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Chapter One

Introduction

1.1 Coronary Arteries: Anatomy and Functions

The heart is the central organ of the human circulation system. It pumps blood
through the blood vessels to provide the human body with oxygen and nutrients, and
it carries away metabolic waste. The heart muscles receive their own supply of blood
via the coronary arteries. These vessels branch off from the aorta near the point
where the aorta and the left ventricle meet [7] (Fig. 1.1a). The coronary arteries
wrap around the surface of the heart, with small branches entering into the heart
muscle to supply it with blood [2]. Thus, the coronary arteries play a significant role
to the heart, and so to speak, to human life.

Coronary arteries have two main branches: the left main and right coronary
artery, each of which further divides into smaller branches (Fig. 1.1a).

The left main coronary artery (LM or LCA) supplies blood to the left ventricle
and left atrium. It divides into two major branches (Fig. 1.1a): the left anterior
descending artery (LAD) and the left circumflex artery (LCX). The LAD and its
diagonal branches supply blood to the front and the left side of the heart, mainly
the anterior ventricular septum and the major part of the anterior portion of the left
ventricle. The LCX encircles the heart muscle and provides blood to the left atrium
and the posterior-lateral aspect of the left ventricle that are mainly at the outer side
and back of the heart [2, 75].

The right coronary artery (RCA) supplies blood to the right ventricle, the right
atrium, and the SA (sinoatrial) and AV (atrioventricular) nodes. The RCA divides
into smaller branches (Fig. 1.1a), such as the posterior descending artery (PDA) and
the acute marginal artery, providing blood to the inferior part of the heart and the
lateral portion of the right ventricle, respectively [75]. The RCA also supplies blood
to the septum of the heart, together with the LAD.

A brief schematic view summarizing all major and small branches of the coronary
arteries is illustrated in Fig. 1.1b, where the relative positions of coronary artery
branches and aorta are shown.

1.2 Coronary Artery Disease

Coronary artery disease, also known as ischemic heart disease or atherosclerosis, is one
of the leading causes of death in the world [88]. It involves a reduction of blood supply
to the heart muscle due to the build-up of plaque in the coronary arteries. Plaque
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(a) (b)

Figure 1.1: The anatomy of coronary arteries: (a) Coronary arteries in the anterior
view of the heart [64] (labeled in red text). (b) the branches of the coronary arteries
(the figure is adapted from [57]).

Figure 1.2: The formation of atherosclerosis caused by plaque built up inside blood
vessels. (the figure is adapted from [86])

mainly consists of fat, cholesterol or calcium. Accumulation of these substances at
the plaque narrows the lumen of coronary arteries, reducing the amount of blood
flowing to the heart muscle. A rupture of the plaque may also cause the formation of
blood clots in the coronary arteries that can lead to partially or complete obstruction
of the vessel lumen. The consequence of a narrowed or blocked vessel lumen is that
insufficient oxygen-rich blood can reach the heart muscles, which can cause angina or
heart attack and may lead to heart failure or arrhythmias in long term [6]. Fig. 1.2
illustrates the formation of atherosclerosis in the vessel lumen.

1.3 Treatment of Coronary Artery Disease

The treatment of coronary artery disease includes medication and medical procedures.
Drugs, such as cholesterol-modifying medications, may alleviate the symptoms of
coronary artery disease by decreasing the amount of cholesterol in the blood, one of the
major component materials of the plaque [5]. Furthermore, a patient suffering from
severe cases may undergo medical procedures: a percutaneous coronary intervention
or coronary artery bypass grafting.

Percutaneous coronary intervention (PCI), also known as Coronary Angioplasty,
is a minimally-invasive procedure to treat narrowing of the coronary arteries. It was
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(a)

(b)

(c)

Figure 1.3: The PCI procedure: (a) insertion sites of guiding catheter, (b) injection
of contrast agent through the guiding catheter, (c) balloon and stent expansion to
widen the vessel lumen. (the figure is adapted from [1,4])

first introduced by Andreas Grünzig in Zurich, Switzerland in 1977 and has become
worldwide-adopted since 1980s [73]. During this procedure, the stenosed vessel area
is widened by the inflation of a balloon and a stent that are introduced through a
long and thin catheter inserted in the blood vessel from a small skin incision.

Coronary artery bypass grafting (CABG) is used for more severe cases that are
difficult to treat with PCI, e.g. coronary arteries with multiple stenosed sites [5]. In
this procedure, a surgeon creates a graft to bypass the blocked vessel using arteries or
veins from other parts of the body. Compared to PCI, CABG is superior for patients
with multivessel disease [44], yet it is more invasive, as it requires to open the chest
in order to reach the heart.

The target application of this thesis is the PCI procedure. Its minimally-invasive
nature puts patients under lower risk, especially for patients in very old and very
young age [97].

1.3.1 Percutaneous Coronary Intervention

Fig. 1.3 shows an overview of the PCI procedure. At first, a guiding catheter is in-
serted in the blood vessel, e.g. via the groin or arm. The catheter is then manoeuvred
through the aorta or brachial artery (depending on the insertion site) towards the os-
tium of the coronary arteries. Through the catheter, X-ray opaque contrast agent can
be injected to identify the lesions in the vessels, and a guidewire is manipulated by the
interventional cardiologist to move to the stenosed site. Once the guidewire reaches
the site of the lesion, a balloon catheter carrying a stent, a collapsed wire mesh tube,
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(a) Monoplane (b) Biplane

Figure 1.4: Typical X-ray imaging equipment in a catheterization laboratory in a
hospital with a Siemens Artis zee ceiling monoplane system (a) and biplane system
(b). (images copyright: Siemens Healthineers AG [3])

is advanced over the guidewire towards the lesion site. The balloon is then inflated
to expand the vessel lumen as well as the stent. Finally, the stent is deployed at the
lesion to prevent the vessel from collapsing, and the balloon is retrieved.

1.3.2 X-ray Angiography for Image Guidance

The PCI procedure, as suggested by its name, is performed percutaneously, which
means that the interventional cardiologist does not directly see the coronary arteries,
vessel lesions and interventional tools in the patient’s body during the procedure.
In a catheterization laboratory (the operation room where PCI is performed), X-ray
angiography (XA) is the imaging technique that is commonly used during PCI for
visual guidance of the procedure. The complete set-up is normally an integrated
system that typically contains one or two C-arms, a patient table and monitors (Fig.
1.4). The C-arm is a C-shape equipment connecting an X-ray source with an X-ray
detector that is mainly used for fluoroscopic imaging, and can be rotated during the
procedure to acquire X-ray images from different angles. The acquired images are
shown on the monitors together with other relevant patient information (e.g. ECG)
to provide real-time visual feedback to the interventional cardiologist during PCI.

Fig. 1.5 illustrates two examples of X-ray angiographic images of left and right
coronary arteries (Fig. 1.5c and 1.5d). The vessels are only visible with the use
of contrast agent, showing as ”tree” structures in the images. When no contrast
agent is injected, the vessels are not visible in the X-ray fluoroscopic images, while
the guidewire has good visibility (Fig. 1.5a and 1.5b). The real X-ray angiographic
images used for PCI are dynamic cine-angiograms with a frame rate ranging between
4 and 30 frames per second (fps). In typical angiograms, moving structures, such as
diaphragm and vessels, and transition between contrast and non-contrast phase can
be seen.

During PCI, interventional cardiologists use XA images to view the target arter-
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Guidewire

Guiding 
catheter

(a) Without contrast agent

Guidewire

Guiding 
catheter

(b) Without contrast agent

Guidewire

Guiding 
catheter

Vessel 

Vessel 

(c) Left coronary arteries

Guidewire

Guiding 
catheter

Vessel 

Vessel 

(d) Right coronary arteries

Figure 1.5: Examples of X-ray images for PCI. In (a) and (b), contrast agent has
not been injected, guiding catheter (the long, dark, thin tube) and guidewire (the
thin wire) can be seen in the images. In (c) and (d), contrast agent is used for
visualizing the left (c) and the right (d) coronary arteries.

ies, and to find and assess the lesions on the vessels. Since guidewires and stents
have better visibility in fluoroscopic images, cardiologists typically manipulate the
instruments without continuously injecting contrast agent. The manipulation of in-
struments therefore mainly relies on the operator’s mental map of the vessels and
plaques’ location from the previous XA images with contrast agent.
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1.4 Challenges

1.4.1 Challenges of Image Guidance for PCI

One of the challenges in PCI is that limited visual feedback is provided to the in-
terventional cardiologist when manoeuvring guidewires towards the lesion site. As
the navigation of instruments is guided with “vessel-free” fluoroscopic images, the
operator needs to mentally reconstruct the vessels from the previous angiographic
acquisitions, which relies largely on the skills and experiences of the operator, as it is,
in general, a challenging task to accurately imagine the position of moving structures.

To be more certain about the target location, cardiologists sometimes repeat-
edly inject contrast agent to get a better mental image of the vessels and the le-
sions, as the opacification of the vessels lasts only for a short period before contrast
agent drains from the vessel lumen. However, contrast-induced side effects limit the
amount of contrast agent that can be used on patients during PCI. Allergic reaction
and nephrotoxicity have been reported as side effects that X-ray contrast agent may
have [10,105]. Especially the latter one, also known as contrast-induced nephropathy
(CIN), which may result in chronical renal failure with all its relevant sequelae [105],
has been associated to contrast volume [104].

Another challenge in performing PCI comes from the side effect of exposure to
X-ray. The ionizing radiation of X-ray has detrimental effect on the exposed human
tissues, including tissue reactions and increased risk for stochastic events, such as skin
necrosis and radiation-induced cancer [58]. To spare the radiation dose to patients and
operators, strategies, such as minimizing the fluoroscopy acquisition time, modulating
the fluoroscopy dose per frame, decreasing the radiation detector magnification and
reducing the frame rate, should be applied [40, 58]. As some of these strategies may
hamper the quality of the acquired X-ray images, operators face a trade-off between
a lower X-ray dose and abilities to resolve small vessels or motion details.

The above listed challenges of image guidance for PCI procedure could be ad-
dressed with an improved system that can help interventional cardiologists to view
relevant information that is needed for PCI, and that meanwhile controls the poten-
tial risks the operators and the patients may have from the procedure. This thesis
describes the works done during my PhD in order to address the challenges from the
perspective of automatic image analysis approaches.

1.4.2 Challenges of Image Analysis for X-ray Angiograms

In addition to the challenges from the image guidance point of view, the physical
nature of X-ray angiographic images also poses challenges for developing automatic
and robust algorithms for X-ray image analysis. The major challenges are four-fold:

• X-ray images are the results of projection of 3D structures on a 2D plane, there-
fore, the 3D information is lost during the image formation. The information of
anatomical structures overlaps each other in X-ray images, making automatic
analysis of those structures challenging.
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• Different from X-ray projection radiography which is normally acquired in the
anterior-posterior direction, X-ray angiography can be taken from arbitrary
viewing directions, depending on the C-arm configuration. This means that
X-ray images acquired from different view angles based on the same 3D struc-
tures look different. Therefore, the image analysis approaches for XA need to
be robust for images acquired with different C-arm angles.

• An X-ray angiogram is a cinematic clip instead of a static image, the structures
of interest in the image sequence normally moves instead of staying still, such
as diaphragm and coronary arteries. As the motion may be caused by the
patient’s respiration or heartbeat, the moving structures may present respiratory
or cardiac motion patterns. These two types of motions normally need to be
taken into consideration for image guidance applications.

• The level of contrast agent in an X-ray angiogram does not stay constant. After
the contrast injection, the amount of contrast in the field of view increases
rapidly till its maximum, the vessels becomes fully opacified at this phase. After
a short period, the contrast agent drains gradually from the target vessels along
with the blood flow, the vessels becomes invisible again. These changes between
the contrast and the non-contrast phase in an X-ray sequence require additional
designs for some image guidance applications.

1.5 This Thesis

1.5.1 Dynamic Analysis of X-ray Angiograms

Despite of the previously mentioned challenges, opportunities may also come from
the particular properties of X-ray angiographic image data. Different from many
other medical imaging modalities which are static snapshots of anatomical structures,
the cinematic nature of X-ray angiograms possesses a time dimension in the data,
bringing the possibility of using the temporal information in the image analysis. The
temporal information contains the changes of the same tissues at different time points,
which may serve as a cue to link different frames instead of treating each image
independently. For some problems, the temporal information is the key to overcome
the obstacles.

In this thesis, I use the term dynamic analysis to call the image analysis ap-
proaches that take advantage of the temporal, motion or inter-frame information in
X-ray angiograms. Different dynamic analysis approaches will be introduced in this
book to address the challenges in various aspects of the image guidance for PCI.

1.5.2 Purpose and Chapter Organization

The purpose of the research presented in this thesis is to develop and evaluate dynamic
image analysis techniques that may improve image guidance for percutaneous coro-
nary interventions. To this end, this thesis investigates on the following approaches:
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1. Layer separation, a computational angiography approach Layer sepa-
ration is a computational technique to improve vessel visibility in XA images
by removing static and moving background structures. In Chapter 2, a layer
separation approach using robust PCA was proposed to separate an XA angio-
graphic sequence into three additive layers: a vessel layer, a breathing layer and
a quasi-static background layer. In Chapter 3, we developed and evaluated an
online layer separation method which dynamically separates streaming XA data
into the three layers and have shown its potential on reducing the amount of
contrast agent used for PCI.

2. Layer separation as a component for XA analysis Layer separation en-
ables independent analysis of the layers it outputs, and can serve as a component
in the image processing pipeline for various applications. Two example are pre-
sented in this thesis. In Chapter 4, a PCA-based approach was proposed to
extract respiratory motion surrogate from the breathing layer that has high
correlation with the respiration movement. In Chapter 5, we adopted the vessel
layer for automatic detection of contrast inflow in an XA sequence. An approach
using a recurrent neural network (RNN) was proposed to classify whether an
X-ray image is with contrast or not using features extracted from the enhanced
vessel layer. Additionally, we also proposed a second method based on a convo-
lutional neural network (CNN) to perform the frame classification.

3. Dynamic roadmapping, an augmented fluoroscopy approach Interven-
tional tools are typically navigated in fluoroscopy mode with non-contrast-
enhanced X-ray images, which forces the operator to rely on a mental recon-
struction of anatomical structures. In Chapter 6, we developed and evaluated
a novel dynamic coronary roadmapping approach to tackle the challenge. The
fluoroscopic images are augmented with a dynamic motion-compensated vessel
layer to provide real-time visual guidance during PCI, while in the meantime,
reducing the use of contrast agent.

In Chapter 7, the thesis concludes with a summary on the methods and result,
and a discussion on future research directions.



Chapter Two

Layer Separation for Vessel
Enhancement in Interventional

X-ray Angiograms Using
Morphological Filtering and Robust

PCA

Abstract — Automatic vessel extraction from X-ray angiograms (XA) for per-
cutaneous coronary interventions is often hampered by low contrast and presence
of background structures, e.g. diaphragm, guiding catheters, stitches. In this pa-
per, we present a novel layer separation technique for vessel enhancement in XA to
address this problem. The method uses morphological filtering and Robust PCA
to separate interventional XA images into three layers, i.e. a large-scale breathing
structure layer, a quasi-static background layer and a layer containing the vessel
structures that could potentially improve the quality of vessel extraction from XA.
The method is evaluated on several clinical XA sequences. The result shows that
the proposed method significantly increases the visibility of vessels in XA and out-
performs other background-removal methods.

Based upon: H. Ma, G. Dibildox, J. Banerjee, W.J. Niessen, C. Schultz, E. Regar and T. van Wal-
sum: Layer Separation for Vessel Enhancement in Interventional X-ray Angiograms Using Morpho-
logical Filtering and Robust PCA. Workshop on Augmented Environments for Computer-Assisted
Interventions (AE-CAI 2015), Lecture Notes in Computer Science, vol. 9365, pp. 104-113, 2015.
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2.1 Introduction

Percutaneous coronary intervention (PCI) is a minimally invasive procedure for treat-
ing patients with advanced coronary artery disease. It is usually performed under
guidance of X-ray angiograms (XA) where coronary arteries are opacified with con-
trast agent. Automatic processing of XA images, e.g. vessel extraction of coronary
arteries, may serve as a basis for further processing, such as coronary motion analy-
sis [78] and pre/intra-operative information fusion [14].

Hessian-based vessel enhancement filtering, e.g. Frangi vesselness filter [38], is
commonly used for extraction of vessels in medical images. Applying such filters
directly on interventional XA, however, often also enhances non-vascular structures,
such as catheter segments and vertebral contours, due to their tubular or curvilinear
structural appearances.

Related works have reported on methods to remove non-vessel structures or im-
prove the visibility of vessels in XA images. In [15], a method that subtracts the
median frame was used for removing static structures in XA, such as vertebral bod-
ies. Schneider et al. [93] proposed a post-processing technique on vesselness images
that combines a local probability map with local directional vessel information for
artifact reduction and catheter removal. Layer separation methods provide an alter-
native way of vessel enhancement. In [116], a multi-scale framework was developed
to separate XA images into three layers based on different motion patterns such that
coronary arteries are better visible in the fast motion layer. This method involves
human-interactions to label corresponding control points in XA images for motion
field estimation. In another study [118], a Bayesian framework was developed that
combines dense motion estimation, uncertainty propagation and statistical fusion to
achieve motion layer separation. Both layer separation methods require to compute
motion field. Robust principal component analysis (Robust PCA) is a data decompo-
sition technique that has e.g. been used for background modeling from surveillance
video in [23]. In [43], Robust PCA was adopted for registration of DCE MR time
series.

In this paper, we propose an automatic method to robustly separate foreground
(contrast-enhanced vessels, guiding catheter tip) from (quasi) static background, such
as vertebral bodies and guiding catheters in the aorta, while ignoring large-scale mo-
tion such as diaphragm movement. Our contributions are three folds: 1) the develop-
ment of a Robust PCA based layer separation method that does not require compu-
tation of the motion field; 2) qualitative and quantitative evaluations on four clinical
XA sequences; 3) comparison to other related background-removal approaches.

2.2 Method

The method enhances vessels in XA images by separating an image into three layers,
i.e. a large-scale breathing layer, a quasi-static background layer and a foreground
layer containing the vessels. To this end, our proposed method consists of two steps:
first, separation and removal of large-scale breathing structures, such as diaphragm,
from the original images, using morphological closing; second, separation of a quasi-
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static background from the moving structures using Robust PCA. In the remainder of
this section, we describe both steps in more details, followed by the integrated layer
separation.

2.2.1 Separation of Breathing Structures

To obtain a separate layer containing large-scale structures, we remove small objects
from the original image, including guiding catheters, guide wires, stitches and ver-
tebral bodies. Similar to the approach in [66] (Chapter 4 of this thesis), we apply
morphological closing to the image with a circular structuring element of 8.5 mm
in diameter. Pilot experiments indicated that this size was adequate for a complete
removal of vessels and guiding catheters from our images while not causing too much
circular artifacts. An example of a resulting image is shown in Fig. 2.1b. Compared
to the original image, the guiding catheter and coronary arteries are removed and ver-
tebral contours are blurred, while structures that presents respiratory motion, such
as the diaphragm and lung tissue, remain in the image (white area in the upper left
part of the image). The resulting image that contains large scale structures which
exhibit respiratory motion is called the breathing layer, and will later be subtracted
from the original image to obtain the difference image (DI, Fig. 2.1c) of an XA frame
for further processing.

(a) (b) (c)

Figure 2.1: Morphological closing operation on an XA image: (a) the original
image, (b) image processed with morphological closing, (c) the difference image
(DI) of (a) and (b).

2.2.2 Background Separation Using Robust PCA

Robust PCA decomposes a data matrix into two different sources: a low-rank ma-
trix and a sparse matrix. Suppose that M is an m × n matrix to be decomposed,
which contains n observations of m dimensional data in its columns. Robust PCA is
formulated as the following optimization problem [23]:

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = M

(2.1)
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where L is a low-rank matrix and S is a sparse matrix of the same size as M . ‖L‖∗
denotes the nuclear norm of L and ‖S‖1 is the L1 norm of S. λ is the tuning pa-
rameter of regularization. Source decomposition is achieved by solving this optimiza-
tion problem. In this work, we use inexact Augmented Lagrange Multiplier (ALM)
method [63] to solve the problem. Robust PCA can be applied for separation of
the background layer of DI from the vessel layer. The background of an XA sequence
is an image series with small changes of pixel intensity containing (quasi) static struc-
tures, while the foreground, or the vessel layer, consists of moving objects. Thus,
resizing the background image into a column vector and combining all these vectors
from a background series together results in a low rank matrix. Likewise, the image
series of vessel layer can be modeled as a sparse matrix, as either vessels or guiding
catheters take up only a small part of the whole image content. Therefore, the back-
ground layer and vessel layer of DIs can be separated by solving the Robust PCA
problem.

2.2.3 Image Processing Pipeline of XA Layer Separation

The proposed layer separation algorithm consists of the following steps. All steps are
illustrated in Fig. 2.2.

1. Given an XA sequence, apply morphological closing on each frame of the series,
as described in Section 2.2.1. For each frame, subtract the morphological-closed
image from the original image to obtain the DI.

2. Rearrange the DIs of the XA sequence to construct a matrix whose columns
represent the frames. This matrix is considered as the input matrix M in
Equation 2.1.

3. Solve the Robust PCA problem to obtain the background layer matrix L and
vessel layer matrix S. Resize L and S to get the background layer and vessel
layer of the previous size for each frame of the sequence.

2.3 Experiments

Fully anonymized imaging data were used in our experiments. Four XA image series
that were acquired with Siemens AXIOM-Artis biplane system were analyzed. The
frame rate of all sequences is 15 frames per second. The number of frames per series
ranges from 55 to 169. From our data, the image matrix is 512 × 512 pixels for one
of the series and 600 × 600 for the other three, with resolution 0.216 × 0.216 and
0.184 × 0.184 mm2, respectively.

To quantify the visibility of vessels in an image, the contrast-to-noise ratio (CNR)
is used in the experiments. CNR is a measure of image quality based on contrast.
Once the background and foreground of an image is defined, the definition of CNR
can be formulated as:

CNR =
|µF − µB |

σB
(2.2)
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Figure 2.2: The pipeline of the proposed layer separation method.

where µF and µB are the mean of foreground and background pixel values respectively,
and σB is the standard deviation of the background pixel values. This definition of
CNR measures the contrast between the foreground and background pixel intensities
in relation to the standard deviation of the background pixel intensities. Larger CNR
values imply a better contrast.

Two different versions of CNR are computed, using two different masks for defin-
ing the foreground (vessel) and the background in XA images (Fig. 2.3). In mask 1,
as shown in Fig. 2.3 column 1, a 4 mm-wide image area around the manually-labeled
vessel centerline is defined as the foreground (the dark area inside white region); the
background are its 3 mm-wide neighborhood area (white region surrounding the ves-
sel). This mask can be used to assess the local contrast around vessels in XA. In
mask 2, as shown in Fig. 2.3 column 3, everything outside the foreground is consid-
ered background, which thus also evaluates the removal of the diaphragm, guiding
catheters, etc.. In our experiments, we randomly select 5 frames once from each se-
quence for the mask generation and compute the average CNR of the 5 frames.

We compare the performance of our approach to 3 other related methods. In [15],
static background is eliminated by subtracting the median of the first 10 frames from
each frame in the sequence. This method is referred to as MedSubtract 1. Second,
we considered an advanced version of median subtraction by firstly removing the
breathing layer using morphological closing and then subtracting the median. This
is called MedSubtract 2 in the experiments. Third, a conventional PCA technique is
explored. The breathing layer is first removed to generate the difference image and
the background layer is later reconstructed with the first principal component using
PCA. This is referred to as Normal PCA.

For the parameter λ in the formulation of Robust PCA, we use the value sug-
gested in [23]. All experiments were implemented in MATLAB 2013b on an Intel
Core i7-4800MQ 2.70 GHz computer with 16 GB RAM running Windows.



14 2 Layer Separation in X-ray Angiograms

Figure 2.3: Two types of mask images. Background is defined as the white image
region, foreground is defined as the dark area within the white part: (Column 1)
Mask 1 for one frame in the four XA sequences; (Column 2) Mask 1 overlaid on
the corresponding XA frames; (Column 3) Mask 2 for one frame in the four XA
sequences; (Column 4) Mask 2 overlaid on the corresponding XA frames.
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2.4 Results

Fig. 2.4 shows an example result of layer separation on one XA sequence. Note that in
the original image (Fig. 2.4a), the presence of the diaphragm, the vertebral structures
and the long guiding catheter segment makes extracting the vessels challenging. In
the vessel layer image (Fig. 2.4d), those structures are removed, and the contrast
between vessels and their neighborhood pixels is larger than in the original image.

Fig. 2.5 presents the comparison of our proposed method (Row 5) to three other

(a) (b) (c) (d)

Figure 2.4: An example of layer separation: (a) the original image, (b) breathing
layer, (c) quasi-static background layer, and (d) vessel layer.

background-removal methods (Row 2-4) applied on four XA sequences. For each of
the sequences, we selected a representative frame. It can be observed that all the four
methods increase the visibility of vessels in XA with better contrast. However, the
result of MedSubtract 1 method (Row 2) still presents artifacts in the foreground due
to the motion of diaphragm, whereas our method successfully removes the diaphragm
using morphological closing. Compared to MedSubtract 2 (Row 3) and Normal PCA
methods (Row 4), the method based on Robust PCA performs better on removing
quasi-static structures, such as the guiding catheter segment in aorta (column 1-3)
and stitches (column 4).

The CNR values of XA sequences and vessel layers are illustrated in Fig. 2.6.
Compared to the original XA, as shown in both Fig. 2.6a and Fig. 2.6b, all methods
improve the CNR values. For CNR 1, when only local contrast around vessels is
measured, Robust PCA method performs better than the other approaches for patient
1 and 2, but has slightly lower CNR than Normal PCA for patient 3 and 4. In the
case that the removal of diaphragm and guiding catheter is considered, as what CNR
2 indicates, Robust PCA is superior in all four patients.

2.5 Discussion and Conclusion

We have developed an automatic method for layer separation of interventional XA
images, to enhance vessel visualization. The method separate XA images into a
breathing layer, a quasi-static background layer and a vessel layer using morpho-
logical filtering and applying Robust PCA. The separation is evaluated on four XA



16 2 Layer Separation in X-ray Angiograms

Figure 2.5: Example frames of foreground images obtained by different
background-removal techniques applied on four XA sequences: (Column 1-4) The
four different XA sequences, (Row 1) The original image, (Row 2) MedSubtract 1,
(Row 3) MedSubtract 2, (Row 4) Normal PCA, (Row 5) our method using Robust
PCA.
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Figure 2.6: The average CNR over 5 randomly-chosen frames using two types of
masks for the four XA sequences.

sequences, demonstrating better separation of the coronary arteries and reduced in-
clusion of breathing or quasi-static structures compared to other approaches.

Fig. 2.5 shows that the proposed method is able to improve the visibility of vessels
and performs better on representative frames of the four XA sequences. Fig. 2.6a
shows that the Robust PCA method is advantageous over the two median subtraction
methods on improving the local contrast, and has similar performance with Normal
PCA. Fig. 2.6b, which displays the global CNR measure, shows that Robust PCA
is superior on all four patients which indicates that the superiority of Robust PCA
to other approaches is more on removing respiratory and quasi-static structures from
XA to improve the contrast of vessels in the whole image. This advantage could
potentially reduce the generation of spurious vessels when applying vessel extraction
methods on XA.

Compared to original images, the Robust PCA method improves image quality
in the vessel layer by removing breathing structures and background objects. Com-
pared to the absolute-static background resulted from the median-subtraction-based
methods, Robust PCA models a quasi-static background with small changes, which
is more adaptive to the change of image content caused by coronary motion. Normal
PCA also models a flexible background , which could be the reason why it has similar
performance with Robust PCA. Compared to Normal PCA, Robust PCA produces
less residuals of guiding catheter in the vessel layer after the removal of the back-
ground layer. The regularization parameter of Robust PCA enables better flexibility
of balancing between moving objects and background in layer separation. Compared
to other related techniques e.g. in [116] [118], the main difference of the proposed
method is that it does not rely on motion field, therefore, no motion field is required
to extract before doing layer separation.

Several factors might have impact on CNR values. The masks defines the back-
ground and foreground, therefore the mask-related factors could directly influence the
CNR values, e.g. the width of the foreground or background, whether or not including
small vessels or the guiding catheter distal segment in the foreground. In addition,
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the number of the selected frames for mask generation from each XA sequence might
also be an important factor. More in-depth analysis of these factors is part of the
future work.

In conclusion, we proposed a novel layer separation method based on morpho-
logical operation and Robust PCA. We also demonstrated that the method improves
the visibility of coronary arteries in XA and has advantages over several other related
approaches. In the future, we will assess this technique in prospective settings and
study its application in approaches that improve image guidance in XA guided car-
diac interventions.

Acknowledgement This work was supported by Technology Foundation STW, IMA-
GIC project under the iMIT program (grant number 12703).



