
A Technology-Neutral Role-Based

Collaboration Model for Software Ecosystems

Ştefan Stănciulescu1, Daniela Rabiser2, and Christoph Seidl3

1 IT University of Copenhagen, Denmark

scas@itu.dk
2 Johannes Kepler University Linz, CD Lab MEVSS, Austria

daniela.rabiser@jku.at
3 Technische Universität Braunschweig, Germany

c.seidl@tu-braunschweig.de

Abstract In large-scale software ecosystems, many developers contribute

extensions to a common software platform. Due to the independent

development efforts and the lack of a central steering mechanism, similar

functionality may be developed multiple times by different developers.

We tackle this problem by contributing a role-based collaboration model

for software ecosystems to make such implicit similarities explicit and

to raise awareness among developers during their ongoing efforts. We

extract this model based on realization artifacts in a specific programming

language located in a particular source code repository and present it

in a technology-neutral way. We capture five essential collaborations as

independent role models that may be composed to present developer

collaborations of a software ecosystem in their entirety, which fosters

overview of the software ecosystem, analyses of duplicated development

efforts and information of ongoing development efforts. Finally, using

the collaborations defined in the formalism we model real artifacts from

Marlin, a firmware for 3D printers, and we show that for the selected

scenarios, the five collaborations were sufficient to raise awareness and

make implicit information explicit.

Keywords: Software Ecosystem, Collaboration, Role Modeling, Marlin

1 Introduction

The software product line methodology allows to manage similar software systems

by developing the core assets that are common to all systems and developing

variant assets that are product specific [7]. Software ecosystems [5] (SECOs)

provide a common platform to develop a family of closely related software

systems having distinct characteristics. SECOs address development contexts

which typically involve multiple organizations and product lines. However, both

methodologies try to maximize reuse of software, reducing efforts in development

as well as during maintenance of the products. With the advent of Github4,

4 http://www.github.com



2 Ştefan Stănciulescu, Daniela Rabiser, and Christoph Seidl

projects share a common repository where changes can be pushed to from

private repositories. This development process follows a similar path to the

one of software ecosystems, where vendors contribute and maintain the plat-

form without having a centralized mechanism.

Motivation: Products are frequently developed using a clone-and-own reuse

approach by adapting existing solutions to create new customer-specific products.

However, deviations from the reusable platform code (e.g., customer-specific

features) remain largely undocumented. Empirical studies present this as an

emerging challenge [33,22,21,12,11]. A lightweight solution for improving knowl-

edge is to enhance awareness between developers. Lettner5 et al. [23], propose the

feature feed approach, which supports making specific implementations visible

to interested users within the SECO via notifications.

Problem: Finding existing features or similar ones in the ecosystem is hard even

for the community members. This is consistent with an observation of Berger et

al. [4] that an excessive use of clone-and-own variants in industrial projects leads to

loss of overview of the available functionality. Decentralization of information also

leads to a loss of overview [12]. For example, in an open source 3D printer firmware

project, 14% of pull requests were rejected because of concurrent development [33].

Contribution: The main contribution of this paper is a formalism based on role

models to describe collaborations of contributors and artifacts in an ecosystem,

with the main purpose of providing an overview of the ecosystem in terms of

relations between users, repositories and features. For example, one developer

that develops a similar feature to already existing one in another repository

could be informed of the already existing code, and a link that describes the

two features as being similar would be created. We describe the formalism

and how it can be used to tackle existing challenges, i.e., raising developer

awareness of concurrent feature development. Our long term goal is to build an

automatic process of constructing collaboration models in a SECO. We use an

exploratory case study to test and evaluate the feasibility and expressiveness of

the formalism in the context of Marlin, a firmware for 3D printers developed

and maintained as an open source project on Github.

The paper is structured as following: in Sec. 2 we introduce required back-

ground knowledge. In Sec. 3 we motivate this work using an example and extract

requirements for the collaboration role model, and present the collaboration

role model in Sec. 4. We present our evaluation on an exploratory case study

in Sec. 5, related work in Sec. 6, and we conclude in Sec. 7.

2 Background

In this section, we introduce the basic notions of role models, features,

and Github’s forking mechanism.

Role models. A role model describes a (possibly infinite) set of object collab-

orations using role types [27]. Its focus lies on representing a single purpose of

5 Daniela Rabiser’s previous work was published under the name Daniela Lettner.



Technology-Neutral Collaboration Model for Software Ecosystems 3

an object collaboration. Each role type specifies the behavior of one particular

object with respect to the model’s purpose. Role types relate to each other

via relationships such as association and aggregation. To describe a concrete

instance of a collaboration, roles may be mapped to various elements, e.g., source

code fragments, users or repositories, depending on the respective collaboration.

Role models may be complemented with formal ontologies providing standard

terminologies and rich semantics to facilitate knowledge sharing and reuse [34,18].

Features. Commonalities and variability of a product portfolio are often

captured using the abstract concept of features [3]. A feature has been defined

as distinguishable characteristic of a concept (e.g., system, component) that

is relevant to some stakeholder of the concept [8]. In the context of SECOs,

a feature denotes a unit of configurable functionality. Software artifacts that

implement specific program functionalities, i.e., features, can be discovered using

feature location techniques [28]. However, there is no optimal feature location

technique and the notion of feature varies widely in practice [3].

