNet and VGGNet to avoid training from scratch, something that would likely lead
to overfitting. Last, note that we keep the parameters of the two convolutional network
branches tied together, as there would be an increased danger of overfitting otherwise.

Network input Our training data consist of videos of objects, whose bounding box loca-
tion is provided to us. To emulate the instance search paradigm and to avoid confusion,
we coin the first stream of our network as query stream, whereas the second stream of
our network as search stream. For the query stream we randomly pick one frame from
the video and use the annotated patch of the target. Since we want to be robust to as
many types of variations that we might face when tracking novel objects as possible,
for the search stream we randomly pick another video frame that does not need to be
adjacent to the frame of the query stream. From the frame of the search stream we
sample boxes and the ones that overlap more than ρ+ with the ground truth are deemed
positives, while the ones that overlap less than ρ− with the ground truth are deemed neg-
atives. From these we form positive and negative pairs of data that we use for the training.

Loss In the end, the two branches in the Siamese Invariance Network are connected with
a single loss layer. For tracking we want the network to generate feature representations,
that are close by enough for positive pairs, whereas they are far away at least by a
minimum for negative pairs. Bearing these requirements in mind and inspired by [25],
we employ the margin contrastive loss

L(x j, xk, y jk) =
1
2

y jkD2 +
1
2
(1 − y jk)max(0, ε − D2), (5.1)

where D = ‖ f (x j) − f (xk)‖2 is the Euclidean distance of two `2-normalized latent
representations, y jk ∈ {0, 1} indicates whether x j and xk are the same object or not, and ε
is the minimum distance margin that pairs depicting different objects should satisfy.

Data As tracking is an inherently online task, where no training data related to the
target object are available, it is important to emphasize that the network is learnt on
external videos that do not appear in the tracking evaluation sets. The data should
be varying enough, covering a good amount of semantics and not focus on particular
objects, otherwise the tuned network parameters will overfit to particular object categories.
Furthermore, as we do not explicitly learn types of invariances, namely we do not learn
“illumination invariance” separately from “scale invariance”, therefore in the external data
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we do not need any specific variation labels. The only requirement is the box annotations
within the video following a particular object.

5.3.2 Tracking Inference

Once we have completed the learning of the matching function, we are ready to deploy it
as is to tracking, without any further adapting. We propose a simple tracking strategy.
As the only reliable data we have for the target object is its location at the first frame, at
each frame we compare the sampled candidate boxes with the target object at the first
frame. We pass all the candidate boxes from the search stream of our network and pick
the candidate box that matches best to the original target,

x̂t = arg max
x j,t

m(xt=0, x j,t), (5.2)

where x j,t are all the candidate boxes at frame t, m is the learned matching function,
m(x, y) = f (x)T f (y).

Candidate sampling We employ the radius sampling strategy [57]. More specifically,
around the predicted location of the previous frame we sample locations evenly on circles
of different radii. Different from [57], to handle scale variations we generate at each
sampled location multiple candidate boxes at different scales.
Box refinement Provided that the box prediction is accurate enough, [41, 48] showed
that a refinement step of the boxes can improve localization accuracy significantly. To
this end we adopt their strategy and refine at each frame the predicted bounding box
further.

As in [48] we train four Ridge regressors for the (x, y) coordinates of the box center
and the width and height (w, h) of the box based on the first frame. The regressors are
not updated during tracking in order to avoid the risk of contaminating the regressors
with noisy data. For each frame, the regressors take the representation of the picked
candidate box as input and produce a refined box.

5.4 E X P E R I M E N E N T S

5.4.1 Implementation Details

Candidate Sampling We use the radius sampling strategy [57] to generate candidate
boxes. We use 10 radial and 10 angular divisions. The search radius is set to be the
longer axis of the initial box in the first frame. At each sample location, we generate
three scaled versions of the initial box with the scales being {

√
2

2 , 1,
√

2}.
Network training We use the ALOV dataset [152] for training and validation.

