2,353 research outputs found

    Product line architecture recovery with outlier filtering in software families: the Apo-Games case study

    Get PDF
    Software product line (SPL) approach has been widely adopted to achieve systematic reuse in families of software products. Despite its benefits, developing an SPL from scratch requires high up-front investment. Because of that, organizations commonly create product variants with opportunistic reuse approaches (e.g., copy-and-paste or clone-and-own). However, maintenance and evolution of a large number of product variants is a challenging task. In this context, a family of products developed opportunistically is a good starting point to adopt SPLs, known as extractive approach for SPL adoption. One of the initial phases of the extractive approach is the recovery and definition of a product line architecture (PLA) based on existing software variants, to support variant derivation and also to allow the customization according to customers’ needs. The problem of defining a PLA from existing system variants is that some variants can become highly unrelated to their predecessors, known as outlier variants. The inclusion of outlier variants in the PLA recovery leads to additional effort and noise in the common structure and complicates architectural decisions. In this work, we present an automatic approach to identify and filter outlier variants during the recovery and definition of PLAs. Our approach identifies the minimum subset of cross-product architectural information for an effective PLA recovery. To evaluate our approach, we focus on real-world variants of the Apo-Games family. We recover a PLA taking as input 34 Apo-Game variants developed by using opportunistic reuse. The results provided evidence that our automatic approach is able to identify and filter outlier variants, allowing to eliminate exclusive packages and classes without removing the whole variant. We consider that the recovered PLA can help domain experts to take informed decisions to support SPL adoption.This research was partially funded by INES 2.0; CNPq grants 465614/2014-0 and 408356/2018-9; and FAPESB grants JCB0060/2016 and BOL2443/201

    A test-driven approach to code search and its application to the reuse of auxiliary functionality

    Get PDF
    Context: Software developers spend considerable effort implementing auxiliary functionality used by the main features of a system (e.g., compressing/decompressing files, encryption/decription of data, scaling/rotating images). With the increasing amount of open source code available on the Internet, time and effort can be saved by reusing these utilities through informal practices of code search and reuse. However, when this type of reuse is performed in an ad hoc manner, it can be tedious and error-prone: code results have to be manually inspected and integrated into the workspace.Objective: in this paper we introduce and evaluate the use of test cases as an interface for automating code search and reuse. We call our approach Test-Driven Code Search (TDCS). Test cases serve two purposes: (1) they define the behavior of the desired functionality to be searched; and (2) they test the matching results for suitability in the local context. We also describe CodeGenie, an Eclipse plugin we have developed that performs TDCS using a code search engine called Sourcerer.Method: Our evaluation consists of two studies: an applicability study with 34 different features that were searched using CodeGenie; and a performance study comparing CodeGenie, Google Code Search, and a manual approach.Results: Both studies present evidence of the applicability and good performance of TDCS in the reuse of auxiliary functionality.Conclusion: This paper presents an approach to source code search and its application to the reuse of auxiliary functionality. Our exploratory evaluation shows promising results, which motivates the use and further investigation of TDCS. (C) 2010 Elsevier B.V. All rights reserved.Universidade Federal de São Paulo, Dept Sci & Technol, Sao Jose Dos Campos, SP, BrazilUSP, ICMC, Comp Syst Dept, BR-13560970 Sao Carlos, SP, BrazilUniv Calif Irvine, Donald Bren Sch Informat & Comp Sci, Irvine, CA USAUniversidade Federal de São Paulo, Dept Sci & Technol, Sao Jose Dos Campos, SP, BrazilWeb of Scienc

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Classification of Language Interactions

    Get PDF
    Context: the presence of several languages interacting each other within the same project is an almost universal feature in software development. Earlier work shows that this interaction might be source of problems. Goal: we aim at identifying and characterizing the cross-language interactions at semantic level.% among artifacts written in different languages. Method: we took the commits of an open source project and analyzed the cross-language pairs of files occurring in the same commit to identify possible semantic interactions. We both defined a taxonomy and applied it. Result: we identify 6 categories of semantic interactions. The most common category is the one based on shared ids, the next is when an artifact provides a description of another artifact. Conclusions: the deeper knowledge of cross-language interactions represents the basis for implementing a tool supporting the management of this kind of interactions and the detection of related problems at compile time
    corecore