Github forking. Github6 is a social coding platform that allows collaborative

development. Github offers the forking mechanism to create a copy of a repository,

together with a traceability link between the copied repository, the fork, and the

original project. On Github, users can create pull requests which resemble tradi-

tional change requests. A pull request consists of a description, possible comments

from users, and a set of commits. A pull request can be created either in the

same repository, e.g., to allow a team to discuss the change, or from a fork to the

original project. Forking in this sense is also known as the pull-based development

model. Most often, forks are used to develop and test changes in isolation, and

then those changes are integrated into the original repository using pull requests.

3 Challenges Arising in Software Ecosystems

The pull-based software development was investigated on its usage in practice by

Gousios et al. [16], who found that around 14% of the repositories in GitHub used

the pull request mechanism (data until 2013). The most common reasons for

rejecting a pull request are concurrent modifications, the way a project handles

distributed development (e.g., newer pull requests are chosen over older pull

requests addressing the same problem), or changes not matching a project’s

road map. Duc et al. [12] also confirmed in an industrial setting that there

is a loss of overview of which elements exist and who is working on which

element, when clone-and-own is used as a reuse mechanism between teams.

Berger et al. [4] found in their empirical investigation on industrial systems

that too much cloning of variants obscures what functionality is available. The

same issues were also observed by Stănciulescu et al. [33] in an open source

project that has been heavily forked on GitHub. The authors identified that

many pull requests were closed because of double development, overlapping

or already existing code. This leads to time and effort wasted. Moreover, one

6 https://github.com

https://github.com


4 Ştefan Stănciulescu, Daniela Rabiser, and Christoph Seidl

ABL improvements 
in own fork.

PR-673

felix

ABL variant in 
own fork.
PR-602

alex

Uses ABL from 
lars in own fork.

adam

ABL variant in 
branch.

david

ABL in own fork.
PR-323

lars

ABL variant
for deltabot
in own fork.

john

Dec 2012Time ? 2013 Sept 2013 Dec 2013

Figure 1. Timeline showing the evolution of the ABL feature.

of the maintainers explained that they are unaware of which elements exist

in the SECO (e.g., forks, bug-fixes, improvements).

3.1 Motivating Example

Marlin7 is a 3D printer firmware that is being developed as open source since

2011. Marlin has been forked by more than 2900 people on Github, with

many of them contributing new features and testing the firmware. Due to

the sheer amount of forks, it is difficult to get and maintain an accurate

overview of what exists in the firmware’s ecosystem, what features are be-

ing developed and what collaborations exist.

We use the feature Auto Bed Leveling (ABL) from Marlin to illustrate the

challenges developers are faced with when they try to get an accurate overview of

what exists related to a specific feature. The ABL feature is for computing bed

tilt compensation for better results printing on a non-level bed. We extracted

the example feature from Marlin’s history. Fig. 1 shows the evolution of the

ABL feature. Initially, it was developed experimentally in a fork by user lars8

without being integrated in the main repository. From pull request PR-3239, we

can see that there was another version being developed by user david (one of

the repository maintainers and developer of Marlin at that time) but not made

public. Yet another form of this feature existed in another fork of Marlin that

was a variant to support a different type of printers developed by user john. In

September 2013, the ABL feature was ported and integrated into Marlin from the

initial fork by user alex who had commit access to Marlin. It is unclear if there

existed other variants of this feature at that time. Somewhere in between, user

adam has integrated the ABL feature from lars’ fork. Following the integration of

ABL in September 2013, other users (e.g., user felix) started contributing with

improvements and bug fixes of the ABL feature in their own fork. These users

created pull requests (PR-673) to integrate their changes back into Marlin.

Even when having access to this data offhand, it is difficult to understand

the evolution of the ABL feature and to reveal what existed at different points

in time. Furthermore, since information related to the ABL feature is spread

7 http://github.com/MarlinFirmware/
8 We anonymized the names of the Github users to respect their privacy
9 https://github.com/MarlinFirmware/Marlin/pull/323

http://github.com/MarlinFirmware/
https://github.com/MarlinFirmware/Marlin/pull/323


Technology-Neutral Collaboration Model for Software Ecosystems 5

across multiple repositories, it is hard to get an accurate overview. Moreover,

the notion of a feature is not explicit in many cases but has to be made explicit

from code annotations or developer documentation. When considering other

SECOs, the problems in analyzing data are even amplified by different realization

technologies, such as programming languages (e.g., Java, C++, Python) or

repositories (e.g., Git, Mercurial, SVN, CVS).

3.2 Derived Requirements

A formalism is needed that lifts information on related (e.g., similar, improved)

features being developed by different users in diverse repositories. Specifically,

the formalism needs to address four requirements:

Requirement R1 – Analyze and present data technology-independent. The

formalism needs to be agnostic of specific repository types and program-

ming languages used. The main challenge is to be able to deal with dif-

ferent technologies using minimum effort.