We choose ALOV for training as it covers many types of variations one could expect
in tracking. We exclude the 12 videos in ALOV that are also in tracking benchmark
(OTB) [180], as we evaluate the proposed tracker on OTB. After removing the 12 videos,
the training set and the tracking evaluation set have no common objects. From every two
frames in a video, we generate multiple pairs. One element in a pair is the groundtruth
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bounding box in one frame and the other element is a box sampled in the other frame.
The pair is considered to be positive if the sampled box has a intersection-over-union
overlap larger than 0.7 with the corresponding groundtruth box and considered to be
negative if the overlap is smaller than 0.5. The training pairs and validation pairs are
generated from different videos, and therefore from different objects. For training, in
total we have sampled from ALOV dataset 60, 000 pairs of frames and each pair of
frames has 128 pairs of boxes. For validation, we have gathered 2, 000 pairs of frames
and the same as for training each pair of frames contains 128 pairs of boxes.

Instead of training the two-stream Siamese network from scratch, we load the pre-
trained network parameters and fine tune the Siamese network. Specifically, we use the
networks pre-trained for ImageNet classification, available in the Caffe library [78]. The
initial fine tuning learning rate is 0.001 and the weight decay parameter is 0.001. The
learning rate is decreased by a factor of 10 after every 2 epochs. We stop tuning when
the validation loss does not decrease any more.

5.4.2 Dataset and evaluation metrics

Dataset To evaluate the tracking performance, we use the online tracking benchmark
(OTB) [180]. OTB is a collection of 50 videos. 51 tracking sequences are defined with
bounding box annotations. The dataset covers various challenging aspects in object
tracking, such as fast motion, deformation, background clutter and occlusion.
Evaluation metrics We follow the evaluation protocol of [180], where two metrics
are used: success plot and precision plot. Both metrics measure the percentage of
successfully tracked frames. For the success plot, a frame is declared to be successfully
tracked if the estimated bounding box and the groundtruth box have an intersection-over-
union overlap larger than a certain threshold. For precision plot, tracking on a frame
is considered successful if the distance between the centers of the predicted box and
the groundtruth box is under some threshold. A plot is given by varying the threshold
values. Tracking algorithms are ranked based on the area under curve (AUC) score for
the success plot and precision at threshold 20 (Prec@20) for the precision plot. We use
the available toolkit provided by the benchmark to generate plots and numbers. In the
following, we also use success rate where needed, i.e., the percentage of successfully
tracked frames.

5.4.3 Design evaluation

We first validate our design choices of the network. In this sets of experiments, box
refinement is not considered.

Network tuned generically on external video data vs. network pre-tuned on Ima-
geNet vs. network fine tuned target-specifically on first frame In this experiment,
we show the effectiveness of the Siamese network tuned on external data. To that end,
we compare the Siamese fine tuned AlexNet-style network using ALOV (denoted as
“Siamese-finetuned-alexnet-fc6”) with the ImageNet pre-tuned AlexNet (“pretrained-
alexnet-fc6”) and the Siamese fine tuned network using the training pairs gathered in
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AUC Prec@20

(a) pretrained-alexnet-fc6 42.8 66.3
(b) firstframe-Siamese-finetuned-alexnet-fc6 44.0 67.9
(c) Siamese-finetuned-alexnet-fc6 47.4 72.0
(d) pretrained-alexnet-fc6-nomaxpooling 50.0 70.8
(e) Siamese-finetuned-alexnet-fc6-nomaxpooling 53.9 74.8
(f) Siamese-finetuned-alexnet-conv45fc6-nomaxpooling 55.0 76.2
(g) Siamese-finetuned-vgg16-conv45fc6-nomaxpooling 59.2 83.6

Table 17: Evaluation of different architectural and design choices of the Siamese invari-
ance network for tracking on the OTB dataset [180]. We use the recommended evaluation
methods, namely the area under the curve (AUC) for the success plot and the precision
at 20 (Prec@20) for the precision plot.

the first frame (“firstframe-Siamese-finetuned-alexnet-fc6”). In this comparison, all
three use a single layer fc6 for feature representation. As shown in the rows (a)-(c) of
Table 17, the Siamese fine tuned network using ALOV (c) significantly improves over the
pre-tuned net (a), while fine tuning on the first frame (b) gives a marginal improvement.
We conclude that Siamese networks fine tuned using large amount of external data are to
be preferred.

