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Abstract 

Enabling Automated, Conversational Health Coaching  

with Human-Centered Artificial Intelligence  

Elliot G Mitchell 

 

Health coaching is a promising approach to support self-management of chronic 

conditions like type 2 diabetes; however, there aren’t enough coaching practitioners to support 

those in need. Advances in Artificial Intelligence (AI) and Machine Learning (ML) have the 

potential to enable innovative, automated health coaching interventions, but important gaps 

remain in applying AI and ML to coaching interventions. This thesis aims to identify 

computational approaches and interactive technologies that enable automated health coaching 

systems. First, I utilized computational approaches that leverage individuals’ self-tracking and 

health data and used an expert system to translate ML inferences into personalized nutrition goal 

recommendations. The system, GlucoGoalie, was evaluated in multiple studies including a 4-

week deployment study which demonstrated the feasibility of the approach. Second, I compared 

human-powered and automated/chatbot approaches to health coaching in a 3-week study which 

found that t2.coach — a scripted, theoretically-grounded chatbot designed through an iterative, 

user-centered process — cultivated a coach-like experience that had many similarities to the 

experience of messaging with actual health coaches, and outlined directions for automated, 



 

 

 

 

conversational coaching interventions. Third, I examined multiple AI approaches to enable 

micro-coaching dialogs — brief coaching conversations related to specific meals, to support 

achievement of nutrition goals — including a knowledge-based system for natural language 

understanding, and a data-driven, reinforcement learning approach for dialog management.  

Together, the results of these studies contribute methods and insights that take steps towards 

more intelligent conversational coaching systems, with resonance to research in informatics, 

human-computer interaction, and health coaching. 
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Chapter 1:  Introduction 

The rising prevalence of chronic conditions like type 2 diabetes poses an overwhelming 

challenge to the healthcare system. Three of every five adults in the United States live with at 

least one chronic condition, and chronic disease care accounts for over 70% of US healthcare 

spending [42,281]. Globally, the total cost of care for diabetes alone is projected to nearly double 

to over $2 trillion annually by 2030, representing over 2% of global GDP [31]. In addition to the 

substantial economic toll, chronic conditions carry a high personal cost; individuals living with 

chronic conditions make countless decisions every day — about what to eat and how to be active 

— that impact their health status and long-term quality of life [29]. Unlike treatment for an acute 

illness, where care is delivered within a clinical setting, successful care for chronic disease 

necessitates helping patients make decisions outside of the healthcare system, or self-manage 

their condition [29]. 

Artificial Intelligence (AI) and Machine Learning (ML) have been touted for their 

potential to improve the reach, quality, and overall performance of the healthcare system 

[68,210]. AI and ML algorithms have demonstrated strong performance in medical tasks like 

diagnostic imaging or predicting adverse events like unplanned hospital readmissions [105,211]. 

There is an opportunity to incorporate these advances into innovative interventions that could 

support individuals with chronic disease self-management. However, there are challenges to 

designing interactive systems that incorporate ML inferences in a way that can be integrated with 

individuals’ everyday lives and inform their daily choices. Doing so requires a human-centered 

approach that considers the fit between an individual’s needs and the capabilities of an ML 

algorithm [87]. 



 

 

 

 

2 

For chronic disease management and prevention, recent research has highlighted the 

potential benefits of technologies for facilitating health coaching [16,38,96,229]. In-person 

health coaching can be an effective intervention to support chronic disease management and 

prevention [72,73]. Coaching aims to cultivate motivation and engagement, and establish 

accountability in pursuing achievable health goals in a longitudinal relationship between the 

coach and their client [196]. However, there aren’t enough educators and coaches to support the 

growing population living with chronic conditions, let alone provide preventative care; in 

practice, most individuals with type 2 diabetes never receive coaching [81].  

Technological advancements — including the proliferation of smartphones and advances 

in mobile health (mHealth) — can help bring novel forms of health coaching support to broader 

and more diverse populations. Furthermore, the integration of AI and ML can enable more 

intelligent and automated health coaching interventions that do not depend on the constant 

availability of healthcare professionals. ML could find patterns in an individual’s self-tracking 

data, for example patterns of association between an individual’s diet and blood sugar levels, to 

make personalized nutrition recommendations. In addition, AI can enable conversational 

interfaces, sometimes called chatbots, which have the potential to emulate some positive aspects 

of human interpersonal interactions, like establishing rapport, building relationships, and 

expressing empathy [22,26,82–84,124,159]. However, there are many open questions when it 

comes to researching and designing effective automated coaching solutions. 

The purpose of this thesis is to identify computational approaches and interactive 

technology that enable automated health coaching systems. In particular, I focus on designing 

tools to support the self-management and prevention of chronic conditions like type 2 diabetes 

which requires changes to daily activities, including meals and exercise. The tools and 
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interventions examined in this thesis are intended to be usable and useful for individuals from 

communities that have been historically underserved by the medical establishment, particularly 

racial and ethnic minorities including black, brown, and indigenous people of color, as well as 

those from low income and low wealth families and communities [92]. In three specific research 

aims, I utilize computational approaches that leverage individuals’ self-tracking and health data, 

consider the capabilities and advantages of text-message based interactions for health coaching 

dialogs, and contribute data, methods, and algorithms towards the development of more 

supportive and intelligent health coaching interventions.  

1.1 Aim I — Identify and evaluate approaches to translate machine learning 

inferences into recommendations for personalized nutrition goals 

The first aim of this thesis focuses on health goal setting as a central and essential 

component of health coaching. In the context of type 2 diabetes, a key objective of self-

management is keeping blood sugar levels within healthy ranges [29]. Nutrition goals can focus 

on adopting generally healthy behaviors like increasing fruit and vegetable consumption, but can 

also be specifically targeted at managing blood sugar levels. However, due to high variability 

between individuals in the way blood sugar levels change in response to daily activities 

[167,272], these goals need to be personalized to each individual’s pathophysiology and blood 

sugar regulation [10,15]. Yet, correctly anticipating about the impact of daily activities on blood 

sugar is challenging for both individuals and healthcare professionals [163].  

Machine learning (ML) holds potential to identify insights relating an individual’s daily 

behaviors and their health state, for example characterizing the relationship between the 

nutritional composition of meals and corresponding fluctuations in blood sugar levels. However, 

there are challenges in applying ML to small and noisy person-generated health data (PGHD) to 
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generate reliable insights. Furthermore, deriving actionable suggestions and formulating 

nutrition goals based on such insights are non-trivial.  

To address these challenges, we designed and evaluated a system called GlucoGoalie that 

applies an expert system to translate user-specific ML insights into recommended nutrition goals. 

An overview of the system is presented in Figure 1. Each suggested goal focuses on the amount 

of one or more macronutrients (i.e., carbohydrates, protein, or fat) in a meal, and suggests 

individuals increase or decrease to a target amount.  

 
Figure 1. An overview of the pipeline for generating personalized goal recommendations in 

GlucoGoalie 

This approach and the implemented GlucoGoalie system were evaluated in three studies. 

In the first evaluation study, I applied an adapted version of attributable components 

analysis (ACA), a non-parametric density estimation method based on optimal transport theory 

and developed by Tabak and Trigila [243,244], applied it to diabetes self-monitoring data. I 

compared ACA with linear regression in an analysis with meal and blood sugar data from 20 

individuals with type 2 diabetes. ACA demonstrated a number of characteristics that are useful in 
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the context of PGHD like identifying non-linear patterns when appropriate, demonstrating 

robustness to outliers, and producing broader and more informative uncertainty estimates.1 

In the second evaluation study, I examined the following research question:  

Research Question 1.1: Would individuals with type 2 diabetes from medically 

underserved, low income communities be able to understand and act on computationally 

generated nutrition goals in a controlled setting? 

In a series of simulated meal choice tasks, participants were generally able to understand 

the goals, but there was a great deal of variation in meeting the macronutrient target amount 

suggested in the goal.  

The third study examined the experience of interacting with ML-derived goal suggestions 

in the real world, and the impact of the GlucoGoalie intervention on self-management behaviors 

with the following research questions:  

Research Question 1.2: What is the experience of receiving and following 

recommendations for nutrition goals based on one’s own self-tracking data in a 

smartphone app? 

Research Question 1.3: Will individuals with type 2 diabetes report a higher frequency of 

self-management behaviors after using the GlucoGoalie over 4 weeks? 

Research Question 1.4: For individuals who receive personalized goal recommendations, 

will they change their meal choices — specifically their macronutrient consumption — to 

more closely align with those goals? 

In a deployment study with 20 individuals with type 2 diabetes over 4 weeks, participants 

made use of the GlucoGoalie smartphone application, improved in self-reported self-

management behaviors, and increased their goal attainment over the study period. Eight of 

 
1 The results of this analysis are published in the Journal of Biomedical Informatics [179]. 
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twenty participants received at least one personalized goal recommendation, and an analysis of 

the macronutrient composition of their meals suggests that participants changed their behaviors 

to be more in-line with their chosen goals. In qualitative interviews with eight participants, users 

described their efforts to achieve the goals recommended to them by GlucoGoalie. Participants 

reported a positive experience using the application, and recounted how receiving new 

suggestions spurred individuals to reflect on their nutrition habits and blood sugar levels. 

Following goal suggestions was not without challenges, however. Some participants disliked the 

personalized suggestions or had difficulty incorporating the goals into their eating habits. 

Participants also described difficulty tracking their meals and blood sugar readings on a 

sustained basis. Overall, participants wanted more concrete feedback to understand whether they 

were achieving goals, and more concrete suggestions tied to the specific meals they had eaten.2  

Together, the results of these evaluation studies suggest that the approach of using an 

expert system to translate ML inferences into more actionable suggestions is promising, though 

also carries limitations. In subsequent aims, I build on the findings from these studies to explore 

more holistic approaches to health coaching interventions. 

1.2 Aim II — Compare human-powered and automated health coaching via text 

messaging 

While goal-setting is a foundational aspect of health coaching, there are many other 

important facets of coaching, like establishing accountability, offering feedback, and building 

rapport [196]. The second aim of this thesis expands its lens to a more complete view of health 

coaching, above and beyond goal setting.  

 
2 The results of this study are published in Proceedings of the 2021 CHI Conference on Human Factors in 

Computing Systems (CHI 2021) [177]   
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Because of the interpersonal communication at the heart of health coaching, 

conversational interfaces like chatbots — where users interact with the system through natural 

language — are a promising candidate [22]. However, some have argued that technological 

approaches cannot serve the true function of a health coach because they lack the human skills 

that underlie many aspects of coaching, including flexible contextual thinking and building an 

interpersonal relationship [218]. Additionally, there may be challenges in adapting coaching 

practice to a medium like text messaging, which has the advantages of being ubiquitous and 

widely available, but may also introduce pitfalls because text messages are more constrained and 

less expressive than live, spoken-word conversations.  

To explore the potential and pitfalls of automated text-based health coaching I sought to 

compare human-powered and automated approaches with the following research questions:  

Research Question 2.1: Can a scripted, rule-based chatbot create a positive coaching 

experience, comparable to that created by a human coach using the same medium (text 

messaging)?  

Research Question 2.2: What aspects of the coaching experience, if any, are uniquely 

human and do not lend themselves to automated approaches? 

Research Question 2.3: What are the potential advantages, if any, of chatbots for virtual 

coaching? 

The first phase of research to address these questions was the iterative design of a 

scripted chatbot, called t2.coach, following a user-centered process. Chatbots in health-related 

domains are often scripted or rule-based [146]. In contrast with data-driven dialog modeling 

approaches that have enabled more dynamic chatbots in other domains like e-commerce or open 

chit-chat, scripted approaches can be desirable in health because designers have more control 

over the predictability and accuracy of responses, and the cost of inaccurate responses in health 
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is high. In addition, there is a lack of available data for training data-driven dialog models in 

health [146]. t2.coach was designed based on an existing protocol for health coaching 

practitioners, called Brief Action Planning [109], and included functionality for nutrition and 

physical activity goals setting with daily follow-up conversations to check on goal progress.  

The iterative design process for t2.coach included multiple focus groups and feedback 

sessions with individuals with type 2 diabetes and providers, as well as a deployment study with 

a partially implemented version of t2.coach and 13 participants. The deployment study utilized 

an adapted wizard-of-oz (WOz) approach, where an operator works behind the scenes to create 

the illusion of a fully functioning system, even when it is only partially implemented. I adapted 

the WOz approach to allow users to interact with the t2.coach prototype over 3 weeks, which led 

to many important revisions to shorten and clarify dialogs before final development.3  

The second phase of research examined the primary research questions for this aim 

through a 3-week study with 23 individuals with type 2 diabetes, split into two groups. One 

group interacted with the WOz version of t2.coach described above, while the other interacted 

with an actual health coach over text message. The human health coaches had the same protocol 

as t2.coach, and tools for sending quick responses, but were encouraged to deviate from the 

protocol when appropriate. 

We identified qualitative themes from post-study interviews with participants using 

inductive thematic analysis [36], and compared these themes between the two study groups. 

Importantly, we found that the chatbot created a coach-like experience for participants, who 

described feeling increased motivation, a sense of external accountability, and support in 

 
3 The fully implemented t2.coach chatbot is currently being evaluated in a 5-year National Institutes of Health 

funded research project (R01DK113189) 
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achieving their chosen goals. The results also showed that human-powered coaching had clear 

advantages, but coaches encountered challenges implementing their usual coaching approach 

over text message. Coaches described difficulty establishing rapport, as well as knowing when 

clients would be receptive to receiving messages. The chatbot appeared to have its own distinct 

advantages, including brief, consistent exchanges that kept goals top-of-mind for participants and 

spurred proactive changes in behavior, though this repetition verged on annoyance for some 

participants. Similar to the findings from aim 1, participants in both groups wanted more 

feedback and suggestions connected to the specific meals they were eating.4  

Together, these results highlight that human and chatbot coaches have their own 

complementary areas of excellence, and therefore suggest a set of design goals for automated 

conversational health coaches that does not directly replicate the human coaches’ approach, but 

instead complements it.  

1.3 Aim III — Explore artificial intelligence approaches to enable micro-

coaching dialogs  

The results of Aim 2 highlight the potential of automated approaches like chatbots to 

deliver health coaching support while also reiterating the limits of purely scripted approaches. In 

the third aim of this thesis, I build on the scripted t2.coach chatbot to make steps towards more 

intelligent and dynamic conversational coaching tools.  

Following on the implications of Aim 2, automated conversational approaches may be 

well suited to brief conversations with individuals to support specific meal-related decisions. 

Here, we assume users already have a nutrition goal they are working towards, and explore the 

design of brief coaching conversations about planned meals in the context of a user’s goal. To 

 
4 The results of this study are published in Proceedings of the ACM on Human-Computer Interaction (CSCW) [178] 
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enable these conversations, which we refer to as micro-coaching dialogs, the chatbot needs to be 

able to automatically assess whether the user is on track to achieve their goal with a planned 

meal. This assessment enables the coaching system to give feedback to the user, and offer 

suggestions to modify the meal to make it more consistent with the goal. In contrast with in-

depth meal logging approaches, micro-coaching dialogs can focus on eliciting the specific details 

about a planned meal that are relevant to the user’s goal, keeping conversations brief and 

targeted.  

 
Figure 2. Proposed structure for micro-coaching dialogs.  

To enable micro-coaching dialogs, I explored multiple approaches that incorporate 

various types of Artificial Intelligence mechanisms. The first focused on more clearly mapping 

the space of questions coaches would ask, with the following research questions:  

Research Question 3.1: How do expert coaches formulate follow-up questions about 

meals their client is planning on eating to understand whether the client is likely to 

achieve their nutrition goal?  

Research Question 3.2: How can existing, structured nutrition knowledge resources be 

utilized to design and implement a natural language understanding (NLU) system for 

dialogs about meals and generates a set of follow-up questions?  
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To address these questions, we completed an interview and structured survey study with 

health coaches (n=2), and found that there was a limited set of question types that coaches would 

ask, and that the question types depended on both the meal and the nutrition goal. In addition, the 

question-asking relied on a great deal of nutrition knowledge. To incorporate nutrition 

knowledge, we utilized a food-specific natural language processing system (Nutritionix [275]) to 

identify the components of a user’s meal, and a food ontology (FoodOn [75]) to tag each food 

item with relevant characteristics. These characteristics, for example which foods are lean 

proteins and which are carbohydrates, can be used to automatically assess whether there is 

enough information to determine whether a meal is consistent with a health goal.  

To evaluate this system and its determinations, we used crowdsourcing to simulate 

conversations between a coach and a client discussing specific meals. In a pilot data set of 10 

dialogs for each of 3 goals, we examined inter-rater agreement between registered dietitian labels 

of goal achievement and the rule-based system, and found high concordance. 

Once the space of possible questions was defined, the next step was to consider how to 

choose the most informative follow-up question given a state of dialog. Here, I sought to 

compare multiple approaches for dialog management, with the following research question:  

Research Question 3.3: What are comparative benefits and limitations of different types 

of dialog management approaches for coaching chatbots, considering those that use 

reinforcement learning (RL), those that choose their questions randomly, rule-based, and 

fully-scripted. Specifically, how do these chatbots compare on their ability to reach their 

end goal, their conversational length, and their perceived coherence and user experience? 

If the automated coach could ask one of many follow-up questions about a user’s meal, 

Reinforcement Learning (RL) is a machine learning approach that can be used to prioritize 

among those choices. With RL, a system learns through trial-and-error, receiving different 
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rewards for actions in different circumstances [240]. RL has shown tremendous success learning 

to play games from Atari to Go [180,233], and is also commonly used for dialog modeling, to 

help dialog systems achieve their intended outcomes more efficiently. For example RL can help 

a movie booking chatbot successfully book tickets by asking fewer questions [154]. However, 

RL is only applicable where there is an environment that can be simulated, or there are existing 

data sets of example dialogs to learn from. Such data sets are rare in health domains and do not 

exist for health coaching [146]. Without an existing corpus of coaching dialogs to learn from, 

new dialog data sets can be created with crowdsourcing [228,273], where crowd workers play 

the roles of multiple conversational parties to simulate conversations asynchronously.  

Using a crowdsourced data set of 300 dialogs, 1 trained an RL algorithm, q-learning, to 

dynamically choose which question to ask in a given situation. Q-learning estimates the value of 

asking a particular question in a particular conversational state. I first validated the q-learning 

approach using simulated data, and then trained a model on the dialog data sets for each of the 3 

goals in the crowdsourcing study.  

In contrast with the data-driven approach, we also designed a rule-based system that takes 

advantage of the knowledge-engineered representation from the prior step.  

To compare the rule-based and data-driven AI coaching systems, we compared 20 online 

dialogs per goal with dialogs created by two control conditions: 1) randomly generated dialogs, 

and 2) a simple, scripted, deterministic approach that always asked the same questions regardless 

of user responses.  

The RL coach resulted in conversations that reached their objective with significantly 

fewer questions than both the random and rule-based conditions, suggesting promise of the RL 

approach to keep conversations brief and focused.  
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In addition, 36 participants reviewed complete dialogs generated from one of the 4 

conditions and assessed the perceived user experience and quality of dialogs, and found no major 

differences in perceived quality or user experience across the conditions. Dialogs with the RL 

chatbot were rated as more coherent than scripted dialogs. 

Together, these studies present initial steps towards designing more intelligent 

conversational coaching systems. 

1.4 Contributions 

This thesis makes a number of contributions to research in informatics, human-computer 

interaction (HCI), health coaching, and conversational interfaces.  

In Aim 1, I contribute a method for translating ML insights into actionable 

recommendations with a rule-based expert system, which could be extended to other domains 

and data sets in health and wellbeing. In addition, the qualitative account of individuals’ 

experiences receiving and using personalized goal recommendations from their own self-tracking 

data presents an important contribution area to the growing field of personal health tools that 

incorporate ML [117]. 

In Aim 2, I contribute a theory-driven chatbot for health coaching, t2.coach, designed 

through an iterative, user-centered process. Because t2.coach is adapted from an established 

protocol for goal setting, the dialog system could be adapted to other health domains. In the 

iterative design process, the approach for adapting the wizard-of-oz approach to deployment 

studies is a methodological contribution. Additionally, the qualitative comparison of human and 

automated approaches to health coaching via text messaging contributes to scholarly debate 

about the essentialness of human skills in coaching, and whether automated approaches can ever 

function as a health coach.  
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In Aim 3, I contributed a set of design needs for micro-coaching dialogs, which could 

offer scaffolding for future research in automated coaching interventions. In addition, the corpus 

of meal-related dialogs created as a part of this aim will be made openly available so that it can 

be used and extended by other researchers. Lastly the head-to-head comparison of data-driven 

and rule-based dialog management approach may provide insight to researchers who are 

considering multiple approaches to implement conversational tools. 

  



 

 

 

 

15 

Chapter 2: Background and related work 

2.1 Chronic disease self-management 

Chronic disease is a growing challenge for the healthcare system, where a focus on 

hospitals and fee-for-service reimbursement model is largely built for treatment of acute 

conditions. Patients spend very little of their time interacting directly with the healthcare system. 

instead spending time and energy to self-managing their health on their own. Living with a 

chronic condition involves hundreds of daily decisions that impact short-term and long-term 

health status [28,29]. Chronic disease care, therefore, is about supporting individuals in making 

those decisions, or self-managing their condition [29]. 

Self-management is challenging for a number of reasons. Knowing what changes to make 

to improve health status requires health literacy and knowledge, and it takes substantial 

motivation to succeed in achieving sustained change in behaviors. This is further exacerbated by 

individual differences in pathophysiology of different conditions. For example, individuals have 

different physiological responses to exercise and stress, and metabolism of different foods 

[10,33,167,181,221,234,268,272]. 

The burdens of chronic diseases are not shared equally. Low socio-economic status and 

communities of color have higher rates of chronic disease and worse outcomes [47,114,202]. In 

addition, individuals from these communities tend to have fewer resources and skills that enable 

self-management, like health literacy. Interventions that are not sensitive to the needs of 

underserved individuals and instead cater to well-off technology users have the potential to 

deepen existing disparities and even to create new intervention-generated inequality [52,254]. 

This thesis focuses on supporting self-management of type 2 diabetes mellitus (T2D). 

T2D is highly prevalent, currently affecting over 30 million Americans – almost 10% of the 
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population – with 1.5 million new cases diagnosed each year [9]. Daily decisions about nutrition, 

physical activity, sleep, and stress all impact blood glucose control [10,81], and there are 

individual differences in these impacts [10,81,167,272]. The American Diabetes Association 

recommends individuals set personalized macronutrient targets with a diabetes educator, but 

does not provide explicit guidelines for how to determine these goals.   

In-person education is shown to be effective in supporting self-management, and seeks to 

help patients develop requisite knowledge and skills [73]. Increasingly, self-management 

education includes aspects of coaching, seeking to establish a longitudinal relationship between 

the patient and the educator to not only increase knowledge but also cultivate motivation and 

patient empowerment. However, there are not enough educators to support the growing 

population with diabetes, and the most individuals with diabetes do not receive any diabetes 

education at all [81]. 

In contrast with in-person support, informatics tools can be deployed to offer a form of 

self-management support to a larger number of individuals. In the next sections, I review a 

selection of informatics interventions that take different approaches to support self-management. 

Some actively “push” content to users, while others rely on users to seek out and “pull” 

information from the application, and a combination of these approaches may be particularly 

effective to support self-management.  

2.2 Informatics tools for self-management 

2.2.1 Personal Informatics 

Personal informatics includes a class of interactive technologies that allow their users to 

collect data about their behaviors and health, and explore those data for patterns and trends 

[52,152]. For example, data from sleep sensors can help users uncover the factors associated 
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with a better night’s sleep [51,157], and self-experimentation can help irritable bowel syndrome 

patients learn what foods trigger symptoms [131,132]. Because these technologies focus on 

individual self-monitoring data, they can support individuals in personal discoveries, which is 

especially useful for chronic conditions characterized by individual differences. 