Requirement R2 – Lift implicit knowledge. Implicit knowledge needs to be

revealed and made explicit using repository analysis techniques. Furthermore,

introducing a dedicated feature concept seems promising to link artifacts (e.g.,

source code, configuration options, documentation, tests) spread across reposi-

tories realizing a particular feature. Additionally, developers being responsible

for specific feature implementations would be able to document their expert

knowledge and, thus, make it available for other developers planning to reuse

a feature or contributing to a feature.

Requirement R3 – Improve developer awareness. Developers should be aware

of relevant features developed in other repositories of the SECO. The deci-

sion on whether a feature is relevant or not may be based on clone detection

techniques or recommendation mechanisms and the features a developer has

worked on or is currently working on.

Requirement R4 – Support modularization of strongly related elements. The

formalism needs to support multiple levels of abstraction to facilitate zoom-

ing in to a specific feature, user or repository [26]. Such compartmentalization

of strongly related entities (i.e., adhering to divide-and-conquer strategies and

breaking down large-scale SECOs into smaller parts) further supports devel-

opers in understanding and reasoning about specific parts of a SECO. On

the other hand, composing smaller parts into large ones could be effective in

cases where an overview has to be included.

4 Collaboration Role Modeling

The main contribution of this paper is a SECO collaboration role model describing

the relationships between repositories, users and features. Role modeling is not

the same as programming language, even though concepts of relations, types

and instances exist in role modeling as well. Role models are technology-neutral

and can be used to guide collaboration between developers and to monitor



6 Ştefan Stănciulescu, Daniela Rabiser, and Christoph Seidl

communications. Collaboration models not just lift explicit information, they also

provide insights into implicit communication edges. Role modeling focuses mostly

on collaborations and is more fine-grained than class modeling. Furthermore, roles

can be attributed to artifacts other than source code, such as repositories or users.

We use the collaboration role model as a way of understanding what entities

and what kinds of collaborations between entities exist in a SECO. The mentioned

entities—repositories, users and features—can be represented differently in con-

crete implementations (e.g., repositories: SVN, Git, CVS, Perforce, TeamServer;

users: different account management systems; features: implicit or explicit, differ-

ent realizations techniques such as annotations or feature-oriented programming).

The collaboration role model is technology-neutral in the sense that it captures

the relations and discards any information regarding the technologies used.

We present five distinct collaborations, each containing relevant roles and their

relations for a specific concern of the SECO. These collaborations can be classified

as either presenting inherent knowledge available implicitly in the repositories and

making it explicit, such as the collaborations development and usage and storage

do, or providing added information, such as, subscription and recommendation

do. The collaboration origin provides both inherent (e.g., integrated feature)

and added information (e.g., similar feature). In the following, we first describe

each of the individual collaborations along with the concerns they address before

elaborating on how to compose them to form a comprehensive SECO model.

4.1 Development and Usage Collaboration

The role model depicted in Fig. 2 defines roles related to feature development

and feature usage. A user may either develop or implement a feature or re-use an

existing feature implementation in her own context. Features are typically related

to a dedicated feature location, e.g., a development branch in the repository. This

role is needed to be able to create links between users and features. Knowing who

uses the feature provides the basis for informing appropriate users of important

fixes. Moreover, developers working on a feature can find other developers that

have worked on the feature, or on similar features, and establish collaborations

with them. It makes implicit information explicit, e.g., it introduces an explicit

feature concept even if the underlying technology captures features only implicitly

using different technologies (e.g., C preprocessor directives).

Feature
User

Feature
Developer

Feature
Location

*
Feature

1..* * *

Figure 2. Development and usage collaboration



Technology-Neutral Collaboration Model for Software Ecosystems 7

4.2 Storage Collaboration

Repositories are one of the most important elements in a SECO. They store

all artifacts related to a concrete project. A repository is managed by at least

one maintainer. Furthermore, contributors or users work with a repository, as

depicted in Fig. 3. A maintainer is a user who is responsible for managing is-

sues, incoming changes and other artifacts of the repository. The maintainer

is allowed to accept and merge changes from external collaborators to the

repository. A repository user benefits from a repository without contributing

or having any maintenance tasks. A repository fork indicates that one reposi-

tory is a clone of an existing repository. This collaboration model offers coarse

grained information about the users of the repository and is particularly useful

to document the origin of per forked repository.

Repository
Maintainer

Repository
Contributor

Repository
User

Repository
Fork

1..* * * *

Repository

Figure 3. Storage collaboration

4.3 Origin Collaboration

The role model depicted in Fig. 4 shows the relations between several features

that exist in the ecosystem. For example, a newly developed feature can be

similar to another feature that already exists. This can be represented by using

the relation between an original feature (the older one), and a similar feature (the

newer one). This information could be (semi-)automatically extracted by a clone

detection system [29] using the SECO and repository information. Furthermore,

a feature may be enhanced by additional functionality to consider it as an

improved feature of the original feature. Finally, an integrated feature represents

a feature that is integrated in the main repository of the SECO.