To max pool or not to max pool? We now examine our design choice of having
no maxing pooling layers in the network (“pretrained-alexnet-fc6-nomaxpooling” vs.
“pretrained-alexnet-fc6” and “Siamese-finetuned-alexnet-fc6-nomaxpooling” vs. “Siamese-
finetuned-alexnet-fc6”). As shown in Table 17, (d) vs. (a) and (e) vs. (c), including max
pooling layers deteriorates accuracy, as expected due to the reduction of the resolution
of the feature maps which causes poor localization. When inspecting the results when
no max pooling layers are included, the success rate improvement is higher at higher
intersection-over-union overlap ratios, see Table 18. We conclude that max pooling
layers are not necessary for our Siamese invariance network with small AlexNet-style
architecture.

Multi-layer features vs. single-layer features Next, we evaluate whether it is more
advantageous to use features from a single layer or from multiple layers. We compare
“Siamese-finetuned-alexnet-conv45fc6-nomaxpooling”, which uses the outputs of layers
conv4, conv5 and fc6 as features, with “Siamese-finetuned-alexnet-fc6-nomaxpooling”,
which uses the output of fc6 as feature. Table 17 shows that using multi-layer features is
helpful ((e) vs. (f)). We conclude that using features from multiple layers is advantageous.

Large net vs. small net Lastly, we compare a VGGNet-style architecture with an
AlexNet-style architecture (“Siamese-finetuned-vgg16-conv45fc6-nomaxpooling” vs.
“Siamese-finetuned-alexnet-fc6-nomaxpooling”). Both use as features the outputs of
three layers. As shown in the last two rows (f) and (g) of Table 17, using a deeper network
improves the performance significantly.
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sr@0.3 sr@0.5 sr@0.7

pretrained-alexnet-fc6 68.3 46.2 19.6
pretrained-alexnet-fc6-nomaxpooling 75.3 58.1 32.6

Siamese-finetuned-alexnet-fc6 74.6 56.2 25.4
Siamese-finetuned-alexnet-fc6-nomaxpooling 79.3 67.6 38.8

Table 18: Success rates (sr) of the tracker at three intersection-over-union overlap ratios
for different network architectures. From the table it is clear that a network architecture
without max pooling delivers a more precise localization and hence a better matching
function.

5.4.4 State-of-the-art comparison

Overall comparison In addition to the 29 trackers included in the benchmark [180],
e.g., TLD [82], Struck [57] and SCM [196], we also include the most recent trackers for
comparison. The included recent trackers are TGPR [44], MEEM [189], SO-DLT [170],
KCFDP [67] and MUSTer [65].

As described earlier, the proposed SINT focuses on the tracking matching function,
while having a simple online inference. As a preliminary demonstration that SINT can
be further improved by employing more advanced online components, we also evaluate
a variant of SINT, coined SINT+, which uses an adaptive candidate sampling strategy
suggested by [171] and optical flow [19]. In SINT+, the sampling range is adaptive to the
image resolution, set to be 30/512 ∗w in this experiment, where w is the image width.
Optical flow is used in SINT+ to filter out motion inconsistent candidates. Specifically,
given the pixels covered by the predicted box in the previous frame and the estimated
optical flow, we know where those pixels are in the current frame and we remove the
candidate boxes that contain less than 25% of those pixels, as these candidates are
deemed inconsistent to the motion.

Figure 32 shows the overall performance. For clarity, only the top performing track-
ers are shown. Despite relying on a simple NCC-like tracking inference, SINT reaches
state-of-the-art performance, being tantalizingly close to MUSTer [65] and more accurate
than others by a considerable margin. SINT+, with an adaptive sampling and a simple
use of optical flow, further improves SINT, outperforming clearly all state-of-the-art
other trackers.

Temporal and spatial robustness To verify the robustness of the proposed tracker, we
conduct the temporal robustness evaluation (TRE) and spatial robustness evaluation
(SRE) defined by the benchmark. The results are summarized in Table 19. Compared to
MEEM and MUSTer, SINT is temporally and spatially the same as robust, if not better.