Chapter Three

Automatic Online Layer Separation
for Vessel Enhancement in X-ray

Angiograms for Percutaneous
Coronary Interventions

Abstract — Percutaneous coronary intervention is a minimally invasive procedure
that is usually performed under image guidance using X-ray angiograms in which
coronary arteries are opacified with contrast agent. In X-ray images, 3D objects
are projected on a 2D plane, generating semi-transparent layers that overlap each
other. The overlapping of structures makes robust automatic information processing
of the X-ray images, such as vessel extraction which is highly relevant to support
smart image guidance, challenging. In this paper, we propose an automatic online
layer separation approach that robustly separates interventional X-ray angiograms
into three layers: a breathing layer, a quasi-static layer and a vessel layer that
contains information of coronary arteries and medical instruments. The method uses
morphological closing and an online robust PCA algorithm to separate the three
layers. The proposed layer separation method ran fast and was demonstrated to
significantly improve the vessel visibility in clinical X-ray images and showed better
performance than other related online or prospective approaches. The potential of
the proposed approach was demonstrated by enhancing contrast of vessels in X-ray
images with low vessel contrast, which would facilitate the use of reduced amount
of contrast agent to prevent contrast-induced side effects.

Based upon: H. Ma, A. Hoogendoorn, E. Regar, W.J. Niessen and T. van Walsum: Automatic
Online Layer Separation for Vessel Enhancement in X-ray Angiograms for Percutaneous Coronary
Interventions. Medical Image Analysis, vol. 39, pp. 145-161, 2017.
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3.1 Introduction

3.1.1 Motivation

Percutaneous coronary intervention (PCI) is a minimally invasive procedure for pa-
tients with advanced coronary artery disease. In this procedure, a stent pre-mounted
on a delivery catheter is advanced over a guide-wire and through a guiding catheter at
the site of narrowing in a patient’s coronary arteries. Once the lesion site is reached,
the delivery balloon is inflated and the stent is deployed against the coronary wall, as-
suring optimal patency of the artery. As there is no direct eyesight on the target area,
these procedures are commonly performed under image guidance using X-ray angiog-
raphy (XA), where coronary arteries are visualized with X-ray contrast agent. During
the intervention, clinicians use XA images to navigate catheters and guidewires inside
the patients.

As XA images contain useful information on anatomy and instrument position,
many works have been published on extracting relevant information to improve the
image guidance for cardiac interventions. For example, Panayiotou et al. [78] have
developed a retrospective motion gating technique of interventional X-ray images
through vessel extraction. Also using the information of vessels, pre/intra-operative
information fusion between CT angiography and XA have been reported [14, 89].
Apart from vessels in XA, there is interest to track structures such as the lungs,
catheters and guidewires. Shechter et al. [96] have used the position of diaphragm as
an indicator of respiratory phase and constructed a patient specific coronary motion
model based on that. In [13], the position of guiding catheter tip has been related to
the combination of respiratory and cardiac motion.

Since X-ray images are projections of 3D structures on a 2D plane, the image
content can be interpreted as a composition of several opaque or semi-transparent
structures, which have different appearances and motion patterns. The overlapping
nature of the structures makes automatic analysis of XA challenging. Separating the
structures from each other enables visualizing and analyzing different structures in-
dependently, which would, therefore, potentially facilitate the information processing
of XA. For example, vessel extraction using Hessian-based filtering method in XA
is often hampered by non-vascular structures, such as guiding catheters, diaphragm
border and vertebral body edges, because of their tubular or curvi-linear appear-
ance in XA. Separating non-vascular structures would improve the visibility of vessels
and promote automatic vessel extraction that would ultimately facilitate the image
guidance during interventions.

In the context of this work, we interpret the process of separating those structures
in XA images as a separation of a set of additive 2D layer images which add up to
the original image, and each of them has different structures. The purpose of this
work is to develop and evaluate a fast method that can run prospectively for the
effective and efficient separation of the structures on different layers for XA sequences.
Following the terminology from earlier works (in Section 3.1.2), we adopt the term
“layer separation” to refer to the separation of structures and putting them in different
layers.
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3.1.2 Related Works

Existing methods for layer separation for X-ray fluoroscopic sequences can be cate-
gorized into two approaches: motion-based and motion-free .

Motion-based layer separation methods treat each frame of an X-ray fluoroscopic
sequence as the outcome of the motion of each layer. Hence, the key part of ob-
taining the layers in these methods is estimating the motion of every layer. Various
assumptions on the type of motion have been proposed. For instance, Close et al. [26]
have estimated translation, rotation and scaling for each layer in a region of inter-
est. The layers are computed by transforming each frame with the estimated motion
and averaging the transformed frames. This method computed a total of four layers
for a sequence. Zhu et al. [118] have proposed a two-layer separation scheme. They
have developed a Bayesian framework that combines dense motion estimation, uncer-
tainty propagation and statistical fusion to achieve layer separation. In a three-layer
separation approach proposed in [116], a multi-scale framework has been developed
based on different motion patterns for the static background, lung and vessels. In this
work, a dense motion field of each layer has been constructed using thin plate splines.
Fischer et al. [37] have further extended this method by introducing a regularization
term for layers with a Bayesian model to aid layer separation. In particular, they
have proposed to use a robust data term and edge-preserving regularization. In [12],
a joint layer segmentation and parametric motion estimation scheme has been pro-
posed for transparent image sequences. Similarly, Preston et al. [85] jointly estimated
layers and their corresponding smooth deformation to model the non-smooth motion
observed in a fluoroscopic sequence. A total variation based regularization was used
to encourage sparsity of gradients within and across the layer images.

Unlike motion-based methods, motion-free approaches do not require estimating
the motion of layers. Instead, they directly model the background layer or/and fore-
ground (vessel) layer of an image sequence under certain hypotheses. One of the
simplest ways of modeling the background of XA is computing the median of several
frames in a sequence, and obtaining the foreground by subtracting the median image
from the original frames [15]. This method worked well for the background that is
entirely static, but generates artefacts when there are moving objects in the back-
ground, e.g. diaphragm in XA. A more advanced method has been proposed in [103]
in which they assumed that the vessel and the backgrounds generate independent sig-
nals that are mixed in a sequence, so that the vessel-background separation becomes a
blind source separation problem that is commonly solved by independent component
analysis (ICA) [52].

Apart from ICA, robust principal component analysis (RPCA) is also a common
approach for source decomposition. One of the most popular RPCA methods, prin-
cipal component pursuit (PCP) [23], splits a data matrix into a low-rank component
and a sparse component. It has been used for background modeling or foreground
detection for surveillance videos [20]. In the field of medical image analysis, it found
applications in reconstruction [76] and motion correction [43] in dynamic MRI. On
the topic of layer separation for X-ray images, Ma et al. [65] (Chapter 2 of this the-
sis) have used morphological closing to remove breathing structures from the images
and adopted RPCA to separate a quasi-static layer and a vessel layer from XA. This
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method could only be used in a retrospective setting, since it requires all frames of
a sequence. Volpi et al. [109] have developed a method that worked in a prospective
setting. The method used vesselness filtering [38] and RPCA to separate a foreground
that contains interventional devices. They have implemented the foreground separa-
tion by solving RPCA with a mini-batch of data: for each new coming mini-batch,
the average of the low-rank component was estimated and used as the background for
the next mini-batch. The limitation of this method is that the foreground separation
of a mini-batch is delayed by the processing of the previous complete block of data.

Online robust PCA (OR-PCA) is an online extension of the original RPCA
method, proposed in [35]. OR-PCA overcomes the limitation of RPCA-based methods
by reformulating the nuclear norm in the RPCA formulation as an explicit low-rank
factorization, so that it does not require to “see” the complete dataset or a mini-batch
of data, but can process each single data sample one at a time. This setting enables
online processing of streaming data. In [98], a closed-form solution for the subspace
basis update in OR-PCA has been proposed and shown to achieve better performance
in image alignment tasks. OR-PCA has been used in computer vision tasks, such as
background subtraction [54] and foreground detection [53], but its application in the
field of medical imaging has not been investigated yet.

3.1.3 Overview and Contributions

In this work we extended the method in [65] (Chapter 2 of this thesis) that only
worked in a retrospective or “off-line” setting. To this end, we developed and evalu-
ated an automatic motion-free online layer separation method for X-ray angiograms.
The method robustly separates the layer that contains vessels and catheter tip from
a (quasi) static background, while ignoring large-scale motion such as diaphragm
movement. Our contributions are:

• We integrated OR-PCA in the layer separation scheme, enabling online layer
separation for XA, which is a key ingredient for its potential application in a
clinical workflow.

• Inspired by the work in [70], we proposed and analyzed three ways to downweight
past information that is able to improve the layer separation performance using
the original OR-PCA algorithm.

• We compared the proposed method with other related background-removal ap-
proaches and evaluated the results visually and quantitatively on real patient
XA data.

• We investigated the potential of improving the contrast of vessels in a low-
contrast scenario using the proposed method with synthetic low-contrast XA
sequences and real sequences acquired in a pig experiment in which various
contrast levels were used.
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Figure 3.1: The overview of online layer separation for an XA frame.

3.2 Method

3.2.1 Overview

The proposed method treats the intensity of an XA frame as the sum of three lay-
ers, i.e., a “breathing” layer, a quasi-static layer and a layer that contains vessels.
The method consists of two main steps: first, large-scale breathing structures, e.g.
diaphragm, are separated and removed from the original XA frame, and second,
smaller moving structures, e.g. vessels and guiding catheters, are separated from a
quasi-static background using online robust PCA (OR-PCA). Fig. 3.1 provides an
overview of the complete method, details are described in the remainder of Section 2.

3.2.2 Separation of Breathing Structures

To prevent artefacts remaining in the vessel layer due to respiratory motion, the layer
that contains large-scale breathing structures, such as diaphragm, is removed from
the original XA images in the first step.

The layer of breathing structures was obtained by removing “small” objects from
the original X-ray angiographic frame. Depending on the field of view, those objects
could include vessels, guiding catheters, guide wires, stitches and vertebral bodies.
Following the approach in [65] (Chapter 2 of this thesis), as a preprocessing step, we
applied a morphological closing operation to the XA image with a circular structur-
ing element of 8.5 mm in diameter, in order to remove any tubular and curvilinear
structures smaller than that size. An example of a resulting image is shown in Figure
3.2b, where the guiding catheter and vessels are removed and vertebral contours are
blurred, while structures that are susceptible to breathing motion remain in the im-
age (diaphragm and lung tissue are shown as the white area in the upper left part of
the image). The resulting image is referred to as the “breathing layer” in this paper
and was next subtracted from the original image to obtain the difference image (DI,
Figure 3.2c) of the XA frame for further processing.
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(a) (b) (c)

Figure 3.2: Morphological closing operation applied on an XA frame: (a) original
frame, (b) image processed with morphological closing, (c) difference image (DI)
(a-b).

3.2.3 Separation of Vessel Layer via OR-PCA

In this section, we briefly review the formulation of the online robust PCA method
proposed in [35] and different subspace basis update strategies for solving the OR-
PCA problem [35,98]. Then we propose three different ways of coping with previous
frames to improve on these methods.

3.2.3.1 Notation

Bold letters are used to denote vectors. With the difference image (DI) of an XA
frame represented with a k × k matrix, we concatenated all pixels in this matrix to
form a single column vector z ∈ Rp, where p = k2 is the dimension of the observed
sample. Likewise, we use x ∈ Rp to denote the quasi-static background of the XA
frame and e ∈ Rp represents the foreground. Hence, z = x + e. Let n denote the
number of frames in a sequence, t be the index of the sample/time instance of a frame
and r denote the intrinsic dimension of the subspace underlying {xi | i = 1, 2, . . . n}.

Matrices are denoted by capital letters in the following sections. In particular,
Z ∈ Rp×n is the matrix of a complete sequence of difference images (DIs), where
its column zi represents the i -th DI. Likewise, X and E are the background and
the foreground matrices with xi and ei the vector for the i -th background and the
i -th foreground. For an arbitrary real matrix M , let ||M ||1 =

∑
i,j |Mi,j | denote

the L1-norm of M , ||M ||F denotes the Frobenius norm ||M ||F =
√∑

i,j |Mi,j |2, and

||M ||∗ =
∑
i σi(M) denotes the nuclear norm, i.e., the sum of its singular values.

Tr(M) denotes the trace of a matrix.

3.2.3.2 Online Robust PCA

Robust PCA (RPCA) aims at estimating the subspace underlying the observed sam-
ples. Among many popular RPCA methods, Principal Component Pursuit (PCP) [23]
has been proposed to solve the RPCA problem by approximating the data matrix as
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the sum of a low-rank matrix and a sparse matrix. The concepts of low-rank and
sparsity have been implemented using the nuclear norm and the L1-norm of matrix
respectively. This formulation is suitable for the separation of the vessel layer from
the DI of an XA frame, since the background has merely minor changes, which can be
modeled as a low-rank matrix. In addition, the fact that vessels and guiding catheters
take up only a small portion of the complete image content fits the requirement of
sparsity.

3.2.3.2.1 The OR-PCA formulation

Different from the classical formulation in [23], PCP can be reformulated as Equa-
tion (3.1) [35]:

min
X,E

1

2
||Z −X − E||2F + λ1||X||∗ + λ2||E||1 (3.1)

where λ1 and λ2 are regularization coefficients. Through minimizing the cost function
(3.1) that contains the nuclear norm of the background X and the L1-norm (sparsity)
of the foreground E, the RPCA algorithm aims at obtaining the background (X) and
foreground (E) that best approximate the XA sequence (Z). Because the nuclear
norm couples all samples tightly, typical methods to solve Equation (3.1), such as
Augmented Lagrangian Multiplier (ALM) [63], are often implemented in a batch
manner, which limits its application in scenarios that deal with streaming data, e.g.
X-ray cine angiography data during coronary interventions.

To overcome this problem, Feng et al. [35] have proposed to use an equivalent
form of the nuclear norm:

||X||∗ = inf
L,R

{
1

2
||L||2F +

1

2
||R||2F : X = LRT

}
(3.2)

where inf denotes the greatest lower bound of a subset of a partially ordered set,
L ∈ Rp×r is the basis of the low-dimensional subspace and R ∈ Rn×r can be seen as
the samples’ coefficient with respect to the basis. Substituting Equation (3.2) into
(3.1), the RPCA problem can be reformulated as (3.3):

min
L,R,E

1

2
||Z − LRT − E||2F +

λ1
2

(||L||2F + ||R||2F ) + λ2||E||1 (3.3)

Following [35], solving Equation (3.3) is equivalent to minimizing the following
empirical cost function given a sequence Z consisting of n samples [z1 . . . zn]:

fn(L)
4
=

1

n

n∑
i=1

l(zi, L) +
λ1
2n
||L||2F (3.4)

where the loss function l(z, L) for each sample is defined as:

l(z, L)
4
= min

r,e

1

2
||zi − Lr− e||22 +

λ1
2
||r||22 + λ2||e||1 (3.5)
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Note that Equation (3.4) enables the possibility of updating the basis L based on
each individual sample. To handle streaming data in practice, in [35], the estimation
of basis Lt is obtained through minimizing the following surrogate function of (3.4)
with respect to L for the t-th time instance:

gt(L)
4
=

1

t

t∑
i=1

(
1

2
||zi − Lri − ei||22 +

λ1
2
||ri||22 + λ2||ei||1) +

λ1
2t
||L||2F (3.6)

Also observe that the loss function (3.5) optimizes r (the coefficient of zi on the
basis L) and e (the sparse component of zi) to minimize the cost given a fixed basis.
Through an alternating optimization of r, e and L, Equation (3.4) can be solved
in an online manner. The complete stochastic optimization scheme for solving the
OR-PCA problem is described in Algorithm 1.

Algorithm 1 Stochastic optimization for OR-PCA [35]

Require: {z1, . . . , zT } (sequentially revealed data samples), λ1, λ2 ∈ R (regulariza-
tion parameters), L0 ∈ Rp×r, r0 ∈ Rr, e0 ∈ Rp, A0 = 0r×r, B0 = 0p×r (initial
solution), T (number of samples).

1: for t = 1 to T do
2: Reveal the sample zt.
3: Given Lt−1, project the new sample:

{rt, et} = argmin
r,e

1

2
||zt − Lt−1r− e||22 +

λ1
2
||r||22 + λ2||e||1 (3.7)

4: At ← At−1 + rtr
T
t , Bt ← Bt−1 + (zt − et)r

T
t

5: Update the basis Lt

Lt
4
= argmin

L

1

2
Tr[LTL(At + λ1I)]− Tr(LTBt) (3.8)

6: end for
7: return XT = LTR

T
T (the low-rank matrix), ET (the sparse matrix).

Note that the right-hand side of Equation (3.7) in Algorithm 1 is equivalent to the
loss function (3.5) for the t-th sample. To solve it, Feng et al. [35] give a closed-form
solution to alternatively update r and e until a convergence criterion is met. The
update of Lt in Equation (3.8) is discussed in the next section.

3.2.3.2.2 Update the subspace basis Lt

To minimize the function (3.6) with respect to L, note that the term λ1

2 ||ri||
2
2 and

λ2||ei||1 can be discarded, we then derived the following expression for Lt from (3.6):
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Lt
4
= argmin

L

1

2
Tr[LTL

t∑
i=1

(rir
T
i +

λ1
t
I)]− Tr(LT

t∑
i=1

((zi − ei)r
T
i )) (3.9)

Using the two intermediate variables At and Bt that accumulate information of
past frames, Equation (3.9) is equivalent to (3.8) in Algorithm 1. Equation (3.8) is
then solved by the block-coordinate descent method, i.e., each column of the basis L
is updated sequentially while fixing the other columns (see Algorithm 2).

Algorithm 2 The basis update using block-coordinate descent [35]

Require: L = [l1, . . . , lr] ∈ Rp×r, A = [a1, . . . ,ar] ∈ Rr×r, B = [b1, . . . ,br] ∈
Rp×r. Ã← A+ λ1I.

1: for j = 1 to r do
2: Update the j-th column of L.

lj ←
1

Ãj,j
(bj − Lãj) + lj . (3.10)

3: end for
4: return L.

Another way of solving Equation (3.8) is to derive a closed-form solution. Let the
derivative of the right-hand side of (3.8) with respect to L be zero, we obtain

1

2
L(At + λ1I)T +

1

2
L(At + λ1I)−Bt = 0 (3.11)

where At = At−1 + rtr
T
t , Bt = Bt−1 + (zt − et)r

T
t . As (At + λ1I) is symmetrical, a

simple closed-form solution of (3.8) can be derived as

Lt = Bt(At + λ1I)−1. (3.12)

This is equivalent to the form given in [98].

3.2.3.3 Downweighting the Past Information

The previous solutions for the subspace basis update treat all samples equally, which
works well for scenarios where samples are independently drawn. For stream video
data, however, adjacent frames have higher correlation than “distant” frames. Thus,
it may be possible to improve the basis update by treating past frames with different
weights, giving close-by frames higher impact to the result than the distant frames.
Inspired by the work in [70] which has reported several possibilities to handle past data
in an online dictionary learning problem, we propose three approaches to downweight
past information for the OR-PCA algorithm. In Algorithm 1, as At and Bt contain
information of past frames, variations can be made to replace the following equation
set on line 4 in Algorithm 1:
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At ← At−1 + rtr
T
t

Bt ← Bt−1 + (zt − et)r
T
t

(3.13)

A logical choice is to apply an exponential decay (ED) to “forget” past information
as in (3.14):

At ← (1− ε)At−1 + rtr
T
t

Bt ← (1− ε)Bt−1 + (zt − et)r
T
t

(3.14)

where ε is the decay rate and 0 < ε < 1. So for the t-th time instance, the weight for
the i-th sample is (1− ε)t−i.

Similar to [70], as a second option we consider supra-linear decay (SLD) approach:

At ←
(
1− 1

t

)ρ
At−1 + rtr

T
t

Bt ←
(
1− 1

t

)ρ
Bt−1 + (zt − et)r

T
t

(3.15)

where ρ is a tunable decay parameter and ρ > 0. At the t-th time instance, the weight
for the i-th sample becomes

(
i
t

)ρ
. Note that: when ρ = 0, (3.15) turns into (3.13);

when ρ = 1, (3.15) degrades to a linear decay.
Apart from ED and SLD that scale the past data, it is also an option to focus only

on adjacent frames in a fixed-size window, so that frames within the sliding window
are treated equally, whereas the frames outside the window from the earlier times are
not considered for the basis update, as follows:

At ← rtr
T
t

Bt ← (zt − et)r
T
t

, t0 = 1

At ← At−1 + rtr
T
t

Bt ← Bt−1 + (zt − et)r
T
t

, t0 > 1 and t 6 t0

At ← At−1 + rtr
T
t − rt−t0r

T
t−t0

Bt ← Bt−1 + (zt − et)r
T
t − (zt−t0 − et−t0)rTt−t0

, else

(3.16)

where t0 is the window size (number of frames within the window). This approach is
referred to as “sliding-window (SW)”.

3.2.4 Summary

The proposed online layer separation method consists of the following steps, as shown
in Figure 3.1.

1. Breathing layer separation When a new XA frame is obtained, the breathing
layer is firstly extracted by applying morphological closing on that frame, as
described in Section 3.2.2. Subsequently, the breathing layer is subtracted from
the original frame to obtain the DI.
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2. Quasi-static layer and vessel layer separation Transform the DI from a
matrix to vector by concatenating each column of the matrix one after another.
This vector is then separated into two components by the OR-PCA method, as
described in Section 3.2.3. The sparse component is reshaped to form the vessel
layer, the other component is constructed as the quasi-static layer.

Finally, as pixels belonging to contrast agent always have negative value in the
vessel layer, pixels with positive value in the vessel layer are heuristically set to zero
to suppress artefacts.

3.3 Experiments

3.3.1 Image Data

In this work, we used three types of data for evaluation: clinical X-ray angiograms,
synthetic low-contrast XA and X-ray angiographic data of pigs with variations in
contrast concentration.

3.3.1.1 Clinical X-ray Angiographic Data

Imaging data from clinical routine that were anonymized were used for our experi-
ments. The data were acquired under standard clinical protocol from the Department
of Cardiology at Erasmus MC in Rotterdam, the Netherlands. The 42 XA sequences
are from 21 patients who underwent a PCI procedure and were acquired with Siemens
AXIOM-Artis biplane system. The frame rate of all sequences is 15 frames per second
(fps). The number of frames per sequence varies from 46 to 244. All 42 XA sequences
have in total 4886 frames. 22 sequences have 512 × 512 pixels, 12 have 600 × 600
pixels, 2 have 776× 776 and 6 have 1024× 1024. Their corresponding pixel sizes are
0.216 × 0.216 or 0.279 × 0.279, 0.184 × 0.184, 0.184 × 0.184 and 0.139 × 0.139mm2,
respectively. In all sequences, inflow and wash-out of contrast agent can be observed.

3.3.1.2 Synthetic Low-Contrast XA

The synthetic image data was used to simulate the condition that a reduced amount
(50%) of contrast agent is administered, for the purpose of testing our online layer
separation method on low-contrast XA. To create these synthetic XA sequences from
the real ones, we used the off-line layer separation method in [65] (Chapter 2 of this
thesis). The idea is that the real clinical XA sequence was firstly separated into
three layers. The intensity of the vessel layer was then halved and added back to the
other two layers to generate a new XA sequence that has half the amount of intensity
compared to the original one, as shown in Equation (3.17):

Isynthetic = α I∗vessel + I∗static + I∗breathing (3.17)

where Isynthetic denotes the synthetic XA sequence, I∗vessel, I
∗
static and I∗breathing are

the vessel layer, quasi-static layer and breathing layer separated using the method
in [65] (Chapter 2 of this thesis), respectively, and α = 0.5. The synthetic sequence
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(a) Clinical XA (b) Synthetic XA

Figure 3.3: An example frame of real clinical XA sequences and synthetic low-
contrast XA sequences: (a) the real image, (b) the synthetic XA frame with 50%
vessel contrast.

has the same number of frames, same image size and resolution as its original in the
clinical dataset. An example of a synthetic low-contrast XA is shown in Figure 3.3b.
Note that the vessels have less contrast to the background than the original image in
Figure 3.3a. We created a low-contrast XA sequence from each clinical XA described
in Section 3.3.1.1, which results in 42 synthetic XA sequences in total.

3.3.1.3 X-ray Angiograms of Pigs

Additionally, in vivo XA data were acquired during a pig experiment performed at
the Erasmus MC in Rotterdam, the Netherlands. 4 XA sequences with different
contrast concentration levels were obtained from 1 FBM (familiar-hypercholesteremia
Bretonchelles Meishan) pig which underwent a catheterization procedure after 14
months of high-fat diet. The XA sequences were acquired using a Siemens AXIOM-
Artis monoplane system. The frame rate of all sequences is 15 frames per second.
The number of frames per sequence varies from 48 to 79. The 4 XA sequences have in
total 238 frames. All sequences have 776× 776 pixels corresponding to a pixel size of
0.184× 0.184mm2. In all images, the inflow of contrast agent can be observed. The
XA images were made during a manual injection of iso-osmolar X-ray contrast medium
(Visipaque 320, GE Healthcare, Buckinghamshire, U.K), delivered through the guide
catheter. The full-contrast images were acquired with a contrast concentration of
320 g/mL. For the 25%, 50% and 75% contrast concentration images, the contrast
agent was diluted accordingly with a 0,9% sodium-chloride solution (saline). Prior to
image acquisition, the guide catheter was flushed with the right concentration of the
contrast agent.

In practice, the full-contrast sequence had lower visual contrast than the images
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with 75% contrast. This might be due to incomplete flushing of the guiding catheter
so that the contrast agent from the previous injection dilutes the current contrast
agent.

3.3.2 Experiment 1: Parameter Tuning for OR-PCA

OR-PCA has three parameters: the intrinsic rank of the subspace basis r and the
regularization parameters λ1 and λ2. In [35, 98], both λ1 and λ2 were set to 1/

√
p,

where p is the dimension of data. This value had been proposed in [23] as a general
rule of thumb, but it can be slightly adjusted to achieve the best possible result.
Javed et al. [53], for example, have empirically selected different values for λ1 and λ2
instead of 1/

√
p. Unlike the rule for choosing λ1 and λ2, the choice for r depends more

on specific applications.

In order to find the optimal parameter setting for the layer separation application
on the clinical XA data, we used the following way to quantify the outcome of layer
separation with a certain set of parameters.

3.3.2.1 The Definition of Foreground and Background

We firstly defined the “foreground” and the “background” for the objective of opti-
mization in Section 3.3.2.2. It is worth noticing that the foreground and the back-
ground here are merely defined for computing the vessel contrast and thus should not
be confused with the foreground and background’s definition coming from the layer
separation scheme described in the previous sections.

We used masks to define the foreground and background. A 1 mm wide area
around manually-labeled vessel centerlines was considered as the foreground (shown
as the dark area in the mask in Figure 3.4a). This area falls entirely within the vessel,
and thus is a good representative of pixels belonging to vessels. For background, we
adopted two different masks for measuring “global” and “local” contrast. The first one
highlights all pixels outside a 4 mm wide area around the vessel centerlines (the white
area in the mask in Figure 3.4b). This mask can quantify the effect of the removal
of diaphragm, guiding catheters, etc. and can be used in a global measurement of
contrast. The local background is defined as a 3 mm wide neighborhood area around
the dark area in the global mask (the white area in the mask in Figure 3.4c).

For each clinical XA sequence, we randomly selected 8-15 frames for mask genera-
tion and contrast evaluation. The number of selected frames depends on the sequence
length. As the vessel contrast is of main interest in this paper and in practice, only
the frames with contrast agent were selected. This way we also avoided choosing
non-contrast frames from the beginning of a sequence where the online algorithm has
not converged yet. In total, 444 frames were chosen from 42 sequences.

We also created the masks for the four pig XA sequences. From each pig XA
data, we randomly chose 8-12 frames. In total, 38 frames were chosen for the mask
creation. These masks are only used for evaluation of the contrast level in pig data,
not for parameter optimization.



32 3 Automatic Online Layer Separation

(a) (b) (c)

Figure 3.4: Examples of masks that are used for defining foreground and back-
ground in assessing the contrast of vessels. The first row shows the masks, the
second row exhibits the overlay of masks on the corresponding original XA frame
indicated by colors. (a) the foreground (blue), (b) the global background (red), (c)
the local background (red).

3.3.2.2 The Objective for Parameter Optimization

Metrics that have previously been used to measure vessel visibility include contrast-
to-noise ratio (CNR), as the work in [65] (Chapter 2 of this thesis), and the Jeffries-
Matusita distance (JMD) [116, 118]. These metrics evaluate the contrast of pixels
from two groups, e.g. foreground and background. However, when tuning parameters
of OR-PCA using either of these two measures as the objective for optimization,
the optimal parameters are those that yield a very small standard deviation of the
background, thus an almost constant background, and a flawed separation of vessel
layer that loses much intensity of the vessel pixels. These would result in a large CNR
or JMD, but do not lead to good foreground and background separation.