With some exceptions [117], PI tools focus on data collection, descriptive summarization, 

and visualization. With an emphasis on reflection [19,78,142,153,165], users must actively use 

the applications to explore their data – or “pull” from the application. Actionable implications for 

how to change behaviors do not come directly from the application, but through the user’s 

thinking and reflection. The process of logging itself can also be quite challenging and 

burdensome [86,164]. Much of the PI literature focuses on individuals who identify as a part of 

the Quantified-Self (QS) movement, who are highly motivated to devote the time and mental 

energy necessary to make sense of their self-monitoring data [52,152,153]. Findings about the 

usefulness of these systems are unlikely to apply to the larger population with chronic disease, 

including individuals with lower literacy and numeracy from communities with a higher 

prevalence of chronic disease [46,145]. There is a need for solutions that take the burden off of 

individuals to analyze their data and help support actions. 

2.2.2 Behavior Change Interventions 

In contrast with PI interventions, which rely on users to actively and intentionally “pull” 

information, targeted behavior change interventions aim to help individuals adopt healthy 

behaviors by proactively “pushing” the right information and support to users at just the right 

time [147,186]. Often, these interventions use behavior theories to offer notifications and 

messages to “nudge” users towards a pre-specified behavior change goal [147,216]. 

Interventions can be as technically straightforward as targeted one-way text messages, for 
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example sending messages to encourage smoking cessation that are tailored based on the user’s 

motivation and willingness to change [215]. More technically complex examples use mobile 

phone sensor data and reinforcement learning to discover more optimal times to send tailored 

nudges that will be most successful in encouraging physical activity in the moment 

[98,150,193,246]. 

Tailored one-way messaging interventions can be effective in helping individuals adopt 

healthy behaviors to support weight loss, increase physical activity, and increase vaccination 

rates [110,115,198,236]. However, targeted behavior change interventions are limited because 

they rely on a predefined goal or target to nudge users towards. These interventions are useful 

when healthy behaviors are known a priori, perhaps from published clinical guidelines; 

increasing physical activity or quitting smoking will almost always be beneficial for an 

individual’s health. In the case of T2D self-management, and other conditions with prominent 

individual differences, identifying target behaviors may not be as straightforward [10]. In 

addition, the approach of prespecifying target healthy behaviors does not empower patients to 

have input into the process, which could have a negative impact on autonomy and may not 

cultivate patient empowerment [130]. Along these lines, many studies find a diminishing “dose 

effect” of behavioral nudges over time, suggesting that these interventions may not be effective 

in cultivating long-term motivation to adopt healthy behaviors [138]. 

2.2.3 Combining push and pull with automated coaching  

While some interventions primarily “push” information to users and others primarily 

allow users to proactively “pull” information, the two categories are not mutually exclusive. 

Many interventions combine both “push” and “pull” interactions, which can be more effective 

than either approach along. For example, two-way text messaging interventions are more 
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effective than one-way messaging interventions in a number of domains [74,258]. Even the 

addition of simple yes or no questions to measure adherence can increase engagement over one-

way messaging [27,35,111]. Some interventions take interactive messaging a step further to offer 

semi-automated coaching and feedback [88,133,206,256,257]. However, because they rely on 

human experts to provide feedback, these interventions face the similar scalability challenges to 

in-person education and coaching. Because coaching interactions can be initiated by either party, 

and because coaching is centered on back-and-forth exchange, conversational agents are a 

common option to deliver coaching support [83–85].  

The theoretical components of health coaching are described in more detail in the review 

of theories, below.  

2.3 Conversational agents 

Conversational agents — sometimes referred to as chatbots, or intelligent assistants 

— are a class of applications driven by the exchange of natural language between a user and the 

system. One of the first conversational agents, ELIZA, was developed in the 1960’s [264]. The 

first use case for ELIZA was to emulate a Rogerian psychotherapist with rule-based responses. 

Decades later, in the present day, more sophisticated conversational agents are nearly ubiquitous, 

from Siri in smartphones to Alexa in smart speakers [55]. 

Conversational agents have a number of potential advantages for supporting chronic 

disease self-management. First, natural language can provide an intuitive interaction method. A 

conversation is a very natural setting to both “push” and “pull” information to users in the same 

interface [201]. Speech entry is three times faster than typing [230], and may improve usability 

for low literacy populations [49,170,232]. Conversational interfaces may have usability 

advantages over graphical interfaces for individuals with poor vision and dexterity, for example 
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in the case of complications due to T2D [23]. Finally, conversational agents have been shown to 

replicate some of the human, interpersonal aspects of the therapeutic relationship, for example 

expressing empathy or establishing rapport [22,159]. 

McTear [169] offered a useful categorization of conversational agents based on their 

functionality, distinguishing between three distinct categories: finite state-based, frame-based, 

and agent-based. Finite state-based systems follow a deterministic, structured dialog tree or use 

rule-based language processing to respond to user input. Frame-based systems are useful for 

task-based applications, where the designer can specify the types of tasks and pieces of 

information necessary to complete the task, or slots. Frame-based approaches then utilize natural 

language processing (NLP) to classify the user’s intent, and fill the necessary slots in the frame 

to execute the task. For example, to schedule a medical appointment, a frame-based chatbot 

might need the date, timeslot, and chief complaint. Finally, agent-based or AI systems come 

closest to replicating human-human dialog, and rely on more complex logic to determine 

responses, often through data-drivel dialog models trained with machine learning (ML).  

Many of the early examples of CAs were finite state-based [23,264], and rule-based 

agents continue to be developed [91]. Most of the CAs that are a part of the recent resurgence of 

conversational assistants in the consumer sphere, like Amazon’s Alexa and Apple’s Siri follow a 

frame-based architecture. While pitched as conversational experiences, these interactions are 

primarily task-based, and therefore researchers in human-computer interaction (HCI) have 

suggested that describing these interactions as “conversational” is inaccurate [207].  

Recent approaches to designing more dynamic conversational AI agents rely on training 

statistical dialog models, for example deep neural networks, that learn from large corpora of 

example conversations [97]. Through thousands of examples, these models learn a mapping from 
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input messages to output responses. This approach is made possible by many large, openly 

available corpora of dialogs in many domains like IT support and restaurant searching [161,227], 

and is usually centered on open domain chit-chat or task-based agents in a consumer setting. 

Extending these advances to other domains like health coaching would necessitate the creation 

and open availability of such corpora.  

As shown in Figure 3, dialog corpora can be used to learn both what an agent should say 

in response to some user input (dialog management) as well as how to say it (dialog generation) 

[97]. Some modeling approaches seek to learn both dialog management and generation jointly, in 

end-to-end models that map directly from user input to the agent’s output. This approach 

typically requires very large amounts of data, and may handle some tasks better than others 

depending on coverage in the data. An alternative approach is to combine multiple models that 

control different phases of the conversation (see Figure 4). For instance, a rule-based dialog 

management could delegate to one of many model-based agents depending on whether the user 

wants to discuss movies or music. This approach allows combining multiple specialized models, 

each of which may be better attuned to a specific task and require less data to train.  
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Figure 3. Two different architectures for dialog systems.  

Top is a common setup for task-oriented and frame-based systems. Each component can be rule-

based or data driven. Bottom represents more recent approaches to train end-to-end statistical 

models from dialog corpora. Figure adapted from Gao 2018 [97] 

 

Figure 4. A representation of dialog systems with multi-level policy architectures.  

A top-level dialog manager controls the overall dialog interactions, but delegates certain tasks or 

interactions to lower-level policies. Figure adapted from Gao 2018 [97] 

2.4 Reinforcement learning for conversational agents 

A common approach to improve the efficiency of dialog management is to apply 

Reinforcement Learning (RL). RL is a distinct machine learning approach, and is separate from 
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supervised learning — where the task is to predict a label or classification for instances in a data 

set — and unsupervised learning — where the task is to find hidden structures or relationships 

within a data set. The task for RL is to learn a policy for what actions to take in a given 

environment with a certain state. RL agents learn from trial-and-error, collecting rewards as they 

move through the environment, and keeping track of which actions in which situations bring 

about the highest long-term reward. In recent years, RL has shown strong performance in 

learning how to play many different games without any expert knowledge about the game’s rules 

or strategy [233].  

In addition to games, RL can be applied to data-driven dialog management for 

conversational agents. RL can help task-based agents accomplish their aim with fewer questions, 

or in a more natural way, depending on how the rewards are defined [154,156,238]. This can be 

accomplished as a part of end-to-end models, or dialog management alone [97]. 

A key distinction in RL is between online and offline learning. With online learning, the 

agent is able to interact with a simulated or actual environment to directly observe the impact of 

their actions on the state and reward collected by the agent [240]. This is partly attributable of the 

reason for the high-profile success of RL in playing many common games, where thousands 

upon thousands of iterations of the game can be simulated. In the case of dialog agents, this is 

not always possible, and learning in real time with actual users would take too long when the RL 

is in the early stages of training and makes many errors.  

Many RL algorithms are able to learn offline from data generated by some other process. 

Offline learning with an existing data set can be used to train or pre-train RL models before 

deploying them into an actual environment, where they can continue learning over time 

[240,245]. When the generating policy for a data set is not known, it can introduce 



 

 

 

 

24 

methodological challenges for offline learning, which is an open research area [127,245]. If the 

generating process is known, it can simplify the RL approach substantially [245] 

2.5 Conversational agents in health 

A recent review by Laranjo and colleagues surveyed the use of conversational agents in 

healthcare [146]. Their review identified 14 agents in a range of application areas. The majority 

of the applications where to mental health, with a sampling of other health areas like asthma and 

nutrition. Many agents implement some sort of clinical protocol like Cognitive Behavioral 

Therapy [91] or Brief Motivational Interventions [159]. None of the agents identified were AI-

based; all were either rule-based or frame-based. The continued focus on rule-based and scripted 

agents is partly because of a low tolerance for error in the health domain. With scripted agents, 

the design knows exactly how the agent will respond to a given input from the user. With more 

dynamic, data-driven approaches, the models are probabilistic, and because the responses can be 

more variable the designer has much less control over what the agent my say to a user, which is 

not a desirable risk if delivering health-related advice. In addition, because of HIPAA and other 

data privacy protections, health-related data sets are rarely made openly available for researcher 

use, and there is therefore a lack of publicly available dialog corpora in health domains 

[146,227]. 

Unfortunately, many of the studies identified in the review did not include 

implementation details [146]. In addition, most studies reported either technical outcomes, user 

experience, or clinical outcomes, but rarely a combination [146]. Together, these shortcomings 

make it difficult to replicate findings or build on prior work.  

For studies that did report user experiences, common reactions to the agent included a 

sense of accountability, feeling of empathy from and toward the agent, as well identifying a 
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personality in the agent building a relationship with the agent [45,91,94]. These findings support 

the notion that conversational agents have the potential to support individuals in self-

management by replicating parts of the health coaching process.  

2.6 Review of relevant theories and frameworks 

2.6.1 The Information–Motivation–Behavioral Skill (IMB) model 

Many behavioral theories seek to characterize the predisposing factors and barriers for 

engaging in healthy behaviors [147]. The Information–Motivation–Behavioral Skill model (IMB; 

Figure 5) posits that these three concepts are primarily responsible for determining whether 

individuals engage in behaviors that help or harm their health status [89]. 

First, information and knowledge about a behavior and its likely impact on health are 

essential in determining whether a behavior will be helpful or harmful. Information includes both 

facts as well as heuristics and rules of thumb about how to act in a given situation. Second, 

motivation to perform health-related behaviors will also influence whether an individual’s 

choices and decisions, and inform whether they take the sometimes more effortful option to 

improve their health. Together, knowledge and motivation help an individual develop behavioral 

skills to enact healthy behaviors in a variety of situations and circumstances. This concept 

encompasses both an individual’s objective ability as well as their beliefs about their ability, or 

self-efficacy. As a whole, these three concepts influence an individual’s likelihood to perform 

health improving or harming behaviors. 
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Figure 5. The Information-Motivation-Behavioral Skills model [89] 

The IMB model was originally developed to understand engagement in HIV prevention 

behaviors [89], and has since been validated for a number of other health behaviors, including 

diabetes self-management [199]. The utility of the IMB model for understanding diabetes self-

management is clear: 

• Information is important, and not simply facts about the condition or healthy behaviors. 

Because of individual differences, knowledge about how a particular behavior will 

impact health requires self-knowledge 

• While education-based interventions are important, they are not sufficient for individuals 

to adopt healthy changes. Coaching also emphasizes long term relationships and 

empowering patients to help cultivate their motivation over time.  

• Behavioral skills and self-efficacy to perform them are emphasized in diabetes problem-

solving [8]. This is especially important because of the many contextual and situational 

factors that influence self-management [209]. 

One limitation of the IMB model is that it does not directly represent the social support 

and environmental factors that have also been shown to be important in influencing self-

management [147]. While not directly represented, social support is considered as a part of 
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motivation in the IMB model, and the concept of behavioral skills includes consideration of 

environmental barriers and facilitators to self-management. Importantly, the interventions 

examined in this thesis focus primary on individual support for self-management, as opposed to 

intervening on social support structures, or public health interventions to living environments 

and communities, making the IMB model an appropriate choice as a guiding framework.  

Throughout this thesis, the IMB model informs the approach and analysis. In Aim 1, the 

focus is primarily on information needs; the personalized goals generated by the GlucoGoalie 

system aim to help individuals better understand the relationship between their nutrition and 

blood sugar levels. Aim 2 takes a broader lens, considering not just information, but also 

motivation and behavioral skills, examining the ways that both human-powered and automated 

health coaching approaches impact individual’s self-described motivation, as well as examples of 

users learning new skills by following the suggested plans from the chatbot’s content base. In the 

third aim, the proposed structure of micro-coaching conversations supports information by 

offering individuals feedback on their goal attainment, supports motivation by offering positive 

reinforcement or establishing accountability, and supports behavioral skills my making 

suggestions to help individuals learn how to adjust their meals to be more in line with their goals.  

In addition, the IMB model provides a theory-driven lens to understand the merits of 

health coaching, discussed below.  

2.6.2 Health Coaching 

While much attention has been paid to health coaching in recent years (see Figure 6), 

very little work has explicitly defined health coaching as a concept or framework. Many 

informatics interventions are described as “coaches,” but these papers almost never reference a 

specific theory or background literature on coaching or health coaching [218]. 
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Figure 6. Proportion of papers published in PubMed and MEDLINE between 1980 and 

2018 that use the keyword “health coaching” 

Olsen [196] presented a concept analysis of health coaching which posited 7 attributes. 

Health coaching is goal-oriented, client-centered, a partnership, health-focused, enlightening, 

empowering, and takes place as a process through time.  

1. The first central aspect of coaching is its goal-centric orientation, where the coach and 

client work together to set health-related goals and monitor success in achieving those 

goals over time. Goal-setting itself is an established and effective behavior change 

technique employed in many mobile health technologies [74,143,174,184,187]. Goal-

setting serves as the foundation of health coaching, but there are many other essential 

components. 

2. Coaching is client-centered because the coach seeks to personalize the experience based 

on the client’s desires, respecting their autonomy.  

3. Coaching requires a partnership, where both parties are actively engaged. In contrast to 

technologies that focus on “pushing” information to the user, or letting the user “pull” 
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information themselves, technology that facilitates partnerships lends itself to tools that 

push and pull information at the same time in an exchange or dialog.  

4. Health coaching is definitionally health-focused, because its purpose and content is meant 

to improve the client’s health, and contrasts with other forms of coaching like sports, 

executive, or voice coaching.  

5. Successful coaching is enlightening for the client, delivering health education and also 

encouraging reflection, client identification of barriers and strategies to overcome them, 

and self-awareness. This relates to both information and behavioral skills from the IMB 

model.  

6. Coaching is empowering for the client, and cultivates their autonomy, which connects to 

the concept of motivation in IMB.  

7. Finally, coaching is not an isolated intervention, but a process that manifests over time, 

requiring action from the client and recurring sessions between the pair, and long-term 

engagement with the coaching process. This involves building a relationship and 

establishing report. 

Recent work has emphasized the importance of personal and human skills to the 

perceived success of health coaching [218]. Based on interviews with self-described coaches, 

Rutjes argued that successful coaching goes beyond simply achieving goals, and also includes 

growing knowledge through the experience of coaching, building relationships, implicitly 

adapting to different contextual factors, and the importance of cultivating motivation. These 

aspects of coaching are consistent with Olsen’s framework, but place additional emphasis on the 

human aspects of coaching that may be difficult to replicate with data-driven health technology. 

Self-monitoring data can reveal patient behaviors (like achieving or not achieving a health goal), 
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but focuses less on the experiences of individuals in their daily lives [218]. Successful health 

coaching, Rutjes argues, must focus on individual experiences as well as behaviors. Self-

monitoring data and technology, by capturing client behaviors, can help coaches to ask the right 

questions during the coaching encounter [218]. 

Considering the Information–Motivation–Behavioral Skills (IMB) model, coaching 

supports all three of the requisite components for adopting healthy behaviors. Coaching provides 

education to grow knowledge, establishes an interpersonal relationship the seeks to cultivate 

motivation, and helps patients build behavioral skills through a collaborative problem solving 

process [196,218].  

In this thesis, health coaching is a central inspiration for the design of technology to 

support self-management. Aim 1 is focused on goal-setting, which is a central component of 

coaching. Aim 2 seeks to better understand the other essential components of health coaching 

through both a technological and human lens. Finally, in Aim 3, I implement and evaluate 

technology for automated coaching that builds on both health coaching theory and the findings 

from earlier aims.  

  



 

 

 

 

31 

Chapter 3: Aim I  

Identify and evaluate approaches to translate machine learning 

inferences into recommendations for personalized nutrition goals 

 

Self-managing chronic conditions like type 2 diabetes (T2D) presents continual burden 

because it impacts countless choices individuals make in their daily lives [29]. Making healthy 

choices requires literacy and sustained motivation [29]. Self-management is further complicated 

by the need for reflection and self-discovery due to high individual differences: for example, the 

same choices in diet and exercise can have profoundly different health impacts for different 

individuals [10,167,272]. These challenges contribute to growing health disparities; low income 

and minority communities have higher prevalence and worse outcomes from chronic diseases 

and lower access to critical resources like diabetes education [47,114,202]. 

The American Diabetes Association (ADA) recommends setting personalized nutrition 

goals and plans with a heath coaching professional like a Certified Diabetes Care and Education 

Specialist (CDCES) [10]. Coaches work with their clients to determine appropriate health goals, 

including macronutrient targets for different meals. However, this level of care and support is 

still out of reach for many individuals living with T2D. Technology-powered coaching 

interventions can provide personalized support at a bigger scale. Mobile health (mHealth) apps 

and sensors enable the collection of person-generated health data streams like meal logs and BG 

readings. These new data streams, coupled with tools to analyze those data, could enable 

personalized coaching support from mHealth apps.  
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Despite this potential, however, many data-driven health interventions suffer from high 

user burden and low adoption [58,148,152]. The majority of interventions that incorporate self-

tracking focus on viewing, visualizing, or reflecting on personal data. These approaches place the 

burden on individuals to derive insights from their data and determine how to change their 

behavior [117,164]. As a consequence, individuals with low technology and health literacy, who 

are most impacted by chronic diseases, are least equipped to reap the benefits [253,254]. 

One approach to help individuals more easily derive insights from their data is to apply 

machine learning (ML) to find patterns and make predictions. Recent research initiatives have 

demonstrated high accuracy in broadly health-related tasks [105,211]. ML methods can be 

applied to personal health data to find patterns of association between multiple streams of self-

tracking data [20] or forecast changes in blood sugar levels [70]. 

However, incorporating ML into personal health applications has its own challenges. 

Interpreting the output of an ML algorithm also requires knowledge and skills, and can be just as 

challenging as exploring self-tracking data. What’s more, even if ML can identify insightful 

patterns, those patterns may not be sufficient to help an individual understand how to change 

their behaviors: they may not be actionable if there is no information about what an individual 

can do to change or mitigate the unwanted outcomes [20,117]. For example, an identified 

correlation between weather and physical activity may be less actionable without specific 

suggestions for how to stay active on rainy days [20]. Similarly, a prediction of high blood sugar 

may be less actionable without explaining what contributed to the forecast or how to mitigate it 

[70]. Generating suggestions that inform individual action is the heart of the field of 

recommender systems (RecSys) [214,241]. However, even for health-aware RecSys, ML is used 

to infer preferences, rather than the health impact of different choices; the health constraints for 
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recommendations are assumed, not learned with ML [77,208]. Other recent work has sought to 

incorporate recommendations based on ML-derived insights from self-tracking data, but were 

limited to an individual’s own past meals and therefore lacked variability [272], or relied on 

user’s self-perceptions of what behaviors impact health and were therefore unsurprising and less 

useful to users [117]. Thus, there a need for new approaches to translating inferences achieved 

with ML into recommendations that can guide individuals’ action.   

To address these research gaps, I have developed an approach to couple ML inferences 

with a rule-based expert system in order to generate actionable recommendations. This approach 

underlies the design of a system called GlucoGoalie which makes personalized suggestions for 

nutritional goals for individuals with T2D. GlucoGoalie uses ML to identify patterns in self-

tracking data—meals and BG levels captured with the GlucoGoalie smartphone app—regarding 

the relationship between nutrition and change in BG after meals. Furthermore, GlucoGoalie 

relies on a rule-based expert system to translate ML output into a direct support for action by 

generating natural language recommendations for nutrition goals in order to improve BG levels. 

Goal setting is a common approach to behavior change interventions, and a core part of health 

coaching [74,184,187]. These goals reflect both individual patterns identified with ML and 

expert knowledge regarding ways to improve BG management, thus uniquely combining the 

strengths of both. Each personalized goal is a suggestion to increase or decrease the amount of a 

macronutrient in meals, or to replace one macronutrient with another. Finally, GlucoGoalie helps 

individuals work towards achieving their goals by asking them to self-assess prospective meals 

on their consistency with selected goals during logging and to review a summary of goal 

achievement. 
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In the next sections of this chapter, I present the design and the multi-part evaluation of 

GlucoGoalie. Section 3.1 describes the design process and mechanics of GlucoGoalie in more 

detail. Next, I present three evaluation studies: 1) an intrinsic evaluation of the ML method 

underlying GlucoGoalie,  2) a controlled lab experiment that assessed whether the goals 

generated by GlucoGoalie were understandable and actionable for individuals with T2D , and 3) 

quantitative and qualitative results from a 4-week deployment study of GlucoGoalie including an 

analysis of behavior change outcomes and qualitative findings on the experience of receiving and 

following personalized goal suggestions from the app.  

3.1 The GlucoGoalie system 

We designed GlucoGoalie through a user-centered design process building on our prior 

research with individuals with T2D from a predominantly Black and Latino economically 

disadvantaged community [213]. Figure 7 presents an overview of the pipeline for generating 

personalized goals. GlucoGoalie’s goal-generating engine includes two main components: a 

machine learning algorithm for detecting patterns of association between nutrition in meals and 

changes in BG levels, and an expert system that uses expert knowledge to generate 

recommendations for nutritional goals in order to improve BG levels. I describe these in more 

detail below.  
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Figure 7. An overview of the pipeline for generating personalized goal recommendations in 

GlucoGoalie 

3.1.1 Approach to goal setting 

Our aim was to generate personalized recommendations for nutritional goals that can be 

actionable and easily understood by individuals with mixed levels of literacy. One of the key 

decisions in the design of GlucoGoalie was regarding the level of specificity in nutritional goals. 

We worked with a group of Certified Diabetes Care and Education Specialists (CDCES, n=3) to 

formulate goals that are consistent with the ones used in typical diabetes education and that focus 

on changes to macronutrient composition of meals. We made this choice for three main reasons. 