Per distortion type comparison Further, the 50 videos in the benchmark are annotated
with 11 distortion types(e.g., illumination variation, occlusion etc.). To gain more in-
sights, we evaluate the performance of SINT for individual attributes and compare with
MUSTer [65]. SINT performs better in 6 and 7 out of the 11 groups for the AUC and
the Prec@20 metrics respectively (see Figure 33). It is observed that MUSTer is better
mainly in “occlusion” and “deformation”, whereas SINT is better in “motion blur”, “fast
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Figure 32: State-of-the-art comparison on OTB [180]. In spite of the fact that the online
part of the proposed SINT is just selecting the patch that matches best to the target in the
first frame, SINT is on par with state-of-the-art tracker. SINT+, using a better candidate
sampling than SINT and optical flow as an additional component, achieves the best
performance.

OPE TRE SRE

MEEM 57.2 / 84.0 58.5 / 83.2 51.8 / 76.9
MUSTer 62.1 / 83.6 60.9 / 81.1 56.2 / 78.9
SINT 62.5 / 84.8 64.3 / 84.9 57.9 / 80.6

Table 19: Robustness evaluation on OTB, measured in AUC/Prec@20. OPE is one-pass
evaluation. TRE and SRE are temporal and spatial robustness evaluation. The results of
MEEM are taken from [189] and the results of MUSTer are obtained using the publicly
available code.

motion”, “in-plane rotation”, “out of view” and “low resolution”.

Failure modes of SINT When similar objects appear in view, the tracker may jump
from the target to another as it only looks for the maximum similarity with the original
patch of the target in the first frame (Figure 34: left). And, when there is large occlusion,
the matching function might suffer (Figure 34: right).

5.4.5 Additional sequences and re-identification

We now further illustrate the strength of the proposed SINT on 6 newly collected se-
quences from YouTube. We downloaded the sequences so that they are extra challenging
in terms of tracking distortions as defined by [180]. Figure 35 shows example frames from
these sequences. The sequences have considerable degrees of scale change (“Fishing”,
“Rally”, “BirdAttack” and “GD”), fast motion (“BirdAttack”, “Soccer” and “Dancing”),
out-of-plane rotation (“Rally” and “Dancing”), non-rigid deformation (“Fishing”, “Bir-
dAttack” and “Dancing”), low contrast (“Fishing”), illumination variation (“GD” and
“Dancing”) and poorly textured objects (“Fishing” and “BirdAttack”).

We evaluate the proposed tracker, SINT, with MEEM [189] and MUSTer [65] on
these sequences. The performance is summarized in Table 20, where we adopt the AUC
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Figure 33: Per attribute comparison on AUC score and Prec@20 of the proposed SINT
with MUSTer [65]. The bars are the performance difference between SINT and MUSTer.
Positive means SINT is better. The integer number at each bar is the number of tracking
sequences belonging to that group.

SINT Groundtruth

Figure 34: Failure cases of SINT: similar confusing object (left) and large occlusion
(right). Examples are from OTB sequences ‘Bolt’ and ‘Lemming’ respectively. In the left
example, the tracker fires on another Jamaican runner in the same uniform as the target.
In the right example, the target is heavily occluded by the lighter.
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Fishing Rally BirdAttack

Soccer GD Dancing

SINT MEEM MUSTer Groundtruth

Figure 35: Example frames from the 6 test sequences.

MEEM [189] MUSTer [65] SINT

Fishing 4.3 11.2 53.7
Rally 20.4 27.5 53.4
BirdAttack 40.7 50.2 66.7
Soccer 36.9 48.0 72.5
GD 13.8 34.9 35.8
Dancing 60.3 54.7 66.8

mean 29.4 37.8 58.1

Table 20: Comparison on AUC score of the proposed SINT with MEEM [189] and
MUSTer [65].

score metric from the benchmark [180]. Results show that SINT is again a competitive
tracker, outperforming MUSTer [65] and MEEM [189].

We, furthermore, observe that provided a window sampling over the whole image
using [198], SINT is accurate in target re-identification, after the target was missing for
a significant amount of time from the video. We illustrate this in Figure 36, where we
track Yoda. As shown in Figure 36, the tracker has good capability of discovering the
target when it re-enters the scene after being absent for a complete shot.