To avoid the problem, the objective for OR-PCA parameter optimization should
also consider the information loss in the vessel layer in addition to the vessel contrast.
In this work, we integrated the difference between the original XA image and the sum
of its three layers separated by OR-PCA method in the objective, such that losing
too much information in the vessel layer would result in a large difference between
the original XA and the sum of layer images. With this consideration, we used a
corrected CNR (cCNR) as the objective to optimize the OR-PCA parameters:
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cCNR =
|µF − µB |√
σ2
B + MSEV

(3.18)

where µF and µB are the mean of the pixel intensity value in the foreground and the
background that were defined in Section 3.3.2.1, σB is the standard deviation of the
pixel intensity in the background. MSEV , the mean square error in the vessel area,
which serves as a penalty term in Equation (3.18) to prevent too much information
loss in the vessel layer, is defined as follows:

MSEV =

∑
x,y(IVoriginal(x, y)− IV3−layer(x, y))2

|IVoriginal|
(3.19)

where IV(?) denotes the operation that takes only pixels in the vessel area (defined by

the dark region in the mask in Figure 3.4b) into consideration for image I(?). The
reason to focus only on the vessel area is that the information loss of vessel pixels
only occurs in this region. Ioriginal(x, y) and I3−layer(x, y) are the pixel values of the
position (x, y) in the original XA and the 3-layer sum image:

I3−layer = Ivessel + Istatic + Ibreathing (3.20)

where Ivessel, Istatic and Ibreathing are the vessel layer, quasi-static layer and breathing
layer, respectively. |IVoriginal| denotes the number of pixels in the vessel area in the
frame.

According to (3.19), MSEV indicates how well the original image can be recon-
structed from the layer separation result. An undesirable reconstruction with pixel
intensity loss in the vessel layer would result in a large MSEV and, further, a small
cCNR.

The cCNR for a complete sequence is defined as the average cCNR over all selected
XA frames from the sequence. Global and local cCNR are computed respectively using
the masks in Figure 3.4b and 3.4c.

3.3.2.3 Parameter Optimization

The parameters of OR-PCA for both subspace basis update methods were optimized
by exhaustively searching the optimal parameter set that maximizes the previously de-
fined objective cCNR within a discrete set of parameters. First, cCNR was computed
for every possible parameter combination (λ1, λ2, r) within the parameter range for
each clinical XA sequence. Then, the optimal parameters were obtained by searching
for the parameter set that maximizes the average local cCNR over the 42 XA se-
quences. This optimization was performed for the two different basis update methods
in Section 3.2.3.2.2 respectively.

The range for the intrinsic rank r was chosen as the integers in [2, 20]. The
regularization parameter λ1 and λ2 were set to the same value as [35, 98] both set
λ1,2 to 1/

√
p. To search for the optimal λ1,2, we explored the values in [0.1/

√
p, 10/

√
p]

with a search step 0.1/
√
p.
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3.3.3 Experiment 2: Downweighting the Past Data in OR-
PCA, Influence of the Parameters

Once the optimal parameter settings of OR-PCA had been obtained from the previ-
ous experiment, we used this setting and study the influence of history parameters
that were introduced in Section 3.2.3.3 for downweighting the past data on the perfor-
mance of OR-PCA. The search spaces for exponential decay (ED), supra-linear decay
(SLD) and sliding-window (SW) are:

ε ∈ {0.01, 0.3, 0.6, 0.9, 0.99, 0.9968, 0.999, 0.9997, 1− 10−4, 1− 10−5, 1− 10−6, 1− 10−7},

ρ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 6, 9, ..., 36, 39, 42},

t0 ∈ [1, 15] and t0 ∈ N.

In the experiments, we combined these three approaches with the two meth-
ods that update the subspace basis L that were mentioned in Section 3.2.3.2.2, i.e.,
block-coordinate descent (BCD) and the closed-form solution (CF). In this paper,
for example, the OR-PCA method using exponential decay to downweight past data
and using closed-form solution to update L is referred to as OR-PCA (ED+CF), or
(ED+CF) as a short form.

As the OR-PCA parameters λ1,2 and r tuned with cCNR assure a reliable layer
separation, and tuning the parameters of ED, SLD and SW does not create the
previously-mentioned undesirable layer separation, therefore, we evaluated the results
for this experiment using the direct measure of vessel contrast in an image CNR, which
were used in [65] (Chapter 2 of this thesis), with the same masks from Section 3.3.2.1.
In the evaluation, RPCA was used as a reference for the comparison purpose. Its
regularization parameter λ had been optimized the same way as in Section 3.3.2.3
and was set to the optimal value 1.5/

√
p from the search space [0.1/

√
p, 10/

√
p] with

a search step 0.1/
√
p. The experiments were carried out with the 42 clinical XA

sequences.

3.3.4 Experiment 3: Comparison with Other Methods

We compared the proposed approaches to several other related methods that can be
used for prospective or online layer separation. The off-line method with the batch
version of robust PCA in [65] (Chapter 2 of this thesis) was used as a “benchmark” to
show how close prospective or online methods can achieve to the performance of the
off-line layer separation. The same way in Section 3.3.3, the regularization parameter
λ of RPCA was set to 1.5/

√
p to achieve optimal performance. This method is referred

to as RPCA. The following methods were tested in the experiment.

• Median-subtraction In [15], static background has been suppressed by sub-
tracting the median of the first 10 frames from each frame in the sequence. This
method is referred to as MS.
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• Morphological-closing + median-subtraction This advanced version of
median subtraction method removes the breathing layer via morphological clos-
ing and then subtracting the median of the first 10 frames. This method is
referred to as MC+MS.

• Robust PCA with a sliding window As mentioned in Section 3.1.2, In
[21,109], RPCA was solved within a sliding window that consists of a few frames
to enable prospective foreground separation. We adopted this idea of solving
RPCA for our experiment. Different from their methods using Frangi filtering to
preprocess images, to adapt to our application, we applied morphological closing
to remove the breathing layer and then separate the other two layers from the
difference images by solving RPCA with a sliding window. We used two sets of
parameters for this method. The first one was used in [21,109]: the window size
was set to 4 and the regularization parameter λ was set to 1.5/

√
p1. This one is

referred to as RPCA (SW). The second set of parameters was optimized the
same way as in Section 3.3.2.3. The window size was set to 7 from the search
space [2, 10] (integer two to ten) and the regularization parameter λ was set to
0.5/
√
p from the search space [0.1/

√
p, 10/

√
p] with a search step 0.1/

√
p. This

one is referred to as RPCA (SW)*.

These methods were compared with the OR-PCA approaches using CNR as the
evaluation metric with the same masks from Section 3.3.2.1. The CNR of OR-PCA
approaches were computed in a leave-one-out (LOO) manner. In each LOO loop,
firstly, the OR-PCA parameters λ1,2 and r were optimized on the training sequences
using the method in Section 3.3.2. Next, using the trained OR-PCA parameters, the
history parameters were trained on the same set of sequences with local CNR using the
approach in Section 3.3.3. Lastly, the optimal parameters obtained from the previous
two steps were applied to compute CNR for the left-out data. The overall CNR was
then computed as the average CNR over all LOO sessions. The LOO experiment was
carried out with the 42 clinical XA sequences.

In addition to CNR as an evaluation metric of vessel contrast, to gain insight into
how accurate the layers obtained with each method can reconstruct the original XA
image, the reconstruction error was evaluated. It was computed as follows:

Erecon =

∑
x,y |Ioriginal(x, y)− I3−layer(x, y)|∑

x,y Ioriginal(x, y)
(3.21)

where Erecon denotes the reconstruction error, Ioriginal and I3−layer are defined in the
same way as Equation (3.19). The layer separation parameters used for computing
Erecon were the same that were obtained during each LOO loop in the last paragraph.
For each clinical XA sequence, the reconstruction error was computed for the frames
that had been selected for mask generation in Section 3.3.2.1. The average error over
all selected frames from a sequence was used as the empirical reconstruction error for
this sequence. This error indicates the relative absolute difference between the pixel

1λ was fixed to 3 × 10−3 in their papers. To adapt to different image sizes, we set λ to 1.5/
√
p.

This value is equivalent to 3× 10−3 for images of size 512× 512.
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intensity of the reconstruction image and that of the original image with respect to
the pixel intensity of the original image.

3.3.5 Experiment 4: Vessel Enhancement in Low-Contrast XA

One possible application of layer separation is vessel enhancement. This can be
achieved through enhancing the vessel layer and adding it back to the original im-
age. To demonstrate this concept, we conducted experiments to enhance vessels in
low-contrast XA using the online layer separation approaches.

The data we used are synthetic human XA data and real XA data acquired from
pigs, as introduced in Section 3.3.1.2 and 3.3.1.3. We first separated the three layers,
then enhanced the vessel layer by multiplying it by an enhancement factor β > 0.
Finally, the vessel-enhanced image Ienhanced equals the enhanced vessel layer plus the
original XA image, as shown in Equation (3.22):

Ienhanced = β Ivessel + Ioriginal (3.22)

The results were evaluated using CNR. The layer separation method we used in this
Section is OR-PCA (SW+CF).

For synthetic XA data, we used the parameters obtained from the leave-one-out
evaluation in Section 3.3.4 for each synthetic data. For the pig XA data, the parameter
set (λ1,2, r, t0) = (2.1, 5, 3) was used.

3.3.6 Implementation

All algorithms were implemented in MATLAB (The MathWorks, Inc.). In particular,
the computation time of layer separation was recorded in MATLAB 2014a on an Intel
Core i7-4800MQ 2.70 GHz computer with 16 GB RAM running Windows 7.

3.4 Results

3.4.1 Optimal Parameters for OR-PCA

The parameters of OR-PCA optimized over the whole XA dataset for the two different
basis update methods are shown in Table 3.1. Here both λ1 and λ2 are set to the same
value. Comparing the two methods, the λ1,2 have similar values, while the intrinsic
ranks r of the subspace are very different.

Table 3.1: The optimal parameter settings of OR-PCA for different subspace basis
update methods. p is the dimension of the data, i.e. the number of pixels in a frame.

Basis Update Method λ1,2 r

Block-coordinate Descent (BCD) 2.3/
√
p 14

Closed-form Solution (CF) 2.1/
√
p 5
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Using block-coordinate descent with the optimal parameter setting, an example of
online layer separation of an XA sequence (512× 512, 55 frames) is shown in Fig. 3.5.
Note that the layer separation result for the first frame shows strong artefacts (e.g. the
vertebral shape in the vessel layer) due to random initialization of the subspace basis.
As time proceeds, the layer separation improves quickly. The 10th frame already has
a good layer separation.

Original XA

Breathing layer

Quasi-static layer

Vessel layer

Figure 3.5: An example of online layer separation of an XA sequence using OR-
PCA with the optimal parameter settings as listed in Table 3.1. The subspace
basis update method used here is block-coordinate descent (BCD). Row 1-4 show
the original frames, the breathing layer, the quasi-static layer and the vessel layer,
respectively. Column 1-6 are 6 frames taken from the sequence in a chronological
order and their layer separation outcomes. The frame ordinals from left to right are
1st, 5th, 10th, 15th, 20th, 25th.
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3.4.2 Influence of the History Parameters

With the optimal parameter setting of OR-PCA, we quantitatively assessed how the
history parameters mentioned in Section 3.2.3.3 and 3.3.3 influence the layer sepa-
ration performance. Depending on the image content, the influence of the history
parameters on each individual sequence may vary from sequence to sequence. The
average measures over the whole dataset are shown in Figure 3.6 where the CNR
values are normalized by dividing CNR by the CNR value obtained from the RPCA
method (so RPCA has a constant value 1).

Compared to the original OR-PCA method (OR-PCA (BCD)) and OR-PCA
(CF), the history parameters ε, ρ and t0 all resulted in overall higher average lo-
cal and global CNR. This improvement was more prominent in the case of global
CNR compared to local CNR. It is also worth noticing that the combination of the
history parameters with the CF method generally performed better than the (history
parameter + BCD) option, which could be especially seen in the sliding-window case.

In addition to the overall comparisons of the three approaches, each of them
presented a certain trend of CNR as the history parameter changed. For exponential
decay (Figure 3.6a and 3.6b), as −log(1−ε) increases, the CNR values firstly increased
fast; once they reached an optimal value when −log(1 − ε) is between 0.5 and 2.5
(except for OR-PCA (ED+CF)), the CNRs dropped down slowly to reach a constant.
In the case of supra-linear decay (Figure 3.6c and 3.6d), the CNRs increased as ρ
increases, but did not change much when ρ is larger than 15. For the sliding-window
approach (Figure 3.6e and 3.6f), although in general the CNRs dropped when the
window size becomes larger, OR-PCA (SW+BCD) reached its optimum when t0
equals 2, whereas OR-PCA (SW+CF) had an optimal t0 between 3 and 5. Finally,
as −log(1 − ε) and ρ kept increasing (decreasing the weights of all past frames), the
CNR curves of ED or SLD converged to where the CNR curves of SW started (only
preserve information of the new frame).

3.4.3 Comparison with Other Methods

The optimal parameter sets for the methods based on OR-PCA that were obtained
during the leave-one-out evaluation are listed in Table 3.2. In general, the methods
that use closed-form solution (CF) had a smaller r than methods with BCD, but
needed more information from the past data (lower ε and ρ, higher t0) to achieve the
best performance.

Table 3.2 also shows the counts of the optimal parameter sets that each LOO
session generated for each method. For methods without history parameters (BCD
and CF), the optimal parameter set with the largest count were identical to the results
in Section 3.4.1. Most of the methods with a history parameter had a dominant
optimal parameter set from LOO, except for the method (SW+CF) where the two
most dominant optimal parameter sets had almost equal counts.

Table 3.3 lists the average CNR values for the original XA sequences and the
vessel layers obtained with each method. Compared to the original XA, all methods
achieved a substantial improvement on the CNR values in the vessel layer. Compared
to method MS, MC+MS, RPCA (SW) and RPCA (SW)*, the methods that use OR-
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Figure 3.6: The influence of history parameters ε, ρ and the sliding-window size
t0 on local and global CNR. All values are normalized using RPCA method as the
reference. In (a), (c) and (e), the local CNR for OR-PCA (BCD) and OR-PCA
(CF) are very close that the two lines almost overlap.
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Table 3.2: Counts of the optimal parameter sets obtained during the leave-one-
out evaluation for each OR-PCA method. As 42 sequences are used, that yields 42
leave-one-out sessions and 42 optimal parameter sets in total.

Method
λ1,2 r

History
Counts

(1/
√
p) Parameter

BCD
2.3 14 39
2.4 17 2
3.3 19 1

CF
2.1 5 31
2.3 7 11

ED+BCD
2.3 14 ε = 0.9 39
2.4 17 ε = 0.9 2
3.3 19 ε = 0.9 1

ED+CF
2.1 5 ε = 0.6 31
2.3 7 ε = 0.6 8
2.3 7 ε = 0.3 3

SLD+BCD
2.3 14 ρ = 42 39
2.4 17 ρ = 18 2
3.3 19 ρ = 9 1

SLD+CF
2.1 5 ρ = 36 29
2.3 7 ρ = 36 11
2.1 5 ρ = 15 2

SW+BCD

2.3 14 t0 = 2 38
2.4 17 t0 = 2 2
2.3 14 t0 = 1 1
3.3 19 t0 = 2 1

SW+CF
2.1 5 t0 = 3 17
2.1 5 t0 = 5 14
2.3 7 t0 = 5 11

PCA (from BCD to SW+CF in Table 3.3) had higher CNR. The CNR values of the
two types of methods (using or not using OR-PCA) were statistically significantly dif-
ferent with the two-sided Wilcoxon signed-rank test (see Table 3.7 in Supplementary).
The methods that downweight the past data (from ED+BCD to SW+CF) were able
to improve the vessel contrast over the methods without history parameters (BCD
and CF). The improvement was statistically significant (see Table 3.8 in Supplemen-
tary). Among all the methods that are based on OR-PCA, ED+CF, SLD+CF and
SW+CF showed similar or better average local CNR than RPCA, although without
statistical significance. The performance of all OR-PCA based methods was closer to
the off-line benchmark RPCA than those not using OR-PCA.

Table 3.3 also shows the average reconstruction error between the original image
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Table 3.3: The average local CNR, global CNR and reconstruction error Erecon

(mean value ± standard deviation) for the original XA and all methods.

Method Local CNR Global CNR Erecon

Original XA 0.991 ± 0.330 0.507 ± 0.305

MS 1.811 ± 0.490 2.211 ± 0.648 0
MC+MS 2.396 ± 0.635 3.210 ± 0.869 0

RPCA (SW) 2.134 ± 0.511 2.278 ± 0.676 0
RPCA (SW)* 2.170 ± 0.578 1.881 ± 0.623 0

(BCD) 3.010 ± 1.065 3.453 ± 1.223 0.026 ± 0.005
(CF) 3.010 ± 1.088 3.509 ± 1.204 0.030 ± 0.007
(ED+BCD) 3.209 ± 1.192 4.257 ± 1.316 0.021 ± 0.006
(ED+CF) 3.226 ± 1.263 4.422 ± 1.466 0.023 ± 0.007
(SLD+BCD) 3.169 ± 1.172 4.085 ± 1.282 0.022 ± 0.006
(SLD+CF) 3.246 ± 1.224 4.500 ± 1.393 0.022 ± 0.006
(SW+BCD) 3.170 ± 1.161 4.150 ± 1.295 0.022 ± 0.006
(SW+CF) 3.281 ± 1.290 4.602 ± 1.465 0.022 ± 0.007

RPCA 3.227 ± 1.301 5.176 ± 2.004 0.007 ± 0.002

and the three-layer sum image for each method. For MS, MC+MS and the RPCA
(SW) methods, the foreground (vessel layer) were obtained via subtraction of the
background. therefore these methods, by definition, have a reconstruction error of
zero. The methods based on OR-PCA made minor reconstruction errors (less than
3% of the average pixel intensity of the original images). The history downweighting
techniques reduced the reconstruction errors of BCD and CF for about 17% and 26%
respectively. These errors are about three times larger than the one made by RPCA.

The comparison between different methods is illustrated in Figure 3.7, where the
CNR values were normalized in the same way as in Figure 3.6. Similarly, the methods
that use OR-PCA outperformed the other methods on both local and global CNR.
The improvement that results from downweighting history was more substantial in
global CNR than local CNR. For the methods that are based on OR-PCA, those that
use the closed-form solution achieved slightly better normalized CNR values than the
ones with BCD.

Figure 3.8 presents examples of results of five representative prospective or on-
line layer separation methods and original images on four XA sequences: MC+MS,
RPCA (SW), OR-PCA (CF), OR-PCA (SW+CF) and RPCA. All methods improved
the visibility of vessels in the image, but MC+MS generated strong artefacts near the
guiding catheters. RPCA (SW) shows slightly better results than MC+MS, but still
presents some motion artefacts near the guiding catheters. OR-PCA (CF) achieved
good layer separation, while OR-PCA (SW+CF) was able to produce “cleaner” back-
ground (row 1 column 4 and 5, the left part of the images) and still maintained
the vessel information (column 4 and 5). The vessel layer separated using OR-PCA
(SW+CF) had more similar appearances to the ones produced by RPCA (column 5
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(b) Normalized global CNR

Figure 3.7: The boxplot that compares various methods on their performance of
layer separation. In these diagrams, the CNR values of the mentioned methods are
normalized by dividing their CNR by the CNR obtained with the RPCA method.

and 6) than other methods.

3.4.4 Vessel Enhancement in Low-Contrast XA

The results of vessel-enhancement on synthetic low-contrast XA and real pig XA data
are shown in this section.

3.4.4.1 Synthetic Low-Contrast XA

Table 3.4 shows the average CNR values for vessel enhancement in synthetic XA
sequences. With enhancement factor β = 1, the vessel-enhanced XA showed better
local and global CNR than the synthetic XA with statistical significance. Compared
to the original XA in Table 3.3, the CNR values of the vessel-enhanced XA was slightly
lower, but these CNR values could be improved with a larger enhancement factor β.

A few examples of vessel-enhancement on synthetic XA data are shown in Figure
3.9. Compared to the original images (the first row), the synthetic XA (the second
row) had poorer vessel contrast. The proposed layer separation method (SW+CF) was
still able to extracted the vessel layer (the third row), while maintaining a majority of
the information, and enhance the vessel contrast (the last row) to the visually similar
level of the original images.
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Original XA MC+MS RPCA (SW) (CF) (SW+CF) RPCA

Figure 3.8: Comparison of five different layer separation methods on four example
XA sequences. One representative frame is selected from each sequence to visualize
the results. Row 1-4 show four sequences. Column 1 is original XA, column 2-6
are the separated foreground (vessel layer) obtained from MC+MS, RPCA (SW),
OR-PCA (CF), OR-PCA (SW+CF) and RPCA.

3.4.4.2 Real XA of Pigs

We show the CNR values for vessel enhancement experiment with pig XA data in
Table 3.5. In the table, since the full-contrast sequence showed lower visual contrast
(see Section 3.3.1.3), the four sequences were sorted by their local CNR values in an
ascending order. With enhancement factor β = 2, the vessel layers and the enhanced
sequences showed an improvement on local and global CNR. This improvement in-
creased as the local CNR of the sequence became higher.

Similar observation could be found in Figure 3.10, where representative frames
from each pig XA sequence are shown. For example, the proposed method was able
to increase the vessel contrast in the image of 25% contrast to the similar level as in
the image of 50% contrast (see Figure 3.10i and 3.10b). The vessel contrast in the
enhanced image of 50% contrast (Figure 3.10j) had better contrast than the image
of full contrast (Figure 3.10c) and 75% contrast (Figure 3.10d). It is also observed
that, in Figure 3.10 from left to right, the false positive enhancement of non-vessel
structures (e.g. the dark spots in the right part of the images) decreased as the visual
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Table 3.4: The average local and global CNR (mean value ± standard deviation)
for the synthetic XA data, the vessel layers separated from the synthetic data using
OR-PCA (SW+CF), and the vessel-enhanced XA sequences (β = 1). The two-sided
Wilcoxon sign-rank test indicates statistically significantly difference in local and
global CNR between the synthetic data and the vessel-enhanced images (p < 0.01).

Image types Local CNR Global CNR

Synthetic XA 0.592 ± 0.236 0.338 ± 0.245
Vessel Layer 3.170 ± 1.290 4.048 ± 1.592
Enhanced 0.875 ± 0.312 0.452 ± 0.285

Table 3.5: The local and global CNR of the 4 XA sequences obtained from pigs, the
separated vessel layer and their vessel-enhanced sequence (β = 2). The 4 sequences
are sorted by their local CNR values in an ascending order.

Contrast
25% 50% 100% 75%

Concentration

Metric (CNR) local global local global local global local global

Original 0.307 0.164 0.490 0.340 0.523 0.395 0.690 0.569
Vessel Layer 2.546 0.682 5.156 0.830 5.175 2.759 6.835 5.473
Enhanced 0.488 0.262 0.954 0.562 1.041 0.729 1.528 1.147

contrast increased.

3.4.5 Computation Time

The computation time of layer separation for each frame is shown in Figure 3.11. In
this figure, the box plots of per-frame processing time for each method that is based
on OR-PCA is illustrated. The processing times of these methods ranged from 0.15
to 1.60 seconds per frame. The methods that use a closed-form solution to update L
were approximately two times faster than the ones that use block-coordinate descent.
The methods which use ED and SLD to treat past information were slightly faster
than their counterparts that do not weight past data, while the methods with SW
needed slightly longer time to process one frame than their corresponding methods
BCD and CF. The “outliers” shown as red marks in Figure 3.11 are from images of
larger size.

The average computation time per image size is shown in Table 3.6. Generally,
the table shows that images of larger size needed longer processing time per frame.
On XA images of common size in clinics (512 × 512, 600 × 600 and 776 × 776), it is
possible to achieve a processing rate of 3-6 frames per second (fps) with the proposed
methods on our hardware.

Compared to MS and MC+MS, OR-PCA based methods showed much better
layer separation performance (see Table 3.3 and Figure 3.7), while the processing
time of the fastest one (ED+CF) is only about 40% slower than MC+MS.
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Original XA

Synthetic low-contrast XA

The vessel layer separated from the synthetic XA

The vessel-enhanced images (β = 1)

Figure 3.9: Five examples of vessel enhancement on synthetic low-contrast XA
images (Column 1-5).

The processing time for RPCA (SW) is also shown in Table 3.6. In RPCA (SW),
the foreground separation of a frame is delayed by the processing of its previous data
block, therefore, we computed the average per frame processing time of all blocks in a
sequence. Compared to RPCA (SW), the methods that use OR-PCA perform faster
with a factor up to 3.

3.5 Discussion and Conclusion

We have presented a fast automatic online method to robustly separate cardiac inter-
ventional X-ray angiograms into three image layers: a breathing layer, a quasi-static
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Original pig XA

(a) Local CNR
= 0.307

(b) Local CNR
= 0.49

(c) Local CNR
= 0.523

(d) Local CNR
= 0.69

Vessel layer

(e) (f) (g) (h)

Vessel-enhanced images (β = 2)

(i) Local CNR
= 0.488

(j) Local CNR
= 0.954

(k) Local CNR
= 1.041

(l) Local CNR
= 1.528

Figure 3.10: Vessel enhancement on pig XA sequences with different level of
contrast agent. From left to right, the contrast concentration used for the sequence
are 25%, 50%, 100% and 75%, respectively, while the local CNR increases. Row
1: the original pig XA sequences. Row 2: the separated vessel layer. Row 3: the
vessel-enhanced images (β = 2).

layer and finally a vessel layer that contains information of moving thin structures,
such as coronary arteries. The method relied on morphological closing and online
robust PCA and we investigated different possibilities for downweighting informa-
tion from previous frames for further improving layer separation. The parameters
of OR-PCA were optimized on 42 clinical XA sequences. In addition, a pilot study
was performed on synthetic XA sequences and pig data to show the potential of the
proposed method for vessel enhancement in XA.
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Figure 3.11: The processing time that each method that uses OR-PCA needs for
layer separation. The per frame processing time (second) of every single frame in
the whole dataset is shown as box plots.

The integration of OR-PCA algorithm into layer separation enables online pro-
cessing XA images from the beginning of the sequence. The mechanism behind this
is that OR-PCA only needs to be “fed” one frame each time, but is able to update
the subspace basis of the low-rank component based on the new information. This
is an important difference from the method in [65] (Chapter 2 of this thesis) which
worked “off-line” and needed the complete sequence as input. The proposed approach
is also different from the method in [109], where the online implementation needed
several frames to solve RPCA in a mini-batch manner, and hence, resulting in a delay
in processing for each following mini-batch. Although the layer separation results of
our proposed method might suffer from random initialization at the beginning, the
algorithm converges fast and obtain reasonable layer separation after a few frames
(see an example in Figure 3.5).

In addition to the advantage of online processing, the methods that use OR-PCA
show good performance on layer separation. It significantly improves the vessel vis-
ibility of the original XA images with minor reconstruction errors: the background
structures were removed and the vessel contrast was visually and quantitatively en-
hanced. Compared to those methods that model a total static background, e.g. MS
and MC+MS, the approaches that are based on OR-PCA are superior because they
are able to model a dynamic scene, therefore can adapt to small dynamic changes in
the background. The method that separates layers by solving RPCA with a mini-
batch of data suffers from motion artefacts that remain around vessels and catheters.
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Table 3.6: The average processing time (seconds/frame) for each layer separa-
tion method on XA sequences of different frame size. The bold numbers indicate
processing time that the fastest OR-PCA based method needs for a certain frame
size.

Method 512 × 512 600 × 600 776 × 776 1024 × 1024

BCD 0.36 0.51 0.69 1.14
CF 0.20 0.30 0.36 0.58
ED+BCD 0.30 0.41 0.63 1.02
ED+CF 0.16 0.21 0.34 0.57
SLD+BCD 0.30 0.42 0.63 1.02
SLD+CF 0.17 0.22 0.34 0.57
SW+BCD 0.36 0.50 0.75 1.27
SW+CF 0.22 0.31 0.46 0.77

RPCA (SW) 0.37 0.53 0.85 1.50
RPCA (SW)* 0.46 0.68 1.10 1.97

MS 0.02 0.03 0.05 0.11
MC+MS 0.11 0.15 0.25 0.45

This might be because it uses the frames in the previous block to infer the background
for the current block of images, which might fall behind the background change. Fur-
thermore, it uses the same background for all images in the block to compute their
vessel layers, which ignores the possible small background change within the block.
OR-PCA updates L frame by frame to keep up the background change and has a
“customized” background for each individual frame.

It is also worth noticing the advantage of removing breathing structures prior
to the separation of the other two layers with OR-PCA. If the original XA image is
directly “fed” to the OR-PCA method, the breathing structures should stay in the
same layer with the static structures in order to obtain a reasonable vessel layer,
because OR-PCA decomposes a source image into only two components. Due to
breathing motion, this background layer will contain more variation than a layer that
only contains quasi-static structures, which might require a much higher r parameter
of OR-PCA to allow reasonable convergence of the algorithm. However, it is often
inevitable to observe strong breathing motion artefacts in the output vessel layer.
Figure 3.12 provides an example that illustrates the cases without removing breathing
structures prior to the OR-PCA computation. In Figure 3.12c, the image still contains
a large amount of noise and a static dark band on the left. In Figure 3.12d, OR-PCA
has a better convergence with a higher r, less noise and no dark band is observed,
but a stronger artefact of diaphragm remains.