First, the macronutrient composition of a meal is directly related to its impact on BG, but the 

specifics of the relationship vary between individuals [81]. Second, nutrition education in 

diabetes emphasizes macronutrients to help individuals think flexibly about the nutritional 

composition of similar foods [265]. Third, using macronutrients as features has advantages for 

machine learning, offering a denser, low-dimensional feature representation compared to other 

representations like the specific food items in a meal. We worked with CDCES to create 

templates for goals that could be populated by an ML algorithm and identified three types of 

changes to meal composition that could impact post-meal BG: increase the amount of 

macronutrient, decrease the amount, or replace one macronutrient with another. Goals are meal-
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level because the balance of each meal has its own impact on BG, making day-level goals (e.g., 

daily calories) less appropriate. See Table 1 for a selection of goals. 

Table 1. A selection of nutritional goals available in GlucoGoalie.  

Generic goals are available for all users from when they first use the app. Personalized goals are 

recommended for an individual based on ML-based analysis of recorded meals and blood 

glucose readings. Underlined words are personalized for each user based on their data.  

Note: A food “choice” is a unit similar to a serving size that identifies servings of different foods 

with similar macronutrient compositions.  

Type Title Description 

Personalized Decrease your 

carbs to 2½ carb 

choices 

For high carb lunches, decrease your carbs to be about 

2½ carb choices (38g). An example of 1 carb choice is 

1 slice of whole wheat toast, ⅓ cup of plantains, or ⅓ 

cup of brown rice. 

Personalized Increase your 

protein to 3 

protein choices 

For low protein dinners, increase your protein to be 

about 3 lean protein choices (21g). An example of 1 

lean protein choice is 1 ounce of lean ground beef, ½ 

cup of tofu, or 1 ounce of chicken breast. 

Personalized Replace 2 carb 

choices with 2 

protein choices 

For high carb dinners, replace 2 carb choices with 2 

lean protein choices. For example, replace ⅔ cup of 

rice with 2 ounces of ground turkey or 2 ounces of 

tilapia. 

Generic Choose whole 

fruits 

Choose whole fruits instead of fruit juices. For 

example, have a whole orange, an apple, or a cup of 

berries with your meals. 

Generic Choose plant 

proteins 

Include proteins that come from plants, such as beans, 

nuts and seeds, and legumes. For example, choose a 

cup of beans, a handful of peanuts, or a cup of lentils to 

add protein to your meal. 

3.1.2 Machine Learning 

The high-level aim of the ML approach was to infer the relationship between an 

individual’s nutrition choices and changes in their BG levels after meals. The features in the ML 

problem are the meals a user has logged, specifically the grams of carbohydrates, protein, and 

fat. The outcome of interest—change in BG after a meal—is the difference between self-reported 

BG before the meal, compared with 2 hours after, which is the clinical standard [13]. The ML 

method to find patterns of association between nutrition and BG was based on Attributable 
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Components Analysis (ACA), a non-parametric method for estimating the conditional 

expectation of a quantity of interest based on a set of covariates [243]. Because self-monitoring 

data are manually entered by users, there are often a small number of data points that are prone 

to include errors and outliers. These characteristics pose challenges for ML, and, as I describe in 

more detail in the evaluation in Section 3.2, below, ACA has advantages over other methods like 

linear regression because it is able to capture non-linear relationships, is less sensitive to 

erroneous data points, and more effectively estimates uncertainty [179]. While ACA is a 

reasonable choice, any non-parametric regression could serve as the input for the expert system, 

described below.  

3.1.3 Expert System interpretation and guardrails 

While ML can identify patterns in the relationship between meals and BG, these patterns 

alone are not sufficient to inform behavior. In a series of 10 sessions, we worked with CDEs to 

establish rules for interpreting the ML output and translating it into goal recommendations. For 

example, GlucoGoalie suggests goals only if ML infers patterns with an expected increase in BG 

above a clinically significant threshold (40 mg/dl). In addition, CDEs pointed out that some 

automatically generated recommendations might be inappropriate irrespective of their impact on 

BG, for example a goal to eat 100g of fat in a single meal. To mitigate this concern, we added a 

set of guardrails to filter out extreme recommendations based on population-level nutrition 

guidelines.  

In co-designing the goal templates with CDEs, we also sought to formulate goals such 

that they could be understood and acted upon by individuals, even those with low nutrition 

literacy. Because we could not assume nutrition knowledge, we embedded necessary information 

within the goals themselves. First, each goal includes three examples of concrete foods rich in a 
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target macronutrient. Examples are drawn from a knowledge base created using an ADA 

resource [265]. To increase their relevance, examples were selected from meal logs captured by 

participants of a prior self-tracking study; these participants were recruited from a similar 

population and captured their regular meals for 2-5 weeks, thus creating a rich collection of 

meals. Second, we considered multiple approaches to describing target macronutrient amounts, 

including standard units like grams, heuristics like fists and thumbs, or even the proportions of a 

plate covered with different types of foods, an approach consistent with ChooseMyPlate [250]. 

However, we dismissed visualizing proportions on a plate due to their lack of precision (15g of 

rice could be gathered together in a ball or spread thinly over the entire plate).  Instead, we opted 

for a the ADA-endorsed language of food “choices,” a system meant to simplify nutrition 

education [265]. A food “choice” is a unit similar to a serving size; it identifies servings of 

different foods with similar macronutrient compositions. For example, 1 carbohydrate choice is 

15 grams, which could be 1 slice of toast or ⅓ cup of rice. In addition, because “choices” are 

based on grams, the standard unit on food labels, each goal also includes the target amount in 

grams.  

3.1.4 The GlucoGoalie App 

To explore individuals’ perceptions and experience receiving personalized goal 

suggestions in-the-wild, we included them in a custom smartphone application with logging and 

goal-setting functionality.  

GlucoGoalie helps individuals set goals for improving their diet and work towards 

achieving these goals. Users begin by choosing one or more nutritional goals from a list in the 

app (see Table 1 for a selection of goals). To promote engagement with the application before 

users have tracked enough meals to receive personalized goal recommendations, all users choose 
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from the same set of “generic” goals at the outset. Each generic goal describes a generally 

healthy behavior, and was developed by experts in nutrition and diabetes [61]. Twice per week, 

GlucoGoalie analyzes the data of each user with at least 8 meals to generate personalized 

nutrition goals, described above. If new goals are available, GlucoGoalie sends a push 

notification, and users can view the new, personalized recommendations and choose any they 

wish to follow (Figure 8d). 

 
Figure 8. The GlucoGoalie mobile application.  

(a) Logging a meal with a photo and free text description. (b) Users self-assess whether they met 

their chosen goals. (c) A summary of goal achievement. (d) Reviewing and choosing new 

personalized goals to work on after receiving a push notification. 

Within the app, users can log their meals and enter their pre-meal BG. Two hours after 

the meal, GlucoGoalie sends a push notification reminder to enter a post-meal reading. To 

simplify the logging process, users log meals by taking a picture of the meal and typing a free 

text description (Figure 8a). Macronutrient data are entered by a team of  Registered Dietitians 

(RDs) who assessed each meal following a standard protocol based on the USDA nutrition 

database [133], but similar results could be attained via crowdsourcing [194]. To keep goals as a 

central part of the experience and promote accountability, GlucoGoalie prompts users to assess 

whether their meal fits with each of their chosen goals while logging with either “Yes” or “Not 
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Really” (Figure 8b); “Not Really” was identified as a preferred and less judgmental option than 

“No” during user-centered design. Users can view their current goals, remove or choose new 

goals, and review a summary of goal attainment in the My Goals section of the app (Figure 8c).   

Below, I describe a set of studies that evaluated different components of the GlucoGoalie 

system, including its ML engine, its expert system that generates nutritional goals, and the final 

GlucoGoalie app in a deployment study with individuals with T2D. 

3.2 Study 1: Deriving insights from self-tracking data with attributable 

components 

In the first study, I focused on evaluating the ML engine that drives GlucoGoalie. 

Because different individuals have different glycemic responses to different foods, there is a 

need for personalized approaches. Patient-generated data can help personalize support to each 

individual, but using patient-generated data for personalized analysis in the context of nutrition 

and BG poses challenges. BG measurements and meals need to be actively tracked by users, 

which requires effort. Fingers need to be pricked to record BG, and meal details need to be 

entered. Because of the burden of entry, these data points are incomplete and non-randomly 

missing [63]. In addition, glucometers can be miscalibrated, and users can mistype entries 

leading to both systematic bias and random errors. Glucose dynamics themselves are non-linear, 

oscillatory, noisy, and depend on individual characteristics [5,126]. Similar to the data quality 

concerns of electronic health records, the incompleteness, inaccuracy, complexity, and bias of 

patient-generated data create challenges for accurately representing a patient’s state . Still, prior 

work has demonstrated that accurate inference can be possible with self-tracking data sets [5,6]. 

In addition to the challenges of the data, designing analysis for decision support tools 

brings its own substantial challenges. Algorithms need to be able to run as a part of an automated 
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system, identifying complex relationships while being robust to outliers. In addition, it’s 

important for the output to be interpretable. By interpretable, we mean that the relationships 

identified in the output of the model can be translated into useful and actionable support for 

decision-making. Notably, this definition diverges from “interpretable” as similar to 

“explainable” ML, which seeks to explain predictions achieved with deep learning and other 

black box models [107,118]. Interpretability is important because even the most accurate ML 

machinery is not useful if it cannot affect decision-making or be transformed into an 

understandable action. Quantifying uncertainty is an important part of interpretability, so that 

model output can be weighed appropriately in the decision-making process [43,44]. 

There is a need for methods that address these challenges. Optimal transport is a theory 

that offers tools to estimate and compare probability distributions [204,255]. In its original 

formulation, optimal transport sought to optimize the transportation of goods and resources, but 

has since been applied to many problems like computer vision and machine learning [204]. 

Optimal transport is particularly useful for data where values are highly individualized, as in 

medicine [4]. Blood pressure, for instance, may be related to many factors like age, exercise, 

diet, sex, prescribed drugs, and the device used to take the measurement. Here we adapt an 

optimal transport-based method invented by Tabak and Trigila [243] termed attributable 

components analysis (ACA). This method was created to explain variability in a quantity of 

interest based on a set of related or potentially confounding covariates, or “attributable 

components.” Each component represents a contribution to the observed variability while 

simultaneously filtering out irrelevant effects to focus on a particular relationship. 

In this section, I apply an adapted version of the ACA method to type 2 diabetes self-

monitoring data, using ACA to estimate the mean glycemic impact of a meal—the difference 
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between pre-meal and post-meal measurements—based on the meal’s macronutrient 

composition. By estimating how each attributable component, in this case each macronutrient, 

contributes to the variability in BG after a meal, ACA can identify patterns of association 

between each macronutrient and expected BG impact. To better understand and convey how 

ACA performs for this task, we compare its output to linear regression. 

3.2.1 Methods 

Data Set 

The data set used in this analysis originates from prior user studies of a smartphone 

application for diabetes self-monitoring very similar to the meal and BG logging functionality in 

the GlucoGoalie app, described above in Section 3.1.4. To log a meal, users captured a 

photograph of the meal, assigned a category of the meal (breakfast, lunch, dinner, or a snack) and 

entered a free-text description of the meal contents. Users entered pre-meal BG readings when 

logging the meal. Two hours after each meal, users received a notification to record and enter 

their post-meal BG reading. Later, each meal was evaluated by a registered dietitian (RD) who 

performed a nutrient assessment of the meal using a standard protocol and the USDA food 

composition database [3,252]. The RD recorded the carbohydrates, fat, protein, and fiber, in 

grams, as well as the total calories of the meal. 

Data came from 40 users who used the smartphone application for 4 to 12 weeks in a 

separate IRB approved study. Each participant consented for their data to be re-used in future 

research. In this analysis, we included all participants with 30 or more total meals logged, and 

considered only the meals with both pre- and post- meal BG readings, for a total of 16 users. 

The 16 users recorded a median of 67 meals over 4 to 12 weeks. As seen in 

Supplementary Figure A, most users logged close to the median number of meals, with a few 



 

 

 

 

43 

users logging considerably more. As shown in Supplementary Figure B, users varied 

substantially in their BG levels before and after meals.  

Two users, “A” and “B,” were chosen for a detailed inspection of model performance 

because they were representative of the overall data set, but differed from each other in BG 

control and macronutrient consumption patterns. Users A and B logged a total of 58 and 88 

meals over 4 and 12 weeks, respectively. See Supplementary Table A for a detailed breakdown 

by meal type. As seen in Supplementary Figure C, user A had less variability in BG impacts 

compared to B. Supplementary Figure D shows kernel density estimates of the macronutrient 

features for both users. Shown side by side, these densities show variability between and within 

each user. For example, user A ate 25 grams of carbohydrates at lunch most of the time, while 

user B had much more variability in their lunchtime carbohydrate intake. An important artifact 

and limitation is that nutrition evaluations only accommodated up to 100 grams of each 

macronutrient to be entered, yet user B regularly ate 100 grams or more of carbohydrates at 

dinner. 

Feature Selection 

We experimented with different representations of features to predict BG impact. We 

began with the three main macronutrients—carbohydrates, fat, and protein—represented as their 

weight in grams, or their proportion of each meal’s calories. ACA performed slightly better when 

representing macronutrients as proportions than as grams, but we opted to use grams because we 

thought this would be more useful for decision support. In an effort to make decisions more 

straightforward, nutrition education in diabetes emphasizes the importance of macronutrients, 

and usually focuses on amounts of foods with units like grams, not their contribution to calories 

[265]. While some materials like the USDA’s MyFoodPlate are based on the proportion of the 
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plate filled with different foods, the proportion of calories is very different than the volume a 

food takes up on a plate. (Consider 1 stick of butter vs. 4 cups of raw spinach.) And finally, 

representing macronutrients as proportions means that the values sum to one, which introduces 

strong multicollinearity that creates challenges for inference with linear regression. 

In addition, we also included fiber and pre-meal BG as features. We included fiber 

because increasing fiber is a common recommendation for individuals with diabetes [11]. We 

included pre-meal BG because of its relationship with post-meal BG. Glucose dynamics at their 

simplest consist of a glycemic response to nutrition. Because of this, to infer glycemic response 

to nutrition—to solve the equations uniquely—we need the initial state (pre-meal glucose), the 

kick (nutrition consumption), and the response (post-meal glucose). 

A particular challenge of type 2 diabetes self-monitoring data is representing the impact 

of a particular meal on BG, or the glycemic impact. An optimal sampling rate for BG is on the 

order of minutes, not hours [37,100]. A single reading two hours after the meal is the clinical 

standard for postprandial measurement [13] but is not well suited to capture the fluctuations in 

BG after a meal. Even with appropriately sampled continuous glucose monitoring (CGM) data, 

it’s not clear which features are most important to diabetes-related complications; the highest 

peak in blood glucose, the integral of the glycemic curve from the mean to sometime after the 

meal, the average value over time, or the speed of oscillations following a meal are different 

ways of representing BG impact, with different potential physiologic implications. While more 

frequent or continuous measurement would be preferred from a data standpoint, checking BG 6-

10 times per day is recommended for those on insulin therapy, and there is no recommendation 

for those not on insulin [10]. Here, we follow the standard practice for postprandial BG 
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measurement, and take the difference of post-meal BG minus pre-meal BG to represent the 

glycemic impact of a meal. 

Attributable Components 

Attributable component analysis (ACA; [243]) is a methodology for explaining the 

potentially nonlinear variability in a quantity of interest, 𝑥, in terms of covariates 𝑧 = (𝑧1, … , 𝑧𝐿). 

The method is highly motivated by theory and ideas from optimal transport [255]. In our 

application, 𝑥 represents the glycemic impact, and 𝑧 represents the macronutrient content of a 

meal. The covariates can be categorical (such as “meal,” with values in “breakfast,” “lunch,” 

“dinner,” real (such as “total amount of carbohydrates”) or, in fact, of nearly any type. The 

output of attributable component analysis is 𝑥‾(𝑧), the conditional expectation of 𝑥 with respect 

to covariates 𝑧; this conditional mean is provided as a sum of components, which can be thought 

of as modes of variability. Each component is represented by the product of one-dimensional 

functions of each covariate 𝑧𝑙. A more detailed explanation of ACA is provided in [179], but a 

summary is provided here. 

Given a set of 𝑚 observations of the variable of interest 𝑥 and 𝐿 covariates, 

{{𝑧𝑙
(𝑖)

}𝑙=1
𝐿 , 𝑥(𝑖)}𝑖=1

𝑚 , the ACA algorithm seeks to estimate the conditional mean 𝑥‾(𝑧) with the 

following equation: 

 
𝑥‾(𝑧1, … , 𝑧𝐿) = ∑ ∏ ∑ 𝛼

𝑗𝑙∈𝐿

𝑑

𝑘=1

(𝑙)𝑗(𝑧𝑙)𝑉(𝑙)𝑗
𝑘 , (1) 

 

each 𝑘 is a component of the variability in 𝑥, the 𝑉’s are essentially basis functions that 

represent the variability, and can be represented by many classes of functions, e.g., as the sum of 
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the product of sinusoidal functions in the case of Fourier decomposition (cf. Appendix (ACA; 

[243])), and 𝛼(𝑙)𝑖
𝑗

= 1 when 𝑧𝑙
𝑖 = 𝑗 and 𝛼(𝑙)𝑖

𝑗
= 0 otherwise. 

The complete estimate of 𝑥‾ based on all 𝐿 features is useful, but being a probability 

distribution, is difficult to translate into useful recommendations because of the complexity 

dimensionality. To address this problem, we instead use the marginal dependence that translates 

𝑥‾ from an 𝐿-dimensional function into a one-dimensional function. 

Interpretability through marginalization 

We make the ACA output more interpretable for decision-making by “marginalizing” the 

ACA output function. To understand what this means, why this is necessary, and how this works, 

begin with the ACA estimated conditional mean that adopts the form in Equation 1 where the 

𝑉(𝑙)𝑗
𝑘 are found by the algorithm, and the 𝛼(𝑙)𝑗(𝑧𝑙) are known via interpolation on grids or 

prototypal analysis. Even though this estimation allows us to make predictions for new values of 

𝑧, its complexity makes it difficult to interpret. For example, if we limit the covariates to only 

binary forms, e.g., increases or decreases, then there are 2𝐿 combinations of actions a person 

must interpret and choose among; this is too complex. Because the point of this intervention is to 

help people understand glycemic impacts of nutrition to make balanced choices that are 

sustainable behaviorally, we must translate ACA output into a simpler form, one where the 

impact of a single covariate is considered at a time, leading to only 𝐿 different options. We can 

do this by asking simpler questions, such as: averaging over all other covariates, how does 𝑥 

depend on a specific 𝑧𝑙 or small set thereof. Such questions ask us to marginalize the full 

estimated conditional mean and the separated form of the estimation makes it straightforward to 

perform this task. In order to find the marginal dependence of 𝑥 on a group of covariates 𝐻 

denoted by {𝑧ℎ𝑡
}𝑡=1

𝑠 , with ℎ𝑡 ∈ 𝐻 and 𝑠 = |𝐻|, one has 
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𝑥‾(𝑧1, … , 𝑧𝐿) = ∑ [
1

𝑚
∑ ∏ ∑ 𝛼

𝑗ℎ∉𝐻

𝑚

𝑖=1

(ℎ)𝑖
𝑗
𝑉(ℎ)𝑗

𝑘]

𝑑

𝑘=1

∏ ∑ 𝛼

𝑗ℎ∈𝐻

(ℎ)𝑗(𝑧ℎ)𝑉(ℎ)𝑗
𝑘 . (2) 

 

In this case, 𝑥‾(𝑧ℎ1
, … , 𝑧ℎ𝑠

) represents a function that captures the impact of a particular 

subset of features on 𝑥. For a single covariate of interest ℎ, 𝑥‾(𝑧ℎ) is a one-dimensional function 

that captures the impact that one covariate, for example fat, has on glycemic impact. In Figure 9, 

Figure 10, and Figure 11, where we compare the ACA to linear regression, the one-dimensional 

ACA output shown is 𝑥‾(𝑧ℎ) as opposed to the full ACA model 𝑥‾(𝑧1, … , 𝑧𝐿). 

Other regression methods and ACA 

There are other methods that can be used for similar tasks. ACA is a non-parametric 

density estimation method, and its task of explaining variability based on a set of covariates is 

similar to regression with clustering or principal components analysis (PCA). Importantly, 

ACA’s output is more interpretable than these alternatives. If the goal is to identify patterns 

between an individual’s nutrition and their glycemic control or to make recommendations to 

change diet, then it’s important that the output can be translated for human understanding. With 

ACA, each attributable component is a covariate, meaning the relationships identified are in the 

same dimensions as the input data. PCA finds the uncorrelated components that explain the most 

variability in the dependent variable [129], but what exactly each component means could be 

difficult to explain in a clinical situation. Similarly, clusters can be difficult to convey to 

clinicians without extensive training, and require interpretation [86]. It’s important that the 

model output aligns with cognitive models [200]; a complex, black box method with strong 

performance metrics is only useful if it can be translated into something clinically meaningful. 
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As ACA is operationalized here, its output is also similar to other regression methods like 

least-squares or support vector machine (SVM) regression. However, it’s notable that the method 

by which ACA estimates this regression is by approximating a joint distribution and 

marginalizing over the features, which is different than how other methods fit the data. 

In choosing a comparison method, we aim to identify and highlight qualitative and 

quantitative differences between ACA and another regression approach. We do not aim to argue 

for the hypothesis that ACA is the best method for this data and task, and an intrinsic evaluation 

of ACA has been reported elsewhere and is outside the scope of this work. As a baseline, 

therefore, we compare ACA against multiple linear regression [171]. While there are many 

potential choices for a regression comparator, including various non-linear variants, linear 

regression is a highly used model and is a reasonable choice for our data because its limited 

complexity means it has the potential to perform well on small, n-of-1 data sets in our 

experiments. 

Comparator: Linear Regression 

As a comparison method, we fit the data with multiple linear regression 

𝑥‾(𝑧1, . . . , 𝑧𝐿) = 𝛽0 + 𝛽1𝑧1 + 𝛽2𝑧2+. . . +𝛽𝐿𝑧𝐿 

where 𝑥 is the quantity of interest and 𝑧1, . . . , 𝑧𝐿 are covariates and 𝛽0 is the intercept term. More 

compactly 

𝑥‾(𝑧1, . . . , 𝑧𝐿) = 𝛽0 + ∑ 𝛽𝑙

𝐿

𝑙=1

𝑧𝑙 

We then find the best fit using the ordinary least squares method [171]. 

As with ACA, to improve the interpretability of the output, we fit the model with all 

covariates, 𝑧, but marginalize to consider a specific 𝑧𝑙 (or small subset) by averaging over the 
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other covariates. To compute the marginal dependence of 𝑥 on a group of covariates 𝐻 denoted 

by {𝑧ℎ𝑡
}𝑡=1

𝑠 , with ℎ𝑡 ∈ 𝐻 and 𝑠 = |𝐻|, one has 

 
𝑥‾(𝑧ℎ1

, … , 𝑧ℎ𝑠
) = 𝛽0 + ∑ 𝛽ℎ

ℎ∉𝐻

[
1

𝑚
∑ 𝑧ℎ

(𝑖)

𝑚

𝑖=1

] + ∑ 𝛽ℎ

ℎ∈𝐻

𝑧ℎ (3) 

 

The outcome of the marginalization calculation in Equation 2 and the linear regression in 

Equation 2 is a one-dimensional graph, e.g., Figure 9 where the macronutrient is given on the x-

axis as the independent variable or covariate and the y-axis is the glycemic impact.  

Uncertainty Estimates 

We used several bootstrapping algorithms to estimate uncertainty of the regressions. 