Similar
Feature

Original
Feature

Improved
Feature

Integrated
Feature

* * *

Figure 4. Origin collaboration

4.4 Subscription Collaboration

In addition to the roles depicted in Fig. 2, we define a subscription collaboration

in Fig. 5 which follows the publish-subscribe pattern [13]. A user can subscribe to



8 Ştefan Stănciulescu, Daniela Rabiser, and Christoph Seidl

a dedicated artifact. Based on a subscription, notifications are pushed to the sub-

scribers. Such artifacts of interest can be of different granularity, from entire repos-

itories (coarse) over features to lines of code in a file (fine-grained). This is similar

to what exists currently in social coding platforms (e.g., Github or Bitbucket),

but it is less restrictive allowing different levels of granularity. The role is designed

specifically towards increasing developer awareness by using a notification system.

Subscription
Artifact of 
Interest

*

Figure 5. Subscription collaboration

4.5 Recommendation Collaboration

As in the case of the subscription collaboration, the main purpose of the recom-

mendation collaboration depicted in Fig. 6 is to enhance visibility of existing

features in the ecosystem, and provide useful recommendations of existing features.

Feature recommendations could be automatically provided using a recommender

system based on a database of preferences for items by users. For instance, a new

user would be matched against the database to discover neighbors, which are

other users who have historically had similar interests. Items that the neighbors

like would then be recommended to the new user [30].

Feature 
Recommendation

Recommended
Feature

* *

Figure 6. Recommendation collaboration

4.6 Collaboration Role Relations

The five collaborations provide a unified way to represent individual concerns

of a SECO relevant to determine the relation of features, users and repositories.

However, the collaborations are not completely isolated from one another. In fact,

part of our notation connects selected roles of different collaborations implicitly.

We define concrete collaboration role relations to specify how specific roles of

individual or different collaborations are related to one another as depicted in

Fig. 7. These relations further ensure flexibility regarding adding new collabora-

tion types. For instance, if the model needs to be extended regarding the relation

of product variants and features, one would integrate a parent-child relation into

Fig. 7 indicating that a feature is the child of one or more product variant(s).

In many cases, the fact that an element plays one role automatically entails

that it plays a certain other role as well. We describe this using the role implication

(arrow with hollow arrow tip) as relation between roles of potentially different



Technology-Neutral Collaboration Model for Software Ecosystems 9

Repository

Feature 
Location

Repository
Maintainer

Repository
Contributor

Feature 
Developer

Feature 
User

Original
Feature

Similar
Feature

Improved
Feature

Integrated
Feature

Feature
Artifact of 
Interest

Recommended
Feature

Figure 7. Collaboration role relations connecting roles of individual collaborations

collaborations. The role implication denotes that, whenever an element plays the

role of the premise, it implicitly also plays the implied role in the conclusion. For

example, the roles original feature, similar feature, improved feature and integrated

feature from the origin collaboration all implicitly play the role feature from the

development and usage collaboration. Furthermore, the enhancements in the role

improved feature over those of the role original feature entail that each element

playing the role improved feature also plays the role similar feature. Likewise,

the role recommended feature from the recommendation collaboration entails the

role feature and the role artifact of interest from the subscription collaboration.

Furthermore, the feature location from the development and usage collaboration

entails a repository role from the storage collaboration being mapped to the same

element. Finally, being a feature developer also means being a feature user as

well as being a repository maintainer means being a repository contributor.

The visual representations depicted in Fig. 8, Fig. 9 and Fig. 10 make

the implied roles explicit for easier legibility but it would also be possible to

determine the implied rules via a reasoning mechanism instead.

4.7 Instantiating Collaborations and Composing a SECO Model

To apply our notation to a concrete SECO, the collaborations are applied

by mapping the individual roles to concrete elements to signal that ele-

ment plays that role. This forms a comprehensive SECO model, which can

be used for analyses, due to two reasons:

First, roles of different collaborations may be mapped to the same element to

signal that one individual acts in multiple roles at once. For example, in Fig. 8,

the roles feature and original feature are both mapped to the AutoBedLeveling

functionality to signal both roles of the functionality. In consequence, it is possible

to determine that user lars was the developer of the original feature for auto bed

leveling by navigating from feature developer to feature and then original feature.

Second, the described collaboration role relations specify how relevant roles of

individual or different collaborations are related to one another to allow navigation

accross collaboration boundaries. For example, in Fig. 8, the fact that lars/Marlin



10 Ştefan Stănciulescu, Daniela Rabiser, and Christoph Seidl

plays the role feature location of the development and usage collaboration auto-

matically entails that it also plays the role repository of the storage collaboration.

Furthermore, the fact that user lars plays the role feature developer automatically

entails that he plays the role feature user as well. This allows navigation of the

SECO model even if part of this information are only available implicitly.

It is worth noting that, in the mapping process, each collaboration may

be applied multiple times with a different context, e.g., the storage collabo-

ration could be instantiated multiple times if one person contributes to or

maintains multiple different repositories. Hence, our notation of five individ-

ual collaborations and the collaboration role relations of Fig. 7 permits the

creation of comprehensive SECO models.

5 Exploratory Case Study

We illustrate the introduced SECO collaboration role model in the context of

our case study subject system Marlin [33]. Marlin exhibits the main challenges

we want to address and we have access to a database containing commits,

issues, pull requests and other meta-data10. Our research objective aims at

studying the expressiveness and feasibility of the SECO collaboration role model.