The parameters of OR-PCA used in this work were optimized based on our image
data, instead of being assigned the “rule of thumb” value 1/

√
p as [53, 98]. The

optimum of λ1,2 for method BCD and CF are similar and the values are close to 1/
√
p.

The optimal intrinsic rank r for BCD and CF are different. A possible explanation is
that CF computes the quasi-static subspace basis L in one step, whereas BCD updates
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(a) (b) (c) (d)

Figure 3.12: An example that compares the cases without removing breathing
layer before the OR-PCA operation to the one resulted from the proposed method:
(a) original image; (b) the vessel layer obtained with OR-PCA (BCD) using the
proposed method and parameters; (c) the vessel layer obtained without the separa-
tion of breathing layer using OR-PCA (BCD) with the same parameters as the case
in (b); (d) the vessel layer obtained without removing breathing structures using
a higher r value (r = 50) for OR-PCA (BCD). Strong artefacts due to breathing
motion can be observed in (c) and (d).

L column-wisely and thus needs more variations to achieve the same accuracy as CF.

The performance of layer separation using OR-PCA can be improved by down-
weighting the past frames. In this work, we have proposed three different ways:
exponential decay (ED) and supra-linear decay (SLD) are methods to scale all past
data, and the sliding-window approach (SW) only preserve the information of the few
most recent frames, which could be interpreted as “binary” scaling. The results on
vessel visibility and reconstruction error showed that all three ways improve the over-
all layer separation by giving recent frames higher weight than earlier frames. This
suggest that not all past information is necessary for best inferring the current status
in the scenario of online learning. A possible explanation of this finding is that using
the downweighting techniques in the online learning algorithm promotes faster conver-
gence [70]. Although the improvement might vary between sequences, depending on
specific image content, they overall present an improvement with history parameters.

The optimized history parameters show that only the most recent 2-5 frames are
needed to update the subspace basis L, which seems too “few”. The reasons might
be two-fold. First, since L is the subspace basis of the quasi-static layer which does
not contain much variation, it should not need information from a large number of
frames to update L. Second, for the case of BCD, note that in Equation (3.10), the
update of L still partly relies on its previous version, not solely on A and B. This
means that every version of L can inherit information from its previous version and
thus is a compact representation of all past information, but updating L needs only
the very recent frames.

The combination of the subspace basis update methods and the past information
downweighting techniques yields 8 different OR-PCA variants, while in practice one
might choose one of them for a layer separation task. In terms of the performance on
improving vessel visibility, (SW+CF) might be the best choice, as it gives the highest
CNR value. On the other hand, if speed is of great concern, (ED+CF) is a good
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option, since it runs the fastest among the eight and the performance on CNR is not
much worse than (SW+CF). In addition, the implementation of (ED+CF) is easier
than (SW+CF), in that it does not explicitly store a few past values of A and B, but
does the scaling implicitly.

In terms of computational efficiency, the methods that use OR-PCA run fast.
For 512 × 512 frames, OR-PCA with CF was able to achieve a 5-6 fps processing
rate on standard PC; for 1024 × 1024 frames, the proposed methods could reach at
highest about 2 fps. This is faster than RPCA (SW) based approaches either from
the result of our experiment (see Table 3.6) or the literature, e.g. [109] which reported
about 1 fps for frame size in the range of 824× 1024 to 1024× 1024, and [21] which
achieved 3 fps for 512 × 512 images. According to [35], the computation complexity
for batch RPCA is O(np2) and for OR-PCA is O(pr2). Since p � r and normally
also p � r2, OR-PCA runs much faster than RPCA. We also notice that OR-PCA
with CF ran faster than BCD, this is because the computation complexity of both
methods is O(pr2), and in our experiments, the r for CF was smaller than the r for
BCD. The methods with history downweighting schemes are faster than BCD and
CF. This might be due to the faster convergence of OR-PCA when downweighting
the past information. Finally, it is worth noticing that the timing reported in this
paper were based on a MATLAB implementation that ran on a single CPU core. A
parallelized version of the method may achieve real-time processing rate (about 15
fps) for clinical applications.

One of the potential direct clinical applications of the proposed method is to
enhance vessels in X-ray images with low vessel contrast, which suffer from poor
diagnostic quality. X-ray contrast agent used for angiography may have side effects
including allergic reaction which can be life-threatening, and nephrotoxicity (contrast-
induced nephropathy, CIN) which can result in chronic renal failure with all its se-
quelae [10,105]. Thus, it is clinically relevant to limit the use of X-ray contrast agent
during interventions. The method we proposed in this paper provides a possibility
to use X-ray contrast of lower concentrations. In the experiments, we have evalu-
ated whether it is possible to achieve better vessel visibility on low-contrast images
by enhancing vessels using the methods based on OR-PCA. We have used synthetic
50%-contrast XA images and 4 real pig XA sequences with different contrast concen-
trations for the test. The results showed a good improvement on the vessel visibility
on both kinds of images, implying a potential application for coronary interventions.

The proposed layer separation methods are based on some assumptions. First,
the morphological closing operation with a circular structuring element of 8.5 mm
in diameter worked well for small vessels, such as coronary arteries. However, for
other kinds of interventions that operate on large vessels, such as aorta or pulmonary
arteries, the structuring element of the proposed size is not large enough. In those
cases, one might consider using a larger structuring element for morphological closing
and adjusting the parameters of OR-PCA for a reasonable layer separation. An-
other important assumption underlying the methods that use OR-PCA is that there
is dynamic change in the foreground, and it detects the dynamic change. This as-
sumption holds true most of the time because coronary arteries always move together
with heartbeat. However, in the case that the guiding catheter tip segment moves
together with heartbeat, the proposed layer separation method cannot separate this



3.5 Discussion and Conclusion 51

moving catheter segment from vessels. The method also requires a certain amount of
contrast agent, i.e. the signal of the vessels should not be too weak. As the methods
based on OR-PCA assumes a sparse foreground, when the contrast of vessel is not
strong enough, the proposed methods might enhance noise or detect other non-vessel
structures in the foreground, as can be seen in Figure 3.10.

In the future, it is of great interest to investigate the potential of the proposed
method. One important direction would be to evaluate the clinical potential, e.g.
how the proposed layer separation method would work under different contrast con-
centration levels on a larger dataset. One could also think of improving the visibility
of instruments, such as catheters or guidewires for other cardiac applications. From a
methodological point of view, it might be interesting to unify the steps in the proposed
method into one optimization problem, for example, incorporating the heuristic post-
processing into the OR-PCA algorithm with an additional non-positive constraint on
the sparse component.

In conclusion, we have presented a fast automatic online layer separation method
for robust vessel enhancement in X-ray angiograms. The method separated an XA
frame into three layers: a breathing layer, a quasi-static layer and a vessel layer. We
proposed three ways to improve the layer separation outcome by downweighting the
past frames. The proposed method significantly improved the vessel visibility and
outperformed other related prospective or online layer separation approaches. The
method does not need much computation time, making it potentially applicable for
clinical practice without the necessity of using advanced hardware, opening the way
for relevant clinical applications, such as improving the vessel visibility under con-
ditions of low contrast concentrations, so as to allow a reduced amount of contrast
agent usage to prevent contrast-induced side effects.

Acknowledgement This work was supported by Technology Foundation STW, IMAGIC
project under the iMIT program (grant number 12703).

Supplementary

In support of the results in section 3.4.3, the complete statistical test results for the
differences of CNR for different methods are shown in the supplementary in Table 3.7
and Table 3.8.
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Chapter Four

PCA-derived Respiratory Motion
Surrogates From X-ray Angiograms

For Percutaneous Coronary
Interventions

Abstract — Purpose Intraoperative coronary motion modelling with motion
surrogates enables prospective motion prediction in X-ray angiograms (XA) for
percutaneous coronary interventions. The motion of coronary arteries is mainly
affected by patients breathing and heartbeat. Purpose of our work is therefore
to extract coronary motion surrogates that are related to respiratory and cardiac
motion. In particular, we focus on respiratory motion surrogates extraction in this
paper.

Methods We propose a fast automatic method for extracting patient-specific
respiratory motion surrogate from cardiac XA. The method starts with an image
preprocessing step to remove all tubular and curvilinear structures from XA images,
such as vessels, guiding catheters, etc., followed by principal component analysis
(PCA) on pixel intensities. The respiratory motion surrogate of an XA image
is then obtained by projecting its vessel-removed image onto the first principal
component.

Results This breathing motion surrogate was demonstrated to get high cor-
relation with ground truth diaphragm motion (correlation coefficient over 0.9
on average). In comparison to other related methods, the method we devel-
oped did not show significant difference (p>0.05), but did improve robustness and
run faster on monoplane and biplane data in retrospective and prospective scenarios.

Conclusions we developed and evaluated a method in extraction of respiratory mo-
tion surrogate from interventional X-ray images that is easy to implement and runs
in real-time, and thus allows extracting respiratory motion surrogates during inter-
ventions.

Based upon: H. Ma, G. Dibildox, C. Schultz, E. Regar and T. van Walsum: PCA-derived Respi-
ratory Motion Surrogates From X-ray Angiograms For Percutaneous Coronary Interventions. Inter-
national Journal of Computer Assisted Radiology and Surgery, vol. 10 (6), pp. 695-705, 2015.
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4.1 Introduction

Percutaneous coronary intervention (PCI) is a minimally invasive procedure for treat-
ing patients with advanced coronary artery disease. With this technique, a catheter
system is introduced into patients’ circulation system through their femoral or radial
artery under local anesthesia. A preshaped guiding catheter is positioned into the
ostium of the coronary artery. Through this catheter, a guide wire serving to deploy
devices, such as balloon catheters and stents, is advanced into the branches of the
artery. Once a stenosis is targeted, the balloon is deployed at the lesion site to fix the
vessel blockag [42].

PCI is normally performed in a catheterization lab under guidance of X-ray an-
giography (XA) that coronary arteries are opacified with contrast agent. However,
due to contrast agent toxicity, its injection times are limited, such that guide wire and
device advancement into the target lesion is performed under “vessel-free” images. In
this situation, interventional cardiologists have to mentally reconstruct the position
of coronary arteries and stenosis based on previous images, which increases the risk
of failure for the procedures, especially in difficult cases.

To address this problem, Shechter et al. proposed to model the coronary mo-
tion with surrogate signals from contrast-enhanced images and hence the guidance in
“vessel-free” images becomes feasible by prospective motion correction with such a
model [96]. As the motion of coronary arteries is mainly affected by patient’s breath-
ing motion and cardiac heart beat, it is reasonable to model the coronary motion with
surrogates which are correlated with patients’ respiratory and cardiac motion. With
such an aim, we have been focusing on respiratory-induced coronary motion model-
ing. Therefore, the purpose of our study was to develop and evaluate a method for
fast and robust extraction of respiratory motion surrogates from X-ray angiograms
for PCI.

Related works on respiratory motion surrogates have been reported. Signals from
external apparatus, such as navigators or bellows, have been used in many studies
for respiratory motion modeling [72]. Usage of image-based surrogates have also been
investigated. One commonly used surrogate is diaphragm superio-inferior (SI) mo-
tion [96] [69] [56]. This is extracted by drawing a rectangular ROI on diaphragm
border followed by manual tracking the diaphragm or automatic calculating the 1-D
translation. These methods involve human interaction to draw such a ROI and hence
not entirely automatic. Automatic diaphragm detection and tracking were reported
in [82] [28]. These methods use morphological operation to preprocess XA images
followed by a 2nd-order curve fitting to the diaphragm border. Studies on other
respiratory-related objects, e.g. coronary sinus catheter and tracheal bifurcation, can
be seen in [69] [77]. These methods require specific objects being present in images,
which is not always the case in XA images for PCI. Dimension reduction techniques
have been used for studying respiratory motion as well. In [78], an automatic method
based on principal component analysis (PCA) was designed for retrospective motion
gating. This method first creates a mask using Hessian-based vesselness filtering and
analyzes pixels inside the mask with PCA technique. In another study [18], hier-
archical manifold learning was used to find correlation between image regions and
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respiratory motion.
In this work, we developed a real-time, PCA-based method for extracting a respi-

ratory surrogate from coronary XA sequences. Our contributions are three-fold: first,
we develop a method that is simple to implement and runs in real-time on common
PC hardware; second, we evaluate the method on several clinical datasets, compar-
ing the results with manual ground truth and existing methods; third, we assess the
usability of the method on monoplane and biplane image data in both retrospective
and prospective scenarios.

4.2 Methods

Coronary motion analysis in frames of XA sequence is complicated by the existence
of both respiratory and cardiac motion in images. Therefore, respiratory motion sur-
rogate extraction could possibly benefit from elimination of the objects representing
cardiac motion from XA images. In this situation, respiratory motion becomes the
major source of intensity change in XA sequence and could be analyzed with methods
having source decomposition capability, such as principle component analysis.

To give an overview, our proposed method consists of two major steps. First, im-
ages are downsampled and processed with morphological-closing to remove coronary
arteries, guiding catheters, etc.. Next, pixel intensity changes in the “vessel-removed”
images are analyzed with principal component analysis to extract respiratory motion
information. Each of the steps is explained in more detail in the next sections.

4.2.1 Preprocessing of XA Images

First, each frame of the sequence is downsampled. Depending on the original image
size, the downsampling factor is chosen to be 4 if original size is 512×512 or 600×600,
or 8 if previous size is 1024× 1024. This operation converts the original frame to an
image of size 128×128 or 150×150, which already allows fast processing in later steps
and still preserves enough original information that we need for subsequent analysis.

Next, as we are interested in respiratory motion only, we remove structures that
show cardiac motion. To this end, similar to [82], a morphological closing is applied
to the downsampled image with a circular structuring element in order to remove
any tubular and curvilinear structures, such as coronary arteries, guiding catheters,
guide wires and stitches. The size of the structuring element is chosen based on the
maximal diameter of coronary arteries and guiding catheters. Dodge reported that the
lumen diameter of the left main artery measures 4.5±0.5 mm [30]. In another study
using transthoracic echocardiography [81], the average wall thickness of left anterior
descending artery was 1.1±0.2 mm and its external elastic membrane diameter is
4.5±0.9 mm. Having a maximum coronary diameter of 5-7 mm, and a maximum
magnification of 1.5, we use a structuring element of around 11 mm in diameter
(roughly 7-8 pixels in radius in the downsampled images) to remove the curvilinear
structures. This size is shown to be adequate and guarantee a complete removal of
vessels and guiding catheters from our images.

With the mentioned operations, objects representing cardiac motion are effectively
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(a) (b)

Figure 4.1: Morphological closing operation on an XA image. (a) Original XA. (b)
Image processed with morphological closing: guiding catheter and coronary arteries
are removed.

removed from downsampled XA images while the diaphragm border and lung tissues
still remain. Morphological closing might cause circular artifacts which, however, have
lower contrast than the arteries, which is sufficient to prevent the subsequent analysis
from being “contaminated” by cardiac motion. An example morphological-closed
image is showed in Fig 4.1.

4.2.2 Principal Component Analysis

Principal component analysis (PCA) is typically used for dimension reduction. It
transforms a multivariate dataset to a new orthogonal coordinate system such that
most variance of this dataset could be represented by a few coordinates. Hence
reducing its dimension is normally achieved by preserving only a few coordinates in
the new coordinate system without losing much information [16].

Similar to [78], we first use the PCA technique on morphological-closed images
to obtain principal components for each sequence. Representing a frame of an XA
sequence with an n×n matrix, we concatenate each pixel in such matrix into a single
column vector xi, whose size is D×1, where D = n2. Thus an XA sequence consisting
of N frames is represented as a D× N matrix X = [x1, ...,xN]. We then center X to
obtain a zero mean matrix. Without losing generality, we still write the zero mean
matrix as X. Seeking the principal components of X is equivalent to computing the
eigenvectors of covariance matrix XXT , which is a D × D matrix. As D is usually
a large number and in our case D >> N, we adopt the approach from [16] to apply
eigen analysis to the N×N matrix XTX. Then we have

E = XẼΛ−1, (4.1)
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where E is the D×N matrix of eigenvectors of XXT , Ẽ is the N×N matrix of eigenvec-
tors and Λ is the N×N diagonal matrix of eigenvalues of XTX. With this approach,
we benefit computation efficiency from computing the eigenvectors of a smaller ma-
trix XTX. Next, we project the XA sequence on the first principal component e1 by
computing

p = XTe1, (4.2)

where e1 is the first column of E representing the direction of the largest variance
and p is a N× 1 projection vector. So each frame in such sequence is represented by
an element in vector p. The assumption underlying our approach is that respiratory
motion is the major source of variation in these sequences where cardiac motion is
eliminated. Therefore, we use p as our breathing surrogate.

4.3 Experiments

4.3.1 Image Data

For our experiments we used anonymized imaging data that were acquired from De-
partment of Cardiology at Erasmus MC (University Medical Center Rotterdam) in
Rotterdam, The Netherlands. XA images of 8 patients who underwent a PCI proce-
dure that were acquired with Siemens AXIOM-Artis biplane system were analyzed.
The frame rate of all sequences is 15 frames per second. The number of frames per
series ranges from 55 to 244, corresponding to 3.7 to 16.3 seconds of imaging time. All
8 patients have in total 1898 frames. From our image data, five are 512× 512 pixels,
two are 600×600 and one is 1024×1024, with pixel size 0.216×0.216 or 0.279×0.279,
0.184×0.184 and 0.139×0.139 mm2. The diaphragm can clearly be seen in 7 patients
in both images of the biplane data, whereas the diaphragm border is not visible in the
other one. In that case, some lung tissues motion can still be observed and served as
the main indicator of respiratory motion. Contrast agent injection and fading during
imaging can be seen in all sequences.

4.3.2 Ground Truth Data

Ideally, ground truth should be a direct indicator of respiratory motion. We first
manually selected a rectangular ROI in original XA sequence on diaphragm border
or where there is lung tissue motion, see Fig. 4.2a. Stacking all frames into a image
volume and inspecting the ”sagittal” view of the ROI, we observed a profile repre-
senting the change of diaphragm position, see Fig. 4.2b.

Manual labeling diaphragm or lung tissue’s motion track was subsequently done
on the sagittal view of ROI image (Fig. 4.2c). This labeling was performed such that
there is only one marker in each frame. This labeling step resulted in a vector of real
numbers representing the diaphragm position in the ROI over time and it served as
the ground truth data in our study.
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(a) (b) (c)

Figure 4.2: Ground truth data. (a) Drawing a rectangular ROI on diaphragm
border. (b) Sagittal view of ROI. (c) Manual labeling of diaphragm border.

4.3.3 Retrospective Evaluation

For retrospective evaluation, we used all frames of an XA sequence to compute the first
principal component. The resultant projection vector p represents respiratory motion
of such sequence and was compared with the previously mentioned ground truth
diaphragm labeling. This comparison was quantified by calculating the correlation
coefficient between projection vector p and ground truth vector. In order to gain
insight of the usability of our method on different system, the retrospective analysis
was tested with both monoplane and biplane data. For biplane data, we combined
information from both planes by simply using the concatenated matrix X =

(
XA

XB

)
in

the same approach we have described in Section 4.2.2. By doing so, we could calculate
one single projection vector p for both planes.

In addition, we compared the performance of our method, called Vessel Removed
in later sections, with a recently published method that uses a masked-PCA approach
[78]. Masked-PCA technique was designed for retrospective cardiac and respiratory
motion gating on interventional cardiac x-ray images. In order to extract respiratory
motion surrogate with this method, we slightly changed its implementation by directly
using the projection vector on the 1st principal component without filtering it. We
call it With Mask method in subsequent sections. We also investigated other possible
variations of PCA-based methods, e.g. running PCA on the downsampled images
without morphological closing (called Downsampled Image), and running PCA with
an inverted mask of the mask created in [78] (called Inverted Mask). In all cases, the
correlation coefficient of the resulting respiratory motion surrogate and the ground
truth was calculated to quantify the performance on respiratory motion extraction.

4.3.4 Prospective Evaluation

We also evaluated whether the motion surrogate derived from our method could be
used for prospective respiratory-induced coronary motion modeling in PCI. In this ex-
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periment, we only utilized a part of the sequence to build the PCA-derived model and
used it to make predictions on subsequent frames. Considering a scenario in coronary
motion modeling, we would build a model based on frames with contrast agent and
use it to improve alignment of preoperative data onto XA on frames where contrast
agent has been flushed away. This makes it reasonable to choose frames before con-
trast agent starts fading for the PCA learning phase and use frames without contrast
for the prediction phase. Similar to retrospective experiment, we used the correlation
coefficient to quantitatively evaluate the results with monoplane and biplane data and
also compared with performances of other previously mentioned methods.

All experiments were implemented in Matlab 2013b on an Intel Core2 2.66 GHz
computer with 4 GB RAM running Windows. Computation time for each patient
was recorded in all experiments.

4.4 Results

4.4.1 Retrospective Analysis

Example results of experiments on monoplane and biplane data from one patient are
showed in Fig. 4.3. Fig. 4.3a, 4.3c and 4.3e present the comparison of projection
vector p and ground truth diaphragm position. These figures show a high correlation
between the two vectors. Linearly rescaling p to the range of ground truth data and
overlaying it onto the ROI image provides another way to evaluate their correlation
qualitatively. Fig. 4.3b, 4.3d and 4.3f reveal a good agreement between p and di-
aphragm border.

Table 4.1 provides quantitative measure results on correlation coefficients. The
average correlation coefficient was calculated over all sequences for the various meth-
ods. From the table, it can be seen that all methods give high correlation coefficient
(over 0.85, close to 1). The Vessel Removed method has slightly higher average cor-
relation and lower standard deviation than other methods. For the patient whose
XA sequences contain no diaphragm border, the correlation coefficients for Vessel
Removed method are also high for the monoplane (0.89 and 0.88) and biplane data
(0.88 and 0.95). Boxplots in Fig. 4.4 illustrate similar observations: The majority of
correlation coefficients are over 0.8 for all methods; non-mask based methods (Vessel
Removed and Downsampled Image) slightly outperform other methods.

To investigate whether there is a statistically significant difference between the
performance of these methods on retrospective respiratory motion surrogates extrac-
tion, we used a one-tailed Wilcoxon rank sum test to check the correlation coefficients,
as their distribution is not necessarily a normal distribution and most of values are
close to 1. Result (see Table 4.2) shows that the p values for monoplane experiments
range from 0.09 to 0.55 (in upper triangle); p values for biplane experiments range
from 0.11 to 0.42 (in lower triangle). The result means these methods have similar
performance on retrospective task in terms of statistical significance.

Fig. 4.5 illustrates the frequency distribution of correlation coefficients for var-
ious methods in our retrospective analysis. In both the monoplane and biplane ex-
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(a) Monoplane (b) Monoplane

(c) Biplane A (d) Biplane A

(e) Biplane B (f) Biplane B

Figure 4.3: Retrospective projection on the first principal component for one
patient, in comparison with diaphragm position in ROI image. (a) and (b) PCA was
done on one sequence of the biplane data, (c) -(f) principal components were derived
from the concatenated sequence of both planes. (c) and (d) show the projection in
comparison with plane A, (e) and (f) illustrate the comparison with plane B.
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Table 4.1: Average correlation coefficient of projection vector p and diaphragm
positions for various methods for retrospective evaluation.

Methods
Monoplane Biplane

(mean ± std) (mean ± std)

Vessel Removed 0.9490 ± 0.0446 0.9529 ± 0.0424
Downsampled Image 0.9330 ± 0.0754 0.9357 ± 0.0742
With Mask 0.8637 ± 0.1883 0.8552 ± 0.2503
Inverted Mask 0.9032 ± 0.1156 0.9007 ± 0.1197

(a) Monoplane (b) Biplane

Figure 4.4: Boxplot of correlation coefficients calculated using various methods on
monoplane and biplane data for retrospective evaluation.
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Table 4.2: Statistical significance between various methods for retrospective eval-
uation (p values). The numbers in the upper and lower triangle in the table show
the results of monoplane and biplane cases respectively.

aaaaaaaaaaa
Biplane

Monoplane
Vessel

Removed
Downsampled

Image
With
Mask

Inverted
Mask

Vessel Removed × 0.28 0.15 0.09
Downsampled Image 0.31 × 0.24 0.22
With Mask 0.23 0.42 × 0.55
Inverted Mask 0.11 0.24 0.36 ×

periments, it can be observed that Vessel Removed method has the most number of
correlation coefficients over 0.9 and no correlation coefficients lower than 0.8, which
outperforms all other methods. This observation suggests that the Vessel Removed
method is more robust than the other approaches.

(a) Monoplane (b) Biplane

Figure 4.5: Frequency distribution of correlation coefficients for various methods
in retrospective analysis.

Table 4.3 compares the average per-frame computation time that is needed to
compute the projection vector p. This includes the time for image preprocessing,
building statistical model through PCA and making projection on the first principal
component. The comparison reveals the advantage of non-mask based methods to
mask-based method that the computation time they need is much shorter, which is
favored for real clinical workflow.

4.4.2 Prospective Analysis

Example results of the prospective analysis for the same patient as in Fig. 4.3 are
shown in Fig 4.6. Fig. 4.6a, 4.6c and 4.6e present retrospective projection for frames
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Table 4.3: Average per frame computation time for various methods for retrospec-
tive evaluation (milliseconds).

Methods Monoplane (ms) Biplane (ms)

Vessel Removed 17.2 34.4
Downsampled Image 8.0 15.5
With Mask 821.6 2227.8
Inverted Mask 854.7 2920.0

used for learning the statistical model and prospective projection for frames excluded
from the learning phase. It can be seen that the prospective projection vector p still
maintains good correlations with ground truth diaphragm position.

Correlation coefficients are shown in Table 4.4. In general, these numbers are
lower than those in the retrospective experiments, while Vessel Removed method still
maintains a high average correlation coefficient over 0.9. Its standard deviation is
also lower than other methods. For the patient whose diaphragm cannot be seen
in the XA sequences, the correlation coefficients for Vessel Removed method remain
good for one of sequences in the monoplane data (0.96 and 0.70) and both sequences
in the biplane data (0.91 and 0.87). Boxplots in Fig. 4.7 show that the medians
of all methods are quite close to each other, but Vessel Removed method has fewer
correlation coefficients lower than the median value compared to other methods. We
also used Wilcoxon rank sum test to check the statistical significance, results are shown
in Table 4.5. No significant difference is found among these methods (p>0.14), which
means their performance are similar to each other in terms of statistical significance.

Table 4.4: Average correlation coefficients of the prospective projection vector and
diaphragm positions for various methods.

Methods
Monoplane Biplane

(mean ± std) (mean ± std)

Vessel Removed 0.9197 ± 0.0733 0.9128 ± 0.1239
Downsampled Image 0.8823 ± 0.1418 0.8815 ± 0.1413
With Mask 0.7548 ± 0.3291 0.8282 ± 0.2540
Inverted Mask 0.7772 ± 0.2649 0.8201 ± 0.2117

Frequency distribution of correlation coefficients in Fig. 4.8 reveals that for both
monoplane and biplane experiments, more lower value correlation coefficients appear
for all methods compared to retrospective analysis. It is also clear that Vessel Re-
moved method has the most high correlation coefficients (CC≥0.9) and the least lower
correlation coefficients (CC<0.8) among all methods.

Average per frame prediction time for various methods is listed in Table 4.6. The
prediction time includes the time for image preprocessing and computing projection
on the first principal component. It is obvious that Downsampled Image method has
the shortest prediction time, while Vessel Removed method is also quite fast. Mask
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(a) Monoplane (b) Monoplane

(c) Biplane A (d) Biplane A

(e) Biplane B (f) Biplane B

Figure 4.6: Prospective projection on the first principal component for one pa-
tient, in comparison with diaphragm position in ROI image. (a) and (b) PCA was
implemented on monoplane data, (c) -(f) principal components were derived from
the concatenated sequence of biplane. (c) and (d) show the projection in comparison
with plane A, (e) and (f) illustrate the comparison with plane B.
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(a) Monoplane (b) Biplane

Figure 4.7: Boxplot of correlation coefficients calculated using various methods on
monoplane and biplane data for prospective evaluation.

Table 4.5: Statistical significance between various methods in prospective evalua-
tion (p values). The numbers in the upper and lower triangle in the table show the
results of monoplane and biplane cases respectively.

aaaaaaaaaaa
Biplane

Monoplane
Vessel

Removed
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Image
With
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Inverted
Mask

Vessel Removed × 0.31 0.15 0.17
Downsampled Image 0.52 × 0.18 0.17
With Mask 0.31 0.36 × 0.57
Inverted Mask 0.18 0.19 0.39 ×
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(a) Monoplane (b) Biplane

Figure 4.8: Frequency distribution of correlation coefficients for various methods
in prospective analysis.

based methods are slower than non-mask based methods, especially when they were
run on biplane data.

Table 4.6: Average per frame prediction time for various methods (milliseconds).

Methods Monoplane (ms) Biplane (ms)

Vessel Removed 9.6 20.0
Downsampled Image 1.6 3.8
With Mask 16.3 282.6
Inverted Mask 31.0 792.4

4.5 Discussion

We developed an automatic method to extract patient-specific respiratory motion
surrogate from cardiac interventional X-ray angiograms using principal component
analysis. The method was evaluated on monoplane and biplane data in both retro-
spective and prospective manner.