Specifically, we used bootstrap to estimate distributions of regression coefficients, allowing us to 

quantify the variability of the estimate. Given this distribution we can calculate quantities that 

characterize the uncertainty; here we focus on confidence intervals over the range of input 

values. Often, bootstrapping is accomplished by drawing multiple samples with replacement 

from the data set and computing the estimate for that resampled data [69]. Empirical confidence 

intervals can be calculated from the distribution of estimates. In addition, ACA is stochastic, 

with a random initial state, so we can estimate the variability through repeated calculations with 

the same subset but different starting states. We experimented with both methods for 

bootstrapping ACA, and the results were nearly identical. We opted for the typical approach of 

bootstrapping via multiple subsamples so that we could apply the same bootstrapping procedure 

for both methods, because linear regression is not stochastic. 

A second question is the size of the bootstrap samples. A common approach is for each 

bootstrap sample to have the same number of data points as the original data set. Because data 

sets for some of the users were quite small, there were advantages to using larger bootstrap 
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samples. For example, bootstrap samples may have very few unique data points. This negatively 

impacts the performance of the model, and poses challenges for aggregating variance estimates 

across the complete range of feature values. Larger bootstrap samples can improve model 

performance, and help ensure that estimates cover the full range of independent variable values; 

of course, bootstrap ensembles cannot represent the tails of distributions that are not observed in 

the data, and can underestimate variance. We experimented with the original size of the dataset, 

100, and 500 data points, and found that a bootstrap sample size of 500 performed well for both 

ACA and regression. 

A third question is how many bootstrap iterations to run. 100 iterations has been 

suggested as a minimum for variance estimations, but it depends on the situation (Davison and 

Hinkley 1997). We inspected the change in variance across all iterations after each subsequent 

bootstrap iteration to look for convergence. We experimented with up to 200 iterations and found 

that 100 iterations were sufficient for variance to converge. 

All analysis was performed in MATLAB 2016b (9.1). Additional plots and descriptive 

statistics were produced in R v3.3.2 with tidyverse v1.1.1. 

Experimental Design 

We estimated ACA and linear regression on the data sets for each user, as well as data 

subsets by meal type (breakfast, lunch, and dinner). To estimate confidence intervals, we 

performed a bootstrap with 100 iterations, based on the procedure described above. Each 

bootstrap sample had 500 data points, and the same samples were used to fit ACA and linear 

regression. 95% confidence intervals were determined empirically from the aggregated bootstrap 

output. 
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We then produced a series of plots for each user and closely inspected the plots for the 

two users introduced in the data set description. Each plot included an individual covariate (𝑧𝑙) 

on the horizontal axis, with BG impact 𝑥 on the vertical axis, the actual data points, and average 

fit of ACA and linear regression with confidence intervals. With each of the 5 features for the 

overall data sets and the 3 meal-type subsets across two users, there were a total of 40 plots. See 

Figure 9 in the Results for an example. 

Evaluation 

To compare the performance of the two models we calculated the root mean squared 

error (RMSE) of the data fit for both ACA and linear regression. 

RMSE for the overall model: 

√
1

𝑚
∑ |𝑥‾(𝑧1

(𝑖)
, . . . , 𝑧𝐿

(𝑖)
) − 𝑥(𝑖)|

2
𝑚

𝑖=1

 

RMSE for the marginals: 

√
1

𝑚

1

𝐿
∑ ∑ |𝑥‾(𝑧𝑙

(𝑖)
) − 𝑥(𝑖)|

2
𝑚

𝑖=1

𝐿

𝑙=1

 

In addition, we qualitatively inspected the plots for evidence of non-linear relationships, 

and examined the situations where the two models agreed and disagreed. To quantify non-linear 

relationships, we heuristically evaluated the plots to tally the number of data sets where the 

average fit line of ACA had more than a 10-degree bend. 

To quantify differences in the uncertainty calculations between the two methods, and to 

assess the coherence and usefulness of the confidence intervals, we calculated the percentage of 

data points falling within the confidence interval across all data sets. 
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3.2.2 Results 

As shown in Table 2, the RMSE for the full ACA model was significantly lower — by a 

factor of ∼ 7 — than for linear regression with a standard deviation similarly lower by a factor 

of ∼ 3. 

Table 2. Root mean squared error (RMSE) for ACA and linear regression, 

for the full model with all covariates. 

ACA Linear regression 

4.36 ± 3.40 29.15 ± 10.02 

 

However, as shown in Table 3, examining the marginal output that considers one feature 

at a time, linear regression outperforms ACA in RMSE by 2 to 7 mg/dl for breakfast, lunch, and 

dinner meals, while ACA slightly outperforms linear regression for analysis when all meals are 

pooled together. The explanation: ACA, being a complex nonlinear regression, is more data-

hungry than linear regression, and because it underperforms linear regression for a single meal 

but outperforms for three meals, it needs at most three times the data to have a lower RMSE than 

linear regression. 

Table 3. Root mean squared error (RMSE) for ACA and linear regression, for the 

marginal model considering one covariate at a time. 

Meal type ACA Linear regression 

breakfast 28.81 ± 16.2 26.27 ± 14.3 

lunch 35.06 ± 18.0 32.62 ± 16.0 

dinner 40.21 ± 26.1 33.60 ± 20.3 

overall 37.21 ± 21.3 37.44 ± 21.4 

 

The difference between ACA and the marginalized ACA — that ACA itself produces 

very accurate representations of the data while the marginalization is substantially less accurate 

— has important implications. First, this difference shows that there is substantial correlation 

between the covariates; this is not surprising because individual meals are combinations of food 
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items, which in turn have combinations of macronutrients, suggesting that the macronutrients in 

a meal are not independent of each other. Second, it is clear that because of the systematic 

relationships between covariates, there is predictive information that we are not using to help 

people make decisions. The problem of course, is that the full portrait of how these covariates 

influence glycemic impact is a complex mathematical object. And to be useful in practice there is 

an imposed tradeoff that is not about algorithmic accuracy, but about human factors: we need the 

algorithm to be accurate but we must balance accuracy against the ability to use the output of the 

algorithm to make decisions. And this leads us to the third implication of the difference between 

the ACA and its marginalized form: we must find a way to exploit this yet-unused predictive 

information in a way that also allows for useful decision-making. 

Non-linear relationships 

In some situations, ACA did identify non-linear relationships between macronutrients 

and BG impact, as shown in Figure 9. Because of the regularization built into ACA, most of the 

identified trends were linear, but some were non-linear. Non-linear relationships may be 

expected in some situations because of the complexity of BG dynamics. Linear regression, of 

course, would by definition never be able to find a non-linear relationship. 
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Figure 9. Comparison of ACA and linear regression for user A and the relationship 

between carbohydrates and BG impact, across all meals.  

In this case, ACA identifies a non-linear relationship, while linear regression does not. 

Outliers and errors 

When inspecting the plots, we found that some data sets had outliers that were clearly 

errors. For example, User A’s data had two meals recorded with 50 grams of fiber. These data 

points are clearly errors not only because they are visibly separated from the rest of the data, but 

also because 50 grams was the default value for nutrient assessments by RDs, and 50 grams of 

fiber is an infeasible amount to eat in one sitting. The recommended amount of fiber is 38 grams 

per day for men, and 95% of adults don’t manage to eat the recommended amount of fiber; 50 

grams of fiber would be over 3 cups of lentils. As shown in Figure 10, linear regression is unable 

to ignore the outliers, and continues the downward trend beyond what is reasonable. ACA, on the 

other hand, also finds a slight downward trend in the non-outlier data, but evens out to be flat—

showing no relationship—over the sparsely populated region before the outliers. The ACA is a 

more robust estimator (Huber 2011) than linear regression. 
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Figure 10. Comparison of ACA and linear regression for user A, and the relationship 

between fiber and BG impact, across all meals.  

ACA shows no trend leading out to the outlier data points with 50 grams of fiber, while 

linear regression continues a downward trend beyond what is reasonable. 

Uncertainty estimates 

One of the most drastic differences between ACA and linear regression was in the size 

and variability of the confidence intervals. Confidence intervals for ACA were broad, and varied 

in their width across data sets. In some instances, ACA would have a relatively narrow 

confidence interval, suggesting a higher degree of certainty in the identified trend. In other 

situations, though, ACA has broad confidence intervals, encapsulating most of the data sets, 

suggesting a low degree of confidence in the identified trend. On the other hand, the less flexible 

linear regression typically had narrow confidence intervals, regardless of the plausibility of the 

trend identified. See Figure 11 for a comparison of uncertainty between two data subsets for the 

same user. 
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Figure 11. Comparison of ACA and linear regression for user B.  

On the left is the relationship between carbohydrates and BG impact for lunch meals. On the 

right is the relationship between fat and BG impact at dinner for the same user. On the left, ACA 

has wide confidence intervals, indicating uncertainty about the true relationship, while 

confidence intervals are narrower on the right. In contrast, linear regression has narrow 

confidence intervals in both figures. 

In general, the confidence intervals were much wider and more expressive with ACA. As 

shown in Table 4, more of the actual data points—by factors ranging from 2 to 16 with an 

average of 6—fell within the confidence intervals for ACA than with linear regression. 

Table 4. Percent of data points within the 95% confidence interval for attributable 

components analysis (ACA) and linear regression. 

 N ACA Linear Regression 

User A    

    Breakfast 13 84.62% 10.77% 

    Lunch 10 28.00% 2.00% 

    Dinner 23 58.26% 7.83% 

    All meals 58 15.17% 7.59% 

User B    

    Breakfast 16 96.25% 6.25% 

    Lunch 19 52.63% 8.42% 

    Dinner 44 32.27% 11.36% 

    All meals 88 22.05% 12.05% 

All Users (Mean ± SD)    

    Breakfast 23 ± 16 62% ± 21% 11% ± 8% 

    Lunch 21 ± 14 47% ± 21% 8% ± 6% 

    Dinner 24 ± 15 47% ± 22% 10% ± 7% 

    All meals 82 ± 63 25% ± 12% 12% ± 7% 
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3.2.3 Discussion 

In this study, we explored the use of a method based on optimal transport theory to 

analyze patient-generated data. As compared to linear regression, we found that attributable 

components analysis (ACA) was able to identify non-linear relationships, was more robust to 

outliers, and offered more representative and accurate uncertainty estimates. These 

characteristics make ACA a good candidate to be used in the wild for decision support systems, 

for example smartphone applications like GlucoGoalie that delivers personalized nutritional 

recommendations directly to patients. In addition, the model output could be used in a tool to 

help clinicians deliver personalized coaching to patients with T2D, or to automatically generate 

meal plans. 

Unlike post hoc data analysis, when datasets can be cleaned, curated, and processed, 

algorithms used in decision support systems need to run automatically without direct oversight 

using data with all their imperfections. Given the constraints of real self-monitoring data, the 

marginalized ACA performed well. But it is important to understand the modeling workflow we 

develop here, and its advantages and evaluation. We compared a simple regression, linear 

regression, to a complex nonlinear regression that was then simplified after the fact. It seems 

that, given enough data, it is more productive to begin with a model capable of representing the 

structures in the data and have the features necessary for useful decision-making, and then 

simplifying the model output as is required for practical decision support. Non-linear regressions 

are not always required or useful, and often a linear or logistic regression—as a sophisticated use 

of a simple tool—will be a better choice due to the needs of the application, e.g., [151]. Here we 

had substantial gains from basing the analysis in a more flexible tool, but also saw some 

drawbacks, all of which are noted below. 
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Nonlinear relationships in data and decision support 

The ACA was able to identify non-linear relationships, which is important because of the 

complexity of BG dynamics and other systems in health. Importantly, ACA is also regularized to 

prevent overfitting, and the majority of relationships identified were linear. As discussed in the 

methods section (Section 3.2.1), one approach to make regression output useful for decision 

support is to use a clinically meaningful threshold for BG impact to identify ranges of values to 

expect higher or lower BG impacts. Because ACA is non-linear, it can identify multiple ranges, 

but with linear regression, this approach would only identify 1 high and 1 low impact range. 

Distinct ranges may be more clinically meaningful. 

Robust estimation 

ACA was more robust to outliers and erroneous data points than linear regression. Data 

accuracy is a central concern in assessing the quality of electronic health data [121,262], 

especially for patient-generated health data, when patients are directly entering data points [59]. 

While rule-based or statistical methods can be used to detect and remove outliers, analytic 

approaches that are robust to outliers, like ACA, are still advantageous. 

Uncertainty quantification 

ACA offered broader and more representative and accurate uncertainty estimates than 

linear regression. It’s important to represent and consider the confidence of the model for a given 

patient’s data set. Uncertainty is intrinsic to the practice of medicine. If a model is going to be 

used for clinical decision support, representing the uncertainty can help clinicians appropriately 

weight the information against everything else they know about the patient [43,44]. For patient-

facing applications, the certainty can help prioritize what is and is not shared with users. 
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Reducing model flexibility for interpretability and decision-making 

Linear regression is rather interpretable, especially in one dimension. A nonlinear 

regression like ACA, which models a distribution function that estimates glycemic response, is 

far less interpretable in its raw form; it often requires mathematical sophistication to interpret and 

is difficult to visualize due to the high-dimensional nature of the model. While the full ACA 

model with all covariates outperformed linear regression, the quality of the fit dropped 

substantially when considering one covariate at a time in the marginal model given the data 

constraints. We focused on the marginal relationship between each covariate and glycemic 

impact because interpretability and actionability for decision support was a key objective: 

simultaneously making changes to multiple macronutrients is challenging for individuals to 

implement because of the cognitive burden and because behavior change is often grounded on 

incremental, achievable adjustments. 

The poorer performance of the marginal model points to a tradeoff between accuracy and 

interpretability in machine learning tasks [128]. In this context, there is substantial information 

shared between covariates that is lost through marginalization. While the full model may be too 

complex for tractable interpretation, future work could explore marginalizing out fewer 

covariates, to examine the relationship between two covariates 𝐻 in relation to the quantity of 

interest 𝑥‾, as opposed to a single covariate, as presented here. Three-dimensional surfaces can 

still be visualized and interpreted without adding unnecessary complexity, suggesting that this is 

a feasible direction for future work. In addition, such an approach could be employed alongside 

univariate marginalization when pre-hoc analysis suggests that two covariates share a great deal 

of information. At the same time, there is a need for richer and more detailed model outputs in 

clinical characterization [122], and future work could also explore ways to improve the 
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interpretability of the full model with all covariates for use for decision support while still 

aligning with what clinician and patients need from a human factors standpoint. 

3.3 Study 2: Assessing the understandability and actionability of personalized 

goals 

In the second evaluation study, I move from examining the machine learning inferences 

underlying GlucoGoalie towards evaluating the output of the expert system: personalized 

nutrition goals. In particular, this controlled lab experiment examined whether the style of 

personalized goals generated by the system would be understandable and actionable for 

individuals living with T2D, with the following research question: 

Research Question 1.1: Would individuals with type 2 diabetes from medically 

underserved, low income communities be able to understand and act on computationally 

generated nutrition goals in a controlled setting? 

3.3.1 Methods 

Participants and procedure 

Participants were recruited from two types of health centers in New York City: 1) a 

Federally Qualified Health Center (FQHC) in Brownsville Brooklyn, and 2) clinics affiliated 

with Columbia University Irving Medical Center. To be included, participants needed to be 

between 18- and 65-years-old with a self-reported diagnosis of type 2 diabetes (T2D) and 

proficient in English. After collecting consent, participants received a 10-minute, in-person 

nutrition training introducing the concept of food “choices” and reviewing macronutrients. 

Participants then completed the following three tasks: 



 

 

 

 

61 

Task 1: Goal Comprehension 

To assess whether participants understood the content of the goals output by 

GlucoGoalie, participants were presented with an example goal “for a friend with diabetes,” and 

asked to choose which of two meals were a better fit with the goal. Meals were presented as a 

free text description with a nutrition label in the style of Facts Up Front [276] (see 

Supplementary Figure E); nutritional labels were included to ensure that this task was testing 

comprehension of goals, rather than individuals’ ability to assess nutritional composition of 

meals. This task was repeated twice.  

Task 2: Goal/Image Matching 

Because many meals are cooked at home, we included a second task to test 

comprehension of goal sentences using example meals without nutritional labels. Participants 

were again asked to choose which of two meals was a better fit with a presented, example goal, 

but could see only the meal image and description, with no macronutrient information (see 

Supplementary Figure F). Meal images were selected from a data set collected in ongoing 

research with individuals from a similar population. Meal pairs were chosen to include similar 

ingredients but vary in macronutrient content; the incorrect answer was at least 1 macronutrient 

“choice” different from the correct answer, and the difficulty varied across scenarios. To account 

for higher variability in meal images, this task was repeated for eight goal/meal-pair 

combinations.  

Task 3. Meal Choice: The Virtual Buffet 

To assess whether goals were actionable and participants could follow them, we 

simulated the process of choosing meals with a “virtual buffet” made up of food image cutouts 

(see Supplementary Figure G). Participants then received a tailored goal and were asked to 
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choose additional meals with that goal in mind. Working 1-on-1, researchers asked participants 

to use the food cutouts to assemble a baseline meal for each type of meal (breakfast, lunch, and 

dinner) that was “closest to what you would normally eat.” Importantly, there were multiple 

copies of each food item so participants could vary the amount of each food. Images were 

labeled with an amount in cups, tablespoons, or ounces, but never choices or grams (the units 

included in the goals themselves). We used images from a web-based resource [190] and our 

ongoing research and sought to include common staples like bacon and eggs as well as culturally 

relevant foods like fried plantains. 

The baseline meals were used to identify goals that would require participants to vary 

from their typical macronutrient behavior by 1 to 1.5 macronutrient choices. For example, if a 

participant’s baseline meal had 3.5 carb choices and 1 protein choice, they would receive two 

goals: one to decrease carbs to 2 choices and another to increase protein to 2 choices. 

Participants chose one of the two goals, and then assembled “breakfast,” “lunch,” and “dinner” 

for three days in a row, with the chosen goal in mind (9 total meals). Researchers tallied the 

chosen food items to calculate nutrient compositions. During the 1-on-1 activity, researchers 

made note of participant comments and feedback, for example, questions about missing or 

inappropriate food items. 

Data Analysis 

For the goal comprehension and goal/image matching tasks, we calculated binary 

accuracy as a percentage (#correct / [#correct + #incorrect]). For the “virtual buffet” experiment, 

we analyzed the data in two dimensions: direction and accuracy. First, we examined whether 

participants’ meals were consistent with the direction of their chosen goal. For example, if the 

goal was to increase protein to 2 choices at lunch, we assessed whether subsequent lunches had 
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more protein than baseline. A binomial test was used to determine whether performance was 

better than chance. Second, accuracy in meeting the goal target was measured with mean 

absolute error between participant choices and the goal target. For example, if the target was 2 

choices, we assessed how close participant’s meals were to the target, on average. 

To synthesize participant’s impressions from their unsolicited comments during the 

study, the research team met to debrief and aggregate notes in a series of meetings to inductively 

summarize key themes [36]. I collected and aggregated the handwritten notes taken during the 

study and created an initial coding scheme, which was discussed and refined with the full 

research team.  

3.3.2 Results 

Participants 

We recruited and enrolled a total of 19 participants, including 10 from a Federally 

Qualified Health Center, and 9 from university-affiliated clinics. Four participants were excluded 

because of a data collection error for a total of 15 participants included in the analysis. As seen in 

Table 5, participants were predominantly female, and Black or Hispanic. Most were overweight 

or obese (body mass index ≥ 25).  

Results 

For the goal comprehension task, when choosing which of the two nutrition labels met a 

given goal participants were correct 89% (SD = 21%) of the time. When choosing which of two 

meal images was a better match with a goal, participants chose the correct meal 49% (SD = 25%) 

of the time. When composing meals at the virtual buffet, meals were consistent with the direction 

of chosen goals 67% (68 of 102) of the time, significantly more than chance per a binomial test 

(p < 0.001). There was no difference in the percentage of meals consistent with the direction of 
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chosen goals by meal type, macronutrient, or direction of goal. At the same time, there was a 

high degree of variability in precisely meeting the goal target. Meals were an average of 0.83 

(SD = 0.56) “choices” away from the goal target. For example, given the goal “reduce carbs to 2 

choices (30g),” participants were an average of ⅘ carb choices (12g), from the target.  

Table 5. Participant demographics for evaluation study 2 

Demographics Value 

N Enrolled (Incl. in 

Analysis) 
19 (15) 

Sex 80% Female 

Ethnicity 47% Hispanic 

Race 

17% White  

42% Black  

41% Other/Refused 

Age 54 ± 9 years 

Body Mass Index (BMI) 37.4 ± 13.9 

Median Household 

Income 
$20,000-$39,999 

Median Education Level Some College 

 

We identified two key themes in the spontaneous comments made by participants during 

and after the virtual buffet activity. First, most participants commented on the limited selection 

of food items to choose from. Many recounted what they would normally eat, which was 

sometimes missing, for example oatmeal at breakfast. Usually, participants were able to select 

items they do eat from the available choices. Second, when choosing which goal to follow, 

participants often stated that they understood the goals. However, use of “choices” as a unit led 

to confusion, and some participants expressed uncertainty about how much food to take. 

Participants interpreted “2 choices” to mean two different food items, regardless of the amount 

(e.g., rice and bread) as opposed to a measurable quantity (e.g., ⅔ cup of rice), as intended. 
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3.3.3 Discussion 

In this evaluation experiment, we found participants were largely able to understand and 

act on computationally derived goals in a controlled setting. Participants correctly chose meals 

that met a goal 89% of the time when these meals were accompanied by corresponding 

nutritional labels. When composing meals to meet a chosen goal at a “virtual buffet,” participants 

assembled meals in the correct direction of the goal 67% of the time. This suggests that 

individuals were able to understand the personalized goals, and were moderately successful 

when composing meals to meet goals. At the same time, additional findings highlight the 

complexity of nutrition decisions. When choosing which of two meal images met a given goal 

without nutrition labels, participants were correct only 49% of the time. This aligns with prior 

research suggesting that individuals have difficulty comparing macronutrient quantities from 

photographs alone [40]. In addition, participant comments during the study indicated confusion 

about some of the nutrition terminology in goals, and there was considerable variability in 

meeting the exact goal target. This suggests that participants formed a general idea of how to 

achieve goals, but had difficulty precisely implementing the recommendations. These 

preliminary qualitative findings are built on with the analysis of a deployment study with 

GlucoGoalie, described in the next section.  

3.4 Study 3: Quantitative and qualitative findings from GlucoGoalie in-the-wild 

After evaluating the components of GlucoGoalie in a controlled setting, we sought to 

examine the feasibility of the approach and the GlucoGoalie smartphone application with a 4-

week deployment study [34]. In particular, we sought to understand to what extent individuals 

with type 2 diabetes from communities that have been historically underserved by the medical 

establishment, particularly racial and ethnic minorities including black, brown, and indigenous 
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people of color, as well as those from low income and low wealth communities would engage 

with the self-tracking and goal setting features of the app, as well as examine whether using the 

application had a positive impact on self-management behaviors. In addition, we sought to more 

fully understand participants’ experience receiving and following personalized goal 

recommendations based on their own self-tracking data, and conducted a qualitative thematic 

analysis of interviews with a subset of the participants who completed the 4-week deployment 

study.  

Research Question 1.2: What is the experience of receiving and following 

recommendations for nutrition goals based on one’s own self-tracking data in a 

smartphone app? 

Research Question 1.3: Will individuals with type 2 diabetes report a higher frequency of 

self-management behaviors after using the GlucoGoalie over 4 weeks? 

Research Question 1.4: For individuals who receive personalized goal recommendations, 

will they change their meal choices — specifically their macronutrient consumption — to 

more closely align with those goals? 

