422 research outputs found

    Spectral Embedding Norm: Looking Deep into the Spectrum of the Graph Laplacian

    Full text link
    The extraction of clusters from a dataset which includes multiple clusters and a significant background component is a non-trivial task of practical importance. In image analysis this manifests for example in anomaly detection and target detection. The traditional spectral clustering algorithm, which relies on the leading KK eigenvectors to detect KK clusters, fails in such cases. In this paper we propose the {\it spectral embedding norm} which sums the squared values of the first II normalized eigenvectors, where II can be significantly larger than KK. We prove that this quantity can be used to separate clusters from the background in unbalanced settings, including extreme cases such as outlier detection. The performance of the algorithm is not sensitive to the choice of II, and we demonstrate its application on synthetic and real-world remote sensing and neuroimaging datasets

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Perceptual texture similarity estimation

    Get PDF
    This thesis evaluates the ability of computational features to estimate perceptual texture similarity. In the first part of this thesis, we conducted two evaluation experiments on the ability of 51 computational feature sets to estimate perceptual texture similarity using two differ-ent evaluation methods, namely, pair-of-pairs based and retrieval based evaluations. These experiments compared the computational features to two sets of human derived ground-truth data, both of which are higher resolution than those commonly used. The first was obtained by free-grouping and the second by pair-of-pairs experiments. Using these higher resolution data, we found that the feature sets do not perform well when compared to human judgements. Our analysis shows that these computational feature sets either (1) only exploit power spectrum information or (2) only compute higher order statistics (HoS) on, at most, small local neighbourhoods. In other words, they cannot capture aperiodic, long-range spatial relationships. As we hypothesise that these long-range interactions are important for the human perception of texture similarity we carried out two more pair-of-pairs ex-periments, the results of which indicate that long-range interactions do provide humans with important cues for the perception of texture similarity. In the second part of this thesis we develop new texture features that can encode such data. We first examine the importance of three different types of visual information for human perception of texture. Our results show that contours are the most critical type of information for human discrimination of textures. Finally, we report the development of a new set of contour-based features which performed well on the free-grouping data and outperformed the 51 feature sets and another contour type feature set with the pair-of-pairs data

    Design and analysis of a content-based image retrieval system

    Get PDF
    The automatic retrieval of images according to the similarity of their content is a challenging task with many application fields. In this book the automatic retrieval of images according to human spontaneous perception without further effort or knowledge is considered. A system is therefore designed and analyzed. Methods for the detection and extraction of regions and for the extraction and comparison of color, shape, and texture features are also investigated

    Analysis and Manipulation of Repetitive Structures of Varying Shape

    Get PDF
    Self-similarity and repetitions are ubiquitous in man-made and natural objects. Such structural regularities often relate to form, function, aesthetics, and design considerations. Discovering structural redundancies along with their dominant variations from 3D geometry not only allows us to better understand the underlying objects, but is also beneficial for several geometry processing tasks including compact representation, shape completion, and intuitive shape manipulation. To identify these repetitions, we present a novel detection algorithm based on analyzing a graph of surface features. We combine general feature detection schemes with a RANSAC-based randomized subgraph searching algorithm in order to reliably detect recurring patterns of locally unique structures. A subsequent segmentation step based on a simultaneous region growing is applied to verify that the actual data supports the patterns detected in the feature graphs. We introduce our graph based detection algorithm on the example of rigid repetitive structure detection. Then we extend the approach to allow more general deformations between the detected parts. We introduce subspace symmetries whereby we characterize similarity by requiring the set of repeating structures to form a low dimensional shape space. We discover these structures based on detecting linearly correlated correspondences among graphs of invariant features. The found symmetries along with the modeled variations are useful for a variety of applications including non-local and non-rigid denoising. Employing subspace symmetries for shape editing, we introduce a morphable part model for smart shape manipulation. The input geometry is converted to an assembly of deformable parts with appropriate boundary conditions. Our method uses self-similarities from a single model or corresponding parts of shape collections as training input and allows the user also to reassemble the identified parts in new configurations, thus exploiting both the discrete and continuous learned variations while ensuring appropriate boundary conditions across part boundaries. We obtain an interactive yet intuitive shape deformation framework producing realistic deformations on classes of objects that are difficult to edit using repetition-unaware deformation techniques

    An analytical framework of tissue-patch clustering for quantifying phenotypes of whole slide images