Specifically, we investigate two research questions:

– RQ1: Is the expressiveness of the SECO collaboration role model sufficient to

address the discussed challenges arising in software ecosystem environments?

– RQ2: Is the SECO collaboration role model useful for revealing redundant

development efforts?

We investigate three selected scenarios and discuss them in terms of the

requirements derived in Sec. 3. Two of the three investigated scenarios deal with

redundant development of features. We present how the introduced SECO collab-

oration role model can be used to inform developers about double developments

and further recommend potentially interesting artifacts.

5.1 Data Collection Methods and Sources

Our main data source, a database containing information about repositories,

users, forks, commits, pull requests, issues and other meta-data, has been created

in earlier work [33]. Specifically, closed pull requests have been analyzed and

the information regarding the reasons of closing them has also been stored in

the database. As Marlin is a 3D printing firmware, the scenarios we inspect

revolve around the functionality of 3D printers. In particular, we inspect three

scenarios as part of the exploratory case study:

1. AUTO_BED_LEVELING (ABL): Shows the evolution through different

forks of a feature that computes a bed tilt compensation.

10 http://bitbucket.org/modelsteam/2015-marlin

http://bitbucket.org/modelsteam/2015-marlin


Technology-Neutral Collaboration Model for Software Ecosystems 11

2. FAN_CONTROL: Shows the development of similar features in different

forks using different ways to regulate ventilation.
3. SWITCH : Shows the development of similar features in different forks using

the switching of an operation model of a hardware device.

We used information available in the database to conduct a pre-analysis to

select the three scenarios. The analysis used keywords of known features, that

the first author was aware of, due to previous experience with Marlin. For each

of the selected scenarios, we further queryied the database to better understand

the details of that scenario, and manually analyzed the results.

We then performed the following five steps to create the SECO role col-

laboration model per selected scenario.

S1. Inspect pull requests closed due to double development that are related to

the scenario at hand
S2. Select interesting contributions (i.e., successfully merged pull request, pull

request not merged due to double development)
S3. Break down contributions in terms of collaboration roles described in Sec. 4
S4. Instantiate the development and usage, storage and origin collaborations to

represent inherent knowledge of the SECO
S5. Instantiate the subscription and recommendation collaborations to represent

additional information of the SECO

5.2 Results

We instantiated the role-based collaboration model for each of the three inspected

scenarios: ABL in Fig. 8, FAN_CONTROL in Fig. 9, and SWITCH in Fig. 10.

Each diagram comprises information on (i) the feature under investigation (left

side of the diagrams); (ii) the users11 involved in the scenario (see diagram centers);

(iii) the relations between repositories and users (see right side of the diagrams).

For instance, in Fig. 8, the feature ABL was developed by the user lars, as indi-

cated by the relation between the roles original feature and feature developer. The

developer lars is both a maintainer and a contributor to the lars/Marlin repository.

There are two features with the same name. However, the one in the bot-

tom left is an improved feature of the original feature developed in lars/Mar-

lin fork. Furthermore, we can see that this improved feature was integrated

in the erik/Marlin repository by user alex, who thus becomes a repository

contributor to the erik/Marlin repository.

Both Fig. 9 and Fig. 10 show the development of similar features. The fan con-

trol collaboration depicted in Fig. 9 covers two related features which have been im-

plemented by different developers in different forks. The feature FAN_CONTROL

by david supports reducing the controller fan speed which can reduce unwanted

airflow and noise. However, the described functionality is also supported by

robbie’s feature EXTRUDER_FAN_CONTROL. This was discovered while dis-

cussing davids’s pull request with the repository maintainer of erik/Marlin. As

11 We anonymized the names of the Github users to respect their privacy



12 Ştefan Stănciulescu, Daniela Rabiser, and Christoph Seidl

adam

Feature 
User

Repository
Maintainer

erik

Repository
Maintainer

Repository
Contributor

lars/Marlin

Feature 
Location

Repository 
Fork

Artifact of 
Interest

Repository

adam/Marlin

Feature 
Location

Repository 
Fork

Repository

alex/Marlin

Feature 
Location

Repository 
Fork

Repository

erik/Marlin

Feature 
Location

Repository

AutoBedLeveling

Original
Feature

Feature

alex

Feature 
Developer

Feature 
User

Repository
Maintainer

Repository
Contributor

Repository
Contributor

Subscription

AutoBedLeveling

Improved
Feature

Integrated
Feature

Feature

lars

Feature 
Developer

Repository
Maintainer

Repository
Contributor

Feature 
User

Figure 8. Instance of the collaboration model for the AUTO_BED_LEVELING (ABL)

scenario

robbie’s feature EXTRUDER_FAN_CONTROL provides more advanced fan

control based on extruder hot-end temperatures, the developers decided to merge

robbie’s feature to the main repository erik/Marlin and close david’s pull request.

Fig. 10 shows the duplication of the feature M42 which has been developed

by the user erik in his fork. The developer anthony submitted his new feature

M250 as a pull request. At a later time, the user realized that it was already

implemented as M42. As the two features are almost identical, anthony is made

a subscriber to the M42 feature. Hence, the feature M42 is recommended to

anthony even though he was aware that it already existed.