3.4.1 Methods 

Participants 

Participants were recruited from two health centers in the New York City metro area: 1) a 

Federally Qualified Health Center (FQHC) in Brownsville Brooklyn, and 2) clinics affiliated 

with Columbia University Irving Medical Center. To be included, participants needed to be 

between 18- and 65-years-old with a self-reported diagnosis of type 2 diabetes (T2D) and 

proficient in English.  
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Procedure 

After collecting consent, participants completed a series of baseline survey measures and 

demographics. Participants’ self-management practices were measured with the Summary of 

Diabetes Self-Care Activities (SDSCA; [247]), a 12-item measure with subscales examining the 

frequencies of diet, exercise, and blood sugar testing activities in the prior 7 days. During the 

training visit, participants received a 10-minute, in-person nutrition training introducing the 

concept of food “choices” and reviewing macronutrients, as a primer for the goal 

recommendations they might receive during the study period.  

An investigator introduced participants to the GlucoGoalie application, helped them set 

an initial goal of their choice, and practiced recording a meal and blood sugar reading. We then 

asked each participant to use the app on their own at home to record meals and blood sugar 

readings (before and two-hours after each meal) over one month.  

During training, we told participants that GlucoGoalie would recommend goals based on 

their own records, that these goals were made by a computer, not a human expert, and that 

available goals would change over time.  

Each meal entered by participants was evaluated for its macronutrient composition and 

whether it was consistent with the user’s nutrition goals by a Registered Dietitian (RD) from a 

pool of RDs following a standard protocol and the USDA food composition database [252].   

When new personalized goals became available, the app sent a push notification. In 

addition, the study coordinator also contacted participants if they had not selected a new goal 

within 3 days of receiving the push notification to make sure there were no technical difficulties.  

After the 4-week period, participants completed the SDSCA again as a post-measure, and 

were invited to participate in 1-hour semi-structured interviews.  
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To minimize barriers to participation, individuals without a smartphone received an 

Android phone and could keep it after completing the study (participants who had their own 

smartphones received its monetary equivalent, $150). All participants received $20 for each visit 

and a package of 50 blood glucose testing strips.  

Data analysis 

Quantitative analysis 

We downloaded usage log data from the application server and calculated descriptive 

usage statistics including the numbers of meals logged, goals selected, and goals used.  

To examine changes in self-reported self-management behaviors, we compared the 

difference in pre- and post-study scores for each of the subscales of the SDSCA. Given the small 

sample size of this feasibility study, we primarily estimate effect sizes and trends. We compared 

the difference in means to estimate effect sizes and a pair samples t-test to assess the strength of 

these trends.  

To explore the extent to which users achieved the nutrition goals they had chosen in the 

app, we compared user-entered and RD-entered assessments of whether each meal was 

consistent with the user’s chosen nutrition goals. We also viewed goal achievement across all 

participants as a time series, to see if goal achievement improved over the study time period. To 

account for participants with different numbers of goals, goal achievement was averaged within 

each participant, and we compared mean goal achievement between participants.  

Time-series data were examined in two ways. First, was the straightforward way of 

considering the chronological time since the start of the study. Second, we also examined the 

time series as a sequence of meals records since first selecting a particular goal.  



 

 

 

 

69 

To examine whether adopting a personalized nutrition goal from GlucoGoalie may have 

impacted participants’ behaviors, we examined the changes in the macronutrient composition of 

meals before and after selecting a particular personalized goal. Each goal suggestion referenced a 

specific macronutrient and included a direction of change from baseline as well as a target 

amount. We compared macronutrient consumption to see if it was consistent with the direction 

of change from the goal, and also examined whether users ate meals that were closer to the 

macronutrient target with the goal compared to baseline.  

Qualitative analysis 

Debrief interviews were audio recorded and transcribed verbatim. We analyzed interview 

transcripts and usage logs with inductive thematic analysis [36]. The lead author coded 2 

transcripts (25%) collaboratively with a second author to create an initial codebook. Then the 

first and senior author independently coded an additional 2 transcripts (25%), and met in person 

to discuss coding schemes and resolve all discrepancies through discussion. The remaining 

interviews were coded independently by the first author with periodic discussion with the 

research team, followed by an affinity mapping session to group codes into primary themes and 

subthemes. Participant meal logs, usage, and goal attainment were considered throughout the 

coding process to contextualize user statements. After coding was complete, we examined data 

saturation and theme comprehensiveness across participants [95,104]. 

3.4.2 Quantitative Results 

Participants 

As shown in Table 6, the demographic breakdown was comparable with participants in 

the controlled evaluation (Study 2; Table 5). Participants were majority female, and Hispanic, 

and only 20% white, with an average body mass index (BMI) considered obese.  
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Table 6. Participant demographics for study 3 

Demographics 
Deployment Study 

Participants 

Interviewed Subset 

N    20 8 

Sex 85% Female 71% Female 

Ethnicity 60% Hispanic 86% Hispanic 

Race 

35% Black  

20% White 

45% Other/Not Reported 

43% White  

29% Black  

29% Other/Refused 

Age 52.90 ± 9.48 years 55.7 ± 9.5 years 

Body Mass Index (BMI) 32.99 ± 6.86 41.8 ± 14.4 

 

Self-management behaviors 

To address the hypothesis that self-reported self-management behaviors would increase 

from before the study to after, we compared the SDSCA measure and found a statistically 

significant improvement in diet and blood glucose (BG) related subscales, but not exercise, food 

care, medication, or smoking (Table 7). 

Table 7. Comparison of pre- and post-measurement for the Summary of Diabetes Self-Care 

Behaviors (SDSCA). Higher scores indicate a larger number of the last 7 days where self-

reported care behaviors were completed.  

SDSCA Subscale Pre-Measure Post-Measure Difference 

General diet 3.58 ± 1.47 5.06 ± 1.62 1.48** 

Specific diet 3.79 ± 1.77 4.41 ± 1.32 0.62 

Combined diet 3.68 ± 1.29 4.73 ± 1.23 1.05*** 

Total exercise 2.94 ± 1.7 3.16 ± 1.9 0.21 

BG testing 4.06 ± 2.54 5.38 ± 2.39 1.32* 

Foot care 5.44 ± 2.65 5.13 ± 2.83 -0.32 

Smoking 0.39 ± 1.31 0.13 ± 0.5 -0.26 

Medication 6.00 ± 2.35 6.56 ± 1.75 0.56 

*p < 0.05, **p < 0.01, ***p < 0.001 
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Engagement 

To characterize the extent to which participants engaged with the GlucoGoalie 

application during the 4-week study, we calculated descriptive usage statistics, presented in 

Table 8. Participants recorded a median of approximately one meal and 1.5 BG readings per day, 

though this varied significantly across participants, with one consistently recording more than 5 

meals per day during the study period. Participants selected a median of 3 different nutrition 

goals in the app.   

Table 8. Engagement statistics during the 4-week study period 

Usage Statistic Value 

# Meals recorded Median: 28 

(Range: 0 to 158; IQR 13 to 51.75) 

# Blood glucose readings Median 43.5 

(Range 0 to 314; IQR 19 to 77.25) 

# Goals used 
Median 3 

(Range 0 to 9; IQR 1 to 4.25) 

% who received a personalized goal 

suggestion 
40% (8 of 20) 

% who selected a personalized goal 75% (6 of 8) 

# Personalized goals used 

(among those who received one) 

Median 1.5 

(Range 0 to 5; IQR 0.75 to 4) 

 

12 of 20 participants did not receive personalized goals during the study period, for a 

handful of reasons, which are summarized in Table 9.  

Table 9. Summary of reasons that participants did not receive personalized 

recommendations from GlucoGoalie during the study period 

Reason for not receiving personalized goals Count 

Fewer than 8 meals recorded with pre- and 

post- meal blood glucose readings 
7 

Technical issue with macronutrient assessments 4 

Blood glucose well controlled 1 
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Overall Goal Achievement 

Examining participants’ goal achievement over the study period (Figure 12), we found 

that mean goal achievement increased, as assessed by both the RD annotators and participants 

themselves. However, there was a substantial gap between user and expert assessments, 

suggesting that participants were consistently more confident that they were achieving a nutrition 

goal than the expert assessment.  

 

Figure 12. Success meeting nutrition goals by study week 

Personalized Goal Achievement  

When examining the achievement of personalized goals specifically, we found that 

participants improved in expert assessment of their goal achievement as they recorded more 

meals with a particular personalized goal.  
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Figure 13. User- and Expert-assessments of success achieving personalized goals from 

GlucoGoalie, indexed by the sequence of meals recorded since selecting the goal. 

The 6 of the 8 participants who received personalized suggestions selected a cumulative 

total of 17 personalized goals over the study period. In addition to the expert labeled 

assessments, we also examined changes macronutrient consumption for meals with and without a 

given personalized goal selected.  

Three of the 6 participants selected only one or two personalized goals. These 

participants changed their macronutrient consumption consistently with the direction of the goal 

(e.g., reduced from baseline for “Decrease” goals) for all the goals they chose.  

The other 3 of 6 participants tried 4 or more personalized goals, and were successful in 

adjusting their macronutrient consumption consisted with the goal for 40% to 75% of the goals 

they adopted. Due to the small sample, we did not test these differences for statistical 

significance.  
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In a second analysis of macronutrient consumption, we examined the target amount of 

macronutrient suggested in each goal, and measured the mean absolute distance from that target, 

in grams (Figure 14). We found that participant’s meals trended towards being 20% closer to the 

goal target after selecting, compared with their own meals before selecting that goal.  

 
Figure 14. Box-and-whisker plot comparing the mean absolute distance from a goal’s 

macronutrient target, in grams, for a user’s meals with and without the goal selected. 

3.4.3 Qualitative Results 

Next, we describe the four main themes from the thematic analysis: 1) receiving goal 

suggestion informs self-discovery, 2) choosing goals highlights individual preferences, 3) 

following goals demonstrates the importance of feedback and context, and 4) challenges 

understanding and following goals in practice. As shown in Table 10, data saturation was 

reached and themes were prevalent across participants. 
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Table 10. Prevalence of themes across participant interviews. Each purple-shaded cell 

indicates that a theme was present for a participant. Theme 1 was prevalent in 100% of 

interviews, while Theme 4 was prevalent in 50% of interviews. 

  P1 P2 P3 P4 P5 P6 P7 P8 

Theme 1 - Receiving goal suggestion informs 

self-discovery                 

Theme 2 - Choosing goals highlights individual 

preferences                 

    A checkpoint or a challenge 
                

    Importance of personal food preferences 
                

Theme 3 - Following goals demonstrates the 

importance of feedback and context                 

    Fitting goals with the context of daily life 
                

    Importance of feedback and seeing progress 
                

Theme 4 - Challenges understanding and 

following goals in practice                 

    Balancing abstract and concrete in nutrition 

goals                 

    Imprecision of text for delivery of goal 

suggestions                 
 

Participants’ background  

Participants had mixed and often poor experiences with self-management prior to 

enrolling in the study. Many reported poor eating habits and being indiscriminate about their 

meals: 

“… before that I eat whatever. Yeah, whatever. Dinner time, I eat whatever.” P2 

Others often skipped meals, which led to overeating later in the day:   

“… I only skip breakfast. I wasn’t always very good about lunch. So, then I’ll be famished. I 

would eat crap because I was hungry.” P5 

Along with challenges with nutrition, participants described challenges keeping their BG 

within target ranges: 

“Sometimes [my blood sugar] goes very high or goes very low.” P4 
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“Yeah, a mess, my sugar level was high everyday 300, and the doctor was upset to me.” P1 

Some participants had tried prior bouts of focused self-management, with mixed success 

in the long run. Three participants had previously tracked their meals on paper, but none had 

tracked with an app.  

Impressions of GlucoGoalie 

Overall, participants reported that they enjoyed the experience of using GlucoGoalie, and 

found it fun, easy, and direct.  

“It was fun. They laugh about me because every time I was going to eat — no, wait a minute. 

I can't start eating. I’ve got to take a picture of it… It was fun to play.” P2 

They also actively engaged with the main part of the app: setting and following goals. 

“I try to follow the goals and instructions if I’m trying to improve my intake. That’s what I’m 

trying to do most of the time. Because every day I try to follow a better diet and try to have 

more greens.” P4 

Participants in the deployment study showed high engagement with logging features: on 

average they recorded more than 1 meal per day, and all participants set at least one goal. 

However, only about 40% (3 of 8) of participants actively engaged with different features of the 

app, such as setting new goals and viewing progress towards goal achievement; these were savvy 

users of smartphones with previous experience using apps. In contrast, most of the participants in 

the study (5 of 8; about 60%) were more accustomed to using their smartphones exclusively to 

make phone calls and rarely used any apps. These individuals often took a minimalist approach 

to engaging with GlucoGoalie: they tracked their meals and assessed these meals on fit with 

chosen goals, but did not engage with any other features without prompts from investigators.  
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Regarding personalized goals, 88% of interviewed participants (7 of 8) received 

personalized goals while in the study; one participant did not receive any personalized goals 

because their BG levels were well-controlled. Of those who received a goal recommendation, 

71% (5 of 7) selected at least one of these goals in the app. However, 3 participants did not 

notice a push notification informing them of a new goal suggestion, and only selected one after a 

call from the study coordinator. 

As a result of following the goals they had chosen, many participants described 

developing new habits, suggesting they internalized parts of the personalized goal suggestions to 

the point that they became integrated with their daily practice: 

“Even anything longer than two weeks will probably just make it into more of a habit for me.  

I’ll probably eat two weeks to get comfortable with how much fat I’m taking, let’s say the 

goal was on fat, so then after that it would just be more of a habit.” P8 

At the end of the study, many participants described seeing changes not just in their 

behaviors, but also in their actual blood glucose levels.  

“I did notice because sometimes it was 200.  When I see that it was 200, it was after I eat.  

Oh yeah.  After I—but before, 250, 270—because I was eating a lot of food.  Five or six in 

the night.”  P2 

“And the sugar went down…. Today, I tested, it was 121.” P6 

Theme 1—Receiving goal suggestion informs self-discovery  

To personalize goals, GlucoGoalie included features for tracking meals and BG levels. 

The study showed that even these requisite tracking features often led to discoveries and new 

insights. Furthermore, the experience of viewing both generic and personal goal suggestions 
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helped individuals critically reflect on their behaviors, thus serving as an additional catalyst for 

learning.  

Through tracking and reflecting on their meals, participants described some of the 

patterns and insights they observed between the foods they were eating and their BG levels.  

“I did it for two days and I tested my sugar, oh, this is the rice… So, I stopped eating rice for 

two days, and then when I stopped eating rice, it got lower.” P6 

Beyond tracking, the goal setting features in GlucoGoalie scaffolded the self-discovery 

process. For example, P2 learned from their goal to “eat whole fruits instead of juice” 

“When I drink the juice, I see that sugar is what was high. And I learned that that was the 

problem…. Now, when I eat, I don’t drink juice.” P2 

In many cases, participants used the personalized goal recommendations they received to 

reflect on their behaviors and sought to reconcile these recommendations with what they had 

already knew or suspected about themselves.  

“And I know that, my carbs like I said, are usually high. I think that, my first, what I gravitate 

to first in any meal is the carb and that’s what I want more of… So, I’m not like surprised 

that it recommends reducing the carbs and trying to replace it with something else.” P3 

Participants sometimes noted that the goal they received was something they were 

already trying to work on. For example, P4 described their reaction to receiving a suggestion to 

reduce the amount of fat in their meals: 

“I’m trying to decrease the amount of food and so that’s why, I think it’s important to 

decrease the amount of fat and that is one of the problems that I have with the fat.” P4 
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Receiving personalized goal suggestions provided a reference point for participant’s own 

views of their self-management pitfalls and needs, as well as a jumping off point to guide 

reflection on their behaviors.  

Theme 2—Choosing goals highlights individual preferences 

A checkpoint or a challenge 

Most participants commented that some goals in the GlucoGoalie app seemed harder to 

achieve than others. However, when choosing which goals to follow, participants took a variety 

of different approaches. Some participants chose goals that seemed highly achievable, or were 

the sorts of behaviors they were already doing regularly; these participants viewed goals as a 

checkpoints or reminders to be more consistent.  

“I like that it was a goal that it was more feasible to me. So, it was just a good like a 

checkpoint for me not sort of a reminder but kind of like, oh it’s going with what I’m doing. 

So, it’s just reminding me.” P8 

In contrast, other participants were interested in choosing goals that were more 

challenging as self-motivation to change their current habits.  

“Yes, I go to the notification and started looking at the new one. That’s why, when I first took 

the other substitute of water for over sodas. I realized, well that’s not really a goal because 

I’ve been doing that already. So, I need to change to something more difficult because I was 

done with the other one.” P4 

Importance of personal food preferences 

In addition to the perceived degree of challenge in a given goal, personal likes and 

dislikes regarding different foods factored in prominently to participants’ decisions of which goal 

to choose. To illustrate personalized goals, GlucoGoalie included three examples with different 
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foods at the end of each goal (see Table 1). For many participants, these examples were critical 

factors to deciding whether to try a goal or not. When asked to explain why they selected a 

particular personalized goal, participants often referenced the examples as their justification for 

selecting or eliminating a goal from consideration.  

“That one is okay, because I used to eat the oatmeal, one slice of toast, yeah that one is 

okay.” P1 

Along with expressing their interest or distaste for certain foods, participants also 

mentioned the importance of variety, and opted for suggestions that incorporated new ideas to 

break what they perceived as the monotony of healthy eating. For example, P2 was looking for 

examples of vegetables they could eat other than broccoli: 

“I don’t know, like, if I want to eat like broccoli, I will be tired. And I’m not going to eat it 

every day.” P2 

Theme 3—Following goals demonstrates the importance of feedback and context 

Fitting goals with the context of daily life 

The need for greater personalization extended beyond choosing which goal to pursue and 

impacted participants’ ability to successfully incorporate new goals within their daily lives. In 

some cases, participants had established patterns that they did not want to change, for example 

eating the same thing for breakfast every day because it worked for them, or skipping breakfast 

entirely because their morning routine did not allow for it. Furthermore, balancing meals within a 

day or week was just as important. What made sense for an upcoming meal depended in part on 

what happened earlier in the day.  

“Since I’m a busy woman… it kind of just has to go back to like how my day is. So, I know 

that if I didn’t meet it for one of my meals, I’ll have to meet it for the next meal.” P8 
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This balance extended to seasonal patterns as well, where different kinds of meals were 

appealing during different parts of the year.  

“I don’t want to have a hearty breakfast compared to like in the winter.” P8 

Many participants touted that it was easier to follow goals when preparing their own 

meals at home, but much harder when eating outside, at a restaurant or other gathering. Goals in 

GlucoGoalie lent themselves particularly to the home context, but different goals may be useful 

in other contexts.  

“...well at least for me... it was very hard for me to manage using the app when I went out to 

eat.” P3 

When goals felt appropriate also depended on the context of other self-management and 

health goals, for example exercise. P5 noted that they often include more carbs in their meals 

after exercising, but less if they have not exercised that day:  

“So, I know, if I have exercise, walking or an exercise routine after a meal that’s going to be 

a little bit more high carbs.  That has made an impact.” P5 

Importance of feedback and seeing progress 

Participants were eager for feedback on their progress. This included whether they were 

successfully meeting the goals they had set in GlucoGoalie, for example, whether the amounts of 

specific macronutrients in their meals were more consistent with their chosen goals. Most 

participants found this challenging and had to come up with strategies. Some started measuring 

their foods to get a better sense for portion sizes and proportions:  

“ When I got after I started, I look for a [measuring] cup and I started to follow the 

instructions.” P4 

In general, participants were eager for feedback on their progress:  
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“Everybody would like to know how they're doing… Because if I’m eating less and it’s not 

doing no good, what's the point of me doing it?” P2 

In particular, many participants described not only the goals they had set with 

GlucoGoalie, but also their higher-level goals, motivations, and aspirations. These goals were not 

at the specific and achievable level of “drink more water,” but reflected general desires for 

leading a healthy life. Importantly, different participants expressed different motivations. Some 

participants expressed a desire to lose weight, or to see that their blood glucose levels were 

lowering.  

“Definitely in terms of weight loss but like also my actual numbers in terms of my blood 

sugar.” P3 

Other participants were also interested in improving their diabetes management, and had 

the goal of improving control of blood glucose levels, so that they could reduce their dosage of 

oral medications like metformin.  

“Because I want to keep it as level as possible to try to stay off medications.” P7 

Theme 4—Challenges understanding and following goals in practice 

Balancing abstract and concrete in nutritional goals 

Nutritional goals in GlucoGoalie included references to both specific foods and food 

groups, such as “Drink more water” and also macronutrients, such as “replace 1 carb choice with 

1 protein choice at lunch”. Many participants’ comments related to the interplay between abstract 

and concrete when thinking about nutrition.   

In general, participants enjoyed goals that were concrete and easy to implement without 

additional knowledge. This was particularly the case for generic goals that typically targeted 

familiar foods or food groups.  
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“Those were right. Those were easy and I’ve been, I have been intentional to drink a bottle 

of water at every main meal and then have a bottle or two in between.” P5 

However, personalized goals were more abstract with a focus on macronutrients rather 

than specific foods. These goals were typically described as harder to understand and meet.  

“The replacement, it was, you know was dropping, half a carb replacing, half carb. That 

was a little harder to figure out. So, it will require a little more thinking.” P5 

Furthermore, participants’ attitudes towards more abstract, macronutrient-oriented goals 

were influenced by their apparent knowledge of nutrition. About half of participants were 

comfortable identifying macronutrients, estimating portion size, and discussing steps they could 

take to meet these goals with their meal choices.  

“So, I still go by the basics even from when I went to the nutritionist of like using like my 

palms, like the two fingers, index fingers. Actually, do work well for like teaspoons and 

tablespoons.” P8 

The other half of participants described themselves as not being familiar with 

macronutrients and estimating portion sizes. For these participants, goals formulated using 

macronutrients and “choices” as units presented an impassable barrier and were often dismissed. 

These participants often referred to using visual proportions of different types of foods on their 

plate to gauge how healthy their meals were: 

“I use my plate, but I try to go as they show me in the program, you see the plate then half 

it’s a vegetable or fruit, this is a protein and that one is a carbohydrate.” P1 

Imprecision of text for delivery of goal suggestions 

Even for those with higher nutrition literacy, participants were not always consistent in 

how they interpreted personalized goals, and there were a number of misunderstandings. For 
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example, some terminology, like “choices” as a unit of measure, was often interpreted as an 

option to choose two different food items, regardless of the amount. P2 described their effort to 

achieve a goal of eating 2 fat choice (10g) at breakfast by stating that they ate two high fat food, 

but not the amounts of either: 

“Sometimes I put it together, the mozzarella on top of the egg which means I’m taking two 

fats.” P2 

While this meal may have been consistent with P2’s goal, they are saying they believe 

they achieved their goal because they chose two fat-based ingredients, not because the amount of 

total fat in the meal is consistent with the goal. 

In addition, participants sometimes struggled with the numerical content in goals, for 

example the combination of both “choices” and “grams” as units.  

“ ‘Decrease your fat to about four fat choices.’ That part is pretty clear. The only part that I 

say, kind of gets tricky where I guess you’re adding numbers with words would be the ‘20 

grams’.” P8 

In general, static text alone was limited in its ability to convey the more abstract nutrition 

goals. During the interviews, participants asked a number of clarifying questions, for example 

asking which foods count as which macronutrients. Some participants suggested that visual aids 

for portion size estimation would be a welcome addition.  

3.4.4 Discussion 

This results of this pilot study with 20 individuals with type 2 diabetes offers preliminary 

evidence for the feasibility of GlucoGoalie as an intervention. While usage varied, participants 

recorded a median of 1 meal per day over the 4-week study period. In examining changes to self-

reported self-management behaviors, participants increased significantly in both diet and blood 
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glucose subscales of the SDSCA [248]. GlucoGoalie intervened specifically on diet, but not on 

other components of self-management like physical activity, which did not show significant 

differences, suggesting that the improvement from pre- to post-measurement was not purely a 

result of social-desirability bias among participants. There was also a significant increase in the 

BG monitoring subscale of the SDSCA. While increased BG monitoring was not a direct target 

of the intervention, the use of GlucoGoalie provided scaffolding for participants to check their 

BG more regularly, and participants were provided with additional test strips, so the increase in 

self-reported monitoring is logical.  