5.5 C O N C L U S I O N

This work presents Siamese INstance search Tracker, SINT. It tracks the target, simply by
matching the initial target in the first frame with candidates in a new frame and returns the
most similar one by a learned matching function. The strength of the tracker comes from
the powerful matching function, which is the focus of the work. The matching function
is learned on ALOV [152], based on the proposed two-stream very deep neural network.
We take extra care that there is absolutely no overlap between the training videos and
any of the videos for evaluation. Namely, we do not aim to do any pre-learning of the
tracking targets. Once learned, the matching function is used as is, without any adapting,
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Figure 36: The capability of the tracker to re-discover the target, illustrated on a 1500-
frame, 12-shot Star Wars video. One object (Yoda) is appearing in 6 of the shots, while
being absent in the intermediate ones. Red dots indicate Yoda is present while black dots
indicate Yoda is absent. Y-axis is the matching score with the target at the first frame.
The results show good capability of the tracker to discover the target when it re-enters
the scene.

to track arbitrary, previously unseen targets. It turns out the matching function is very
effective in coping with common appearance variations an object can have in videos. The
simple tracker built upon the matching function, reaches state-of-the-art performance on
OTB [180], without updating the target, tracker combination, occlusion detection and
alike. Further, SINT allows for target re-identification after the target was absent for a
complete shot, demonstrated on a 1500-frame, 12-shot Star Wars video.
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C O N C L U S I O N S

6.1 S U M M A RY O F T H E T H E S I S : V I S UA L I N S TA N C E S E A R C H F RO M O N E

E X A M P L E

In Chapter 1, we start with a general discussion on the notion of instance. Then we give
a precise definition of visual instance and pose the main question for this thesis: given 1
image of a visual instance, how to find all the examples of the instance automatically
from a collection? Centered around the main question, we phrase four research questions,
including how to explore the spatial extent of an instance, how to utilize certain domain
knowledge for specialized instance search, how to approach generic instance search and
how to address object tracking as an instance search problem.

In Chapter 2 [156], we propose an instance search method which exploits locality
for better search accuracy. Different from prior work, which relies on global image
representation for the search, we proceed by including locality at all steps of the method.
We consider many boxes per database image as candidate targets to search locally in the
picture using an efficient point-indexed representation. The same representation allows
the application of very large vocabularies in the powerful Fisher vector and VLAD to
search locally in the feature space. And, we propose an exponential similarity function
to further emphasize locality in the feature space. Locality is advantageous in instance
search as it will rest on the matching unique details. We demonstrate a substantial
increase in instance search performance from one example on three standard datasets
with buildings, logos, and scenes from a distance.

Chapter 3 [83] puts an emphasis on logos. Logos are a special type of instances.
Text is often a part of a logo. We exploit the recognized text in images for logo search.
To detect words in images, a generic and fully unsupervised word box proposal method
is introduced. Where the state-of-the-art text detection methods aim at high f-score, the
proposed method is designed to obtain high recall. The detected word regions are used
as input of a state-of-the-art word recognition method to perform a word-level textual
cue encoding. Adding the textual cues leads to a significant improvement in logo search
accuracy. In addition to logo search, we show the proposed method also works effectively
for fine-grained business places classification. Moreover, we empirically validate that
high recall in word detection is more relevant than high f-score for the two tasks.

Chapter 4 [157] aims for generic instance search from 1 example where the instance
can be an arbitrary 3D object like shoes, not just near-planar and one-sided instances like
buildings and logos. First, we evaluate state-of-the-art instance search methods on this
problem. We observe that what works for buildings loses its generality on shoes. Second,
we propose to use automatically learned category-specific attributes to address the various
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degrees of appearance variations present in different types of instances. Searching among
instances from the same category as the query, the proposed attribute-based method
outperforms existing approaches by a large margin on shoes and cars and performs
on par with the state-of-the-art on buildings. Third, we treat person re-identification
as a special case of generic instance search. On the popular VIPeR dataset, we reach
state-of-the-art performance with the same method. Fourth, we extend our method to
search instances without restriction to the specifically known category. We show that the
combination of category-level information and the category-specific attributes is superior
to the alternative method combining category-level information with low-level features
such as Fisher vector.