    Get PDF
    Histopathology is considered the most practical diagnostic method for patient with early stage cancer. This is because at the very first pre-screening, patient’s tissue samples are delivered to pathologist for examining evidence of cancer. Computational scientists aid pathologist by heavily producing research on machine learning-based morphological pattern recognition of tissue image. Many data modelling investigations on histopathology have been conducted in supervised manner and some of them were further employed in real-life clinical diagnosis. This study proposes an approach to developing clusters of tissue tile. The main aim is to obtain ’high-quality clusters’ with respect to phenotypic annotations. In order to achieve this goal, two colorectal datasets namely 100k-nct and TCGA-COAD are experimented, one of which is directly annotated with tissue type, and other dataset is annotated through derivation from patient metadata, quiescent status. Four main independent variables were explored in this study (i) feature extraction by Resnet50, InceptionV3, VGG16 and an unsupervised generative model, PathologyGAN. (ii) feature space transformer including original feature, 3D PCA feature and 3D-UMAP feature and (iii) clustering algorithms namely Gaussian Mixture Model and Hierarchical clustering and their primary hyper-parameters. As a result, Resnet50 empowered by UMAP outperformed the most in clustering tissue type on 100k-nct dataset at v-measure of 0.74. The other dataset of which quiescent status is derived from patients encountered nearly zero in v-measure. However, clustering this quiescence-based dataset on 3D-UMAP Pathology-GAN yielded far higher V-measure than the rest of cluster configurations and illustrates ability to capture quiescence-related phenotype through visualisation

    Dynamic Analysis of X-ray Angiography for Image-Guided Coronary Interventions

    Get PDF
    Percutaneous coronary intervention (PCI) is a minimally-invasive procedure for treating patients with coronary artery disease. PCI is typically performed with image guidance using X-ray angiograms (XA) in which coronary arter

    Audio-visual football video analysis, from structure detection to attention analysis

    Get PDF
    Sport video is an important video genre. Content-based sports video analysis attracts great interest from both industry and academic fields. A sports video is characterised by repetitive temporal structures, relatively plain contents, and strong spatio-temporal variations, such as quick camera switches and swift local motions. It is necessary to develop specific techniques for content-based sports video analysis to utilise these characteristics. For an efficient and effective sports video analysis system, there are three fundamental questions: (1) what are key stories for sports videos; (2) what incurs viewer’s interest; and (3) how to identify game highlights. This thesis is developed around these questions. We approached these questions from two different perspectives and in turn three research contributions are presented, namely, replay detection, attack temporal structure decomposition, and attention-based highlight identification. Replay segments convey the most important contents in sports videos. It is an efficient approach to collect game highlights by detecting replay segments. However, replay is an artefact of editing, which improves with advances in video editing tools. The composition of replay is complex, which includes logo transitions, slow motions, viewpoint switches and normal speed video clips. Since logo transition clips are pervasive in game collections of FIFA World Cup 2002, FIFA World Cup 2006 and UEFA Championship 2006, we take logo transition detection as an effective replacement of replay detection. A two-pass system was developed, including a five-layer adaboost classifier and a logo template matching throughout an entire video. The five-layer adaboost utilises shot duration, average game pitch ratio, average motion, sequential colour histogram and shot frequency between two neighbouring logo transitions, to filter out logo transition candidates. Subsequently, a logo template is constructed and employed to find all transition logo sequences. The precision and recall of this system in replay detection is 100% in a five-game evaluation collection. An attack structure is a team competition for a score. Hence, this structure is a conceptually fundamental unit of a football video as well as other sports videos. We review the literature of content-based temporal structures, such as play-break structure, and develop a three-step system for automatic attack structure decomposition. Four content-based shot classes, namely, play, focus, replay and break were identified by low level visual features. A four-state hidden Markov model was trained to simulate transition processes among these shot classes. Since attack structures are the longest repetitive temporal unit in a sports video, a suffix tree is proposed to find the longest repetitive substring in the label sequence of shot class transitions. These occurrences of this substring are regarded as a kernel of an attack hidden Markov process. Therefore, the decomposition of attack structure becomes a boundary likelihood comparison between two Markov chains. Highlights are what attract notice. Attention is a psychological measurement of “notice ”. A brief survey of attention psychological background, attention estimation from vision and auditory, and multiple modality attention fusion is presented. We propose two attention models for sports video analysis, namely, the role-based attention model and the multiresolution autoregressive framework. The role-based attention model is based on the perception structure during watching video. This model removes reflection bias among modality salient signals and combines these signals by reflectors. The multiresolution autoregressive framework (MAR) treats salient signals as a group of smooth random processes, which follow a similar trend but are filled with noise. This framework tries to estimate a noise-less signal from these coarse noisy observations by a multiple resolution analysis. Related algorithms are developed, such as event segmentation on a MAR tree and real time event detection. The experiment shows that these attention-based approach can find goal events at a high precision. Moreover, results of MAR-based highlight detection on the final game of FIFA 2002 and 2006 are highly similar to professionally labelled highlights by BBC and FIFA
    corecore