Alongside the features for goal setting and in-the-moment goal assessment, the primary 

innovative component of GlucoGoalie was the introduction of personalized goals, based on each 

user’s self-tracking data. Only 8 of the 20 participants received these personalized suggestions, 

however. Of the 12 who did not, 7 did not record the minimum number of meals and BG 

readings for the personalized analysis to start (8 meals with both pre- and post- meal readings). 

This is in line with findings from many research studies in self-tracking and mHealth 

applications, that show great variability in usage, and step drop-offs in the number of users who 

use an app for extended periods of time [32,58,148].  

In addition, user-entered data needed additional annotation to add macronutrient 

compositions to each meal. In this pilot, a team of registered dietitians (RDs) entered these 

macronutrient assessments, however, due to technical and personnel issues, 4 participant’s meals 

were not evaluated within the study period, and therefore did not receive personalized 

recommendations. Other meal-logging approaches, like database lookup, could have enabled 

users to track their meals in a structured way with macronutrient amounts already estimated. 

However, due to the burden of such approaches and nutrition knowledge required to use them 
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correctly, we opted for photo and text logging, to reduce the tracking burden for participants as 

much as possible. Researchers have also proposed crowdsourcing approaches for meal 

estimation, though these meal evaluations can also be costly [194]. 

The fact that some users did not record sufficient meals for personalization, while for 

others we encountered logistical challenges in completing timely macronutrient assessments, 

points to a limitation of data-driven approaches for personalization that rely on personal data. 

Lightweight logging approaches may encourage longer term engagement of a tracking 

application, but also offers a less detailed data representation for analysis with machine learning 

and other data-driven approaches [62]. 

Considering the participants who did receive personalized suggestion in the app, 

examination of changes in the macronutrient composition of their meals suggests that they were 

able to act on these goals, at least to some degree. Three participants tried 1 to 2 goals each, and 

they successfully adjusted their average macronutrient consumption following the 

recommendations from those goals. The three participants who selected 4 or more goals had 

mixed success, following some goals and not others. Overall, participants moved in the direction 

of their goals 65% of the time, which is consistent with the findings from the controlled 

experiment in Study 2 (Section 3.3), which found that participants assembled goal-consistent 

meal 66% of the time. These participants also ate meals that were on average 20% closer to the 

macronutrient target in their chosen goals, compared with their baseline consumption. These 

findings adds support to the feasibility of GlucoGoalie’s approach to personalizing nutrition 

goals based on self-tracking data, and the potential of interventions like GlucoGoalie to have a 

positive impact on self-management behaviors. 
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The qualitative findings from the deployment study similarly build on the findings of the 

controlled evaluation. Participants reported similar successes and challenges to understanding 

and acting on goal recommendations. Specifically, participants described being generally able to 

understand goals, and at least attempted to follow them, but the results also reiterated challenges 

related to specific design choices, like the use of the word “choice” to describe macronutrient 

quantities.  

In addition, the deployment study revealed a number of insights related to the experience 

of receiving and following goal suggestions in everyday life. Specifically, it highlighted the 

relationship between supporting reflection and direct support for action, the alignment between 

goals with individuals eating practices and larger aspirations, and the need for interactive 

approaches that enable feedback and negotiation. I discuss these point in more detail in the 

Discussion section for this chapter below. 

3.5 Discussion 

The goal of this research was to examine individuals’ experiences with receiving, 

selecting, and following computationally generated nutritional goals for T2D. In designing 

GlucoGoalie, we took the approach of combining ML analysis of individuals’ self-tracking data 

with an expert system to computationally generate recommendations for nutritional goals that are 

likely to lead to improvement in BG levels.  

This approach has several important distinctions compared to previously proposed 

systems. First, the ML inference in GlucoGoalie directly examines the relationship between 

behavior and a health marker (BG) to inform recommendations; not by assuming which 

behaviors are healthy [208], or relying on user’s self-perceptions of what behaviors impact health 

[117]. GlucoGoalie makes recommendations in the multidimensional space of nutritional 
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composition, versus the unidimensional space of steps [143] or calories [208], which makes it 

more complex. Furthermore, unlike other recommendation approaches (e.g., MyBehavior [208]), 

integration of expert knowledge within the expert system enables GlucoGoalie to make 

suggestions that extend beyond individuals’ past behaviors (previously captured meals). 

In this aim, I completed three studies to design and evaluate GlucoGoalie, including an 

analysis of ML methods, a controlled experiment, and a deployment study. These studies helped 

generate a number of conclusions regarding the use of ML-driven coaching solutions.  

3.5.1 Balancing support for reflection and action 

Personal informatics aims to increase self-knowledge and, ultimately, inform future 

action through collection of and reflection on self-tracking data [152]. However, reflecting on 

data can be burdensome, and not everyone has the necessary time, mental energy, and literacy. In 

contrast, there is a long tradition of research in behavior change interventions that focus less on 

reflection and provide more direct support for action through a variety of behavior change 

techniques [174]. One limitation of traditional behavior change interventions is that they rely on 

predetermined behavior goals to nudge users towards, but in the case of chronic conditions like 

T2D, different goals may be appropriate for different individuals based on their physiology and 

response to diet. While a more direct approach may mitigate the burden of reflection, a potential 

concern is that it could lead to individuals following the system’s recommendations without 

attaining the benefits of learning and self-discovery, which could have a negative impact on 

autonomy [130].  

Our study suggested that it is possible to reach a middle ground between these extremes. 

Because GlucoGoalie used an expert system to generate concrete goal recommendations, it was 

able to provide direct support for action. At the same time, because goals were informed by ML 
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analysis of self-tracking data, the participants often engaged in reflection similar to the one 

enabled by personal informatics solutions. The participants appreciated the more direct support 

for action through goal recommendations: those who selected personalized goals in the app 

described making changes and choosing meals that would be consistent with goals, for example 

taking increased care to measure the components of their meal. At the same time, the study 

showed that participants found tracking meals and BG levels to be informative, an experience 

similar to most personal informatics solutions [117,153]. Furthermore, we found that participants 

actively engaged with the recommendations they received and took them as an additional prompt 

and opportunity for reflection, beyond that provided by the personal data itself. Participants 

compared goal suggestions to their own self-perceptions of their eating habits and used them as a 

mirror to re-examine their past choices. In this way, we found a synergy between offering direct 

support for action as a part of an application that enables reflection via self-tracking. 

These findings highlight the potential for solutions that balance support for both 

reflection and action. First, future work could more directly explore the relationship between 

actionable recommendations and reflection in self-tracking, for example comparing engagement 

in self-tracking with and without the addition of actionable recommendations. Second, in this 

work, the connection between one’s behaviors and the recommendations they received were not 

explained or made explicit by the application, but relied on users to fill in those gaps. Future 

work could endeavor to make the connections between personal data and recommendations more 

salient for users, which may further support engagement and reflection. For example, actionable 

recommendations could be enhanced by presenting visual summaries of the self-tracking data 

that informed the specific goal recommendations [79,222]. This additional information can serve 

as a form of explanation for the recommendations, and prior work has demonstrated the 
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importance of explanations in facilitating nutritional learning [40]. A growing body of research 

in explainable ML may offer potential avenues to make recommendations in support of action 

and ground them with an explanation to support reflection [259]. Future work could further 

incorporate advances in explainable ML to personal informatics applications. 

3.5.2 Aligning goals with eating experiences and personal aspirations 

Because GlucoGoalie relied on an expert system to generate recommendations as natural 

language sentences, one of our challenges was to find the right form to formulate these 

recommendations. Through the design process, we took the approach of formulating goals in 

terms of macronutrient amounts [81], which  has the advantage of allowing individuals to 

flexibly apply their goal to different types of foods and meals, with the ability to freely 

incorporate their food preferences. However, this study demonstrated some limitations of this 

approach. While participants who expressed comfort with nutrition terminology were able to 

adopt goals, those with lower nutrition literacy and less comfort measuring or weighing their 

food had trouble understanding and following goals. Making meal choices ultimately comes 

down to what’s on one’s plate, and participants sometimes found it difficult to connect somewhat 

abstract goals to concrete meal choices.  

An alternative and common form of nutrition suggestions are recipe or meal plan 

recommendations, which are much more concrete and consistent with how participants think 

about their meals and diet. However, as recommendations become more concrete, they need to 

take into account individual’s food preferences, and there are more opportunities to miss the 

mark. We found this with the “examples” included with each personalized goal: idiosyncratic 

preferences for a single food item in the list was a major factor in whether a participant would 

choose a goal or not. Recommender systems (RecSys) excel at making concrete suggestions 
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based on personal preferences, learned from users’ past behavior or characteristics [214], and can 

incorporate additional constraints like food allergies [123]. While GlucoGoalie focused on 

personalizing recommendations based on health constraints, this approach could be 

complementary with growing research in health-aware RecSys [77]. Meal logs and 

macronutrient-centered goals from GlucoGoalie could be used as inputs to a preference-based 

RecSys to generate concrete suggestions that would help individuals connect their goals to 

what’s on their plate.  

In addition to food preferences, participants highlighted the importance of context in 

determining when a goal was appropriate, for example the time of year, how active one has been, 

and what other meals have been eaten recently. Making contextually-appropriate 

recommendations adds another dimension of complexity [209]. Mobile phones and sensors can 

offer clues to the user’s current state, and there is a long history of research in context-aware 

computing within HCI and Ubiquitous Computing [71]. In health, location-based prompts have 

been used to help prevent relapse triggers [50], and step counts can inform adaptive fitness goals 

based on recent activity levels [143], but have not been widely used in nutrition [208].  

A final tension was participants’ desire for a greater connection between specific 

nutritional goals and their larger aspirations in life and health. Participants did not always see the 

connection between concrete, quantifiable self-tracking-related goals and larger, more abstract, 

qualitative motivations. Niess and Woźniak observed the relationship between tracking goals and 

qualitative health goals in the context of individuals setting goals with fitness trackers [192]. For 

example, a quantitative, self-tracking goal of walking 12k steps a day might be connected to a 

qualitative goal of losing weight, and a higher-level goal of feeling well. In the case of 

GlucoGoalie, because the algorithm suggests quantitative goals, it’s even more important to draw 
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a connection back to an individual’s qualitative goals, like improving BG levels. Researchers 

have explored methods to elicit these values and motivations [21] and future work could explore 

how to connect them to quantitative tracking goal [192].  

3.5.3 Interactivity, negotiation, and feedback 

By taking the approach of using an expert system to interpret ML output, GlucoGoalie 

produced static, text-based recommendations. One of the limitations of this approach was that we 

were unable to resolve the misinterpretations and misunderstandings that are likely to arise in a 

complex domain like nutrition. In some cases, participants did not understand the nutrition 

terminology, and in other cases they understood the vocabulary, but misinterpreted the intended 

meaning. One approach to make nutrition goals more understandable is to incorporate 

illustrations. In health risk communication, illustrations and infographics have been used 

successfully to improve comprehension of complex information [12,102,274]. A similar visual 

approach has been applied to assist low literacy adults with portion size estimation [48], and 

could be used here to better convey numerical content in personalized goals.  

A second approach is to offer the opportunity for questions and answers in a back-and-

forth exchange. This more interactive approach could introduce concepts, answer users’ 

questions, and more fully explain goal recommendations. Along these lines, conversational 

agents have been used to support interactive goal setting, health coaching, and motivational 

interviewing [26,149]. Generally, these approaches are based on a set list of goals, not 

personalized based on user self-tracking data. Combining conversational agents with 

computationally personalized goal setting is a potential direction for future work. A more 

interactive and conversational interaction style would also offer another approach to address the 

challenges of context, discussed above, to allow participants to have input on their goals and 
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negotiate [141]. Finally, this approach might also address the lack of proactive engagement from 

some users, particularly those with less technology comfort, who did not explore app features 

and sometimes did not notice updates to their available goals. While many smartphone features 

rely on users accessing features to pull information or support, conversational approaches can 

proactively initiate interactions, which may lead to a higher level of engagement with these 

features [22,91,223]. Enabling negotiation within the space of possible goals expands on the 

complexity of recommendations, and may require more sophisticated and flexible methods than 

the rule-based expert system used in GlucoGoalie. Machine learning approaches like 

mechanistic, controller, or reinforcement learning models are a potential vein of future 

exploration [6,150,166].  

In another opportunity for increased interactivity, participants expressed resounding 

interest in more feedback about their progress in achieving their goals, and the impact of this 

progress on their overall health. Feedback is an important component of learning in goal-setting 

[72], and while participants were able to self-assess each meal against their goal and view a 

summary of their goal attainment, they were interested in additional feedback from GlucoGoalie. 

One approach to providing feedback is to engage dietitians and other healthcare professionals. 

However, this increases reliance on human experts, thus limiting the scalability of the approach. 

Previous research in coaching interventions explored offering automated feedback, especially for 

physical activity [57,108,208]. Similar techniques could be applied to nutrition in future 

research.  

3.6 Conclusion 

In this aim, I described the design of a system called GlucoGoalie that combines machine 

learning with a rule-based expert system to translate insights from self-tracking data in to 
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personalized goal suggestions. As a health coaching intervention, GlucoGoalie focuses primarily 

on goal setting, which, while essential, is only one component of health coaching practice. 

Suggesting a need for a more comprehensive coaching approach, participants in the deployment 

study who made use of GlucoGoalie expressed interest for more feedback on their progress, as 

well as connecting the very-specific goals with their higher-level goals and aspirations in health 

and life. Additional insight and approaches from health coaching could improve the framing of 

goals and delivery of feedback, which is further explored in Aim 2. Participants also wanted to 

see suggestions that were more relevant to the specific meals they had eaten and logged in the 

app, which will define the scope and focus of the coaching approach developed in Aim 3.  

In the deployment study we observed a consistent discrepancy between user and expert 

assessment of goal achievement, which suggests individuals may not always be accurate in their 

self-assessment of goal achievement, with a bias towards being over optimistic. In addition, 

while many participants tracked enough data to receive personalized suggestions, not all 

individuals were able to track to this point, and described barriers to consistent data collection. 

Approaches that aim to minimize the burden of meal logging in the context of coaching are 

explored further in Aim 3.  

  



 

 

 

 

95 

Chapter 4: Aim II  

Compare human-powered and automated health coaching 

via text messaging 

 

While Aim 1 focused on goal setting as a foundational aspect of health coaching, there 

are many other important facets of coaching like establishing accountability, offering feedback, 

and building rapport through collaborative conversation [196,218].  

In-person health coaching is a common and effective approach to promote self-

management [73,197,229,267]. However, there are challenges to scaling in-person practice, 

particularly in low resource communities. Perhaps most significantly, there are not enough 

trained coaching practitioners to provide adequate education and support to the growing 

population of individuals with type 2 diabetes (T2D) [81,212]. In addition, there are barriers and 

disparities in access to in-person coaching, including transportation, community resources, and 

cost [81,205]. Individuals with low socio-economic status and ethnic minorities are 

disproportionately affected by chronic conditions, and the continued failure to identify effective 

interventions to reach these communities has the potential to deepen existing disparities [254]. 

Even for those with access, the quality of communication itself can be poorer for racial and 

ethnic minorities due to implicit bias as well as disparities in language and health literacy [14]. 

Technology has the potential to address these limitations and reach broader and more 

diverse individuals in their day-to-day lives. One approach is to introduce technology-mediated 

coaching, which seeks to connect clients with practitioners via telecommunication [212]; in 

recent years technology-mediated coaching has become increasingly common in practice 
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[30,173,212]. A complementary approach is to replicate the support provided by human coaches 

with computing technologies, for example conversational agents. Conversational agents have 

long been explored in many areas of health and healthcare [22,146,264]. Bickmore and 

colleagues have argued for the advantages of conversational agents to overcome some of the 

challenges and biases of interpersonal communication in health, while still being able to establish 

a form of social relationship between the agent and user [22]. There has been a recent increase in 

the number of conversational interventions in health, often taking the form of scripted, text-based 

chatbots, which have seen positive results in areas like telemonitoring, cognitive behavioral 

therapy, and medication management [91,146]. Furthermore, new advances in Artificial 

Intelligence (AI) pave the wave for more advanced conversational agents, capable of more fluid, 

human-like interactions [2,217]. However, in the context of health coaching, questions remain as 

to whether technology can ever truly replicate health coaching practice. For example, Rutjes 

[218] argued that coaching’s emphasis on building personal connections and adapting support to 

situation-specific contexts make coaching an essentially human activity that cannot be replicated 

by technology. 

In this aim, I explored the space of automated, text-based coaching through the iterative 

design of a chatbot health coach for diabetes self-management. This chatbot relied on the same 

approach to generating personalized goals as described in Aim 1 and integrated these goals as 

part of the coaching experience.  In addition, I sought to examine open questions and tensions 

regarding benefits and limitations of human versus fully automated conversational coaching by 

contrasting this chatbot coach with human text-message based coaching in a Wizard-of -Oz 

deployment study with individuals with T2D. I conclude with implications for the design of 

automated coaching interventions.  
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4.1 Iterative, user-centered design of t2.coach, a chatbot health coach for 

nutrition and physical activity goal setting 

As described in related work (Section 2.5), a common approach to designing 

conversational agents in health is structuring dialogs to follow clinical protocols for specific 

coaching strategies, like Cognitive Behavioral Therapy [91]. In this approach, designers create a 

scripted dialog structure that anticipates the possible interactions between an individual and the 

agent and specifies appropriate responses. While less flexible than dynamic conversational 

agents, which are based on dialog models trained from a large corpus, fully-scripted agents have 

been successful in domains where corpora are not available or feasible to create, and also offer 

designers more precise control over how the agent will respond, which is important when 

delivering health-related information. Below I describe the initial design of T2 Coach that 

followed an established coaching protocol, and how I refined this design through a set of user-

centered design activities. 

4.1.1 Initial design of t2.coach 

In the initial design of t2.coach, we followed an established protocol, Brief Action 

Planning (BAP; [109]) as the basis for the scripted dialog flows. BAP defines a set of steps for 

health practitioners to guide an individual towards choosing a health goal and making a specific 

plan to achieve it. The well-defined and discrete step, as well as example scripted dialogs, make 

BAP particularly well suited to be adapted as a scripted chatbot. More details about BAP in 

relation to health coaching can be found in Section 2.6.2. The content for goals and action plans 

in t2.coach were derived from a prior knowledge base of health goals for individuals with T2D 

[61], as well as the personalized goals based on computational analysis of individuals’ self-

monitoring data, as described in Section 3.1 [179]. 
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Consistent with BAP, t2.coach included two primary dialogs: 1) a longer, weekly 

exchange to set a health goal, as well as 2) a shorter, daily, follow-up exchange to check in on 

goal progress, show in in Figure 15.  

 
Figure 15. An example dialog tree from t2.coach for the daily check-in script 

In addition to daily, system-initiated dialogs, meant to promote behavior change and 

account ability, early designs of t2.coach also promoted engagement by enabling users to initiate 

interactions. Users could ask questions and send messages to t2.coach throughout the day, and 

the chatbot would respond with answers similar to the types of question-answering offered by 

modern, commercially available agents (e.g. Siri, Alexa) [176], as well as tailored responses to 

certain requests, like diabetes-friendly recipes. 
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4.1.2 User-centered design methods 

Participants 

Individuals with T2D were recruited from two Federally Qualified Health Centers 

(FQHC) in the New York City metro area, one in Jersey City and the other in the Morris Heights 

neighborhood in the Bronx. To be included, participants needed to have self-reported diagnosis 

of T2D, be between 18 and 65 years old, and own a working smartphone. 

User-Centered design workshops 

Design workshops with 2-5 participants were held on site in conference rooms at the two 

FQHCs. Each session lasted up to 90 minutes and began with introductions and questions about 

participants’ background with T2D and technology like smartphone and text messaging. Next, 

the research team presented a description of the envisioned t2.coach system and storyboards of 

interactions with the chatbot to elicit feedback. Attention was paid to participants’ 

comprehension of and preference for different goals and action plans to further refine the content 

base, as well as different options in phrasing feedback and supportive messages. Each session 

also included a role-playing exercise to understand what questions participants might have for an 

always available virtual coach in various scenarios, like shopping in the grocery store, or 

choosing what to eat for breakfast after a high blood sugar reading in the morning. Each 

workshop was audio recorded, and researchers took contemporaneous notes.  

Wizard-of-Oz Deployment Study 

During the last 15-30 minutes of the user-centered design workshops, researchers set up 

participants’ phones with a prototype of the t2.coach system. In order to collect participant 

feedback early in the design process, before the fully functioning system was implemented, we 

utilized a “Wizard-of-Oz” (WOz) approach. WOz is a common design approach where a 
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research technician works behind the scenes to create the illusion of a fully functioning system, 

even if the system is only partially implemented [65,134]. While WOz methods have been used 

for many types of interactive systems, they particularly lend themselves to conversational 

interaction: the human wizard can easily recognize and interpret users’ statements and requests 

and generate appropriate responses. However, the vast majority of WOz experiments reported 

thus far were carried out in a lab setting, rather than in deployment studies in-the-wild. Because 

t2.coach’s dialogs rely on repeat interaction day-to-day in relation to an individual’s goal 

attainment, interaction patterns with a WOz chatbot in a controlled lab setting may not be 

generalizable to in-the-wild interactions.  

Implementation of Wizard-of-Oz in-the-Wild  

Adapting the WOz technique to a real-world setting, however, posed multiple challenges, 

including the need for a lightweight system that works well outside the lab, an expectation of 

24/7 availability of the agent, and the need to manage conversations with multiple users at once. 

Unfortunately, there are very few examples of WOz applied to longitudinal deployments or field 

studies in the HCI literature for researchers to leverage and build upon. 

In designing and implementing the apparatus for WOz messaging I took advantage of 

existing available technologies to the extent possible. For simplicity, the wizard could use their 

own phone number for sending messages. However, to maintain privacy and allow severability 

after the close of the study, I implemented an SMS-forwarding proxy with Twilio Studio [277], 

illustrated in Figure 16.  
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Figure 16. An illustration of the wizard-of-oz messaging proxy, implemented in Twilio 

Studio [277] 

Because WOz methods are primarily focused on research in a lab setting, there were a 

number of challenges adapting WOz methods to a deployment study.  

First, in order to create the illusion of an at least somewhat automated system, it would 

need to be functional at all hours of the day. This, however, would put undue burden on the 

wizard. The design of t2.coach included one chatbot-initiated conversation per day, and in an 

attempt to align the schedules of participants and the wizard, we scheduled a 1-hour long 

window to receive messages each day. This also allowed the wizard to be assigned to multiple 

participants at once. Importantly, to create a somewhat chatbot-like experience even when the 

wizard was not available, we configured Twilio to send a brief, automatic reply to let users know 

that t2.coach received their message and would respond within 24 hours. This type of automatic 

reply is uncommon when texting with a human conversational partner, and while not particularly 

informative, was meant to create the feeling of interacting with an automated system. 

In addition to scheduling staggered conversation windows, to help the wizard manage 

conversations with multiple participants, we also made use of Trello [278], a project-

management platform, which served as a central dashboard for the wizard to organize their work. 

The wizard used cards to schedule their needed outreach and outstanding items for each 
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participant. In addition, we integrated Trello with the Twilio messaging. For example, we let the 

wizard update their availability on Trello in real time,  which determined whether users would 

receive the automatic reply described above. 

A third challenge was the expectation of relatively quick replies from a chatbot, in 

comparison to messaging with a human conversational partner. Instead of typing out responses, 

with wizard used keyboard shortcut apps to choose from the possible scripted responses [279]. 

Procedure 

After the design workshop, the wizard initiated the first goal-setting conversation with 

each participant at the scheduled time of day. The wizard strictly followed the same rules and 

protocol that the fully implemented chatbot would use to respond, including the fallback 

response “I’m sorry, I didn’t understand” and re-prompting the question for off-script replies. 