In Chapter 5 [155], we make a connection between generic instance search from
1 example and visual object tracking in videos. We develop a tracker based on the
rationale of visual instance search. The tracker is radically different from state-of-the-art
trackers: it has no model updating, no occlusion detection, no combination of trackers,
no geometric matching, and still delivers state-of-the-art tracking performance. The
presented tracker simply treats the initial patch of the target provided in the first frame as
the 1 query example and searches for the most similar candidate patch in every incoming
frame. The strength of the tracker comes from a similarity function, which is extensively
trained in a generic way, i.e., without any data of the target, using a newly designed
Siamese deep neural network. Once learned, the similarity function is used as is, without
any adapting, to track previously unseen targets. The learned similarity function is so
powerful that a simple tracker built upon it, which only uses the original observation of
the target from the first frame, suffices to reach state-of-the-art performance. Further, we
show the proposed tracker even allows for target re-identification after the target was
absent for a complete video shot.

6.2 G E N E R A L C O N C L U S I O N S

We conclude the thesis by revisiting the questions posed in the introduction.
We begin with the question: can we exploit locality for better instance search

accuracy? We find in Chapter 2 that localized search in the image for an instance by
evaluating multiple local boxes is advantageous, as the spatial extent of an instance in
images is often limited to a portion of an image and the signal to noise ratio within
the bounding box is much higher than in the entire image. We show that emphasizing
locality in the feature space by efficiently employing a large visual vocabulary and
an exponential similarity metric to impose a strict matching criterion is effective in
reducing the confusion from other, similar instances. The proposed method, without
being optimized for a specific class of objects, leads to a substantial increase in search
accuracy on buildings, logos, and scenes from a distance. However, imposing a strict
criterion on matching local details is only suited for textured and one-sided instances
with a limited viewpoint variation, not working well when large viewpoint variation
exists such as when searching for shoes, as shown later in Chapter 4.

As to the second question: can we exploit domain knowledge for better search
accuracy on logos? Our findings in Chapter 3 support the conclusion that the text
information in the logos is useful domain knowledge for logo search. We show the
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recognized text in images is an effective cue for logo retrieval. The remaining challenge
is that it is hard to recognize the text in exotic orientations and fonts.

Observing that commonly studied instances like buildings, logos, and remote scenes
essentially have a common visual characteristic - they are all nearly 2D and one-sided
- we pose the question: can we design a generic method capable of searching for an
arbitrary visual instance? We show the proposed method in Chapter 4 that learns
category-specific attributes is a generic solution. The same method can be applied to
different kinds of instances, including 2D one-sided objects like buildings, and 3D multi-
sided objects like shoes. When searching among instances from the same category, the
same method is demonstrated effective on shoe, car and person, as examples of 3D
multi-sided objects, and building, as an example of approximately 2D one-sided objects.
When searching instances in a dataset containing all classes of instances, we show that
combining the category-specific attributes and category-level information is an effective
tactic, similar to the two-step identification procedure often employed by humans to
explain the uniqueness of an instance. Compared to Chapter 2, Chapter 4 takes one step
further in generic instance search. The current limitation is that a group of visual aspects
need to be learned from a set of instances for every category, although the learned aspects
are generalizable to new, previously unseen, instances of the same category. Considering
that categories are often related (e.g., hierarchically [31]), co-occurring [107] and sharing
visual aspects [89], there might exist a structured set of visual aspects with a limited size,
which, once learned, serves as a universally applicable basis to derive specificity of any
instance of any kind.

Finally, realizing the strong connection between visual instance search and tracking,
we pose the last question: can we address tracking as instance search problem (over the
video at hand)? That is, can we handle tracking without taking the temporal coherence
into account? We show that the proposed tracker in Chapter 5, which only has an
instance search core armed with a powerful, end-to-end learned similarity metric, suffices
to deliver state-of-the-art tracking performance. The proposed method establishes a new
framework for tracking. It only requires one-time offline learning, and once learned, it is
ready to track new, previously unseen, objects without any online adapting. And, surely,
the tracker can be further adapted to better handle certain specific situations, if needed.