Our experiments demonstrated that Vessel Removed method is able to extract
breathing information having high correlation with the ground truth diaphragm or
lung tissue motion. The average correlation coefficient is higher than those for other
related methods in our experiments. Vessel Removed method is also more robust
than the other three methods giving that more correlation coefficients for the method
are over 0.9 and less are below 0.8.

It is also observed that the difference between the mentioned methods in this
paper is yet not so profound that no statistically significant difference on the corre-
lation coefficients was found. This might be due to the choice of similarity metric.
Correlation coefficient is although one of the common ways to measure the similarity
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of two time-series signals, there are other measures which could potentially improve
the difference between these algorithms, such as Distance correlation [101].

The limited number of patients (only 8) may also be a reason for the lack of sta-
tistical significance. In the future, we will evaluate the method on a much larger set
of patients. Despite the lack of statistical insignificance, the Vessel Removed method
performs at least as good as the other three approaches.

From the aspect of computation efficiency, the time that Vessel Removed method
needs for building the statistical model and making prediction on our computer are
less than 67 ms, corresponding to the 15 Hz imaging rate of our data, whereas mask-
based methods need longer time to accomplish the same task. This means that Vessel
Removed method could run in real-time.

Image-based respiratory motion surrogates in interventional X-ray angiograms
have been studied previously [56, 69, 96]. These works either need manually putting
a rectangular ROI or require specific object being present in images. The method
we have presented is fully automatic and more robust to various image content. The
diaphragm is not necessarily required to be present as long as there is sufficient breath-
ing motion observed, which is true in most of the cases in PCI procedures since the
lung tissue is usually seen in the background.

The application of dimensional reduction techniques in extraction of respiratory
motion information were seen in [78] and [18]. [18] presented one example case and
the method in [78] was originally designed for retrospective gating. In comparison to
these works, the method we have developed is simpler and needs no vessel extraction
from images thus is also faster. In addition, we have evaluated the usability of our
method on monoplane and biplane data in retrospective and prospective manner and
achieved good correlation in both tasks.

Observations on principal components of XA images would help understanding
the mechanism of our proposed method. The first four principal component im-
ages, called “eigenimages”, of two example sequences with and without diaphragm
are shown in Fig. 4.9. It is obvious that in both cases, the cardiac motion pattern
is still present in eigenimages of the original images, but significantly suppressed in
those of the morphological-closed images. Also in vessel-removed images, for the case
with a diaphragm, the diaphragm border is enhanced in the eigenimages showing a
white or dark stripe; while in the sequence where diaphragm is not present, white and
dark pixels represent background lung tissues. It can also be observed that the first
eigenimage contains strong respiratory motion signals which makes it reasonable of
projecting XA sequence on the first principal component to obtain breathing motion
feature.

In prospective surrogate extraction, the frames that are needed for building
the statistical model are required to cover the maximal range of respiratory motion,
therefore our proposed method might be limited for different breathing patterns. The
method we developed is also only applied to one fixed view angle. Detector position
changes during interventions require model rebuilding, which having been seen to be
fast in our experiments.

The method we developed could directly be used for patient-specific coronary
motion modeling. Its short modeling and prospective extraction time enables the
possibility of running in real time and being used during interventions. Due to the
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Sequence PC1 PC2 PC3 PC4

Figure 4.9: The first 4 principal components (eigenimages) of images with and
without diaphragm being present. The first two rows of images have diaphragm
and the last two rows do not. The 1st and 3rd row show the original images and
their eigenimages, the 2nd and 4th row are the same images in the 1st and 3rd row
after morphological closing operation.

robustness of the method to different image contents, it could also be potentially used
for extraction of respiratory motion surrogate for other types of interventions using
different imaging modalities.

In the future, we will extend the study with more patients’ data. We will also
investigate on cardiac motion surrogates extraction from XA sequences with similar
framework and adapting the current approach to varying view angles.

4.6 Conclusion

We have presented a fast automatic method that can be used to retrospectively and
prospectively extract patient-specific respiratory motion surrogate from cardiac XA
sequences. Our experiments demonstrate a high correlation coefficient with manual
ground truth: average correlation coefficients are over 0.9 in the retrospective and
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prospective evaluations. The method is easy to implement and runs in real-time, thus
allows to extract respiratory motion surrogates during interventions.

Acknowledgement The authors wish to acknowledge financial support from Tech-
nology Foundation STW IMAGIC project under iMIT program Grant No. 12703.





Chapter Five

Fast Prospective Detection of
Contrast Inflow in X-ray

Angiograms with Convolutional
Neural Network and Recurrent

Neural Network

Abstract — Automatic detection of contrast inflow in X-ray angiographic se-
quences can facilitate image guidance in computer-assisted cardiac interventions. In
this paper, we propose two different approaches for prospective contrast inflow de-
tection. The methods were developed and evaluated to detect contrast frames from
X-ray sequences. The first approach trains a convolutional neural network (CNN) to
distinguish whether a frame has contrast agent or not. The second method extracts
contrast features from images with enhanced vessel structures; the contrast frames
are then detected based on changes in the feature curve using long short-term mem-
ory (LSTM), a recurrent neural network architecture. Our experiments show that
both approaches achieve good performance on detection of the beginning contrast
frame from X-ray sequences and are more robust than a state-of-the-art method.
As the proposed methods work in prospective settings and run fast, they have the
potential of being used in clinical practice.

Based upon: H. Ma, P. Ambrosini and T. van Walsum: Fast Prospective Detection of Contrast
Inflow in X-ray Angiograms with Convolutional Neural Network and Recurrent Neural Network. The
20th International Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI), Lecture Notes in Computer Science, vol. 10434, pp. 453-461, 2017.
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5.1 Introduction

During percutaneous coronary interventions (PCI), X-ray angiography (XA) is com-
monly used by clinicians to identify the sites of plaque and navigate devices through
the arteries of patients with advanced coronary artery disease. As X-ray imaging
has poor soft tissue contrast, coronary arteries are normally visualized by injecting
radio-opaque contrast agent in the vessels.

Approaches for improving image guidance in such procedures have been reported,
for example fusion of coronary models from CTA [92]. Such methods can only be
applied if vessels are visible in the XA, thus automated application of such methods
requires detection of presence of contrast agent. Similarly, automated detection of
catheter and guidewires, which can also be used for virtual roadmapping [13], is
generally only possible in non-contrast enhanced frames. Therefore, an automatic
way to detect contrast inflow online is relevant for further automating advanced image
guidance methods for coronary interventions, reducing interactions of clinicians with
computers during procedures.

Existing works for detection of contrast inflow in X-ray images fall into two
categories: enhancement-based and learning-based. Enhancement-based methods
[27, 61, 62, 115, 117] enhance contrasted structures, followed by a step to extract fea-
tures that indicate the change of contrast throughout the sequence. The contrast-
enhanced frames are then detected via analysis of the feature. Learning-based ap-
proaches [25, 50] train a classifier to detect contrast or non-contrast frames based on
handcrafted image features. Among these works, [25,62,115] need an entire sequence
to detect contrast inflow, and thus only work retrospectively. [61] does not rely on a
complete sequence, but retrospectively runs on a sliding segment of a few new X-ray
frames, thus there is a trade-off between the possible delay of the contrast inflow
detection and the overall processing efficiency. In addition, this method was designed
specifically for TAVI procedures on aorta: their contrast detection method involves
aligning a predefined aorta shape model to X-ray images and a step of TEE probe
detection, which is not relevant for coronary interventions. [117] uses a heuristic ap-
proach to detect the first contrast-enhanced frame from X-ray sequences of left atrium
(LA) used for electrophysiology (EP) ablation procedures. [50] developed a learning-
based framework on X-ray images of LA for EP procedures. The method used a
SVM classifer with the heuristic features introduced in [27] and [117]. Out of these
methods, [27] is the only one that may be directly used for coronary interventions
and work in prospective settings.

The purpose of our work is to develop and evaluate solutions for prospective
detection of contrast inflow in XA images that can fit into the clinical work-flow of
coronary interventions. Specifically, we aim at prospectively detecting if a frame has
contrast agent. To this end, two different approaches were developed. Due to the
exceptional performances that convolutional neural networks (CNN) have in image
classifications [60], and medical applications, such as tissue segmentation and surgical
tools detection [41], we propose a learning-based method using CNN to classify each
frame of an XA sequence into two classes: with or without contrast. Additionally,
we propose a hybrid of enhancement- and learning-based. It computes a temporal
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contrast feature from vessel-enhanced sequences based on which contrasted frames
are detected with long short-term memory (LSTM) [49], a recurrent neural network
(RNN) architecture. To the best of our knowledge, this is the first work that applies
deep learning for contrast inflow detection in X-ray images. To validate the detection,
the position of the beginning contrast frame (BCF) [25, 50] in a sequence (where
contrast starts being visible) was used in the experiment.

5.2 Methods

5.2.1 The CNN-based Method

Let S = {I1, I2, . . . , In} denote a sequence of n frames in which Ic is the beginning
contrast frame. All frames I1, . . . , Ic−1 are associated with the label “without con-
trast”. The other frames Ic, . . . , In have the label “with contrast”.

In order to classify the fluoroscopic frames, we used a CNN to learn the differ-
ence between the contrast frame and non-contrast frame (Fig. 5.1, top). The input
of the CNN has 5 images: the current frame Ii to be classified, its 3 previous frames
Ii−1, Ii−2, Ii−3, and the first frame I1 (normally non-contrasted). There are 7 inter-
mediate layers directly after the input layer, each of which has a n-conv block with
n consecutive convolutions (Fig. 5.1, bottom). The last n-conv block is connected
with two fully-connected layers. The final output is a softmax layer with two nodes:
“with contrast” and “without contrast”. The model was trained with binary cross-
entropy as the loss function. In order for a faster convergence, batch normalization
was used after every convolution, residual connection at every layer and the strided
convolutions instead of pooling layers.

To detect the BCF of an XA sequence online using the trained model, frames
of the sequence were classified one by one in a chronological order. The first frame
labeled as “with contrast” in the sequence is considered as BCF.

5.2.2 The RNN-based Method

The RNN-based method consists of two major steps: vessel enhancement and con-
trast frame detection. An overview of this method is illustrated in Fig. 5.2.

Vessel enhancement The vessel enhancement step is crucial for accurate approxi-
mation of contrast changes in XA sequences. This step removes most non-vessel back-
ground structures using a previously developed online layer separation technique [67]
(Chapter 3 of this thesis) followed by multi-scale Frangi-vesselness filtering [38].

The online layer separation method prospectively separated an XA sequence into
three layers: a breathing layer, a quasi-static background layer, and a vessel layer
in which vessels have better visibility. First, the breathing layer was separated via
morphological closing. After this layer was removed from the original image, online
robust PCA (OR-PCA) [35] was applied to separate the low-rank quasi-static layer
and sparse vessel layer through alternatively projecting the new data sample (frame)
to the underlying low-rank subspace basis and updating the basis using the new esti-
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Figure 5.1: The neural networks (top) connects the 5 input images (the first, the
current and its 3 previous X-ray frames) to the 2 output nodes (“with contrast”
and “without contrast”). The model consists of several n-conv blocks. They are a
succession of CNNs with a skip connection between the input and the output of the
block (bottom). f×h×w is the dimension of the data (feature number times image
height times image width) .

mation of the layers. After layer separation, the structures that may cause artefacts
in the next step, such as diaphragm, spine, were removed from the vessel layer.

Following the layer separation, a multi-scale vesselness filter [38] was applied on
the separated vessel layer to further enhance the tubular structures. In the end, after
the vessel enhancement step, for each incoming frame, a new image was created where
vessel structures are enhanced.

Contrast frame detection Once the image with enhanced vessel structures is ob-
tained, the feature that indicates the level of contrast agent was extracted from the
image. In this work, we used the average pixel intensity of the complete vessel-
enhanced image as the contrast feature. This results in a 1D signal for a complete
sequence.

The last step is to detect contrast frames from the previously obtained 1D contrast
signal. In order to fully use the temporal relation between frames, each signal point is
classified as “contrast” or “non-contrast” with a recurrent neural network. The long
short-term memory (LSTM) network [49] was used due to its good performance on
modeling long-term temporal relations in time-series data.

Let xk denote the feature for the kth frame Ik. The single-direction LSTM takes
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Figure 5.2: The overview of the RNN-based method.

xk as the input. A hidden state hk in the LSTM network is recurrently updated
through nonlinear interactions between the input signal xk, the LSTM units and its
state of the last time point hk−1. The output label yk of xk is the outcome of a
nonlinear function of hk. This process is illustrated in Fig. 5.3.

Figure 5.3: Each signal point is classified from a contrast frame or a non-contrast
frame with a LSTM network.

5.3 Experiments

We retrospectively obtained anonymized data that was acquired during clinical rou-
tine with a Siemens AXIOM-Artis biplane system. The data were 120 XA sequences
from 26 patients who underwent a PCI procedure. The frame rate of all sequences is
15 frames per second. The length of sequence varies from 24 to 244 frames. The size
of images in our dataset are 512× 512, 600× 600, 776× 776 and 1024× 1024. In all
sequences, contrast inflow can be observed. In our experiments, 40 sequences from
20 patients were used as training data, the 80 sequences from the other six patients
were used for validation.

For the CNN-based method, all images were resized to 512× 512 before training.
The parameters of the CNN model were optimized using stochastic gradient descent
with a learning rate 0.0001, a decay of 0.0005 and a momentum of 0.99. The model
was trained with a batch size of 15 during 33,000 iterations. For each sequence,
the six frames before and after the BCF were chosen to ensure an even number of
contrast and non-contrast training images. The BCF was discarded to assist the CNN
to learn more differences between contrast and non-contrast frames. As the dataset
used to train the model is small, data augmentation was applied during the training
to virtually create more data: translation (+/- 100 pixels), rotation (+/- 5 degrees),
scaling (+/- factor 0.1), intensity shift (+/- 0.2), Gaussian noise (σg = 0.01) on the
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normalized image between 0 and 1, and vertical flip were used to transform images.

For the RNN-based method, we manually tuned the parameters based on visual
check and quantitative evaluation on the training data; the same parameters were
used for testing. The images were first down-scaled 2 or 4 times to 256 × 256 or
300×300 or 388×388 depending on the original image size for speeding up the image
processing. The parameters for layer separation were set following the approach with
the sliding window option in [67] (Chapter 3 of this thesis) using the closed-form
solution of OR-PCA. To improve the convergence of OR-PCA, we used a mini-batch
of 5 frames (before contrast agent was injected) to get an initial estimate of the
low-rank subspace basis. This was done using the layer separation method in [65]
(Chapter 2 of this thesis) with fast principal component pursuit [90]. The scale of
Frangi vesselness filter was set ranging from 0.6 mm to 2.8 mm according to the size
of coronary arteries. The β and c parameter of the vesselness filter were 0.5 and
15. The dimension of LSTM units was set to 7 with a dropout probability being
0.2. The nonlinear activation function of the hidden layer is sigmoid function. The
LSTM network was trained using RMSprop optimizer with a learning rate being 0.005
during 100 epochs. At last, the BCF was detected as the first frame in a sequence
being classified as contrasted by LSTM.

In the experiments, we also compared our methods with the state-of-the-art ap-
proach of Condurache et al. [27]. For setting the parameters of the method, the first
3 feature values from non-contrast frames were modeled as a Gaussian N0(µ0, σ

2
0).

The threshold T for choosing contrast frames was set to µ0 + 3σ0.

The evaluation metric we used is the absolute difference between the frame index
of the ground truth BCF and the frame predicted by different methods.

The image processing steps in the RNN-based method and the method of Con-
durache et al. were implemented in MATLAB with a single CPU core (Intel Core
i7-4800MQ 2.70 GHz). LSTM and CNN were implemented in Keras with TensorFlow
as backend. LSTM was running on the CPU due to its small dimension. CNN was
trained and tested on an Nvidia GeForce GTX 1080 GPU.

5.4 Results and Discussion

Fig. 5.4 shows an example to illustrate steps in the RNN-based method. The statistics
of the absolute errors made by the three methods are shown in Table 5.1. The results
of the mean and median errors show that the two proposed approaches have smaller
errors than the state-of-the-art method, especially, the RNN-based method is able
to achieve a median absolute error of 2 frames. The median of non-absolute errors
(prediction minus ground truth) indicates the prediction bias of each method. The
method of Condurache et al. makes late predictions, while the others have a minor
bias. The table also lists the number of sequences with a small prediction error (3
frames, being about 0.2 seconds) and a large error (>10 frames). The method of
Condurache et al. has mis-detection on 7 sequences (the first entry in the last two
columns in Table 5.1), which was also reported in [50]. While the two proposed
methods both have 55 sequences with a small error (6 3 frames) out of 80, the CNN-
based approach has the smallest numbers of sequences with a large error (> 10 frames)
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Figure 5.4: An example to illustrate the RNN-based method. From left to right are
the original XA frame (left), the vessel layer after layer separation (middle left), the
vesselness image (middle right), the contrast signal for the whole sequence (right).
The color markers in the signal show the prediction of BCF with LSTM (red) and
the ground truth (green). Note that the artefact of diaphragm does not appear in
the vesselness image thanks to layer separation.

Methods mean (std) median (*) #(error 6 3) #(error > 10)

Condurache et al. [27] 6.2 (7.1) 5 (4) 29 / 73 10 / 73
CNN-based 3.9 (4.9) 2.5 (1) 55 / 80 5 / 80
RNN-based 3.6 (4.6) 2 (-0.5) 55 / 80 7 / 80

Table 5.1: The statistics of the absolute error for the 3 methods. The two columns
in the middle show the mean, standard deviation, median of the absolute errors and
the median of non-absolute errors (*) in frames. The last two columns show the
number of sequences on which the method made an absolute error no larger than 3
frames or larger than 10 frames.

among the three methods.

The median error of the RNN-based method is similar to the results reported
in [25]. While they achieved a mean error of less than one frame, their detection step
requires the knowledge of complete sequences, hence it will not work in a prospective
scenario. The learning-based method in [50] can be used for prospective detection,
but some of the proposed features were heuristically designed for X-ray images of LA
for EP procedure, which have different image features from the XA of coronary inter-
ventions. Compared to these methods, our approaches were designed for prospective
settings and the CNN-based method is a general framework that could potentially be
applied in different clinical procedures.

The RNN-based learning with a hand-crafted feature has slightly lower mean and
median error than the CNN-based method, although the latter has a more complex
and deeper architecture. This might contradict to what is commonly known about
the performance of deep learning. The possible reasons may be two-fold. First, the
size of training data was small, even with data augmentation and a reduced CNN
model, some over-fitting was observed. Second, the CNN treats frames independently
rather than modeling their temporal relations. Although CNNs perform excellent in
many classification tasks, detecting BCF requires a classifier that has good accuracy
for data on the border between two classes.
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In terms of computation efficiency (test time), the method of Condurache et al.
needed 111 ms to 443 ms to process a frame. While the CNN-based method ran very
fast and used on average only 14 ms to process one frame. The RNN-based method
ran on average 64 ms/frame on images of the original size 512×512 or 1024×1024, and
140 ms/frame on images of the original size 776× 776. As the test time of the RNN-
based method was based on a MATLAB implementation with a single CPU core, it
has large potential to run in real-time (<66 ms) with an optimized implementation
running on a modern GPU.

5.5 Conclusion

We have developed two novel approaches for prospective detection of contrast inflow
in XA sequences, a CNN-based and a RNN-based approach. The proposed methods
perform well in BCF detection tasks in XA sequences, and outperform a previous
state-of-the-art method. Both methods work in prospective settings and run fast,
therefore have the potential to be integrated in advanced image guidance systems for
PCI.

Acknowledgement This work was supported by Technology Foundation STW, IMA-
GIC project under the iMIT program (grant number 12703).



Chapter Six

Dynamic Coronary Roadmapping
via Catheter Tip Tracking in X-ray

Fluoroscopy with Deep Learning
Based Bayesian Filtering

Abstract — Percutaneous coronary intervention (PCI) is typically performed with
image guidance using X-ray angiograms in which coronary arteries are opacified with
X-ray opaque contrast agents. Interventional cardiologists typically navigate instru-
ments using non-contrast-enhanced fluoroscopic images, since higher use of contrast
agents increases the risk of kidney failure. When using fluoroscopic images, the inter-
ventional cardiologist needs to rely on a mental anatomical reconstruction. This pa-
per reports on the development of a novel dynamic coronary roadmapping approach
for improving visual feedback and reducing contrast use during PCI. The approach
compensates cardiac and respiratory induced vessel motion by ECG alignment and
catheter tip tracking in X-ray fluoroscopy, respectively. In particular, for accurate
and robust tracking of the catheter tip, we proposed a new deep learning based
Bayesian filtering method that integrates the detection outcome of a convolutional
neural network and the motion estimation between frames using a particle filtering
framework. The proposed roadmapping and tracking approaches were validated on
clinical X-ray images, achieving accurate performance on both catheter tip tracking
and dynamic coronary roadmapping experiments. In addition, our approach runs
in real-time on a computer with a single GPU and can be easily integrated into the
clinical workflow of PCI procedures, providing cardiologists with visual guidance
during interventions without the need of extra use of contrast agent.

Based upon: H. Ma, I. Smal, J. Daemen and T. van Walsum: Dynamic Coronary Roadmapping via
Catheter Tip Tracking in X-ray Fluoroscopy with Deep Learning Based Bayesian Filtering. Medical
Image Analysis, in press.
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6.1 Introduction

6.1.1 Clinical Background

Percutaneous coronary intervention (PCI) is a minimally invasive procedure for treat-
ing patients with coronary artery disease. During these procedures, medical instru-
ments inserted through a guiding catheter are advanced to treat coronary stenoses. A
guiding catheter is firstly positioned into the ostium of the coronary artery. Through
the guiding catheter, a balloon catheter carrying a stent is introduced over a guidewire
to the stenosed location. The balloon is then inflated and the stent is deployed to
prevent the vessel from collapsing and restenosing.

PCI is typically performed with image-guidance using X-ray angiography (XA).
Coronary arteries are visualized with X-ray opaque contrast agent. During the pro-
cedure, interventional cardiologists may repeatedly inject contrast agent to visualize
the vessels, as the opacification of coronary arteries only lasts for a short period. The
amount of periprocedural contrast use has been correlated to operator experience, pro-
cedural complexity, renal function and imaging setup [84]. Furthermore, the risk for
contrast induced nephropathy has been associated to contrast volume [104]. Manoeu-
vring guidewires and material, however, typically occurs without continuous contrast
injections. In these situations, the navigation of devices is guided with ”vessel-free”
fluoroscopic images. Cardiologists have to mentally reconstruct the position of vessels
and stenosis based on previous angiograms.

6.1.2 Dynamic Coronary Roadmapping

Dynamic coronary roadmapping (DCR) is a promising solution towards improving
visual feedback and reducing usage of contrast medium during PCI [32, 55, 71, 119].
This approach dynamically superimposes images or models of coronary arteries onto
live X-ray fluoroscopic sequences. The dynamic overlay serves as a roadmap that
provides immediate feedback to cardiologists during the intervention, so as to assist
in navigating a guidewire into the appropriate coronary branch and proper placement
of a stent at the stenotic site with reduced application of contrast agent. Studies with
a phantom setup using research software [55] or on first cases of clinical interventions
using commercially available systems [29,102,113] have investigated the usefulness of
DCR in assisting PCI, reporting that DCR helps to reduce procedure time, radiation
dose and contrast volume.

To develop a DCR system, it is important but yet a challenge to accurately
overlay a roadmap of coronary arteries onto an X-ray fluoroscopic image, as limited
information of vessels is present in the target fluoroscopic image for inferring the com-
pensation of the vessel motion resulting from patient respiration and heartbeat. The
methods that have been proposed on motion compensation for DCR can be generally
grouped into two categories: direct roadmapping and model-based approaches.

Direct roadmapping methods use information from X-ray images and ECG sig-
nals to directly correct the motion caused by respiration and heartbeat. The first
DCR system [32] used digital subtraction of a contrast sequence and a mask sequence
to create a full cardiac cycle of coronary roadmaps. The roadmaps were stored and
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later synchronized with the live fluoroscopic sequence by aligning the R waves of
their corresponding ECG signals. This system compensates the cardiac motion of
vessels, yet does not correct the respiratory motion during interventions. Two later
studies [71, 119] introduced image-based respiratory motion compensation methods
for DCR. Their methods assumed an affine respiratory motion model in ECG-gated
fluoroscopic frames and recovered the respiratory motion from soft tissues with spe-
cial handling of static structures. The limitation of these approaches is that they
require relevant tissue to be sufficiently visible in the field of view for reliable motion
compensation which is not always the case. In addition, they require to be run on
cardiac-gated frames. In a more recent work [55], binary vessel masks were created as
the roadmaps from at least one cardiac cycle of angiographic images. Temporal align-
ment of the roadmaps and the fluoroscopic sequence, which compensated the cardiac
motion of vessels, was performed by registering ECG signals using cross-correlation.
Additionally, the respiratory motion was corrected by aligning the guidewire centerline
in the fluoroscopy to the contour of vessels in the angiogram where the roadmaps were
created. The system has been shown useful in a phantom-based study, nevertheless
no accuracy evaluation of the spatiotemporal alignment was presented. Furthermore,
the spatial registration relies on robust extraction of vessels and guidewires which is
often challenging for X-ray images.

Unlike direct roadmapping, the model-based approaches build a model to predict
motion in fluoroscopic frames. The motion models are often functions that relate the
motion of roadmaps to surrogate signals derived from images or ECG, so that once the
surrogates for fluoroscopic frames are obtained, the motion can be computed by the
model. For cardiac interventions including PCI, the organ motion is mainly affected
by respiratory and cardiac motion. Many previous works often built a motion model
parameterized by a cardiac signal derived from ECG and a respiratory signal obtained
from diaphragm tracking [33, 96, 106] or automatic PCA-based surrogate [36]. Some
other works model only the respiratory motion in cardiac-gated images [56, 80, 94].
For a complete review on respiratory motion modeling, we refer readers to the survey
article by McClelland et al. [72]. One limitation of the model-based approaches is
that the motion models are often patient-specific, which requires training the model
every time for a new subject. Additionally, once the surrogate values during inference
are out of the surrogate range for building the model, e.g. for abnormal motion,
extrapolation is needed, which may hamper accurate motion compensation.

6.1.3 Interventional / Surgical Tool Tracking

Tracking interventional tools is relevant for motion compensation [9,13,22,69,94]. In
particular for PCI, the guiding catheter tip typically remains within the coronary os-
tium which is in the field of view during the largest part of the intervention, making
it a suitable landmark for tracking. Baka et al. [13] have shown that catheter tip
motion during PCI can be modeled as a combination of cardiac and respiratory mo-
tion. As using catheter tip displacement can only correct translational motion, Baka
et al. [13] further showed that, compared to a rigid motion model for the respiratory
motion, modeling only the translational part of the respiratory motion deteriorated
the accuracy marginally, which confirms the observations in [95] that the rotational
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part of respiratory motion is small. These findings motivate motion compensation for
DCR through tracking the catheter tip in X-ray fluoroscopic sequences.

Many works have been proposed to address the problem of tracking interventional
or surgical tools in medical images for various applications. The tracking methods
from these works can be generally categorized into two kinds of approaches: tracking
by detection, and temporal tracking.

The tracking by detection approaches treat tracking as a detection problem, which
rely on features only from the current image without using information from previous
frames. For example in electrophysiology procedure, as the catheters present specific
features in shape or intensity, ad hoc methods were proposed based on, e.g. blob
detection, shape constrained searching and model-/template- based detection [68,69].
Chang et al. [24] modeled the catheter tracking problem by optimizing the posterior in
a Bayesian framework, in which the catheter was represented as a B-spline tube model
and was tracked by fitting the B-spline to measurements based on gray intensity and
vesselness image. Baur et al. [17] proposed a convolutional neural network (CNN)
to detect catheter electrodes in X-ray images, which treated catheter detection as
a segmentation problem. The method used a weighted cross-entropy loss to cope
with the class imbalancing problem due to the small size of the target. In [31, 59]
surgical instruments were tracked using a deep network having an encoder-decoder
architecture. Their approaches combined instrument segmentation and detection in
a multi-task learning problem to make the tool detection in a cluttered background
more robust.

Different from tracking by detection, which relies solely on the current image,
temporal tracking also uses information from previous frames. The temporal infor-
mation can reduce the search space for detection, or put additional constraints in the
model, making the tracking more robust.

Temporal information has been used in various ways. Some methods mainly
relied on a detection model, but incorporate temporal information in the preprocess-
ing [22] or post-processing [39] step or in the input [8, 87]. Approaches based on
background estimation have been used for catheter [114] or guidewire [83] tracking.
In these approaches, the background was recursively updated for every frame, and
was used for enhancing the foreground containing instruments. Apart from those,
many works adopted a Bayesian framework for tracking instruments via a maxi-
mum a posteriori (MAP) formulation. Representations based on key points [112],
B-splines [48, 51, 79, 110], or segment-like features [108] have been used to model
catheters or guidewires. Markov random field (MRF) was used to model the position
or deformation of the control points in the B-spline [48, 51, 79, 112]. In the work by
Vandini et al. [108], temporal information was incorporated in the prior term using
Kalman filter. Particularly, learning-based approaches were used in several works
to obtain the likelihood for a more robust measurement using probabilistic boosting
tree [110,111] or support vector regression [79]. In addition, temporal tracking mod-
els based on Bayesian filtering were also a popular approach for instrument tracking.
Ambrosini et al. [9] used a hidden Markov model (HMM) to track catheter tip in a
3D vessel tree, for which the likelihood was obtained based on the 3D-2D registration
outcome. Speidel et al. [99] used particle filters to track surgical tools in medical
images. They used a likelihood based on the segmentation of instruments, and a
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dynamic model that incorporates samples from two previous time steps. In a later
work, Speidel et al. [100] used a multi-object particle filter to track multiple instru-
ment regions simultaneously, in which a particle is the concatenation of the states of
several objects.