To simulate question-answering, the wizard ran requests through a classifier built with 

AWS Lex [280] to categorize queries to different types of requests including recipe requests or 

diabetes knowledge questions. General informational questions were searched verbatim in 

Google, with the additional keyword “diabetes,” and responses from Google snippets were sent 

with a link, after being approved by a CDE on the research team. If the question was 

unclassifiable, or the response was deemed inappropriate, the chatbot responded that it was 

unable to answer the question. 

The wizard initiated messages each day at the scheduled time for two weeks, after which 

participants were invited to return for semi-structured interviews.  

Analysis 

After each workshop, we reviewed transcripts and researcher notes to iteratively update 

the behavioral goal and action-plan content base, as well as the t2.coach script, before the next 
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session. In addition, as cohorts of participants began the WOz study, the research team met 

weekly to discuss participant responses to revise seemly confusing messages and discuss changes 

to the structure of the t2.coach script.  

4.1.3 Results 

Participants (n=23) participated in groups of 2-5 across 7 total design workshops from 

August to December 2019. Thirteen participants participated in the two-week WOz pilot study, 

of whom eleven returned for semi-structured debrief interviews. 

Importantly, the WOz study surfaced a number of insights that may not have been 

uncovered with usability testing in a lab setting. Because we observed participants taking a 

considerable amount of time to respond to messages (Table 11) we made considerable changes to 

the BAP script as a part of this iterative design phase. While BAP was designed for human-to-

human conversations in a single session, we found that the number of conversational steps was 

too long. Because of the delay and length of the scripted dialogs, many participants were not able 

to finish the initial goal setting conversation on the first day, let alone the scheduled hour 

overlapping with the wizard. To incorporate this feedback, we substantially reduced to the length 

of scripted dialogs to focus on the core steps of goal setting. For example, BAP includes a 

question to assess the client’s confidence on a 1-10 scale before finalizing the plan, but this step 

was superfluous because all users replied they were highly confident (10/10). Importantly, the 

need to substantially shorten dialogs was an insight that would have been difficult to glean from 

a lab experiment, as users would have been more likely to complete the full conversation in a 

single setting under supervision of the researchers, without the distractions of daily life.   
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Table 11. Average delay in responses to incoming text messages, in minutes 

 Wizard User 

Mean response delay  

(p < 0.01) 
4.45 minutes 35.44 minutes 

Median  0.92 minutes  2.41 minutes 

Range 
0 to 234.53 

minutes 

0.02 to 428.30 

minutes 

 

Second, the initial version of the script also included messages to remind users about the 

current active conversation if they were idle for more than an hour. Because users regularly took 

a long time to reply, these messages were unnecessary and also increased annoyance among 

early participants (one replied “please stop”) and so we removed it from the script. 

Third, while we expected participants to ask questions and initiate interactions with 

t2.coach, we found that users rarely initiated conversations or asked questions unprompted. 

Users initiated interaction with t2.coach only 16% of the time, and many of these were in the 

first session, when we asked each participant to send an initial question to t2.coach. It appeared 

that participants were willing to ask questions of t2.coach in the controlled setting during 

enrollment, but were less likely to follow through and ask additional questions in the wild. Based 

on this lack of utilization, we did not pursue adding additional question answering capabilities to 

the final implemented version of t2.coach. 

Complete scripted dialogs from t2.coach after the completion of user-centered design are 

presented in the appendix in Supplementary Table B and Supplementary Table C. 

4.1.4 Discussion 

Through an iterative, user-centered design process we refined the design of t2.coach, a 

chatbot to support individuals with T2D. This design process relied on well-established 
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approaches for conducting design workshops, as well as a novel adaptation of WOz methods to 

field and deployment studies.  

The end result of this work was the protocol for scripted, text-based chatbot. t2.coach was 

ultimately implemented used the botkit framework with Twilio integration, and is currently 

being evaluated for its efficacy to support diabetes self-management as a part of a National 

Institute of Diabetes and Digestive and Kidney Diseases grant number R01DK113189.  

In the remaining work of this aim, I present a study that zooms out the lens to examine 

how a scripted chatbot approach to health coaching compares and contrasts with its analogue of 

human-powered health coaching.  

4.2 Experiences of automated vs. human health coaching 

I have just presented the user-centered design of a chatbot intended to offer similar 

support to individuals with diabetes as a health coach would. However, previous researcher has 

questioned whether technology-based approaches can serve the role of health coaches [218]. To 

examine these tensions, I had the following research questions:  

Research Question 2.1: Can a scripted, rule-based chatbot create a positive coaching 

experience, comparable to that created by a human coach using the same medium (text 

messaging)?  

Research Question 2.2: What aspects of the coaching experience, if any, are uniquely 

human and do not lend themselves to automated approaches? 

Research Question 2.3: What are the potential advantages, if any, of chatbots for virtual 

coaching? 
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4.2.1 Methods 

Overview of the study design 

In this study, we recruited participants with T2D from low-resource communities and 

assigned them to one of two groups. In the first group (“chatbot”), participants interacted with 

the wizard-of-oz version of the t2.coach chatbot described in Section 4.1, above. In the second 

group (“human coaching”), participants interacted with an actual human health coach. To reduce 

potential variability in approaches to coaching, both the chatbot and the human coaches followed 

the same BAP protocol for structuring the dialogs; however, human coaches were actively 

encouraged to deviate from the protocol to provide the best support for their clients. 

Messaging with human coaches 

The health coaches involved in this study exchanged text messages with participants from 

their own phones using the same SMS-forwarding proxy as the wizard (see Section 4.1.2). 

Human coaches were given a set of tools to make it easier for them to serve as coaches and 

follow the BAP protocol. First, to reduce the need for repetitive typing of prompts, coaches were 

provided with a mobile phone keyboard app with shortcuts to quickly send messages written 

following the protocol (Supplementary Figure H). In addition, coaches were given access to a 

dashboard with resources including the complete set of BAP messages, and all of the goals and 

action plans in the chatbot’s knowledge base. Furthermore, coaches could use the dashboard to 

access pages with all of the meals and blood glucose readings recorded by each of their 

participants during the study. As a part of training, each coach practiced following the protocol 

with a member of the research team to help ensure that deviations from the protocol were 

intentional, and not due to lack of awareness of the steps or technical difficulties following it.   
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Personalization and self-tracking 

Coaching support strives to be personalized to an individual’s behaviors and preferences, 

and many virtual coaching interventions are employed alongside self-tracking apps [101,212]. In 

light of this, t2.coach included a progressive web application for logging meals and blood 

glucose (BG) readings (Figure 17). In the app, users capture a photo of their meal and enter a 

free-text description. Next, they enter a pre-meal BG. Two hours after the meal, users are 

prompted with a text message reminder to enter a post-meal BG. These data were made available 

to the human health coaches to help them personalize their support. While these data were not 

used directly by the chatbot, we included self-tracking with the app in both study groups for 

parity and to examine participants’ attitudes towards self-tracking as part of the coaching 

experience. 

 

Figure 17. Screens from the progressive web application for recording meals 

and blood glucose readings. 
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Participants 

Individuals with diabetes. Participants with T2D were recruited from two Federally 

Qualified Health Centers (FQHC) in a major United States metropolitan area. Patients served by 

these sites are predominantly minority (37% are African American and 60% are Latino) and low 

income, with 64% being insured through Medicaid, and 16% are uninsured. To be included in 

the study, participants needed to have self-reported diagnosis of T2D, be between 18 and 65 

years old, and own a working smartphone. 

Health coaches. We recruited practicing health coaches to serve as the virtual coaches in 

this study. Coaches were recruited though researchers’ professional networks including message 

board postings. To be included, coaches had to be Certified Diabetes Educators (CDEs) and/or 

be practicing health coach who works with diabetes patients at one of the community health 

centers.  

Procedure 

After collecting informed consent, a study coordinator administered baseline 

demographics and a measure of nutrition literacy [263]. Participants began the study in small 

groups of 1-4 individuals with a 1.5-hour focus group on the design and content of t2.coach. All 

participants in a given focus group were assigned to the same study condition.  

During the initial session, researchers helped set up t2.coach on participants’ phones, and 

participants were asked to use t2.coach for two weeks. The intervention was described to 

participants as a partially automated system, but an actual person would be reviewing their 

messages to help t2.coach respond appropriately. In both groups, participants were encouraged to 

respond to prompts from the coach and to ask free-form questions whenever they had them. In 

the human coach group, participants were told that the person reviewing messages was a health 
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coach, while in the chatbot group, participants were told that the person was not a healthcare 

provider, and therefore would not be able to answer all of their questions.   

Because coaches and the wizard could not be available at all hours of the day, 

participants were asked to indicate a set of times they would be available to exchange messages. 

Participants and human coaches were paired based on how their available times aligned. Each 

participant was assigned to a single coach, while each coach was assigned multiple participants, 

which we refer to as their “clients”.  

Within 24 hours of enrollment, participants received a message to begin a goal-setting 

session. Each day at the agreed upon time, the coach initiated the daily check-in conversation. 

After the first week, the coach initiated another longer, goal setting conversation, giving 

participants the option to update their goal.  

After two weeks, participants joined 30-60 minute debrief interviews over the phone. The 

interview guide included general questions about participants’ background, their prior experience 

with health coaching and self-tracking apps, and their overall experience in the study. The 

second part of each interview was grounded in transcripts of individuals’ exchanges with their 

coaches (human or chatbot); the interviewers asked questions based on transcript excerpts and 

asked participants to explain and contextualize their experiences within those exchanges. The 

interviewer also asked a targeted question about whether participants felt that they were working 

with a health coach. At the end of the interview, the researcher administered two post-measures, 

described below. Participants received $30 for their data plan, $20 for the initial visit, and 25 

blood glucose test strips to use for testing during the study. The research protocol was approved 

by the Western Institutional Review Board (a single IRB for multi-center studies) and the local 

institutions’ IRB.  
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At the close of the study, we invited the health coaches for 1-hour debrief interviews. We 

asked about their experiences in the study and how they compared to prior virtual and in-person 

coaching experiences. To better understand the coach’s intention when they deviated from BAP, 

we reviewed transcripts of their exchanges with participants, to probe how they reacted to 

participant responses, why they responded the way they did, and if they would have done 

anything differently in retrospect.  

Post-Measures 

During the interview, we administered two adapted questionnaires. First, to assess the 

perceived usability of the text message interactions, we administered 10 items from the 

Subjective Assessment of Speech Systems Interfaces (SASSI), which has good coverage of 

broad usability domains [18,119]. Second, to assess the degree of collaboration and shared 

decision-making, we adapted a 9-item shared decision-making questionnaire (SDM-Q-9 [144]); 

instead of asking about shared decision-making in a clinical context, the adapted measure asked 

about shared decision-making related to choosing a health goal. See Supplementary Table D and 

D for the complete set of questions in the post-measures. 

Data Analysis 

For the quantitative analysis, we first calculated descriptive statistics of demographics 

and baseline measures. Our quantitative analysis aimed to answer the following questions: 1) 

Was there a difference in perceptions of usability or shared decision-making between human 

coaching experience and the chatbot? 2) Were there differences in conversational patterns 

between the two groups? and 3) Were there differences in goal attainment between participants 

in the two groups? 
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To answer these questions, we used the following methods: 1) To assess differences in 

perceived usability and shared decision-making, we compared differences in post-measures with 

an unpaired t-test. 2) To characterize differences in conversational patterns between the two 

group, we calculated the length of conversations as measured by the number of conversational 

turns (a switch from one speaker to the other) per day. 3) To explore how successful participants 

were in achieving their chosen goals, we did not directly measure changes in behavior [137]. 

Instead, we created a measure of self-reported goal attainment by analyzing text message 

transcripts to identify exchanges where the coach asked their client if they achieved their goal 

and the client replied with a clearly affirmative or negative response. Goal attainment was 

calculated for each week of the study and overall, and we compared attainment between the two 

groups using Fisher’s exact test.   

For qualitative analysis, participant and coach interviews were analyzed with inductive 

thematic analysis [36]. The lead author and senior author coded 10% of transcripts 

collaboratively, with the lead author continuing to code the remaining transcripts while keeping a 

detailed audit trail on the code book. The senior author independently coded an additional 20% 

of transcripts for periodic check-in sessions to compare codes and resolve discrepancies through 

discussion, followed by additional interpretation sessions for axial coding as themes emerged. 

After coding was complete, we examined data saturation and theme comprehensiveness across 

participants [95,104]. To compare the prevalence of themes between the two study groups, we 

tagged each transcript to the corresponding study condition and used the crosstabs features of 

NVivo to compare prevalence between groups. Themes were considered equally prevalent if the 

share of participants who reported that theme in one group was within 20% of the share in the 

second group.  
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4.2.2 Results 

Participants 

Individuals with diabetes. A total of 23 participants were enrolled in the two-week study, 

of whom 18 participated in debrief interviews. As shown in Table 12, participants were 

predominantly female and majority black or Hispanic, with a low median income for a major US 

city. There were no differences in baseline demographics between groups.  

Table 12. Demographics and baseline measures 

N Enrolled 23 

Age 54.92 ± 7.16 

Gender  75% Female 

Race 55% Black 

5% White 

5% Asian 

5% Native American 

30% Other/Refused 

Ethnicity 30% Hispanic 

Median Income < $10k 

Nutrition Literacy 

[263] 

4.05 ± 1.61 (out of 6) 

20% possibly limited literacy 

 

Health coaches. Four health coaches facilitated messaging in the Human Coaching 

group. They had a range of 10 to 18 years working with diabetes patients, and 3 of 4 were 

Certified Diabetes Educators (CDEs). All four self-identified as health coaches, worked for a 

health system or in private practice, and felt that the coaching approach should be commonplace 

in healthcare. 

Post-measures and usage statistics 

13 participants were assigned to the chatbot group and 10 to the Human Coaching (HC) 

group. 5 participants (1 in the chatbot group and 4 in the human coaching group) were either lost 

to follow-up or had to drop out of the study because of a family emergency. Dropout was 
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disproportionately higher in the HC group such that only 6 of 10 participants in the HC 

completed the study and took part in the post-study interview.  

Regarding possible differences in perceived usability, as shown in Table 13, there were 

no differences in reported usability, as measured by the Subjective Assessment of Speech System 

Interfaces (SASSI; [119]), or in shared decision-making of goal setting, as measured by the 9-

item shared decision-making questionnaire (SDM-9 [144]).  

Table 13. Comparison of post measures between the two study groups 

  Human Coaching Chatbot 

N Enrolled (N Interviewed) 10 (6) 13 (12) 

SASSI (n.s. p = 0.94) 4.20 (± 0.74) 4.23 (± 0.55) 

Adapted SDM-Q-9 (n.s. p = 0.73) 86% (± 20%) 83% (± 17%) 

 

Regarding possible differences in conversational patterns, daily conversations tended to 

be significantly longer in the human coach group (Table 14). The median conversation was 3 

turns in the chatbot group (approximately the length of the daily check in script) compared to 5 

turns in the HC group, with one conversation continuing for 51 turns.  

Table 14. Length of conversations between participants and their coach in the two study 

groups 

Conversational turns per day Human Coaching Chatbot 

Mean (SD)* (p < 0.001) 7.89 (10.11) 4.22 (4.26) 

Median (Range)* (p < 0.01) 5 (1 to 51) 3 (1 to 20) 

 

Regarding differences in goal attainment, self-reported goal attainment was consistently 

higher in the chatbot group, averaging above 80%, while attainment was 36.4% on average in the 

human coaching group (Table 15), a difference that was statistically significant with Fisher’s 

exact test. While attainment was relatively consistent in the chatbot group, attainment increased 
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from 25% to over 40% in the human coaching group from the first week of the study to the 

second. While the increase was not statistically significant due to the small sample size, the 

difference between the chatbot and human coaching group was no longer statistically significant 

in the second week of the study.  

Table 15. Self-reported goal attainment between the two study groups 

  Human Coaching Chatbot 

Overall (p < 0.01) 36.4% 80.8% 

First week (p < 0.05) 25.0% 80.4% 

Second week (n.s. p = 0.06) 42.9% 81.4% 

4.2.3 Qualitative Themes 

In this section, we identify and describe the main qualitative findings from interviews 

with participants with diabetes and health coaches. After briefly describing participants and 

coaches in the study, we report 4 main themes, summarized in Table 16. As shown in 

Supplementary Table F & Supplementary Table G , themes 1 & 4 were prevalent across 

participants, while themes 2 and 3 were prevalent among either the human coaching or chatbot 

group, respectively.   

Table 16. Summary of qualitative themes 

Theme 1 Participants in both groups felt like they were working with a health coach 

Theme 2 Human-powered coaching had the advantages of empathy and deeper 

engagement, but encountered multiple challenges with communication via 

text messaging 

Theme 3 The consistency and predictability of the chatbot helped participants 

persevere in achieving their goals and promoted their autonomy 

Theme 4 The directness and intimacy of text messaging created expectations for 

personalized and continuous support 
 

Quotes from participants with diabetes are labeled with a participant number (e.g. P10), 

followed by their group in parentheses – Chatbot or HC (Human Coaching). Quotes from the 4 



 

 

 

 

115 

health coaches are labeled with Coach and a number (e.g. Coach #3). Excerpts from text message 

transcripts are included in monospace font.  

Characterizing participants 

During their interviews, many participants described challenges they had experienced in 

their prior efforts to self-manage their T2D. Many were in the habit of checking blood glucose 

(BG) at least once a day, but also described challenges in interpreting and acting on BG readings, 

especially unexpected or high readings. Participants also described a number of limiting 

circumstances that hindered their efforts towards self-management, for example inadequate food 

budgets, food allergies, disabilities, or other physical impediments.  

Participants described a range of familiarity with and use of technology. Many were 

comfortable with text messaging; for example, P10 described regularly messaging with family 

and friends: 

“All the time… I hit the messenger send my message, I message my daughter, my son, I have 

friends that I text with them too” P10 (Chatbot) 

However, others were less familiar with texting, and in some cases adamantly disliked it, 

preferring to return texts with voice messages, or send voice memos: 

“The only time I text to my children is this day at work and I have to tell them something… I 

don’t like texting, I don’t.” P5 (Chatbot) 

In terms of using technology to support their self-management, none had ever used an 

application on their phone for self-tracking before this study, though some tech-savvy users had 

set up medication reminders on their phone, or used YouTube to find exercise videos or recipes.  
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Characterizing health coaches  

During interviews, each coach described their health coaching philosophy. Overall, the 

coaches’ philosophy aligned very closely with BAP [109], used to guide both the chatbot and 

human coaches. Coaches described the importance of being patient-centric, respecting 

autonomy, and letting clients drive the process.  

“I would say my general philosophy is very patient, participant driven, so I really am very 

much of a coach in the true sense of the word that I work with them on their goals, and I 

never really, at least at this point in my practice, tell a patient what to do. I just try to get it 

to come from them.” Coach #2 

With goal setting, coaches emphasized helping their clients arrive at goals that are 

specific and actionable, and advocated for working on only one or two goals at a time. Coaches 

felt that goals were meant to be cumulative, focusing on small, incremental changes to 

participant’s current practices, to help them build up healthy habits over time. Lastly, coaches 

described the importance of asking questions to learn about participants current practices and 

help drive them towards practical goals.  

Theme 1: Participants in both groups felt like they were working with a health coach 

Notably, nearly all participants in both the human coach and chatbot groups stated that they 

felt they were working with a health coach and used words like “coach” or “teacher” to describe 

the system. When describing their experience in the study, participants mentioned a number of 

phenomena consistent with health coaching.  For example, setting actionable goals was the focal 

point of conversations with t2.coach; participants in both groups chose goals to work on, and most 

recounted examples of behaviors they changed to meet their goals. Many participants described 
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their experiences acting on specific suggestions from their coaches; for example, P8 followed the 

recommendation to find a friend to go on walks with.  

“I did find a friend. She does walk with me… We did from here to          , walking.” P8 

(Chatbot) 

In the process of working towards their goals, participants in both groups described how 

working with the coach increased their motivation to pursue healthy behavior changes.  

“I like it’s better than you know, you try to work on the key issue like motivate it for me. It 

gives me motivation and teach me” P15 (HC) 

In addition to following goals and experiencing increased motivation, participants in both 

groups recounted other experiences related to different aspects of coaching. In both groups, 

participants commented that their exchanges with the coach felt like a conversation, appreciating 

the communication and the back-and-forth exchange. It was perhaps unsurprising that 

participants in the human coach group described how they felt they were building a relationship 

with their coach over time. More notably, participants in the Chatbot group similarly described 

that they appreciated the relationship with their coach especially when they did not always feel 

that they were able to talk about their diabetes with others in their life. 

“Yes, it was nice to talk to somebody, you know, about diabetes because I don’t even want 

to talk to stuff like this to somebody else. Who wants to know what the goals were and what 

I would like to do and what I would like to accomplish?” P6 (Chatbot) 

For many participants, the regular contact from their coach helped promote mindfulness 

of the goals they had chosen, and determine a plan to meet that goal. The regularity of 

communication with their coach also helped participants to feel that there was an entity keeping 

an eye on them. This feeling of someone looking out for them helped promote a sense of external 



 

 

 

 

118 

accountability to work towards meeting stated goals. Through the process of working with their 

coach, participants described learning and gaining knowledge of new approaches for their self-

management, whether altogether new behaviors or new ways to accomplish longstanding goals. 

Participants in both groups described a number of other experiences consistent with health 

coaching, which we summarize with illustrative quotes across both groups in  

Supplementary Table H. These themes were prevalent across participants in both study 

groups; while not every single participant experienced all positive aspects, each theme was found 

across both study groups approximately equally (within 20%).  

The exchange between the chatbot and P5 in Table 17 exemplifies the manner in which 

even the fully-scripted chatbot created an opportunity for a conversation that promoted 

mindfulness and reflection over the participant’s experience pursuing personal goals. P5 

responded thoughtfully to open-ended prompts from the chatbot, to reflect on the barriers they 

encountered meeting their goal and formulate a plan to address those barriers.  

Table 17. An exchange between P5 and the chatbot coach discussing strategies to overcome  

barriers in goal attainment. 

Coach (Chatbot) Good morning! How did it go with your plan yesterday? 

Did you meet your goal to “Make ½ my meal fruits and/or 

vegetables”? (Yes/No) 

P5 Not well,I missed lunch and I ate dinner late. I forgot 

to take my metformin last night.  

Coach (Chatbot) I’m sorry, I didn’t understand that. Please respond 

with “yes” or “no” 

P5 No 

Coach (Chatbot) That’s okay, it can happen. What got in the way of 

meeting your goal? 

P5 I accompanied a relative to a doctor’s appointment. 

Then we went to 2nd appointment and I skipped lunch. My 

glucose level started to drop  so I ate 6 short bread 

cookies. I didn’t get home until after 8:00pm from 

10:30 am. There was no place I could eat in the area . 

Coach (Chatbot) How do you think you can overcome that challenge 

tomorrow? 
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P5 Packing sandwich in my bag just in case I’m out without 

access to the right kind of foids. 

Coach (Chatbot) Thank you for sharing that with me 

Coach (Chatbot) Would you like to choose a specific plan to meet your 

goal tomorrow? 

... 

 

The interview with P5 provided additional context for how communication with t2.coach 

helped participants in achieving their goals, including by promoting mindfulness and 

accountability.  

“I think the questions made me pay attention to more of what was going on with myself, 

instead of being distracted because of what I was doing and what I was going through 

emotionally with situations with my relative and it made me concentrate on what I need to 

do for myself.” P5 (Chatbot) 

In this exchange, P5 describes how they were going through a challenging time caring for 

a relative, and not prioritizing their own health. The questions and messages from the chatbot 

were prompts for P5 to step back and reflect in-the-moment on their health goals and how to 

continue achieving them despite stressful daily circumstances, and maintaining accountability to 

meeting goals.  