In addition to the remaining challenges mentioned above, a few other directions
are worth visiting for future work. One important missing piece in the current visual
instance search systems is a generic verification scheme, also known as self-awareness
mechanism. Although geometric verification has shown success on rigid and textured
instances, it is hard to generalize to non-rigid or poorly textured instances. A generically
applicable verification scheme will not only help make a large step towards realizing
arbitrary visual instance search, but also will help solve one of the most fundamental
problems in tracking known as drifting. Another direction is cross-domain visual instance
search. Nowadays, images are recorded from various platforms, such as cell phones,
street surveillance cameras, autonomous cars and drones, resulting a large domain gap
between the recorded images. Methods that can perform cross-domain search will be
in demand. Last, as another future work, can we exploit visual instance search and
recognition for better visual categorization?
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S A M E N VAT T I N G

H E T Z O E K E N VA N E E N P L A AT J E A A N D E H A N D VA N É É N VO O R B E E L D

Dit proefschrift behandelt het zoeken van plaatjes van een bepaald voorwerp of een bepaalde
scene in een grote verzameling plaatjes aan de hand van een voorbeeldplaatje. Kunnen we alle
plaatjes terugvinden die het voorbeeld uit het voorbeeldplaatje bevat?

Het voorwerp heeft vaak bepaalde afmetingen en bepaalde variaties, en dus ook de plaatjes
daarvan. Daarom stelt het proefschrift voor om lokaliteit uit te buiten in het zoeken naar andere
voorbeeldplaatjes van dat voorwerp. Lokalisatie in het plaatje helpt; het voorwerp heeft immers
een bepaalde afmeting. Lokalisatie in de kenmerkruimte helpt; het voorwerp heeft immers een
beperkte variatie in de verschijningsvormen. En lokalisatie in de gelijkheidsmaat helpt; het
voorwerp lijkt immers met name op zichzelf. De combinatie van die drie factoren vermindert
de verwarring met plaatjes van vergelijkbare voorwerpen, zodat het zoeken naar plaatjes met
hetzelfde voorbeeld aanzienlijk beter gaat.

Voor 3D-voorwerpen werkt deze aanpak niet goed omdat de variatie hoe het voorwerp eruit
ziet nu heel groot kan zijn. Daarom voor het zoeken van plaatjes van een 3D-voorwerp leren we
eerst visuele attributen die specifiek zijn voor het soort object. Dus van schoenen leert de computer
eerst automatisch wat belangrijk is in de beschrijving van een schoen: een hoge hak of een laars
eruit ziet. De attributen zijn invariant ten opzichte van toevallige opname omstandigheden zoals
het camerastandpunt en de lichtval. Daarna kan de computer beter verschillende objecten uit
dezelfde categorie uit elkaar houden. De methode is effectief voor schoenen, auto’s, en personen,
als voorbeelden van 3D objecten met meerdere zijden. De methode van categorie-gebonden
attributen helpt het zoeken naar 3D-voorbeelden aanzienlijk vooruit.

Als we ons specialiseren op het zoeken naar logo’s dan is het van belang aandacht te besteden
aan de tekst in het plaatje. We concentreren ons op een methode die eerst losse letters leest en
vervolgens de waarschijnlijkheid van hele woorden schat. Dat verbetert de zoekresultaten van
logo’s aanzienlijk.

Een van de oudste problemen in digitale beeldbewerking is het volgen van een voorwerp
over tijd. Dit tracken kan worden gezien als een speciale vorm van zoeken naar het voorbeeld,
dit maal in de video. Het proefschrift stelt voor een tracker te maken die in elke plaatje van
de video zoekt naar het meest gelijkende voorbeeld en verder niks. De kern is een krachtige
vergelijkingsfunctie, met een Siamees netwerk geleerd uit een tweetal plaatjes genomen uit
heel veel voorbeeldvideo’s. Van elk tweetal was bekend of ze hetzelfde voorbeeld of twee
verschillende voorbeelden weergeven. Dat leidt tot een tracker die heel simpel is en zo goed is
dat het tot de beste trackers van dit moment behoort.
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