The three scenarios show how the collaboration models use technology-

dependent information and present it in a technology-neutral way. Implicit

information that exists usually in the repository’s issue tracker (if one exists)

or developer’s memory (e.g., if a feature was integrated) is made explicit by

showing relations between features, repositories and users. This improves greatly

the overview of existing features and their relation to raise developer awareness.

With respect to RQ1, in this scenario the five collaboration role concepts

are sufficient to describe the relations between users, features and repositories



Technology-Neutral Collaboration Model for Software Ecosystems 13

robbie

Feature 
Developer

Repository
Maintainer

Repository
Contributor

robbie/Marlin

Feature 
Location

Repository 
Fork

Repository

erik/Marlin

Feature 
Location

Repository

Artifact of 
Interest

david/Marlin

Feature 
Location

Repository 
Fork

EXTRUDER_FAN_CONTROL

Similar
Feature

Integrated
Feature

Recommended
Feature

Feature

david

Feature 
Developer

Feature 
Recommendation

Repository
Maintainer

Repository
Contributor

Subscription

Repository
Contributor

FAN_CONTROL

Original
Feature

Feature

Repository
Contributor

Repository

Feature 
User

Feature 
User

Figure 9. Instance of the collaboration model for the FAN_CONTROL scenario.

in a SECO. The formalism is technology independent as required by R1, trans-

forms relevant implicit information in explicit information (R2) such as who is

contributing to an artifact and where does that artifact reside, and increases

the awareness of developers using the subscription and recommendation collab-

oration roles as needed by R3. We hypothesize that in other similar scenarios,

the collaboration role model would be sufficient, but further studies need to

be conducted to understand if the model is general enough.

erik/Marlin

Feature 
Location

Repository

Artifact of 
Interest

anthony/Marlin

Feature 
Location

Repository 
Fork

Repository

M42

Original
Feature

Recommended
Feature

Feature

M250

Similar
Feature

Feature

erik

Feature 
Developer

Repository
Maintainer

Repository
Contributor

Feature 
User

anthony

Feature 
Developer

Feature 
Recommendation

Repository
Maintainer

Repository
Contributor

Subscription

Feature 
User

Figure 10. Instance of the collaboration model for the SWITCH scenario



14 Ştefan Stănciulescu, Daniela Rabiser, and Christoph Seidl

Regarding RQ2, using the formalism, we can create models that offer a simple

view of artifacts and their relations in the SECO, thus increasing awareness of

current developments and limiting concurrent development of features or even of

existing ones. Querying the database is more difficult than using the diagrams

to inform a user of existing features. One reason is that a user would need to

perform several queries to retrieve the same information that is presented in the

diagram and to filter the queries. For example, querying for the string ‘FAN’

results in 194 commits that contain that string in the commit message. In such

cases, a trivial task becomes harder to complete. Our formalism allows a more

swift usage of the available information, decreasing the burden on developers.

5.3 Discussion

The main difficulty we encountered was to process a large quantity of data

to retrieve only parts that we are interested in. The database used in this

exploratory case study has a lot of information but it becomes less appealing

to use when simple information needs to be retrieved. However, in the case of

complex information–which code from what pull request of specific user was

integrated in which repository–the database is extremely useful due to its querying

capacities. Hence, in the future, our approach might be extended by a similar

querying mechanism to limit the amount of information to a specific inquiry.

Regardless of the technology used, to create collaboration models in a SECO

we need to mine and use available information from bug trackers, issue systems,

version control systems and other meta-data. Collecting such information can

be automated to a high degree, for example by using GHTorrent [15], that

facilitates querying a MySQL database containing Github meta-data about

repositories, users, commits, pull requests, issues and others. The difficulty lies

in transforming the data into the collaboration format model, though some parts

can be automated, e.g., extracting users, repositories, contributors. Creating roles,

discovering features, similar features and integrated features is more laborious

and difficult, and requires less trivial computations.

Compositionality as demanded in R4 is principally supported by our for-

malism through the possibility to map collaborations multiple times (e.g., for

different features) with some roles being mapped to the same element, which

allows describing complex structures from basic constituents. Furthermore, the

collaboration role relations connect cohesive collaborations. However, we still

have to devise dedicated tool support, e.g., to semantically zoom in on a par-

ticular feature and only show relevant collaborations in order to make the

sheer size of the collaboration model manageable.

5.4 Threats to Validity

As with any empirical evaluation, there are a number of threats to validity:

Internal Validity. For our evaluation, we considered only one repository with

detailed information from an existing database. However, our method and formal-

ism can be used for other types of repositories (Mercurial, CVS etc.), hosted on



Technology-Neutral Collaboration Model for Software Ecosystems 15

different hosting services (Bitbucket, Github, Sourceforge etc.) as it is technology

independent. To ensure correctness of our method and models, the first two au-

thors each executed several scenarios independently of each other and recorded all

the steps taken. We then compared the recorded steps, discussed them and agreed

on steps S1-S5 presented in Section 5.1. Finally, we cross-validated the results by

exchanging the realized scenario diagrams and verifying their correctness.