Despite of many existing works on inverventional or surgical tool tracking in med-
ical images, an automatic approach for tracking the tip of guiding catheter in X-ray
fluoroscopy for PCI has not been investigated yet. The challenges of this task are: (1)
different from the catheters for EP that can be viewed as blobs or a circle, the guid-
ing catheter for PCI presents a dark tubular appearance which shows no prominent
features; (2) the shape of the guiding catheter tip segment varies depending on the
orientation of the C-arm, making feature-/model- based detection challenging; (3) the
background may contain structures that have similar appearance to a catheter tip,
such as vertebral structures or residual contrast agent, which makes robust tracking
difficult.

6.1.4 Contributions

We propose and evaluate a novel approach for dynamic coronary roadmapping. The
approach compensates changes in vessel shapes and cardiac motion by selecting the
roadmap of the same cardiac phase through ECG alignment, and corrects the respi-
ratory induced motion via tracking the tip of the guiding catheter. Our contributions
are:

1. We develop a new way to perform dynamic coronary roadmapping on free
breathing, non-cardiac-gated X-ray fluoroscopic sequences. Particularly, the
respiratory-induced vessel motion is robustly compensated via the displacement
of catheter tip.

2. We proposed a deep learning based method within a Bayesian filtering frame-
work for online detection and tracking of guiding catheter tip in X-ray fluo-
roscopic images. The method models the likelihood term of Bayesian filtering
with a convolutional neural network, and integrates it with particle filtering in
a comprehensive manner, leading to more robust tracking.

3. We evaluate the proposed approach visually and quantitatively on clinical X-ray
sequences, achieving low errors on both tracking and roadmapping tasks.

4. The proposed DCR method runs in real-time with a modern GPU, thus can
potentially be used during PCI in real clinical settings.

6.2 Scenario Setup and Method Overview

The proposed method assumes that the scenario of performing dynamic coronary
roadmapping to guide a PCI procedure consists of an offline phase and an online
phase. An overview of the method is shown in Fig. 6.1.
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6.2.1 Offline Phase

This phase (Step 0 in Fig. 6.1) is performed off-line before the actual roadmapping is
conducted. In this stage, roadmaps of coronary arteries containing multiple cardiac
phases are created from an X-ray angiography sequence acquired with injection of
contrast agent. A roadmap can be a vessel model in the form of centerlines, contours,
masks, etc. It may also contain information of clinical interest, e.g. stenosis. Since
the main focus of this paper is on accurate overlay of a roadmap, we do not investigate
how to create the most suitable roadmaps, but use the images containing only vessels
and catheters that are created using the layer separation method in [65] (Chapter 2 of
this thesis) as the roadmaps to show the concept of dynamic coronary roadmapping.
Along with the XA sequence, ECG signals are also acquired and stored for later
selecting a roadmap that has similar cardiac phase to a given X-ray fluoroscopic
frame in the online phase (see details in Section 6.3). Once the image sequence and
ECG signals are acquired, the catheter tip location in every frame is obtained to serve
as a reference point for roadmap transformation. In this work we manually annotated
the catheter tip in the offline XA sequence. In real clinical scenarios, the annotation
work can be done easily and efficiently by a technician who typically sits in front of
monitors outside the catheterization lab to assist the procedure.

6.2.2 Online Phase

This is when the dynamic roadmapping is actually performed. In this phase, non-
contrast X-ray fluoroscopic images with the same view angles as the roadmaps created
during the offline phase are acquired sequentially. At the same time, ECG signals
along with the roadmapping frames are also obtained and are compared with the
stored ECG to select the most matched roadmap (Step 1 in Fig. 6.1; see details in
Section 6.3). This is to compensate the change of vessel shape and position between
frames due to cardiac motion. Simultaneously, the catheter tip location in the ac-
quired X-ray fluoroscopic images is tracked online using the proposed deep learning
based Bayesian filtering method in Section 6.4 (Step 2 in Fig. 6.1). The displacement
of catheter tip between the current image and the selected roadmap image is then ob-
tained and are applied to transform the roadmap. Finally, the transformed roadmap
is overlaid on the current non-contrast frame to guide the procedure (Step 3 in Fig.
6.1).

6.3 ECG Matching for Roadmap Selection

Roadmap selection in this work is achieved by comparing the ECG signal associated
with the fluoroscopic image and the ECG of the angiographic sequence, such that the
most suitable candidate roadmap is selected where the best match of the ECG signals
is found. The selected roadmap has the same (or very similar) cardiac phase with
the X-ray fluoroscopic image, which compensates the difference of vessel shape and
pose induced by cardiac motoin. An approach similar to the ECG matching method
in [55] is used to accomplish this task.
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To select roadmaps images based on ECG, a temporal mapping between X-ray
images and ECG signal points needs to be built first. We assume that ECG signals
and X-ray images are well synchronized during acqusition. In the offline phase, the
beginning and the end of the image sequence are aligned with the start and end ECG
signal points; the XA frames in between are then evenly distributed on the timeline
of ECG. This way, a mapping between the stored sequence images and its ECG signal
can be set up: for each image, the closest ECG signal point to the location of the
image on the timeline can be found; for each ECG point, an image that is closest to
this point on the timeline can be similarly located. Once the mapping is available,
images with good vessel contrast and the ECG points that are associated to these
images are selected from the XA sequence for the pool of roadmaps. In the online
phase, similar to the approach in [55], for acquisition of each image, a block of NECG
latest ECG signal points is constantly stored and updated in the history buffer. This
is considered as the ECG signal corresponding to the fluoroscopic frame.

To compare the ECG signals associated with the angiographic sequence and the
online fluoroscopic image, a temporal registration of the two signals using cross-
correlation is applied [55]. The two ECG signals are first cross-correlated for every
possible position on the signals, resulting in a 1D vector of correlation scores. The
candidate frame for dynamic overlay is then selected as the one associated with the
point on the ECG of the angiographic sequence that is corresponding to the highest
correlation score.

6.4 Bayesian Filtering for Catheter Tip Tracking

Bayesian filtering is a state-space approach aiming at estimating the true state of a
system that changes over time from a sequence of noisy measurement made on the
system [11]. One popular application area of this approach is tracking objects in a
series of images.

6.4.1 Theory of Bayesian Filtering

Bayesian filtering typically includes the following components: hidden system states,
a state transition model, observations and a observation model. Let xk ∈ R2 (k =
{0, 1, 2, ...}) denote the state, the location of guiding catheter tip in the k-th frame,
a 2D vector representing the coordinates in the X-ray image space. The transition
of the system from one state to the next state is given by the state transition model
xk = fk(xk−1,vk−1), where vk−1 ∈ R2 is an independent and identically distributed
(i.i.d.) process noise, fk : R2×R2 → R2 is a possibly nonlinear function that maps the
previous state xk−1 to the current state xk with noise vk−1. The observation zk in
this work is defined as the k-th X-ray image of a sequence, so that zk ∈ Rw×h, where w
and h are the width and height of an X-ray image. We further define the observation
model as zk = hk(xk,nk), where nk ∈ Rnk is an i.i.d measurement noise (nk is the
dimension of nk), hk : R2×Rnk → Rw×h is a highly nonlinear function that generates
the observation zk from the state xk with noise nk. The state transition model
fk and the observation model hk, respectively, can also be equivalently represented
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using probabilistic forms, i.e. the state transition prior p(xk|xk−1) and the likelihood
p(zk|xk) from which xk and zk can be obtained by sampling.

With these definitions and p(x0), the inital belief of x0, Bayesian filtering seeks an
estimation of xk (k ≥ 1) based on the set of all available observations z0:k = {zi, i =
0, ..., k} up to time k via recursively computing the posterior probability p(xk|z0:k)
as Eq.(6.1) [11]:

p(xk|z0:k) ∝ p(zk|xk)

∫
p(xk|xk−1)p(xk−1|z0:k−1)dxk−1︸ ︷︷ ︸

p(xk|z0:k−1)

. (6.1)

Assuming the initial probability p(x0|z0) = p(x0) is known, based on Eq.(6.1), Bayesian
filtering runs in cycles of two steps: prediction and update. In the prediction step,
the prior probability p(xk|z0:k−1), the initial belief of xk given previous observations,
is estimated by computing the integral in Eq.(6.1). In the update step, the prior
probability is corrected by the current likelihood p(zk|xk) to obtain the posterior
p(xk|z0:k).

In Section 6.4.2, we will firstly introduce how to model the likelihood. Then in
Section 6.4.3, a way to represent and efficiently approximate the posterior will be
discussed. Finally in Section 6.4.4, a summary of the complete catheter tip tracking
method will be given.

6.4.2 A Deep Learning based Likelihood

Directly modeling the likelihood p(zk|xk) is challenging due to (1) the complexity of
the generation process hk and (2) the computational complexity of p(zk|xk) for every
value xk ∈ R2. In this work, we simplify the problem by only computing the likelihood
p(zk|xk) in the image pixel space, i.e. the integer pixel coordinate. For a subpixel
xk, the value of p(zk|xk) can possibly be approximated by interpolation. To this
end, we propose to use a deep neural network D to approximate p(zk|xk) for integer
pixel locations. The network takes an image zk as input and outputs a probability
of observing the input zk for every pixel location xk. Therefore, the approximated
likelihood is a function of xk, denoted as Dzk

(xk). Since xk is defined within the
scope of the image pixel space, Dzk

(xk) is essentially a probability map having the
same dimension and size with the input image zk, in which the entry at each location
xjk (j = 1, 2, . . . , wh) in the map represents the probability of observing zk given xjk.
It is worth mentioning that the deep neural network is used for approximation of
p(zk|xk), which should be clearly distinguished from the generation model hk that
maps an xk to zk. The existence of hk is merely for the convenience of definition, its
explicit form, however, is not required in the context of this work.

To obtain the training labels, we assume that there exists a mapping hk, such that
the training label can be defined as a distance-based probability map, i.e. the farther
away xk is from the ground truth tip location in the image zk, the less possible
it is to observe zk given xk through the process hk. This definition matches the
intuition that from a location xk that is far from the ground truth tip location, the
probability of observing a zk with the catheter tip being located at the ground truth
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(a) (b) (c)

Figure 6.2: Input and ground truth labels for the deep neural network: (a) an
input X-ray fluoroscopic image, (b) the binary catheter mask of (a) for catheter
segmentation, (c) a 2D Gaussian PDF (σ = 4 px) for likelihood estimation for (a).

position should be low. For simplicity, a 2D Gaussian probability density function
(PDF) N (xk; x′k, σ

2I ) centered at the ground truth tip location x′k with variance
σ2I in the image space is used as the label to train the network (Fig. 6.2c). Note
that this training label makes the estimation of p(zk|xk) equivalent to a catheter tip
detection problem such that the deep neural network learns features of catheter tip
and outputs high probability at locations where the features are present. Due to this
reason, we also call p(zk|xk) “detection output” or “detection probability” and call
the estimation of p(zk|xk) “catheter tip detection” in the context of this paper.

The network that we use follows a encoder-decoder architecture with skip connec-
tions similar to U-net [91]. Additionally, similar to the work in [74], residual blocks [47]
are adopted at each resolution level in the encoder and decoder to ease gradient prop-
agation in a deep network. The encoder consists of 4 down blocks in which a residual
block followed by a stride-2 convolution is used for extraction and down-scaling of
feature maps. The number of feature maps is doubled in each downsampling step.
The decoder has 4 up blocks where a transposed convolution of stride-2 is used for
upsampling of the input feature maps. Dropout is used in the residual unit of the
up block for regularization of the network. Between the encoder and the decoder,
another residual block is used to process the feature maps extracted by the encoder.
The detailed network architecture is shown in Fig. 6.3.

Due to similar appearance between a guiding catheter tip and corners of a back-
ground structure, such as vertebral bones, lung tissue, stitches or guidewires, ambigu-
ity may exist when the network is expected to output only one blob in the probability
map. To alleviate the issue, we adopt a similar strategy as [59], using a catheter mask
(Fig. 6.2b) as an additional label to jointly train the network to output both the
catheter segmentation heatmap and the likelihood probability map. The segmenta-
tion heatmap is obtained by applying a 1 × 1 convolution with ReLU activation on
the feature maps of the last up block. To compute the likelihood probability map, a
residual block is firstly applied on the feature maps of the last up block. The output
feature maps are then concatenated with the segmentation heatmap as one additional
channel, followed by a 1 × 1 convolution. Finally, to ensure the network detection
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output fits the definition of a probability map on image locations, following the 1× 1
convolution, a spatial softmax layer is computed as Eq.(6.2):

Dk,l =
eAk,l∑
i,j e

Ai,j
, (6.2)

where A is the output feature map of the 1× 1 convolution, Ai,j denotes the value of
A at location (i, j), D is the final output of the detection network, a 2D probability
map representing p(zk|xk). The details are shown in Fig. 6.3.

The training loss is defined as a combination of the segmentation loss and the
detection loss. The segmentation loss Ls in this work is a Dice loss defined by Eq.(6.3):

Ls = 1−
2
∑
i,jMi,jSi,j∑

i,jM
2
i,j +

∑
i,j S

2
i,j

(6.3)

where M denotes the ground truth binary catheter masks, S is the segmentation
heatmap. The loss function for detection Ld is mean square error (MSE) given by
Eq.(6.4):

Ld =
1

w × h
∑

i≤w,j≤h

|Ti,j −Di,j |2 (6.4)

where T denotes the ground truth PDF, w and h are the width and height of an
image. The total training loss L is defined as Eq.(6.5):

L = Ls + λLd (6.5)

where λ is a weight to balance Ls and Ld.

6.4.3 Approximation of the Posterior with Particle Filter

Once the deep neural network in Section 6.4.2 is trained, its weights are fixed during
inference for computing the posterior p(xk|z0:k) for new data. Idealy, the network
detection output p(zk|xk) should be a Gaussian PDF during inference, as it is trained
with labels of Gaussian PDFs. However, due to similar appearance of background
structures or contrast residual, the detection output is unlikely to be a perfect Gaus-
sian (possibly non-Gaussian or having multiple modes), which prevents the posterior
p(xk|z0:k) in Eq.(6.1) being solved with an analytical method. In practice, the pos-
terior can be approximated using a particle filter method [11].

Particle filter methods approximate the posterior PDF by a set of Ns random sam-
ples with associated weights {xik, wik}

Ns
i=1 [11]. As Ns becomes very large, this discrete

representation approaches the true posterior. According to [11], the approximation
of the posterior p(xk|z0:k) is given by Eq.(6.6):

p(xk|z0:k) ≈
Ns∑
i=1

wikδ(xk − xik) (6.6)

where δ(·) is the Dirac delta function. The weight wik can be computed in a recursive
manner as Eq.(6.7) once wik−1 is known [11]:
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wik ∝ wik−1
p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
(6.7)

where q(xk|xik−1, zk) is an importance density from which it should be possible to
sample xik easily. For simplicity, a good and convenient choice of the importance
density is the prior p(xk|xik−1) [11], so that the weight update rule (6.7) becomes
wik ∝ wik−1p(zk|xik).

A sample can be drawn from p(xk|xik−1) in the following way. First, a process
noise sample vik−1 is sampled from pv(vk−1), the PDF of vk−1; then xik is generated
from xik−1 via the state transition model xik = fk(xik−1,v

i
k−1). In this work, pv(vk−1)

is set to be a Gaussian N (0, σ2
vI ). The choice of motion model for fk is important for

an accurate representation of the true state transition prior p(xk|xk−1). A random
motion cannot characterize well the motion of catheter tip in XA frames. In this
work, we estimated the motion from adjacent frames using an optical flow method,
as this approach 1) takes into account of the observation zk, which results in a better
guess of the catheter tip motion, and 2) enables estimation of a dense motion field
where the motion of a sample xik can be efficiently obtained. Therefore, fk is defined
as Eq.(6.8):

xk = xk−1 + uk−1(xk−1) + vk−1 (6.8)

where uk−1(·) is the motion from frame k−1 to frame k estimated with optical flow
using the method in [34], uk−1(xk−1) is the motion from state xk−1.

Once samples are drawn and their weights are updated, the so-called “resampling”
of the samples should be performed to prevent the degenaracy problem, where all but
one sample will have negligible weight after a few iterations [11]. The resampling step
resamples the existing samples according to their updated weights and then resets
all sample weights to be 1/Ns, so the number of effective samples which have actual
contribution to approximate p(xk|z0:k) is maximized [11]. If the resampling is applied
at every time step, the particle filter becomes a sampling importance resampling (SIR)
filter, and the weight update rule follows Eq.(6.9).

wik ∝ p(zk|xik) (6.9)

The final decision on catheter tip location in frame k can then be computed as the
expectation of xk, x̂k =

∫
xkp(xk|z0:k)dxk, which is in this case, the weighted sum of

all samples:

x̂k =

Ns∑
i=1

wikx
i
k. (6.10)

6.4.4 Summary

The overall catheter tip tracking using a deep learning based Bayesian filtering method
is summarized in Algorithm 3.
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Algorithm 3 Deep learning based Bayesian filtering for online tracking of catheter
tip in X-ray fluoroscopy

Require: {z0, . . . , zT } (sequentially observed frames), D (A trained network from
Section 6.4.2), p(x0) (the initial PDF), σ2

v (the variance of vk−1, k = 1, . . . , T ), T
(number of frames for tracking), Ns (number of samples)

1: Draw xi0 ∼ p(x0), set wi0 = 1/Ns, ∀ i = 1, . . . , Ns
2: for k = 1 to T do
3: Compute uk−1 from zk−1 to zk using the optical flow method in [34]
4: for i = 1 to Ns do
5: Draw vik−1 ∼ N (0, σ2

vI )
6: Compute the motion of xik−1: uik−1 = uk−1(xik−1)
7: Draw xik ∼ p(xk|xik−1): xik = xik−1 + uik−1 + vik−1
8: Update weight wik = p(zk|xik) = Dzk

(xik)
9: end for

10: Normalize wik ← wik/
∑Ns

i=1 w
i
k, ∀ i = 1, . . . , Ns

11: Prediciton in frame k: x̂k =
∑Ns

i=1 w
i
kx

i
k

12: Resample {xik, wik}
Ns
i=1 using the method in [11] (so all wik are set to 1/Ns again)

13: end for

6.5 Experimental Setup

6.5.1 Data

Anonymized clinical imaging data were used for our experiments. The data were
acquired with standard clinical protocol using Siemens AXIOM-Artis system, and are
from 55 patients who underwent a PCI procedure at the Department of Cardiology
at Erasmus MC in Rotterdam, Netherlands. Out of these data, we selected data from
37 patients which were acquired since the year 2014 to develop our method, and used
the data from the other 18 patients acquired before the year 2013 for evaluation. The
detailed information about the data is listed in Table 6.1.

In order to evaluate the proposed roadmapping method, for which an off-line
angiographic sequence is required for roadmap preparation and an online fluoroscopic
sequence taken from the same C-arm position is needed for performing the actual
roadmapping (see Section 6.2), we selected the contrast frames from a real clinical
sequence to simulate the off-line sequence, and chose the non-contrast frames from
the same clinical sequence to simulate the online sequence. The selected contrast
sequence were ensured sufficiently long to cover at least one complete cardiac cycle.

6.5.2 Data Split for Catheter Tip Detection and Tracking

To develop the catheter tip tracking method, 1086 X-ray fluoroscopic images selected
from 260 non-contrast sequences of 25 patients from the development set were used
for training the network from Fig. 6.3; 404 images from 94 non-contrast sequences
of another 12 patients from the development set were used as validation set for the
network model and hyperparameter selection. In the training and validation sets,
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Table 6.1: Basic information of the acquired X-ray image data for our experiments.
The number in the parenthesis next to the pixel size indicates the possible image
size.

Data Development Evaluation

No. patients 37 18
No. sequences 354 34
Frame rate (fps) 15 15
Image size (px) 512 × 512 512 × 512

600 × 600 600 × 600
776 × 776 776 × 776
960 × 960 1024 × 1024
1024 × 1024

Pixel size (mm) 0.108 (1024) 0.139 (1024)
0.139 (1024) 0.184 (600)
0.184 (600) 0.184 (776)
0.184 (776) 0.184 (1024)
0.184 (960) 0.216 (512)
0.184 (1024) 0.279 (512)
0.216 (512)

Table 6.2: Dataset of training, validation and test for detection and tracking of
catheter tip in X-ray fluoroscopic frames.

Training Validation Validation Test
(detection) (detection) (tracking) (tracking)

No. patients 25 12 12 18
No. sequences 260 94 88 34
No. frames 1086 404 1583 1355
Continous frames? No No Yes Yes

4-5 frames were randomly selected from each sequence, which are not necessarily
continuous. To tune the parameters for tracking, 1583 images from 88 sequences out
of the 94 from the same 12 patients of the validation set were used (6 sequences were
not selected for this task due to very short sequence length not more than 5 frames).
Finally, to evaluate catheter tip tracking accuracy, 1355 images from 34 non-contrast
sequences of 18 patients from the evaluation set were used for testing. The frames
selected for tracking from each sequence must be continuous; the number of selected
frames for tracking might vary, depending on the number of the non-contrast frames
in the sequences. Details of the datasets for training, validation and test are listed in
Table 6.2.
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6.5.3 Experimental Settings for Training the Deep Network

6.5.3.1 Preprocessing

As the image data have different size ranging from 512×512 to 1024×1024, all images
were resampled to a grid of 256× 256 before being processed by the neural network.
In addition, the image intensities were rescaled to the range from 0 to 1.

6.5.3.2 Training label

The standard deviation σ of the Gaussian PDF for the training label of the detection
network was set to 4 pixels in the resampled image space (256 × 256). This choice
corresponds to the estimation of the maximal possible catheter tip radius. An example
of the Gaussian PDF is shown in Fig. 6.2c.

6.5.3.3 Data Augmentation

To increase the number of training samples and their diversity, data augmentation
was used. The augmentation includes geometric transformation such as flipping (left-
right, up-down), rotation of multiple of 90 degrees, random affine transformation
(translation -10 to 10 px, scaling 0.9 to 1.1, rotation -5 to 5 degrees, shear -5 to 5
px), random elastic deformation (deformation range -4 to 4 px, grid size of control
points 64 px). A training sample has 0.5 probability of being processed with one of
the transformations. The probability for applying each transformation is: flipping
left-right (1/24), flipping up-down (1/24), rotation of multiple of 90 degrees (1/12),
affine transformation (1/6), elastic deformation (1/6), no transformation (1/2). To
make the trained model robust to noise, in addition to the geometric transformations,
we also augmented data by adding Gaussian noise to the pixel value with a zero mean
and a standard deviation between 0.01 and 0.03. The probability of adding the noise
is 0.5.

6.5.3.4 Evaluation Metric

To select hyperparameters and model weights in training, an evaluation metric is
required. As the deep network is essentially a catheter tip detector, accurate detection
of the tip location is desired. Therefore, we chose the location with the highest value
in the detection output, and computed the Euclidean distance between the chosen
location and the ground truth tip coordinate as the evaluation metric to tune the
deep network.

6.5.3.5 Training Settings

Finally, the λ value in the training loss Eq. (6.5) was set to 10 to make the scale of
the two terms similar. Adam optimizer was used to minimize the loss function with
a learning rate 0.0001. The number of training samples in a batch is 4. The network
was trained with 100 epochs to ensure convergence.
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6.5.4 Setup for Evaluating Dynamic Coronary Roadmapping

It is in general a challenge to evaluate the roadmapping accuracy, as the structure of
interest, e.g. coronary arteries in our case, is not directly visible in the target image.
One possible choice introduced in [119] is to use the guidewire as a surrogate of the
target vessel centerline in non-contrast images, as guidewire is always inside vessels
and commonly present in image sequences during interventions. In this work, we
follow a similar strategy to evaluate the accuracy of dynamic coronary roadmapping.

The first step is to select frames for roadmapping evaluation. From each non-
contrast sequence in the test set for tracking in Section 6.5.2, we uniformly select
8-20 frames to annotate guidewire. The number of the selected frames from each
sequence depends on the sequence length, the frame interval size and guidewire visi-
bility. For some rare cases in our data where no guidewire is present in the image, we
discarded that non-contrast frame, and chose those frames with little vessel contrast
from the same sequence and annotated the vessel centerline. The selection results in
409 frames from 34 sequences in total. Once the target non-contrast frames for eval-
uating roadmapping are chosen, their corresponding angiographic frames were found
using the ECG matching method in Section 6.3. We then annotated the centerline of
the vessel corresponding to the guidewire in the non-contrast frames.

The next step is performing the transformation of the labelled vessel centerline
from the angiographic frame to its corresponding target non-contrast frame via dis-
placement of catheter tip in the two frames. This step simulates the roadmapping
transformation in the last step in Fig. 6.1.

Finally, the distance between the guidewire annotation in the target frame and
the transformed vessel centerline is reported as the roadmapping accuracy. In order
to compute the distance between two point sets of annotations (e.g. Fig. 6.4a),
point-point correspondence between the two sets is required (Fig. 6.4b). The point
sets were firstly resampled with the point interval being 1 mm. We then followed
the approach in [107] to find such correspondences which minimizes the sum of the
Euclidean distance of all valid point-point correspondence paths. This way guarantees
no cross-over connection and each point in one set is connected to at least one point
in the other set. As the annotated point sets may have different size, the point
correspondences to endpoints are excluded such that we only focused on the distance
between corresponding sections, not the entire centerlines (Fig. 6.4c). Once the point-
point correspondence is available, the distance between the two points in a pair can
be used for evaluating the accuracy of DCR.

6.5.5 Implementation

The proposed method was developed in Python. The framework used for developing
the deep learning approach for likelihood approximation is PyTorch. The major
experiments of dynamic coronary roadmapping were performed on a computer with
an Intel Xeon E5-2620 v3 2.40 GHz CPU and 16 GB RAM running Ubuntu 16.04. The
deep neural network and the optical flow method were running on an NVIDIA GeForce
GTX 1080 GPU. The approach for evaluating dynamic coronary roadmapping was
developed and running in MeVisLab on a computer with an Intel Core i7-4800MQ
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(a) (b) (c)

Figure 6.4: Correspondence between the labelled guidewire (green) and the trans-
formed vessel centerline (red). The yellow lines connecting the two point sets illus-
trate the correspondence between red and green points.

2.70 GHz CPU and 16 GB RAM running Windows 7.

6.6 Experiments and Results

6.6.1 Training the Deep Neural Network

The purpose of this experiment is to train the deep neural network to output rea-
sonable likelihood probability map. The network hyperparameters were tuned to
optimize the detection performance.

The training and validation data for detection mentioned in Section 6.5.2 were
used for training the deep neural network. The evaluation metric mentioned in Section
6.5.3, the mean Euclidean distance between the ground truth and the predicted tip
location averaged over all validation frames, was used as the validation criteria for
selecting the optimal training epoch and the network hyperparameters. When we
evaluated hyperparameter settings, we firstly selected the training epoch with the
lowest mean validation error for each setting, then the settings were compared using
the model weights (trainable network parameters) of their chosen epochs.

The network hyperparameters we investigated in the experiments include (1) the
basic channel number, i.e. the number of channels or feature maps in the first down
block, (2) the network depth level, the number of down or up blocks, and (3) the
dropout probability.

The validation errors for different hyperparameter settings using the experimental
settings in Section 6.5.3 are shown in Table 6.3. The table shows that the hyperpa-
rameter setting with the lowest mean error, which has 4 level in depth and 64 channels
in the first down block, achieves a validation error of about 2 mm. The table also
shows other good choices of network architecture that have a small validation error
(shown in red in Table 6.3): 32 channels in the first down block with 4 or 5 levels in
depth, or 64 channels with 3 or 4 depth levels. The dropout regularization improves
the accuracy of the model, compared to the ones without dropout.
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Table 6.3: Validation errors (mm) for different hyperparameter settings. Red cells
show the settings with the 10 smallest validation errors. bold number indicates the
setting with the lowest error.

Basic Number Depth Dropout

of Channels Level none 0.1 0.2 0.3 0.4 0.5

8 3 5.43 4.99 5.02 5.37 4.38 4.24
4 4.17 4.45 4.25 5.04 4.75 4.36
5 3 4.14 3.53 4.28 3.95 4.11

16 3 3.74 4.29 3.57 4.11 3.74 3.4
4 3.36 3.11 3.63 3.33 3.36 3.78
5 3.38 2.89 3.16 2.52 2.71 2.74

32 3 2.99 3.02 3.26 2.82 3.26 2.56
4 2.87 2.34 2.46 2.6 2.65 2.27
5 3.04 2.51 2.21 2.29 2.3 2.25

64 3 2.19 2.54 2.34 2.27 2.26 2.49
4 2.55 2.31 2.04 2.44 2.22 2.27
5 2.42 2.29 2.73 2.77 2.61 2.85

The learning curves of the training process with the chosen hyperparameter setting
are illustrated in Fig. 6.5. The curves indicate that both segmentation and detection
reach convergence after training 100 epochs.

