2,739 research outputs found

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstøtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er å designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede løsningen er fokusert på forbedring av fysisk aktivitet. Prototypen bruker bærbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for å utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen på teknologisk verifisering snarere enn klinisk evaluering.publishedVersio

    Machine Learning of Lifestyle Data for Diabetes

    Get PDF
    Self-Monitoring of Blood Glucose (SMBG) for Type-2 Diabetes (T2D) remains highly challenging for both patients and doctors due to the complexities of diabetic lifestyle data logging and insufficient short-term and personalized recommendations/advice. The recent mobile diabetes management systems have been proved clinically effective to facilitate self-management. However, most such systems have poor usability and are limited in data analytic functionalities. These two challenges are connected and affected by each other. The ease of data recording brings better data for applicable data analytic algorithms. On the other hand, the irrelevant or inaccurate data input will certainly commit errors and noises. The output of data analysis, as potentially valuable patterns or knowledge, could be the incentives for users to contribute more data. We believe that the incorporation of machine learning technologies in mobile diabetes management could tackle these challenge simultaneously. In this thesis, we propose, build, and evaluate an intelligent mobile diabetes management system, called GlucoGuide for T2D patients. GlucoGuide conveniently aggregates varieties of lifestyle data collected via mobile devices, analyzes the data with machine learning models, and outputs recommendations. The most complicated part of SMBG is diet management. GlucoGuide aims to address this crucial issue using classification models and camera-based automatic data logging. The proposed model classifies each food item into three recommendation classes using its nutrient and textual features. Empirical studies show that the food classification task is effective. A lifestyle-data-driven recommendations framework in GlucoGuide can output short-term and personalized recommendations of lifestyle changes to help patients stabilize their blood glucose level. To evaluate performance and clinical effectiveness of this framework, we conduct a three-month clinical trial on human subjects, in collaboration with Dr. Petrella (MD). Due to the high cost and complexity of trials on humans, a small but representative subject group is involved. Two standard laboratory blood tests for diabetes are used before and after the trial. The results are quite remarkable. Generally speaking, GlucoGuide amounted to turning an early diabetic patient to be pre-diabetic, and pre-diabetic to non-diabetic, in only 3-months, depending on their before-trial diabetic conditions. cThis clinical dataset has also been expanded and enhanced to generate scientifically controlled artificial datasets. Such datasets can be used for varieties of machine learning empirical studies, as our on-going and future research works. GlucoGuide now is a university spin-off, allowing us to collect a large scale of practical diabetic lifestyle data and make potential impact on diabetes treatment and management

    The Age of Artificial Intelligence: Use of Digital Technology in Clinical Nutrition

    Get PDF
    Purpose of review Computing advances over the decades have catalyzed the pervasive integration of digital technology in the medical industry, now followed by similar applications for clinical nutrition. This review discusses the implementation of such technologies for nutrition, ranging from the use of mobile apps and wearable technologies to the development of decision support tools for parenteral nutrition and use of telehealth for remote assessment of nutrition. Recent findings Mobile applications and wearable technologies have provided opportunities for real-time collection of granular nutrition-related data. Machine learning has allowed for more complex analyses of the increasing volume of data collected. The combination of these tools has also translated into practical clinical applications, such as decision support tools, risk prediction, and diet optimization. Summary The state of digital technology for clinical nutrition is still young, although there is much promise for growth and disruption in the future

    Smart Sensing Technologies for Personalised Coaching

    Get PDF
    People living in both developed and developing countries face serious health challenges related to sedentary lifestyles. It is therefore essential to find new ways to improve health so that people can live longer and can age well. With an ever-growing number of smart sensing systems developed and deployed across the globe, experts are primed to help coach people toward healthier behaviors. The increasing accountability associated with app- and device-based behavior tracking not only provides timely and personalized information and support but also gives us an incentive to set goals and to do more. This book presents some of the recent efforts made towards automatic and autonomous identification and coaching of troublesome behaviors to procure lasting, beneficial behavioral changes
    • …
    corecore