External Validity. There is a threat in concluding that the formalism is gen-

eral enough to be applied to any SECO. While we have not run an extensive

evaluation using other SECOs, from our experience, the formalism is general

enough to model different complex relationships in a SECO. We plan on ap-

plying the formalism to Eclipse and also in an industrial SECO that exists

within KEBA AG to verify our hypothesis.

6 Related Work

In the following, we describe related work grouped by its main application area.

Software Ecosystems (SECOs). Existing approaches supporting SECO model-

ing [6,31], do not specifically focus on distributing knowledge about collaborations

of contributors and artifacts (e.g., a new feature developed by a specific contribu-

tor). For instance, although software supply networks (SSNs) [6] provide a business

and management view, they can hardly cover technical development aspects of

SECOs. In contrast, the TECMO meta-model [31] provides a technical viewpoint

on a SECO and models the variability of a SECO and its evolution in terms of

products. However, this rather coarse-grained and product-focused view may not

sufficiently support developers in revealing duplicate development of features.

Developer Collaboration Networks. Joblin et al. [19] present an automated

approach to capture a view on developer coordination. Their fine-grained approach

is based on commit information and source-code structure, mined from version-

control systems. Their main goal is to identify developer communities. Another

study by Panichella et al. [25] investigates how collaboration links vary and

complement each other when they are identified through analyzing data from

different kinds of communication channels (i. e., mailing lists, issue trackers, and

chat logs) and how revealed collaboration links overlap with relations mined from

code changes. Begel et al. [2] conducted a survey on inter-team coordination

and found that it is most challenging to find and keep track of activities among

the engineers. We provide a formalism that could be used by future research

to describe collaborations between developers in SECOs.

Forked Code Bases. An exploratory study by Gousios et al. [16] investigates

pull-based software development practices. Specifically, reasons for not merging

pull requests are inspected. Results show that 29% of unmerged pull requests are

closed because the pull request is no longer relevant, or the feature is currently

being implemented in another branch, a new pull request solves the problem better,

or the pull request duplicates already available functionality. Another study by

Gousios et al. [17] specifically examines managing and integrating contributions

in a pull-based development environment. Pull requests are often rejected due



16 Ştefan Stănciulescu, Daniela Rabiser, and Christoph Seidl

to code quality, but also because newer pull requests already solved the same

issue. Duc et al. [12] conducted semi-structured interviews to understand multi-

platform development practices. The results show that diverged code bases lead

to redundant development effort and to a lack of knowledge of the whole system.

Role-based Feature Management. Muthig and Schroeter [24] present a fea-

ture management framework including a software product line information

model. The proposed information model comprises a role model which is used

to formally model individuals and their access on system resources and oper-

ations. The collaboration role model presented in this paper is not concerned

with access control or permissions. We focus on describing relationships be-

tween features, developers and repositories.

Awareness. Researchers have recognized awareness as an essential aspect

of successful collaborative software development. Awareness has been defined

as an understanding of the activities of others providing a context for your

own activity [10]. It has also been stressed that building mental models of

others’ activities is important for software engineering tasks [9]. A recent study

indicates that code reviews can provide additional benefits such as knowledge

transfer or increased team awareness [1]. Most of the related work on awareness

support for software development has focused on collaborative coding rather than

requirements management, project management or design [32]. However, there

are attempts focusing on higher levels of abstraction. An example is IBM’s Jazz

software development environment, which aggregates data to improve awareness

of higher-level as well as low-level aspects [14]. Kintab et al. present a framework

for recommending experts to developers needing help with a specific code fragment

or system component [20]. A ranked list of potential helpers is created based on

code similarities and social relationships. In comparison, our work tries to lay the

fundamental concepts that allow to use frameworks as this one for a specific goal.

7 Conclusion and Outlook

In this paper, we have introduced a formalism based on role modeling that de-

scribes collaborations between contributors and artifacts in a software ecosystem.

The formalism is designed to tackle several challenges that currently exist in soft-

ware ecosystems, such as generating a better overview of the software ecosystem,

and transforming implicit knowledge into explicit knowledge to aid developers

during the development phase of features. We have conducted an exploratory

case study on the Marlin open source software ecosystem and selected three sce-

narios to apply our formalism. For the inspected scenarios, the five collaborations

defined in the formalism were sufficient to model real artifacts, transform implicit

knowledge into explicit knowledge, and improve awareness of existing artifacts.

This work is a step forward in understanding how to use existing data

to improve the knowledge of developers in the SECO. We plan on applying

the formalism to other open source and industrial projects to gain further

experience and inspect any shortcomings. Furthermore, we would like to address

requirement R4 in more detail and provide dedicated tool support for semantic



Technology-Neutral Collaboration Model for Software Ecosystems 17

zoom on selected elements and their collaborations. Finally, it would also be

interesting to explore how to incorporate changes to the SECO appearing as

part of software evolution into our modeling notation.

Acknowledgments

This work was partially supported by the Christian Doppler Forschungs-

gesellschaft, Austria and KEBA AG, Austria. Further, this work was par-

tially supported by the DFG (German Research Foundation) under grant

SCHA1635/2-2 and by the European Commission within the project Hy-

Var (grant agreement H2020-644298).