We did not investigate a model with more than 64 channels or 5 depth levels,
because (1) it will further increase the processing time which makes online applications
less feasible; (2) the results in Table 6.3 show that such a setting (64 channels, 5 depth
levels) starts increasing the validation error compared to those less complex models.

The subsequent experiments will be based on the network trained with the chosen
hyperparameter setting indicated in Table 6.3 (64 channels, 4 depth levels, dropout
0.2).

6.6.2 Catheter Tip Tracking

The purpose of this experiment is to assess the accuracy of catheter tip tracking
with the proposed method in Section 6.4. Guiding catheter tip is tracked in X-ray
fluoroscopy using Algorithm 3 based on a trained network with the optimal hyperpa-
rameter setting from Section 6.6.1. First, the parameters of the optical flow method
used in Algorithm 3 and particle filter were tuned on the validation data for tracking
in Section 6.5.2. We then evaluated the tracking accuray with the tuned optimal
parameter setting on the test dataset, and compared the proposed tracking method
with alternative approaches using only the detection network in Section 6.4.2 or using
only optical flow. Finally, we investigated tracking accuracy with different ways of
tip initialization in the first frame.
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Figure 6.5: Learning curves for the chosen hyperparameter setting.

6.6.2.1 Tuning Optical Flow Parameters

The approach in [34] was used as the optical flow implementation in Algorithm 3. A
grid search to find the optimal parameter setting was done on the following parameters
of the method: (1) the image scale to build the pyramids, (2) the number pyramid
levels, (3) the averaging window size, (4) the number of iterations, (5) the size of the
pixel neighborhood used to find polynomial expansion in each pixel, and finally (6)
the standard deviation of the Gaussian that is used to smooth derivatives used as a
basis for the polynomial expansion.

The above parameters were tuned independently of the deep neural network, as
optical flow directly estimates the catheter tip motion between two frames. To tune
the parameters, we tracked the catheter tip in X-ray fluoroscopy starting from the
ground truth tip position in the first frame using the motion field between two adjacent
frames estimated with optical flow. The average and median distance between the
tracked tip position and the ground truth were used as the evaluation criteria for the
tuning.

The method in [34] was implemented by using the OpenCV function calcOpti-

calFlowFarneback. With consideration of the suggested parameter values from the
documentation, the parameter setting chosen for optical flow from the grid search
is pyr scale = 0.5, levels = 3, winsize = 10, iterations = 30, poly n = 5,
poly sigma = 1.1. Details of the parameters can be found on the function documen-
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tation page1.

6.6.2.2 Tuning Particle Filter Parameters

The parameters to tune for the particle filter are the number of samples Ns and
the variance of process noise σ2

v . When tuning them, we fixed the parameters of
the trained network and the optical flow method, and used their optimal parameter
settings during this experiment. Following Algorithm 3, we tracked the catheter
tip from the ground truth position (probability map) in the first frame, and used the
mean and median distance between the tracked and the true position as the validation
metric.

The tracking results on the validation (tracking) set are shown in Table 6.4. The
table shows that good choices for σv are 4 and 5, for Ns are 1000 and 10000. By
considering the mean, the standard deviation and the median of tracking errors, the
parameter setting σv = 5, Ns = 1000 was chosen for subsequent experiments.

Table 6.4: Catheter tip tracking errors (mm) on the validation (tracking) dataset
of different parameter settings for particle filter. The tracked tip point was rounded
to the pixel center. The error of all images (mean ± std / median) are presented.
Red cells show the good choices of parameters; bold number indicates the chosen
setting .

σv Ns

(px) 100 1000 10000

3 1.52 ± 2.19 / 0.79 1.49 ± 2.18 / 0.79 1.48 ± 2.18 / 0.79
4 1.50 ± 2.17 / 0.79 1.46 ± 2.17 / 0.79 1.47 ± 2.18 / 0.79
5 1.52 ± 2.21 / 0.79 1.47 ± 2.17 / 0.74 1.47 ± 2.19 / 0.74
6 1.53 ± 2.39 / 0.79 1.49 ± 2.33 / 0.79 1.48 ± 2.29 / 0.74
7 1.56 ± 2.42 / 0.79 1.50 ± 2.29 / 0.74 1.50 ± 2.39 / 0.74
8 1.58 ± 2.41 / 0.79 1.51 ± 2.40 / 0.74 1.51 ± 2.42 / 0.74
9 1.56 ± 2.22 / 0.79 1.53 ± 2.43 / 0.79 1.52 ± 2.45 / 0.61
10 2.25 ± 6.18 / 0.79 1.54 ± 2.46 / 0.79 1.53 ± 2.47 / 0.61

6.6.2.3 Tracking Methods Evaluation

In this experiment, the proposed tracking method in Algorithm 3 uses the ground
truth tip probability map of the first frame as the initial PDF p(x0) to draw samples.
This method is referred to as “Tracking”. In addition, we compared the proposed
method with three alternatives. The first one tracks catheter tip using only the
detection network in Section 6.4.2 with the chosen network architecture and trained
parameters in Section 6.6.1, therefore, no temporal information is used. This method
is referred to as “Detection (Net)”. The other two methods in this experiment use

1https://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_object_tracking.

html?

https://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_object_tracking.html?
https://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_object_tracking.html?
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Table 6.5: Catheter tip tracking errors (mm) of 4 different methods on the test
(tracking) dataset

Evaluation Metrics
Optical Flow Optical Flow Detection Net Tracking

(previous) (first) (Section 6.4.2)

Maximal error of
29.16 20.83 108.20 17.72

all images
Median error of

1.78 1.22 0.96 0.96
all images
Mean error of

3.74 ± 4.93 3.05 ± 4.05 5.62 ± 15.91 1.29 ± 1.76
all images
Average of sequ-

2.35 ± 2.52 2.64 ± 3.52 6.26 ± 17.11 1.03 ± 0.49
ence median error
Average of sequ-

2.59 ± 2.69 3.31 ± 2.81 6.83 ± 13.88 1.29 ± 0.94
ence mean error

only optical flow to track catheter tip starting from the ground truth tip position in
the first frame. The motion field towards the current frame, estimated by the two
methods, was based on the deformation from the previous frame or the first frame in
the sequence, respectively. The same implementation setting as in Section 6.6.2.1 was
used for these two methods. They are called “Optical Flow (previous)” and “Optical
Flow (first)”, or in short form, “OF (pre)” and “OF (1st)”.

The tracking accuracies of all methods reported in this section were obtained on
the test set from Table 6.2. The mean, the median and the maximal tracking error
between the predicted and the ground truth tip position of all test images are reported
in Table 6.5. In addition, as the sequences in the test set have different lengths, we also
computed the mean and the median error per sequence, and report the the average
of the sequence mean and median errors, so that each sequence contributes equally
in these metrics. Table 6.5 shows that the results from the detection network have
large average errors which are caused by some completely failed cases. The proposed
tracking method has median errors of about 1 mm and mean errors of about 1.3 mm.
It achieves the lowest errors compared to the other 3 methods on all listed evaluation
criteria.

Fig. 6.6 illustrates the boxplots of tracking errors made by the 4 methods on all
test images. It shows that the proposed tracking approach outperforms the detection
method by avoiding making extremely large errors (Fig. 6.6a); meanwhile, it maintains
as accurate as the detection method for cases with small errors, and is more accurate
than the methods based solely on optical flow (Fig. 6.6b).

Fig. 6.7 shows longitudinal views of tracking errors of the 4 methods on 4 example
sequences. Although the optical flow methods show high accuracy when the target is
on the track (row 4), they present periodic error patterns in two sequences due to large
cardiac motion. The detection method shows peaks of large errors, this is because
temporal relation between frames is not modeled by the approach, thus the detection
on different frames is independent of each other. The proposed tracking method
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Figure 6.6: Tracking errors for the 4 methods on all test images.

overcomes the problems that other methods have and presents accurate detection on
these 4 sequences. The tracking results of the 4 methods on example frames from the
4 sequences are illustrated in Fig. 6.8.

Fig. 6.9 illustrates how the proposed tracking method works on the same 4 frames
in Fig. 6.8. It shows that the prior hypotheses (samples) assists to focus on the
correct target location and results in reliable posterior estimation, especially when
the detection produces ambiguity in cases of multiple catheters or contrast residual
presented in images.

6.6.2.4 Catheter Tip Initialization

In this experiment, the initial PDF p(x0) from which samples are drawn in the pro-
posed tracking is investigated (Algorithm 3). In particular, we explored and evaluated
the tracking accuracy with an automatic initialization using the probability map ob-
tained from the trained detection network in Section 6.4.2 with the chosen setting in
Section 6.6.1.

Fig. 6.10 shows the boxplot of tracking errors on all test images with automatic
initialization (Auto) and manual initialization (Manual) for which the ground truth tip
probability map of the first frame was used. The tracking with automatic initialization
presents an accuracy similar to the one with manual initialization for small tracking
errors, but has more large tracking errors which influence the mean error over all test
images (Table 6.6). We, therefore, defined the tracking errors on the right side of the
gap in the boxplot (> 40 mm) as outliers, and explored the statistics without those
outliers.

Table 6.6 indicates that, the mean and median error of the tracking with automatic
initialization excluding the outliers are only slightly higher than the tracking with
manual initialization and the detection method. While the tracking with automatic
initialization has 100 outliers in total from 6 sequences, the detection method that
has 10 sequences containing 106 outliers.
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Figure 6.7: Longitudinal view of tracking errors made by the 4 methods on 4 test
sequences (one sequence per row). The x-axis denotes the time steps of a sequence,
the y-axis is the tracking error (mm).

Unlike the detection method for which the outliers are mainly presented as the
peaks in the longitudinal views (Fig. 6.7), the outliers for the tracking with automatic
initialization are more consistent over time. Fig. 6.11 shows the temporal change of
tracking errors for the 6 sequences with outliers using the tracking with automatic
initialization. For the 3 sequences on the top row, the tracking with automatic initial-
ization makes large errors at the beginning, but becomes accurate very fast in a few
frames; for the 3 sequences on the bottom row, however, the tracking errors remain
large till the end of the sequences.

Fig. 6.12 shows example frames to give an insight of the tracking with automatic
initialization on the 6 sequences in Fig. 6.11. For the 3 sequences on the top row
(Fig. 6.12a), although the initialization on the first frame (frame 0) is overall not
correct, the true tip positions are still covered by some samples; once the detection
in subsequent frames is correct, the tracker can still converge to the right target.
For the 3 sequence on the bottom row (Fig. 6.12b), the initializations of samples are
ambiguous in frame 0; the detection in subsequent frames focuses on a wrong area also
given by the initial samples due to residual of contrast agent or multiple catheters,
the tracker then tends to find the wrong target.
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Figure 6.8: Tracking results on example frames from the same 4 sequences in Fig.
6.7. The blue point indicates the predicted catheter tip location; the red point shows
the ground truth location. (Best viewed in color)

6.6.3 Dynamic Coronary Roadmapping

In this experiment, the accuracy of dynamic coronary roadmapping using the proposed
method with manual tip initialization was evaluated. For roadmap selection with ECG
matching (Section 6.3), the number of online ECG signal points NECG was manually
determined so that the ECG signal stored in the buffer corresponding to 12 X-ray
frames (0.8 second in acquisition time). Following the setup in Section 6.5.4, we used
the distance between the two points in each point pair as the evaluation metric for
DCR (the length of a yellow line segment in Fig. 6.4). As each frame may have
different numbers of point pairs, depending on the length of the target guidewire,
the average point pair distance per frame was also computed for evaluation. These
distances were evaluated on 409 selected frames with manual annotation of guidewires
and vessel centerlines (Section 6.5.4).

In the experiment, we compared the DCR with the proposed tracking method
to those with manual tip tracking and without tracking. All three approaches were
based on the same ECG matching method (Section 6.3) for selecting roadmaps. The
accuracy of the DCR without tracking in Table 6.7 shows that the mean distances
are reduced to less than 3 mm by compensating only cardiac motion via roadmap
selection with ECG matching. Table 6.7 also shows that the DCR with the proposed
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Figure 6.10: Catheter tip tracking errors (mm) with manual and automatic ini-
tialization.

Table 6.6: Catheter tip tracking errors (mm) of detection and tracking with manual
and automatic initialization

Detection
Tracking

Manual init. Automatic init.

Maximal error 108.20 17.23 98.58
Median error 0.96 0.96 0.96
Mean error 5.62 ± 15.91 1.29 ± 1.76 5.16 ± 13.91

No. of outliers (> 40 mm) 106 0 100
No. of sequences with outliers 10 0 6

Maximal error of inliers 31.06 17.23 28.28
Median error of inliers 0.96 0.96 0.96
Mean error of inliers 1.17 ± 1.78 1.29 ± 1.76 1.34 ± 2.15

method achieves median distances of about 1.4 mm and mean distances of about
2 mm. The boxplots of the distances of all point pairs and the frame mean point
distances of all 409 evaluation frames are illustrated in Fig. 6.13. The comparison of
the three DCR approaches from Table 6.7 and Fig. 6.13 indicates that the accuracy of
the proposed DCR method has shown improvement over the DCR without tracking
and is only slightly less than the DCR with manual tip tracking.

Table 6.8 shows how the frame mean point distances of the 409 evaluation frames
are distributed. The DCR with the proposed method has similar error distribution
as the one with manual tip tracking: they both have about 1/3 of the distances less
than 1 mm and 1/3 of the distances between 1 and 2 mm. The proposed method has
slightly more distances larger than 5 mm than manual tip tracking. Both methods
are more accurate than the DCR without tracking on intervals of small errors (< 2
mm).

Fig. 6.14 shows overlays of selected roadmaps on example frames of 4 sequences
with the three DCR approaches. The DCR without tracking presents mismatch of
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Figure 6.11: Longitudinal views of tracking errors (mm) for the 6 sequences with
outliers using automatic initialization.

catheters, guidewires or residual of contrast agent in the images, whereas the other
methods improve the alignment and show good match between the structures in the
original X-ray image and the roadmaps. Compared to the DCR with manual tip
tracking, the proposed method show similar visual alignment of the roadmaps to the
original X-ray images.

6.6.4 Processing Time

The processing time of all steps in the proposed DCR method was measured with
the hardware and software setup in Section 6.5.5. The ECG matching method for
roadmap selection was running in Python on the CPU of the linux machine; the deep
neural network and the optical flow component of the tracking method were running
on the GPU.

In the experiments, the runtimes for roadmap selection (step 1) and roadmap
transformation (step 3) in Fig. 6.1 were negligible (< 1 ms / frame). The runtime
of the proposed catheter tip tracking method is shown in Table 6.9 and Fig. 6.15.
The average time to compute the likelihood with the deep learning setup (DL) is
31.5 ms / frame. The particle filtering (PF) step, which consists of the optical flow
estimation, sample propagation, sample weight update and normalization, prediction
and resampling, takes on average 23 ms / frame. Therefore, the average tracking time
in total is 54.5 ms / frame. The total average time of the proposed DCR including
roadmap selection, catheter tip tracking and roadmap transformation is still less than
the acquisition time of our data (66.7 ms / frame, 15 fps), indicating that the proposed
DCR method would run in real-time with our setup.
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(a) Sequence 1-3 on the top row in Fig. 6.11
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(b) Sequence 4-6 on the bottom row in Fig. 6.11

Figure 6.12: Examples frames from the 6 sequences in Fig. 6.11. The high
probability in the detection heatmap is highlighted as bright color. Particles are
presented as green dots. The red dots in the last column indicate the ground truth
tip location. (Best viewed in color)
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Table 6.7: The statistics of DCR accuracy (mm) with three different tracking
scenarios.

Without Tracking
Proposed Tracking Manual Tip

Method Tracking

Maximal distance of
27.19 20.24 13.12

all point pairs
Median distance of

1.97 1.43 1.35
all point pairs

Mean distance of
2.94 ± 2.83 2.07 ± 2.08 1.85 ± 1.72

all point pairs

Median of frame
2.11 1.42 1.38

mean distance
Average of frame

2.76 ± 2.08 1.91 ± 1.52 1.75 ± 1.30
mean distance

Figure 6.13: Accuracy (mm) of DCR with three different tracking scenarios.

6.7 Discussion

We have presented a new approach to perform online dynamic coronary roadmapping
on X-ray fluoroscopic sequences for PCI procedures. The approach compensates the
cardiac-induced vessel motion via selecting offline-stored roadmaps with appropriate
cardiac phase using ECG matching, and corrects the respiratory motion of vessels
by online tracking of guiding catheter tip in X-ray fluoroscopy using a proposed
deep learning based Bayesian filtering. The proposed tracking method represents
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Table 6.8: Distribution of frame mean point distances of the 409 evaluation frames.

Tracking Methods of DCR
Error Intervals (mm)

< 1 1-2 2-3 3-4 4-5 ≥ 5

Without tracking 81 115 69 47 31 66
Proposed Tracking Method 131 145 61 32 17 23
Manual Tip Tracking 139 144 61 35 20 10

Original X-ray 
Image

Without Catheter 
Tip Tracking

With The Proposed 
Method

With Manual Tip 
Tracking

Figure 6.14: Examples of superimposition of selected roadmaps (red) on X-ray
fluoroscopic frames. (Best viewed in color)
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Table 6.9: Statistics of the runtime of catheter tip tracking (ms / frame) on the
test (tracking) dataset.

Deep Learning Particle Filtering Total Tracking Time

Mean 31.5 ± 10.3 23.0 ± 8.7 54.5 ± 12.3
Median 35.1 22.8 57.7

0 20 40 60 80 100
Processing Time (ms)

DL

PF

Total

Image acquisition
time 66.7 ms / frame

Figure 6.15: Runtime of catheter tip tracking (ms / frame) on all test frames.

and tracks the posterior of catheter tip via a particle filter, for which a likelihood
probability map is computed for updating the particle weights using a convolutional
neural network. In the experiments, the proposed DCR approach has been trained
and evaluated on clinical X-ray sequences for both tracking and roadmapping tasks.

One prerequisite of accurate tracking with the proposed approach is to obtain a
reasonably good likelihood estimation, which requires to train the deep neural net-
work to detect catheter tip well. In this work, we have investigated the influence of
three network hyperparameters on the performance of the detection network (Section
6.6.1): the basic channel number and network depth level are model capacity param-
eters, the dropout adds regularization to the model. The experiment showed that the
detection accuracy improves when the basic channel number and the network depth
level increase (Table 6.3). This observation matches the expectation that a more com-
plex model has higher capacity to model the variation in the data, hence results in
better accuracy. When the complexity reaches a certain level, e.g. 64 basic channels
and 5 level of depth, the network performance does not increase much compared to
those with simpler settings, implying that the model starts overfitting on our dataset.

In addition to the deep neural network, the other important component of the pro-
posed tracking approach is the sampling in the particle filter that yields the samples
for representing the prior and the posterior of catheter tip position. First, a sufficient
number of samples in the whole sample space are required to well characterize the
probability distributions. The experiment in Section 6.6.2.2 shows that 100 samples
are suboptimal, while 1000 samples seem sufficient, as 10000 samples result in track-
ing accuracies similar to 1000 samples. Second, the sample dynamics also plays an
important role in tracking, in particular, as indicated by Eq.(6.8), the process noise
and the sample motion. The process noise has an impact on the tracking accuracy,
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according to Table 6.4. It shows that the optimal choices of the standard deviation
of the process noise are 4 or 5 px for the downsampled images. One possible reason
for such choices may be that they are similar to the size of guiding catheters. Apart
from the process noise, sample motion is another key aspect of sample dynamics.
Motion estimation has previouly been incorporated in a motion-based particle filter,
such as adaptive block matching [19]. In our work, optical flow was chosen for mo-
tion estimation, as its non-parametric nature allows to characterize the complexity of
motion in X-ray fluoroscopy well. In addition, the advantage of such approach from
a theoretical point of view is that it takes into account of the current observation,
leading to a more optimal importance density [11] compared to random motion.

The tracking results in Section 6.6.2.3 show that the proposed tracking approach is
able to track the catheter tip in X-ray fluoroscopy accurately with an average tracking
error of about 1.3 mm. It also shows advantages over methods based only on optical
flow or the detection network. The OF (pre) method relies heavily on tracking in the
previous frame, hence the error could accumulate. The OF (first) method may suffer
from large motion from the first frame to the current frame. The detection method
uses information only from the current frame, no temporal relation between frames
is utilized; therefore, it results in spikes in the longitudinal view, as shown in Fig.
6.7. The proposed tracking method has a CNN to provide an accurate observation
on the current frame which improves the accuracy of optical flow tracking within
the framework of Bayesian filtering. In the meantime, the optical flow based particle
filter maintains and propagates the prior knowledge from the initial tip position to
provide a constraint on searching for the potentially correct positions, which is useful
especially when the CNN detector fails to find the correct target area. The association
of knowledge from two sources together improves the tracking accuracy compared to
each single source.

The initial state is a also key component of tracking approaches. In the context
of Bayesian filtering, the initial state provides the prior knowledge of the tracking
target. Most tracking algorithms assume a known initial state from which the target
is tracked, e.g. our proposed method with manual initialization in Section 6.6.2.4.
In this case, the prior knowledge is provided by human. In Section 6.6.2.4, we also
investigated a scenario where the initial state is given by the detection network, so
that the complete tracking process is fully automated. The results indicate that,
the proposed tracking method with automatic initialization works reasonably well
on most sequences even when the initialization is sometimes incorrect (Fig. 6.12a).
This is because (1) the true position is covered by a few samples, and (2) the correct
detection in later frames corrects the initial mistake in the first frame. The automatic
initialization fails when (1) a wrong position is covered by a few samples and (2) the
wrong detection in subsequent frames confirms the mistake in the initial frame (Fig.
6.12b). This happens when there is contrast agent remaining in the image or there are
multiple catheters, which are the major sources causing ambiguity in detection. In
practice, the automatic initialization would work well when contrast agent is washed
out and only one catheter is present in the field of view, otherwise manual initialization
would be needed which requires only one click to initiate tracking.

Dynamic coronary roadmapping is the direct application of the catheter tip track-
ing results. In our experiments, the DCR was performed with manual tip initialization
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to show the potential of the proposed tracking method, and was compared with the
DCR without tracking and with manual tracking. The results indicate that using
catheter tip tracking can improve DCR accuracy, as the respiratory-induced vessel
motion is corrected by the displacement of catheter tip in addtion to cardiac motion
correction. The results also show that the proposed DCR reaches a good accuracy
(mean error is about 2 mm) and performs only slightly worse than its best case, the
DCR with manual tip tracking which is not applicable for intraoperative use. Addi-
tionally, according to a previous study [30], the average lumen diameters of human
coronary arteries are between 1.9 mm (distal left anterior descending artery) and 4.5
mm (left main artery). This means that the accuracy achieved with the proposed
approach is comparable with the size of coronary arteries.

Apart from catheter tip tracking, several other possible factors in different steps
of the experiments may influence the final DCR accuracy. First, in the offline phase,
the signal of contrast agent may become too strong and completely cover the catheter
tip, complicating the tip visibility in some cases. In this situation, the uncertainty in
the manual tip annotation may result in errors in roadmap transformation. Second,
in the roadmap selection step, the offline-stored roadmaps are only discrete samples
of complete cardiac cycles which might not fully characterize every possible change
in the cardiac motion. This problem could possibly be addressed in the future by
interpolating frames between the existing frames in the data. Additionally, varia-
tion exists between different cardiac cycles [72], therefore, choosing a roadmap from
another cycle may cause inaccuracy for cardiac motion compensation. Finally, the
way of DCR evaluation in Section 6.5.4 might also introduce inaccuracies in the error
measurement. Since guidewires often attach to the inner wall of vessels, the small
difference between the annotation of guidewire and vessel centerlines was ignored in
the evaluation.

In addition to accuracy, processing speed is also critical for intraoperative appli-
cations. The results in Section 6.6.4 indicate that the total processing time of the
proposed DCR approach is less than the image acquisition time on our setup, mean-
ing that it runs in real-time. It is worth noticing that the DL and PF steps of the
proposed tracking method are independent from each other. In practice, in case more
than one GPU are available, the proposed DCR approach can be further accelerated
by paralleling the DL and PF steps, making them running on different GPUs.

Compared to the previous works on DCR, the proposed approach in this paper
shows advancement in several aspects. First, our systems works on non-cardiac-gated
sequences which does not require additional setups for cardiac motion gating that
were needed for some methods [71, 119]. Second, our approach compensates both
respiratory- and cardiac-induced vessel motion, which is more accurate than systems
that correct only cardiac motion [32]. In addition, the proposed DCR approach fol-
lows a data-driven paradigm that learns target feature from sequences acquired from
different patients and various view angles, making it more robust than the method
that relies on traditional vesselness filtering [55] or methods that require specific tissue
being present [71, 119]. These are the major advantages of the proposed DCR over
the existing direct roadmapping systems. Compared to model-based motion compen-
sation, our approach does not require the extraction of motion surrogate signals and
train a motion model for each new patient, but can be directly run with a trained
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model.

The proposed deep learning based Bayesian filtering method also presents ad-
vantages over the existing instrument tracking approaches. First, the deep learning
component enables a more general framework to detect instruments in medical images
than methods tailored for specific tools [68, 69]. Compared to the existing detection
methods based on deep learning [17, 31, 59], our approach takes into account of the
information between frames; the Bayesian filtering framework allows interaction be-
tween temporal information and the detection of a convolutional neural network,
making the tracking more robust. Bayesian frameworks have been used in many
previous temporal instrument tracking methods. Particularly, in some works, the
likelihood term was designed based on registration or segmentation outcomes [9, 99]
or traditional machine learning approaches with handcrafted features [79, 110, 111].
In our method, we approximated the likelihood with a deep neural network learned
from the clinical data which exempts the need of feature engineering but yet pos-
sesses more discriminative power; the network directly produces the probability map,
making it more straightforward to use. Finally, compared to the existing instrument
tracking approaches based on Bayesian filtering [9, 99, 100], the state transition in
our method was based on the motion estimated between two adjacent frames, which
is more reliable than totally random motion or artificially-designed state transition
models.

From a practical point of view, the proposed DCR approach could easily fit into
the clinical workflow of PCI. The offline phase of the method can be done efficiently
by a technical assistant of the procedures: selecting and creating roadmaps from an
angiography acquisition, annotating the catheter tip (one point) in the images. This
phase is typically done before a fluoroscopy acquisition during which the guidewire
advancement and stent placement are performed. In the online phase, when a fluo-
roscopic image is acquired, the proposed system selects the most suitable roadmap,
tracks the catheter tip and transforms the roadmap to prospectively show a vessel
overlay on the fluorosocpic image. The online updated coronary roadmap can provide
real-time visual guidance to cardiologists to manipulate interventional tools during
the procedure without the need of administering extra contrast agent.

In the future, it may be worth investigating the following directions related to this
work. As the data used in this study was acquired from one hospital using a machine
from a single vendor, it would be interesting to evaluate the proposed approach on
multi-center data acquired with machines from different vendors. It would be also of
interest to validate our approach during PCI procedures in an environment simulating
the real clinical settings. Additionally, from a methodological point of view, although
the proposed tracking method is invariant under different view angles, the whole DCR
approach works only when the offline and online phase have the same view angle, i.e.
it is a 2D roadmapping system. Therefore, one future direction would be to develop
a 3D DCR system that would work with various view angles in the online phase.
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6.8 Conclusion

We have developed and validated a novel approach to perform dynamic coronary
roadmapping for PCI image guidance. The approach compensates cardiac motion
through ECG alignment and respiratory motion by guiding catheter tip tracking dur-
ing fluoroscopy with a deep learning based Bayesian filtering method. The proposed
tracking and roadmapping approaches were trained and evaluated on clinical X-ray
image datasets and were proved to perform accurately on both catheter tip tracking
and dynamic coronary roadmapping tasks. Our approach also runs in real-time on a
setup with a modern GPU and has the potential to be easily integrated into routine
PCI procedures, assisting the operator with real-time visual image guidance.
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Chapter Seven

Summary And Future Perspectives

7.1 Summary

In this thesis we have reported on the development and evaluation of dynamic image
analysis approaches towards improving image guidance for percutaneous coronary
interventions. We have proposed layer separation techniques for retrospective and
prospective vessel enhancement in X-ray angiograms. In addition, we have demon-
strated two applications that benefit from layer separation for extraction of respiratory
motion surrogate and detection of contrast inflow in XA sequences. Finally, we have
reported the development of a dynamic coronary roadmapping approach for provid-
ing real-time visual guidance on X-ray fluoroscopic images for reduced use of contrast
agent during PCI procedures.