References

1. A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern code

review. In Proc. of ICSE’13, 2013.

2. A. Begel, Y. P. Khoo, and T. Zimmermann. Codebook: Discovering and exploiting

relationships in software repositories. In Proc. of ICSE’10, 2010.

3. T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker, M. Chechik,

and K. Czarnecki. What is a feature?: a qualitative study of features in industrial

software product lines. In Proc of SPLC’15, 2015.

4. T. Berger, D. Nair, R. Rublack, J. Atlee, K. Czarnecki, and A. Wąsowski. Three

cases of feature-based variability modeling in industry. In J. Dingel, W. Schulte,

I. Ramos, S. Abrahão, and E. Insfran, editors, Model-Driven Engineering Languages

and Systems, volume 8767 of Lecture Notes in Computer Science, pages 302–319.

Springer International Publishing, 2014.

5. J. Bosch. From software product lines to software ecosystems. In Proc. of SPLC’09,

2009.

6. V. Boucharas, S. Jansen, and S. Brinkkemper. Formalizing software ecosystem

modeling. In Proc. of 1st Int’l Workshop on Open Component Ecosystems, 2009.

7. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI

Series in Software Engineering, Addison-Wesley, 2001.

8. K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and

Applications. Addison-Wesley, Boston, MA, 2000.

9. L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: Trans-

parency and collaboration in an open software repository. In Proc. of CSCW’12,

2012.

10. P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. In

Proc. of CSCW’92, 1992.

11. Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czarnecki.

An exploratory study of cloning in industrial software product lines. In Proc. of

CSMR’13, 2013.

12. A. N. Duc, A. Mockus, R. Hackbarth, and J. Palframan. Forking and coordination

in multi-platform development: A case study. In Proc. of ESEM’14, 2014.

13. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces

of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

14. R. Frost. Jazz and the eclipse way of collaboration. Software, IEEE, 24(6):114–117,

2007.



18 Ştefan Stănciulescu, Daniela Rabiser, and Christoph Seidl

15. G. Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th Working

Conference on Mining Software Repositories, MSR ’13, pages 233–236, Piscataway,

NJ, USA, 2013. IEEE Press.

16. G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of the pull-based

software development model. In Proc. of ICSE’14, 2014.

17. G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen. Work practices and

challenges in pull-based development: The integrator’s perspective. In Proc. of

ICSE’15, 2015.

18. T. R. Gruber. Toward principles for the design of ontologies used for knowledge

sharing. Int. J. Hum.-Comput. Stud., 43(5-6):907–928, 1995.

19. M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle. From developer

networks to verified communities: A fine-grained approach. In Proc. of ICSE’15,

2015.

20. G. A. Kintab, C. K. Roy, and G. I. McCalla. Recommending software experts using

code similarity and social heuristics. In Proc. of CASCON’14, 2014.

21. D. Lettner, F. Angerer, P. Grünbacher, and H. Prähofer. Software Evolution in an

Industrial Automation Ecosystem: An Exploratory Study. In Proc. of SEAA’14,

2014.

22. D. Lettner, F. Angerer, H. Prähofer, and P. Grünbacher. A Case Study on Software

Ecosystem Characteristics in Industrial Automation Software. In Proc. of ICSSP’14,

2014.

23. D. Lettner and P. Grünbacher. Using feature feeds to improve developer awareness

in software ecosystem evolution. In Proc. of VaMoS’15, 2015.

24. D. Muthig and J. Schroeter. A framework for role-based feature management in

software product line organizations. In Proc. of SPLC’13, 2013.

25. S. Panichella, G. Bavota, M. Di Penta, G. Canfora, and G. Antoniol. How developers’

collaborations identified from different sources tell us about code changes. In Proc.

of ICSME’14, 2014.

26. M.-O. Reiser and M. Weber. Multi-level feature trees. Requirements Engineering,

12(2):57–75, 2007.

27. D. Riehle and T. R. Gross. Role model based framework design and integration.

In Proc. of OOPSLA ’98, 1998.

28. J. Rubin and M. Chechik. A survey of feature location techniques. In Domain

Engineering, Product Lines, Languages, and Conceptual Models, pages 29–58. 2013.

29. H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes. Sourcerercc: Scaling

code clone detection to big code. CoRR, abs/1512.06448, 2015.

30. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering

recommendation algorithms. In Proceedings of the 10th International Conference on

World Wide Web, WWW ’01, pages 285–295, New York, NY, USA, 2001. ACM.

31. C. Seidl and U. Aßmann. Towards modeling and analyzing variability in evolving

software ecosystems. In VaMoS, 2013.

32. B. Sengupta, S. Chandra, and V. Sinha. A research agenda for distributed software

development. In Proc. of ICSE’06, 2006.

33. S. Stănciulescu, S. Schulze, and A. Wąsowski. Forked and Integrated Variants In

An Open-Source Firmware Project. In Proc. of ICSME’15, 2015.

34. R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: Principles and

methods. Data Knowl. Eng., 25(1-2):161–197, 1998.


	A Technology-Neutral Role-Based Collaboration Model for Software Ecosystems