Automatic XA image processing, such as extraction of coronary arteries, may
serve as a basic component for further image analysis of image guidance applications.
Common vessel extraction approaches, e.g. Hessian-based vesselness filtering, are of-
ten hampered by low-contrast and background structures in XA images. In Chapter
2, we developed a layer separation approach for vessel enhancement to separate XA
images into three layers, a breathing layer, a quasi-static layer and a vessel layer that
contains coronary arteries. The method firstly separates the breathing layer using a
morphological closing; the quasi-static layer and the vessel layer are then separated
using robust PCA based on low-rank and sparsity assumptions. The layer separa-
tion approach was evaluated on four XA image series acquired from four patients
with visual assessment and quantitative evaluation using contrast-to-noise ratio as
the metric. The resulted vessel layer has shown a substantial improvement on ves-
sel visibility compared to the original XA. The potential application of the proposed
method is that it could possibly be used as a basic component for further XA image
analysis.

The approach presented in Chapter 2 requires a number of frames as input to
obtain reliable layer separation. It is suitable to be used as a post-processing compo-
nent, but the nature of batch processing prevents its online use during interventions.
In Chapter 3, we developed an automatic online layer separation approach that ro-
bustly separates XA images into the same kind of three layers as Chapter 2. The
breathing layer is firstly separated using morphological closing; the quasi-static layer
and the vessel layer are then separated with an online robust PCA (OR-PCA) algo-
rithm. Different from the “off-line” layer separation, the online method is able to take
as input a single XA image of a sequence at a time, and separates the three layers
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for that image. Upon processing the new XA image, the online method also updates
an internal background model using the information of the new image. This setup
is a major advantage over the “off-line” approach since it makes online processing of
streaming XA data possible. In addition, as the original OR-PCA treats all frames
equally, we have also investigated three different ways to downweight the past frames
to improve the layer separation performance. The proposed online layer separation
methods run fast and were demonstrated to significantly improve the vessel visibil-
ity in 42 clinical XA sequences and showed better performance than other related
online or prospective approaches. Moreover, the potential of the proposed approach
was demonstrated by enhancing contrast of vessels in X-ray images with low vessel
contrast using synthetic data and real XA images from four pigs. This potentially
enables using a reduced amount of contrast agent to prevent contrast-induced side
effects.

The layer separation approaches described in Chapter 2 and 3 enable indepen-
dent analysis of the resulted layers, and can, hence, become a component in the
image processing pipeline for various applications. In Chapter 4, we presented a
method on extraction of respiratory motion surrogate signals from XA sequences.
The method starts with a layer separation step to obtain the breathing layer of an
XA sequence. Then principal component analysis (PCA) is applied on the pixel in-
tensities of the breathing layer. Finally the breathing layer is projected onto the first
principal component to obtain the respiratory motion surrogate. The surrogate signal
was demonstrated to be highly correlated with the ground truth diaphragm displace-
ment (average correlation coefficient over 0.9) on monoplane and biplane data from
eight patients in both retrospective and prospective analysis. Although no statisti-
cally significantly difference was observed between the proposed method and other
baseline approaches, our method improves the robustness and runs faster. One appli-
cation direction of the proposed respiratory motion surrogate signal is that it could
potentially be used as a component for patient-specific coronary motion modeling
that is useful for motion compensation in image guided procedures [72].

Another application that benefits from layer separation is detection of contrast
inflow in XA sequences. Automatic detection of contrast inflow in XA can assist
image guidance of PCI procedures. Tasks such as registration of coronary models
from CTA to XA can only be accomplished when vessels are visible in X-ray im-
ages. Likewise, automatic detection of interventional tools for dynamic roadmapping
is only feasible in non-contrast X-ray images. Therefore, an automatic way to detect
contrast inflow can facilitate automating the image guidance tasks, reducing the in-
teraction of the operator and computers during the procedure. In Chapter 5, we
developed two approaches to detect contrast inflow in XA online. More specifically,
the two approaches are machine (deep) learning based classifiers to detect whether
an X-ray image is with contrast agent. One method takes the advantage of layer
separation, using the vessel layer followed by a Hessian-based vesselness filtering to
enhance vessel structures in XA images. An LSTM classifier then takes as input the
average intensity of the vessel-enhanced image to detect the contrast in that image.
The second approach uses a convolutional neural network (CNN) for image classifi-
cation. The network takes as input the current frame, its three previous frames, and
the first frame of the sequence where no contrast agent is present. Through several
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residual units with convolutional layers followed by two fully-connect layers, the net-
work outputs the probability of the current frame being contrasted. Both methods
have excellent performance on detection of the beginning contrast frame with average
errors less than 4 frames and median errors about 2 frames (given the frame rate
15 fps) on 80 clinical X-ray sequences, and outperform the state-of-the-art with large
margin. In terms of speed, the proposed two methods run fast, and have the potential
to be integrated in advanced image guidance systems for PCI.

While contrast agents are often administered to visualize coronary arteries and as-
sess lesions during PCI, interventional tools are typically navigated with non-contrast-
enhanced X-ray images, as higher use of contrast agent increases the risk of kidney
failure. When guided with only fluoroscopic X-ray images without contrast agent,
the cardiologist needs to mentally reconstruct the anatomy of vessels and lesions.
In Chapter 6, we developed a dynamic coronary roadmapping approach to address
the challenge of reduced contrast use and limited visual feedback during instrument
navigation in the procedure. With this approach, fluoroscopic images are augmented
with a dynamic vessel layer obtained from a stored angiographic sequence acquired
from the same C-arm angle. The cardiac and respiratory motion of the vessel layer
are compensated by ECG alignment and catheter tip tracking, respectively. To ac-
curately track the guiding catheter tip, we proposed a deep learning based Bayesian
filtering method which unifies the probabilistic detection outcome of a convolutional
neural network and the motion estimation between frames into a particle filtering
framework. The proposed tracking method achieved a tracking accuracy with an av-
erage error of 1.3 mm on 34 clinical X-ray sequences and has been shown superior
to detection without temporal information using the CNN and tracking with only
the motion estimation using optical flow. The roadmapping with the proposed track-
ing algorithm achieved an average error about 2 mm on 409 frames with guidewire
annotations from the 34 sequences, and is close to the accuracy (1.8 mm) of the
roadmapping with manual tip tracking. In terms of computation efficiency, the pro-
posed dynamic roadmapping approach including the catheter tip tracking step runs
in real-time on a workstation with a single GPU. These experiment results suggest
that the proposed dynamic coronary roadmapping approach has the potential to be
integrated into routine PCI procedures, providing cardiologists with real-time visual
guidance during interventions without the need of extra contrast use.

A Summary on Dynamic Analysis in This Thesis

The methodologies for dynamic X-ray angiography or fluoroscopy analysis developed
in this thesis from Chapter 2 to Chapter 6 have taken advantage of the temporal,
motion or multi-frame information in X-ray sequences. Depending on how the in-
formation was processed, the approaches could be categorized into two approaches:
batch processing and online processing.

Batch processing takes as input more than one images or the complete sequences
as a whole group for information processing, such that the temporal information is
implicitly contained in the input. The approaches in Chapter 2, Chapter 4 and the
CNN-based method in Chapter 5 fall into this category. The robust PCA algorithm
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in Chapter 2 and PCA in Chapter 4 are unsupervised learning algorithms to discover
latent structures from multiple images; the CNN-based method in Chapter 5 is a su-
pervised deep learning approach. For example, robust PCA models the background
as a low-rank component and the foreground as a sparse component from a sequence
of images; PCA extract the first principle component as the dimension that well ex-
plains the respiratory motion in multiple images. These tasks can not be simply
achieved with information from only one single image. The CNN-based classification
in Chapter 5 may benefit from frames at multiple time points as additional input
channels to provide temporal changes. In terms of image guidance applications, the
batch processing approaches are well suitable as a post-processing component in ret-
rospective image analysis pipelines. In order for prospective uses, this type of models
may be trained offline in advance; during the online phase, only inference is applied
with the trained model, e.g. the prospective analysis in Chapter 4 and the CNN-based
approach in Chapter 5.

Online processing takes as input one image at a time, and explicitly model the
relation between frames of adjacent time points. This type of models may be rep-
resented by the formula xt = f(xt−1), where xt denotes the information at time t,
f is the mapping function from xt−1 to xt. This sequential formulation makes the
models ideal for processing streaming data. The approaches in Chapter 3, Chapter
6 and the RNN-based method in Chapter 5 belong to this class. The OR-PCA algo-
rithm in Chapter 3 solves the low-rank decomposition problem in an online manner
and is able to update using information of the new coming image. Besides, the three
ways to downweight information from the last frame provides variants of the map-
ping function. The RNN-based method in Chapter 5 is a machine learning approach
based on recurrent neural network in which the relation between adjacent frames is
modelled by the LSTM units. The Bayesian filtering in Chapter 6 is another type
of sequential model in which the temporal relation is represented by the state transi-
tion function or the transition probability p(xk|xk−1) that involves motion estimation
between adjacent frames. In terms of image guidance applications, the online pro-
cessing methods well fits to the workflow of prospective use when the methods run in
real-time, although an off-line model training may be needed for supervised-learning
based approaches, such as the RNN-based method in Chapter 5 and the likelihood
approximation of the Bayesian filtering in Chapter 6.

7.2 Future Perspectives

In this thesis, we have presented several techniques towards improving image guidance
of PCI procedures from various aspects. As the image guidance task for PCI is
in general challenging, especially for difficult cases, additional research may still be
necessary to improve the accuracy, robustness, and to translate the techniques to
clinical practice.

The layer separation approaches developed in Chapter 2 and Chapter 3 have
been shown to substantially improve vessel visibility in XA images. In order to further
boost the computation speed and obtain a better separation of background structures
that may still remain in the vessel layer with the current proposed methods in this
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thesis, a deep learning approach may be worth investigating. Preliminary studies
[45, 46] (not included in this thesis, see publication list) have been conducted using
the vessel layer obtained with the method in Chapter 2 as the ground truth label,
and to learn the label with a fully convolutional network. These studies showed
promising results. As the learning in these studies is supervised by imperfect labels
obtained with another algorithm, it would be interesting to explore new deep learning
approaches trained with manual labels or in unsupervised manners in future works.

The proposed layer separation approaches have also been shown useful as a basic
image processing component in two applications. The approach proposed in Chapter
4 extracts surrogate signals that are highly correlated to the diaphragm displacement,
which is beneficial for coronary motion modelling and exempts from the need of man-
ual diaphragm annotation [96]. In future works, it may be interesting to model the
coronary motion using the ECG signals together with the respiratory motion surro-
gate obtained with the method in Chapter 4, and assess motion prediction for image
guidance on X-ray fluoroscopy using the motion model. The approach developed in
Chapter 5 for contrast inflow detection assists automating the workflow of image guid-
ance tasks, e.g. knowing when to apply registration of preoperative coronary model
from CTA to XA images. The subsequent work in the future may be determining
when to start applying dynamic roadmapping on fluoroscopic images, which requires
to detect the outflow of contrast agent. In addition, from a methodological point of
view, it may be also interesting to develop an unified approach that takes advantages
from both the CNN- and RNN-based methods in Chapter 5, which learns features
automatically and at the meantime make use of the temporal information between
frames.

Image guidance and visualization are often bottlenecks in the feedback loop of
operator, interventional tools and patient. The dynamic coronary roadmapping ap-
proach developed in Chapter 6 is able to accurately overlay a dynamic vessel layer on
top of fluoroscopic images, which provides real-time image feedback to the cardiologist
when navigating the instruments. Moreover, from a patient-specific motion modelling
point of view, the catheter tip position tracked with the proposed algorithm may also
serve as a surrogate signal that could be used in a motion model of coronary arteries.

Following the current research on dynamic roadmapping towards building an im-
age guidance system for PCI and translating it to clinical practice, it might be worth
investigating the following directions.

• Since the roadmap used in the study in Chapter 6 was retrospectively taken from
the same sequence with the fluoroscopic images, it may be necessary to measure
how accurate the dynamic roadmapping would be in a real image guidance
situation, i.e. the roadmaps are acquired from a different sequence with the
same C-arm configuration.

• The current proposed roadmapping approach requires the roadmaps and the
fluoroscopic images are acquired with the same C-arm angle, would it be possible
to develop a view-angle-independent solution, e.g. a 3D roadmapping system
based on reconstructed 3D vessel and catheter models, especially for biplane
X-ray angiography systems?
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• For difficult clinical cases, such as chronic total occlusion (CTO) featuring as
a complete obstruction of the target coronary artery, roadmaps solely based on
XA might be limited for visualizing the vessel. For such cases, integration of 3D
anatomical information from CTA in fluoroscopic images might be the solution
to visualize the occluded vessel segment. The dynamic coronary roadmapping
approach enables such an integration which was not possible with the previous
3D/2D registration approaches that need contrast agent to be present in the
X-ray images.

• It should be worth exploring the possibility of building one system that combines
the components developed in this thesis, i.e. the layer separation, contrast
frame detection and dynamic coronary roadmapping, for an accurate, fully-
automated and real-time image guidance solution. The integrated system should
be optimized for the clinical workflow of PCI in a catheterization room.

• Clinical validations are needed, e.g. using multi-center data acquired from ma-
chines of different vendors, testing the system during PCI procedures with real
clinical settings.

Based on the approaches developed in this thesis, and the advancement of image
guidance techniques and general medical imaging area in the past years, a general-
ized image guidance platform for interventional support in the future might follow
several trends. First, multi-modal data of various dimensions e.g. ECG (1D), XA
(2D, 2D+t), CTA (3D, 3D+t), will be integrated for information processing. Second,
different types of information will be merged together for better feedback and decision
making, e.g. calcification and anatomical information can be introduced from CTA
to XA, which is especially useful for difficult cases like chronic total occlusion. These
two aspects require techniques of multi-modal registration and information fusion for
image guidance, which, e.g. can be supported with the augmented vessel informa-
tion by the layer separation and the dynamic roadmapping approaches developed in
this thesis. Third, data-driven approaches, especially deep learning, enable learning
from large datasets, resulting in higher accuracy and robustness in many image guid-
ance tasks. These trends will aim for improved image guidance techniques that are
accurate, robust, fast and also safe to patients and physicians.

In conclusion, in this thesis we have developed and evaluated novel dynamic image
analysis approaches towards an improved image guidance for percutaneous coronary
interventions. These approaches have the potential not only to assist information
processing, but also to improve the visual feedback to clinicians and at the meantime
reduce the contrast use during interventions. To translate the techniques into clinical
practice, further development on integration of the approaches and validations with
real interventional settings would be needed.
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Samenvatting

Samenvatting

In dit proefschrift beschrijven we de ontwikkeling en evaluatie van methoden voor
de analyse van dynamische Rntgen beeldreeksen om de beeldgeleiding bij percutane
ingrepen aan de kransslagader te verbeteren. We hebben een methode ontwikkeld
om de verschillende ‘lagen’ in een Röntgen afbeelding van de vaten te onderscheiden,
om zowel retrospectief als prospectief de vaten in zulke afbeeldingen beter zichtbaar
te maken. Daarnaast laten we twee andere toepassingen zien die gebruik kunnen
maken van deze techniek: de extractie van ademhalingsinformatie uit beeldreeksen,
en het bepalen van het tijdspunt waarop het contrastmiddel het beeld binnenstroomt
in angiografische beeldenreeksen. Tenslotte beschrijven we de ontwikkeling van een
methode die de kransslagaders kan projecteren op doorlichtingsbeelden die gemaakt
worden tijdens interventies aan de kransslagaders, om zo de beeldgeleiding te ver-
beteren.

Automatische analyse van angiografische beeldreeksen, zoals de extractie van de
bloedvaten, is een basis voor verdere analyse en verbetering van beeldgeleiding. Ge-
bruikelijke technieken voor vaatanalyse, zoals die gebaseerd op de Hessiaan van het
beeld, werken vaak niet goed bij laag contrast, en worden ook gehinderd door de
aanwezigheid van andere structuren. In Hoofdstuk 2 ontwikkelden we een manier om
op basis van de beweging onderscheid te maken tussen verschillende structuren in
beeldreeksen, nl. statische structuren, structuren die met de ademhaling mee bewe-
gen, en structuren die met het hart bewegen. Deze methode onderscheidt eerst de
ademhalingsstructuren door een morfologische operatie, waarna vervolgens statische
en bewegende structuren onderscheiden worden via de toepassing van een robuuste
PCA. Deze methode is zowel visueel als kwantitatief geëvalueerd op vier beeldreek-
sen van vier patiënten. Het beeld met de geëxtraheerde vaatstructuren geeft een
substantieel betere visualisatie van de vaten, in vergelijking met de originele beelden.

De methode uit Hoofdstuk 2 gebruikt de volledige beeldreeks om de verschillende
structuren te onderscheiden, en kan dus alleen als nabewerking worden toegepast, en
niet tijdens een daadwerkelijke ingreep. In Hoofdstuk 3 wordt de methode daarom
verder ontwikkeld, zodat deze ook in een ‘on-line’ scenario, tijdens een ingreep, kan
worden toegepast. De structuren die bewegen met de ademhaling worden nog steeds
via een morfologisch filter bepaald, en de vaten worden dan van de statische structuren
onderscheiden door een real-time versie van de robuuste PCA methode. Tijdens deze
bewerking wordt continu een intern model van de statische achtergrond bepaald en
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aangepast. Deze methode heeft als voordeel dat deze ook tijdens ingrepen gebruikt
kan worden. Daarnaast geeft de methode, vanwege de mathematische formulering,
de mogelijkheid om de bijdrage van vorige beelden aan te passen (minder belangrijk
te maken). Verschillende methoden om dit te bereiken zijn hiervoor geëvalueerd.
Tijdens testen op 42 beeldreeksen bleek dat de methode voldoende snel werkt, en de
zichtbaarheid van vaten in de beelden kan vergroten. Daarnaast is in vier beeldreeksen
van ingrepen bij varkens aangetoond dat de methode daadwerkelijk gebruikt kan
worden om het contrast te verbeteren in beelden met vaten met weinig contrastmiddel.
De methode heeft dus de potentie om het contrastmiddel gebruik tijdens ingrepen te
verminderen.

De methode uit de hoofdstukken 2 en 3 maakt een aparte analyse van de verschil-
lende structuren in het beeld mogelijk, en kan dus gebruikt worden als component
in meer geavanceerde methoden. In Hoofdstuk 4 laten we een methode zien die een
surrogaat ademhalingssignaal uit een beeldreeks kan halen. De methode begint met
het bepalen van de laag met ademhalingsstructuren. Vervolgens wordt een PCA
methode toegepast op de intensiteiten in de resulterende beelden. Vervolgens worden
nieuwe beelden geprojecteerd op de eerste component van de PCA analyse om het
ademhalingssignaal te bepalen. In beeldreeksen van 8 patiënten hebben we, zowel
retrospectief als prospectief, laten zien dat dit signaal sterk gecorreleerd is met de
positie van het diafragma. Hoewel er geen statistisch significant verschil was tussen
de voorgestelde methode en eerder gebruikte methoden, is de voorgestelde methode
robuuster, en ook sneller. Dit ademhalingssignaal zou bijvoorbeeld gebruikt kunnen
worden voor bewegingscorrectie bij beeldgeleide ingrepen.

Een andere toepassing voor het onderscheiden van de verschillende structuren is
het detecteren van de instroom van contrastmiddel. Het automatisch detecteren van
contrastmiddelinstroom in een beeldreeks kan van belang zijn voor het verbeteren
van beeldgeleiding. Sommige taken, zoals de registratie van een kransslagadermodel
op basis van CTA, kunnen alleen gedaan worden als er contrastmiddel in de vaten
aanwezig is. Andere taken, zoals de detectie van instrumenten in het beeld, zijn alleen
goed mogelijk als er geen contrastmiddel aanwezig is. Een automatische methode om
instroom te detecteren kan dus van belang zijn voor verdere automatisering van de
beeldgeleiding. In Hoofdstuk 5 ontwikkelden we twee manieren hiervoor: één manier
gebruikt de scheiding in verschillende structuren, gevolgd door een vaatdetectie om
de vaten duidelijker te maken, en een LSTM algoritme bepaalt dan aan de hand van
de gemiddelde intensiteitswaarde van de vaatafbeelding het moment van contrastmid-
delinstroom. De tweede manier gebruikt een neuraal netwerk met convoluties voor
dezelfde detectie. Het netwerk krijgt als invoer het eerste beeld van de beeldreeks,
het huidige beeld, en de drie voorafgaande beelden. Het netwerk geeft vervolgens de
waarschijnlijkheid dat het beeld contrastmiddel bevat. Beide methoden waren suc-
cesvol in het detecteren van het eerste beeld in een serie waar contrastmiddel aanwezig
is. In een experiment met 80 klinische beeldreeks kregen we een gemiddelde fout die
kleiner is dan 4 beelden, en een mediane fout van 2 beelden (voor een beeldfrequentie
van 15 beelden per seconde). Hiermee zijn de methoden veel beter dan bestaande
methoden. Voor wat betreft de rekensnelheid zijn beide methoden snel genoeg om
gëıntegreerd te kunnen worden in systemen voor beeldgeleiding.

Contrastmiddel wordt tijdens beeldgeleide ingrepen aan de kransslagaders vaak
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toegediend om de vaten zichtbaar te maken. Maar voor het navigeren van de instru-
menten door de vaten wordt vaak geen gebruik gemaakt van contrastmiddel, m.n.
omdat een te grote hoeveelheid contrastmiddel schadelijk is voor de nieren. Daarom
moet de cardioloog tijdens het inbrengen en navigeren van de instrumenten gebruik
maken van een mentale reconstructie van de vaten. In Hoofdstuk 6 ontwikkelen we
een methode om continu de vaten te projecteren op beelden zonder contrastmiddel,
om zo de beeldgeleiding voor de cardioloog te verbeteren. In deze methode wordt
informatie van de vaten uit eerdere beeldreeksen gebruikt om vaten af te beelden in
beelden zonder contrastmiddel. Beweging veroorzaakt door het kloppen van het hart,
en door de ademhaling, worden gecompenseerd door gebruik te maken van het ECG,
en het volgen van de tip van de katheter. Om de kathetertip nauwkeurig te kunnen
volgen, ontwikkelden we een Bayesiaanse filter methode die gebruik maakt van een
diep neuraal netwerk. Op deze manier combineren we de probabilistische detectie
van de tip met een particle filtering methode om de tip te volgen. De voorgestelde
methode heeft een gemiddelde fout van 1.3 mm (op 34 klinische beeldreeksen), en is
nauwkeuriger dan methoden die alleen het neurale netwerk, of alleen het Bayesiaanse
filter gebruiken. De overprojectie van vaten, die gebruikt maakt van het volgen van
de tip, heeft een gemiddelde fout van 2 mm op 409 beelden, waarbij de voerdraad
gebruikt is om de nauwkeurigheid te meten. Dit is vergelijkbaar met de fout van
overprojectie op basis van het handmatig volgen van de tip (1.8 mm). Voor wat
betreft de rekentijd is deze methode van overprojectie (inclusief het volgen van de
tip), uitgevoerd op een PC met GPU, snel genoeg om de snelheid van gegenereerde
beelden bij te houden. Dit geeft aan dat deze methode mogelijk gëıntegreerd kan
worden in systemen voor beeldgeleiding voor ingrepen aan de kransslagaders, en dan
cardiologen de vaten kan laten zien zonder gebruik van extra contrastmiddel.

Een samenvatting van de analyse van beeldreeksen in dit proef-
schrift

De methoden voor de analyse van beeldreeksen in dit proefschrift maken gebruik van
bewegings- en/of tijdsinformatie, of van meerdere beelden, uit angiografische beel-
dreeksen. Afhankelijk van hoe deze informatie wordt gebruikt, kunnen de methoden
gecategoriseerd worden in twee klasses: een aanpak waarbij de hele beeldreeks in een
keer verwerkt wordt, en een aanpak waarbij de beelden een voor een verwerkt worden.

De methoden in Hoofdstuk 2, 4 en de neurale netwerk methode uit Hoofdstuk
5 vallen in de eerste categorie: de volledige beeldreeks wordt gebruikt. Het robu-
uste PCA algoritme en het PCA algoritme in Hoofdstuk 4 brengen gegevens in de
structuur aan direct gebaseerd op de data, terwijl in Hoofdstuk 5 een diep netwerk
methode gebruikt wordt om op basis van voorbeeldgegevens te leren. De robuuste
PCA methode scheidt de (statische) achtergrond van de (bewegende) voorgrond op
basis van de beeldinformatie; de PCA methode gebruikt de eerste eigenvector als de
vector die sterk gecorreleerd is aan de ademhalingsbeweging. Om deze taken uit te
voeren, is meer dan één beeld nodig. Het neurale netwerk uit Hoofdstuk 5 maakt
gebruik van beelden op meerdere tijdspunten, zodat gebruik gemaakt kan worden
van verschillen over de tijd. Voor gebruik tijdens beeldgeleide ingrepen zijn dit soort
methoden eigenlijk alleen geschikt om achteraf te gebruiken. Voor gebruik tijdens een
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ingreep moet dit soort modellen vantevoren getraind worden; tijdens de ingreep wordt
dan het getrainde model gebruikt, zoals in het geval van de prospectieve analyse in
Hoofdstuk 4, en het neurale netwerk in Hoofdstuk 5.

Methoden die tijdens de ingreep gebruikt worden zullen steeds n additioneel beeld
als invoer krijgen. Modellen die hierbij gebruikt worden kunnen gerepresenteerd wor-
den met de formule xt = f(xt−1), waarbij xt de informatie op tijdstip t is, en f
een functie die aangeeft wat de relatie tussen xt−1 en xt is. Deze manier van for-
muleren maakt deze modellen geschikt voor het verwerken van beeldreeksen tijdens
een ingreep. De methoden in Hoofdstuk 3, Hoofdstuk 6 en de methode gebaseerd
op RNNs uit Hoofdstuk 5 behoren tot deze categorie. Het OR PCA algoritme in
Hoofdstuk 3 splits het beeld in een statische achtergrond en bewegende voorgrond
op deze ‘on-line’ manier, en past het model aan bij elk nieuw beeld dat verwerkt
wordt. De methode gebaseerd op een RNN in Hoofdstuk 5 gebruikt een ‘terugkerend’
neuraal netwerk, waarbij de relatie tussen opeenvolgende beelden gemodelleerd wordt
met LSTM eenheden. Het Bayesiaanse filter uit Hoofdstuk 6 is ook zon sequentieel
model, waarbij de verandering over de tijd gerepresenteerd wordt met een transitie-
model (of transitie-waarschijnlijkheid) wat de beweging tussen opeenvolgende frames
modelleert.

Voor beeldgeleide interventies is de tweede categorie methoden, waarbij de beelden
één-voor-één verwerkt worden, uitermate geschikt, omdat het goed aansluit bij de sit-
uatie tijdens een interventie. Sommige van deze modellen, zoals de RNN gebaseerde
methode uit Hoofdstuk 5 en het bepalen van de tip positie voor het Bayesiaanse filter
uit Hoofdstuk 6, zullen eerst getraind moeten worden op eerder verkregen beeldreek-
sen.

Conclusie en toekomstvisie

Gebaseerd op de methoden ontwikkeld in dit proefschrift, en de vooruitgang in beeldgelei-
ding en medische beeldvorming in het algemeen over de afgelopen jaren, zullen meth-
ode voor beeldgeleiding bij interventies in de toekomst aan aantal trends volgen.
Allereerst zullen data van verschillende formaten en herkomst, zoals ECG (1D),
röntgenbeelden en angiografie(2D, 2D+t), CTA (3D, 3D+t), gëıntegreerd worden.
Ten tweede zullen verschillende soorten informatie bij elkaar gebracht worden, om
de beeldgeleiding en de besluitvorming daarover te verbeteren. De informatie over
anatomie en aderverkalking, die beschikbaar is vanuit CTA beelden, zou bijvoor-
beeld gëıntegreerd kunnen worden in de beeldgeleiding, wat vooral van belang kan
zijn voor ingewikkelde ingrepen zoals de behandeling van chronische totale occlusies.
Deze twee aspecten vereisen methoden om beelden van verschillende herkomst bij
elkaar te brengen, en gezamenlijk te presenteren, zoals de methoden om vaten uit de
beelden te halen en die te projecteren op de doorlichtingsbeelden, zoals beschreven in
dit proefschrift. Ten derde zullen data-gedreven methoden, in het bijzonder neurale
netwerk gebaseerde methoden, het mogelijk maken te leren van grote hoeveelheden
data, wat kan leiden tot betere nauwkeurigheid en robuustheid in veel beeldverwerk-
ingstaken. Deze trends zullen leiden tot een verbetering van de beeldgeleiding: deze
zou nauwkeuriger, robuuster, sneller, en ook veiliger kunnen worden.
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Concluderend, in dit proefschrift hebben we nieuwe methoden voor de analyse
van angiografische/Röntgen beeldreeksen ontwikkeld en geëvalueerd. Deze methoden
zijn vooral gericht op het verbeteren van beeldgeleiding bij beeldgeleide ingrepen
aan de kransslagaders, en hebben de mogelijkheid om bijv. via overprojectie van de
vaten op beelden tijdens de ingreep de beeldgeleiding te verbeteren, en ook mogelijk
de hoeveelheid gebruikt contrastmiddel te verminderen. Voor translatie van deze
technieken naar de klinische praktijk is verdere integratie in bestaande systemen en
verdere validatie in een katheterisatiekamer nodig.
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