Theme 2: Human coaching had advantages, but encountered barriers with text messaging 

While there were surprising similarities between the coaching experiences of participants 

in both groups, there were numerous ways in which the daily exchanges varied between groups. 

While human coaches started off following the BAP protocol, they ended up embellishing it, and 

eventually went completely off-script. There were several notable situations when coaches went 

off-script: to provide empathy and appear more human, or to respond to their clients’ broader 

needs beyond the protocol. We discuss these below.  
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The advantages of empathy and an expanded scope of support 

One of the prominent places where human coaches went off-script was to express 

empathy and display their humanness. Table 18 shows an exchange between P17 and their 

coach (#4) where P17 says that they have not been feeling well, and the coach responds 

empathetically, in a way that might appear second nature for human conversation. 

Table 18. A brief exchange between P17 and Coach #4, where the coach responds with 

empathy after the participant shares that they are still not feeling well. 

Coach (Coach #4) Hi ____, how are you feeling? How has it been going with 

your meals? 

P17 Still not feeling well and my eating is not good right 

now but I am working on getting better. Thank you for 

asking. Appetite is not good. 

Coach (Coach #4) Ok, I’m sorry to hear that. Feel better. I will check in 

with you again tomorrow at this time. Do you have any 

questions for me now? 

P17 Not yet but waiting on feeling better and then I will 

have questions. 

Coach (Coach #4) Ok sounds good. Take care. Talk to you tomorrow 

 

In their interview, P17 described the appreciation they felt for their coach, who they 

believed was truly concerned about them and their wellbeing.  

“Even though I don’t know whether that person was human or was it, you know, automated, 

I felt like is it like human and has to be concerned about my health. Because on those days I 

wasn’t feeling well… even though she didn’t say I’m disappointed I felt like I can’t let her 

down.” P17 (HC) 

In addition to expressions of empathy, coaches were also able to follow their human 

instincts and go off-script to ask questions that expanded the scope of their coaching support. 

Many participants were experiencing deeper challenges that were preventing them from fully 

pursuing nutrition-related goals. This was the case, for example, with participants who 
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experienced unstable housing. When one of these participants brought it up during an exchange, 

the coach pursued it with further questions and eventually shared additional information about a 

homelessness resource and also shared information about an upcoming job fair.  

“There were a lot of barriers there… she is going through homelessness basically… And 

that’s why you see… I try to give her some help with the housing and stuff like that which 

wasn’t really like you know the normal track that we would do. You have to deal with some 

of that first.” Coach #1 

In a minority of cases, coaches’ questioning led to very fruitful exchanges, enabling 

much more personalized suggestions and support. For example, in Table 19, we see an excerpt of 

a conversation between P13 and their coach (#2), where the coach learns about the participant’s 

temporary housing status, and asks a series of questions to learn about their situation and 

preferences, and help them arrive at healthier breakfast options. This conversation was one of the 

longest, with 68 utterances and 32 conversational turns over 35 minutes. 

This in-depth exchanged helped the participant to arrive at many reasonable options for 

healthier breakfasts, which they described trying and enjoying. This type of in-depth exchange 

was unique to the human coaching group and exemplifies the advantages of the human-driven 

approach.  

Table 19. An in-depth exchange between P13 and Coach #2 

Coach (Coach #2) Hi ____, first, great job adding the green beans  

Coach (Coach #2) I reviewed your food logs, as well as your blood 

glucose levels. I’d love to continue to help you to set 

goals.  

Coach (Coach #2) Let me know and we can chat about them  

P13 I am at a disadvantage I am not home I’m in 

transitional housing   

P13 this point.  I try to work with what is offered to me.  

I’m not making 

P13  excuses I’m trying to live on a budget that I am not 

always in  
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P13 I can eat because I have no way to cook here 

Coach (Coach #2) Thanks for sharing this with me, ____. That’s totally 

understandable that you’re limited in your choices. But 

not to worry, I have some ideas of what we can do  
... 

Coach (Coach #2) What other veggies did they serve, that you have tried? 

P13 I like the protein idea yes I can do that  

Coach (Coach #2) Liked “I like the protein idea yes I can do that” 

Coach (Coach #2) Wonderful! 

Coach (Coach #2) Tell me about the veggies so I can help you with that 

part  

Coach (Coach #2) All these changes can help your blood sugars to get in 

better control.  

P13 Today for breakfast I had two oatmeal cookies and 

that’s all I ate  

Coach (Coach #2) Okay – let me help you with breakfast.  

Coach (Coach #2) I noticed on your logs that you sometimes eat a banana  

Coach (Coach #2) What is available at the housing for breakfast? 

 

Text messaging created barriers to effective communication 

Despite these successes, health coaches expressed overwhelming frustration with text 

messaging as a medium for coaching, and found it to be much more difficult than in-person or 

telephone coaching.  

“Putting them in a hierarchy [in-person] would be the easiest and then more recently I’ve 

been doing a lot more phone calls which is harder in certain ways. Text messaging was even 

harder. There was no ability to pull out nuances.” Coach #3 

Participants often replied with short responses, which coaches had difficulty interpreting, 

and sometimes resulted in miscommunications.  

“We’re talking about do you want to keep the same plan tomorrow, “yes,” but what does 

yes mean? Does that mean literally you’re going to have the same dinner like yesterday?... 

There was no embellishment from her at any point” Coach #3 
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Furthermore, the lack of non-verbal cues made nuanced communication difficult, 

impeding the coaches’ ability to build rapport with their clients, as they would in an in-person 

setting. 

“I just find that difficult to establish a rapport… How can we ask you to establish a rapport 

with someone through just text message? It’s pretty hard to convey who you are.” Coach #2 

Overall, text messaging as a medium limited coaches’ ability to engage in the types of in-

depth exchanges they were used to, and created barriers to effective communication that 

sometimes resulted in miscommunication and misunderstanding.  

Coaching without nuance or context 

In addition to challenges communicating via text message, coaches described difficulties 

developing a coaching relationship without any context about their client.  

“I don’t know if she likes apples, I don’t know if she likes peanut butter and that she could 

be allergic to peanuts for all I know.” Coach #3 

In particular, coaches struggled to determine how engaged their clients were in the 

coaching process based on the short and ambiguous responses they often received, often after a 

considerable delay.    

“I don’t know if I should’ve taken it like, “I don’t want to talk anymore,” or “I’m tired right 

now,” or it’s you know, she wasn’t welcoming to be pushed… the whole time I was getting 

mixed messages” Coach #4 

When they perceived hesitation, coaches were uncertain about how to balance proactively 

pushing participants and continually messaging them, or to give their clients space.  
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“As a coach you are like should I reach out to her again or should I just leave her alone 

because there may be a reason why… As a coach you got to be sensitive when you are texting, 

you don’t want it to be like a drag… You really don’t know what the balance is” Coach #1 

Reflecting on their exchanges, coaches often viewed these interactions as missed 

opportunities to engage or push their clients further, and regretted it when they felt they were too 

hesitant.  

Attempts for deeper engagement sometimes backfired 

To try to combat the lack of context, coaches took up their tried-and-true strategy of 

asking questions to their clients. Coaches tried to probe participants to uncover more 

fundamental challenges they were encountering, or to find some jumping off point to drive the 

conversation forward.  

“Sometimes you wait for that like little piece of information that’s the entry into a bigger 

conversation. So maybe they would drop a little tidbit about money being tight, and now you 

have an opening to talk about budget and planning and frozen vegetables.” Coach #3 

As discussed in the beginning of this section there were a handful of circumstances where 

question-asking was fruitful in leading to in-depth coaching exchanges; however, there were 

many other situations when it was not as successful and, in occasionally even backfired. When 

participants were not as engaged, coaches continued to ask questions multiple times in multiple 

ways.  

“So, I would ask the same question in different ways… you could see my maneuvering and 

trying to get her to focus.” Coach #1 

This repetitive questioning occasionally led to annoyance among participants, and a 

feeling that the coach was not actually listening. In one instance, Coach #3 included some 
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additional clarifying questions to spur the conversation during a daily check-in with P14; P14, 

however, interpreted these questions to mean that the coach did not remember the goal they had 

set together the day before, a misunderstanding that put the participant off.  

“I thought we were talking about it the other day what my goal was, we want to do it for the 

whole week… she has the same thing every day we talk it was like somebody was not 

listening” P14 (HC) 

This example highlights the disconnect between coaches’ and clients’ perceptions of their 

exchanges, which sometimes led to dissatisfaction and frustration. 

Coaches want a rewarding experience, too, but rarely received it 

Overall, the health coaches in this study did their best to provide a positive coaching 

experience for participants, and took pride when their clients showed signs of success. In 

particular, coaches found satisfaction in the instances when participants engaged for more in-

depth exchanges, like the exchange between Coach #2 and P13 in Table 19: 

“He really opened up and was like very receptive to coaching. That was really cool. And it 

kind of worked out that like, the timing was good, too, like he and I were both online.” Coach 

#2 

While these were the highlight of the experience for coaches, they were also quite rare. 

The more common experience was frustration due to the challenges with text messaging and a 

lack of context, described above. Coaches disliked receiving short responses from their clients, 

and in response some coaches went out of their way to embellish their messages in an attempt to 

convey that there was a human on the other end.  
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“I tried to lighten the mood a little bit… One of the things that I wanted to avoid was it 

sounding like I was just a computer. I wanted her to build up there was an actual person on 

the other end.” Coach #3 

The disconnects that resulted from the challenges of text messaging, discussed above, led 

the coaches to feel frustrated and dissatisfied that their clients were not fully committed to the 

coaching process, and were not stretching or challenging themselves.  

“At this point is when I realized that she [P14] chose the half a plate of vegetable goal 

because it was easy. This is like something that she did all the time.” Coach #3 

Ironically, however, Coach #3’s dissatisfaction was the result of a fundamental 

miscommunication. In their interview, P14 discussed how they had completely changed their 

eating habits during the study, and were in uncharted territory with their nutrition goal.  

“I am not normally eating salad, you know every day with my meals, I don’t.” P14  

Because of the challenges of text messaging and difficulty perceiving how engaged their 

clients were, coaches received little direct feedback on how they were doing in their role as 

virtual coach. Even when participants were having highly positive experiences, coaches were not 

able to see this or share in this satisfaction until the very end of the study, if at all.  

Theme 3: The consistency and predictability of the chatbot helped participants persevere in 

pursuing their goals and promoted their autonomy 

While text messaging presented considerable barriers for human coaches, it also gave 

unique advantages to the chatbot. Specifically, its consistent, if annoying, behaviors helped 

individuals to persist in pursuing their goals. Furthermore, its strict adherence to the BAP script 

mandated consistency in including choices for goals and behaviors; these choices helped 

promote participants’ autonomy and sense of agency.  
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Perseverance in pursuing goals  

Many participants found the chatbot to demonstrated patience in its responses, always 

allowing users to make a choice, and re-prompting with the question if it did not understand the 

user’s response.  

“It always gave me an answer. It never cut me off like it gave me what you call feedback, 

computer talk or whatever… but it left it open so I could continue to think on it.” P9 (Chatbot) 

A common comment among participants in both groups was to describe their coaching 

experience as “annoying, but helpful.” The “annoyance” was particularly salient for participants 

who were not frequent users of text messaging and who preferred talking on the phone. Part of 

the annoyance stemmed from the fact that text message notifications would sometimes arrive at 

inopportune times, for example during a doctor’s appointment, at church, or when the participant 

was with friends. Poor timing of messages was compounded by the fact that participants felt 

obligated to respond to messages soon after they arrived.  

“But it’s just really annoying when it’s just not giving the person a chance to think, 

understand. It’s just fast, you have to answer fast… But when a patient or someone is doing 

something, we can stop what we are doing just because we need to answer this fast” P8 

(Chatbot) 

However, when discussing the aspects of the coach that they found annoying, participants 

in the Chatbot group often described them as a double-edged sword, acknowledging the 

pushiness of the Chatbot as a necessary evil in achieving desired changes in their self-

management.  

“There’s a positive message and we have to believe each message that comes through is for 

a reason, is to keep us to maintain us healthy… even though it’s from an automated service, 
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you know, so the power of positivity is there… Hey, you don’t get rid of your mom because 

she is annoying.” P8 (Chatbot) 

The features that contributed to annoyance, like the persistence and consistency of 

messaging, were also tied to participant’s perceptions of what made the intervention helpful, by 

increasing motivation, and keeping behavior change intentions salient throughout the day to spur 

positive behaviors.  

Choice and autonomy 

One of the predominant themes unique to interviews of participants in the chatbot group 

was regarding their appreciation for choices and options presented to them by the coach. BAP 

provides an opportunity for participants to select a preferred option for setting goals. While 

human coaches followed this part of the protocol initially, they eventually wound up suggesting 

individual goals rather than sharing a menu of choices. One human coach participant (P13) said 

that the coach “gave” them goals “to be ascribed to.”  

Coach #4 to P17:  For this coming week, I want to make sure that you 

make 1/2 of my plate fruits and/or vegetables. Is that something you 

can do? 

In contrast, the Chatbot was consistent in following the protocol and offering menus each 

step of the way. As a result, participants in the Chatbot group appreciated the freedom to pursue 

options that mattered to them.  

“Not only did it give me the options. But then if I didn’t appreciate those options it gave me 

the chance to request another set of options, you know, I found that to be helpful as well.” 

P11 (Chatbot) 
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P6 poignantly contrasted their experience with the chatbot coach to receiving a 

prescription from a doctor’s office. In the case of the doctor, it was an instructive, but with the 

chatbot, it was a choice. 

“He gave you a variety of choices. It’s not like if you go to a doctor he tells you, we have to 

put this medicine if you wanted to heal, you know, he gave you more choices… and see what 

works better for you, so I think that was better” P6 (Chatbot) 

Theme 4: The directness and intimacy of text messaging created expectations for personalized 

and continuous support 

While there were a number of differences in participants’ experiences with human 

coaches in contrast to the chatbot, there were also a number of notable similarities, particularly in 

regards to their expectations from virtual coaching delivered through text messaging. Most 

notably, the participants saw the daily availability as a key advantage that also presented a stark 

contrast with their previous in-person coaching experiences.  

“The thing that it kept track with you… it was constantly there for you almost every day. So, 

you’re never really alone.” P13 (HC) 

However, daily engagement also raised expectations for a level of support that was 

connected to participants’ daily activities. This heightened expectation was unrealized in both the 

Chatbot group as well as the Human Coaching group, with all participants wishing for 

suggestions that were more related to the specifics of the meals they were logging.  

“I have salad with tomatoes, onions, and I put sunflower seeds, and I put dressing, you know, 

so was it okay or was it not okay, what should I not put in my salad?” P14 (HC) 

The daily nature of virtual coaching combined with the fact that the study included meal 

and blood glucose logging may have contributed to expectations for more direct feedback on the 
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meals they had entered. For example, P8 described that they felt the experience of logging was 

disconnected from their coaching experience, and wished to receive more feedback based on 

what they were eating, like what kinds of additions to oatmeal would be best for their BG.  

“They are not connected because I took a picture of my food but you didn’t say that is good. 

So its separate. Because if you eat a little bit of oatmeal and it raises your sugar 50% when 

it is supposed to be more healthy than there is something wrong, right? Is it the milk that I 

am using?” P8 (Chatbot) 

This desire for more specific feedback and suggestions based on participants’ meal logs 

was the most commonly expressed recommendation from participants in both groups. Along 

these lines, participants also asked for more actionable and varied suggestions like recipe ideas, 

workout videos, or lists of healthy food items to buy at the grocery store.  

4.2.4 Discussion 

In this research, we aimed to unpack tensions of humanness in virtual health coaching. 

While there has been an increased focus on conversational technologies in healthcare, some have 

argued that the human element is irreplaceable in health coaching [146,218]. We completed a 

two-week study with two versions of a virtual health coaching intervention. In one group, 

participants interacted with a scripted, wizard-of-oz chatbot based on Brief Action Planning 

(BAP; [109]). In the other group, participants interacted with an actual health coach, who started 

with the same protocol as the chatbot for consistency, but could embellish as necessary. We 

sought to compare and contrast the experience of coaching in these two groups, to explore 1) 

whether automated chatbots have the potential to serve as virtual health coaches, 2) whether 

there are any aspects of coaching that are uniquely human, as well as 3) potential advantages of 

automated conversational approaches for health coaching in a virtual setting. Below we discuss 
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the main results of the study and their implications for future research in human-computer 

interaction (HCI) and for the design of virtual coaching interventions in health. 

A comparable coaching experience with a chatbot 

One of the overarching questions in this study was whether fully automated coaching 

systems are capable of creating positive coaching experiences. Overall, we found that 

participants from both groups reported generally positive experiences, and described their time in 

the study as working with a coach. Many of the themes observed in the accounts of their 

coaching experience — like increased motivation, learning and education, and accountability — 

align well with the description of positive coaching experiences by Olsen and others [196,267]. 

While it was not surprising that experienced health coaches were able to create a positive 

coaching experience, it was notable how similar experiences were between the two groups, 

despite divergent conversational patterns; human coaches had longer conversations that covered 

broader topics than the chatbot.  Moreover, there were no differences in post-test assessments of 

usability or shared decision-making between the two groups. Interestingly, self-reported goal 

attainment over the study period was higher in the Chatbot group (over 80%) than the Human 

Coaching group (less than 50%). These results support the potential of even relatively simple 

automated approaches to cultivate a coach-like experience to support self-management. 

On one hand, these findings challenge previous arguments that coaching is a uniquely 

human domain and that creating a positive coaching experience inevitably requires the 

involvement of human coaches [218]. On the other hand, this finding is consistent with multiple 

previous investigations that showed the efficacy of conversational agents in creating positive 

experiences in many areas related to individuals’ health [24,25,91,146,160]. Our study further 

supports these previous observations and extends them into the context of health coaching. 
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However, our study also showed that while both human coaches and chatbots can create positive 

coaching experiences, they each have their unique advantages and limitations. We discuss these 

below. 

Advantages and challenges of human-powered coaching via text message 

Previous research argued that human coaches have characteristics that are uniquely 

human and cannot be replicated with automated systems [218]. Our study provided some support 

to this claim; human coaches were unmatched in their ability to express empathy and to flexibly 

expand the scope of support based on their understanding of individuals’ needs. However, it also 

showed that text messaging as a medium for coaching had several important limitations, often 

leading to negative experiences for both coaches and participants. We discuss these below.  

Empathy, expanded scope of support, and accountability.  

In this study, coaches demonstrated several important characteristics that had a positive 

impact on coaching experiences. First, they were unmatched in their ability to express empathy 

and build a human connection with their clients. Many participants in the human coaching group 

felt that their coaches really cared about them, which was both motivational and encouraging. 

Second, coaches were able to use their intuition and experience to identify their clients’ unmet 

needs, and used these cues to provide context-sensitive support for other aspects of participants’ 

lives, including housing and employment. Both of these advantages in the Human Coaching 

group are consistent with Rutjes’ account of health coaching, which emphasized interpersonal 

human connection and the ability for coaches to adapt support to situation-specific contexts 

[218]. In particular, the expanded scope of support and ability to adapt to multiple contextual 

factors is a substantial unsolved problem and area of ongoing work in conversational AI 

[97,146], but is incredibly important to support the complexity of self-care practices [195,209]. 
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Similarly, while previous research has explored imbuing chatbots with empathy [159], other 

studies suggested that individuals can differentiate and prefer empathic responses from actual 

humans [182]. Pursuing automated approaches to empathy also has ethical implications, as there 

is potential for deceptive applications or unintended consequences on mental health and social 

interaction [182]. 

Another possible advantage of human coaching, less explored in the previous literature, is 

the sense of accountability inherent in relationships with human coaches. In the previous section 

we suggested that high self-reported goal attainment in the chatbot group indicated that 

individuals in this group met their goals more often. One explanation of this finding is that the 

chatbot was more effective than human coaches in helping participants achieve their chosen 

goals. More plausibly however, participants may have opted for goals that were easier to achieve 

with the chatbot, while human coaches encouraged them to take on more challenging goals. If 

that was indeed the case, chatbots could take concrete steps to encourage participants to set more 

challenging goals that are more likely to lead to improvements in health. For example, they could 

suggest incorporating a secondary, challenging goal alongside a primary, attainable goal [184], 

or setting adaptive goals that change over time based on the user’s behaviors [143].  

Furthermore, it is possible that the perception of social commitment and accountability 

varied between the two groups, which also contributed to the discrepancy in self-reported goal 

attainment. Many factors can influence goal choice and attainment, including social commitment 

and accountability [143,184]. It is possible that the perception of a human on the receiving end of 

messages in the human coaching group fostered accountability and honesty, while participants in 

the chatbot group felt less social accountability and were more comfortable over-reporting their 

accomplishments [183]. This explanation contrasts with findings in mental health treatment 
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suggesting individuals may be more forthcoming with an agent than a human counselor [162]. 

However, a key difference here is that the health coach could view the participant’s meal logs 

and objectively assess goal attainment, which may have fostered accountability. Future work 

could further explore perceptions of accountability with human and non-human conversational 

partners in coaching.  

Precariousness of in-depth conversations without common ground.  

Despite these advantages, health coaches described significant challenges communicating 

with clients via text messaging. Because text messaging has low information bandwidth [64] and 

lacks nuance, coaches and clients described a number of disconnects and misunderstandings. 

These at times led to frustration for both coaches and clients, thus negatively impacting the 

coaching experience.  

We relate these findings to the notion of common ground [56] common in HCI literature. 

Common ground offers a way to describe the shared understanding between individuals 

necessary to facilitate effective conversation. Common ground is built over time through 

collaboration and discussion, for example between colleagues in a workplace. Coiera [60] 

described how common ground can be relevant in understanding not just human-human but also 

human-computer interaction. Common ground can be challenging even for more straightforward 

tasks like scheduling, let alone complex tasks like health coaching [139]. Coaches in our study 

had substantial difficulty establishing common ground with participants over text message, 

despite their repeated attempts to engage in more in-depth conversations as they would in an in-

person setting. The lack of common ground in these conversations may have contributed to the 

disconnect and dissatisfaction some participants reported. Furthermore, consistent with prior 
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research [191], we found that delays in responses between coaches and participants further 

challenged understanding and satisfaction with conversations.  

Notably, some of the successful in-depth conversations were proceeded by the coach 

reviewing the participant’s meal logs, which Coiera describes as “pre-emptive grounding” [60]. 

While grounding may be more challenging via text message, clients’ self-tracking data offers an 

avenue to build up common ground before coaching exchanges begin. Research in HCI has 

explored the use of self-tracking data artifacts and visualizations to improve common ground in 

patient-provider communication [54,221]. These approaches have so far been applied to in-

person discussions, but the principles can apply to remote conversation as well, for example the 

need for both parties to view similar visualizations [116,165]. Self-tracking data also offers a 

path to grounding in automated systems, by incorporated user-tracked data to inform dialogs, for 

example offering feedback on specific meals, or tailoring suggestions based on the user’s recent 

logs.  

In addition to challenges in establishing common ground, our study highlighted multiple 

challenges related to coordinating and organizing conversations. Nardi et al showed that a 

significant portion of instant message (IM) exchanges in the workplace were focused on 

organizing the appropriate context for the information exchange; including negotiating 

availability and maintaining the sense of connectedness [189].This was also the case in our 

study, where coaches struggled to find appropriate times for engagement. Prior work has shown 

that some individuals can engage in in-depth exchanges with multiple threads in a single 

conversation thus covering both coordination and information exchange [125]; however, these 

exchanges were rare in our study. Furthermore, in a workplace setting, individuals who engage 

in simpler conversation instead addressed other communication needs like logistics and social 
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ties outside of the IM conversation, which was not possible with text-only coaching [125]. Our 

results support the difficulty of establishing common ground and coordinating engagement via 

text message alone, and suggest that text-based coaching interventions ought to consider simpler 

exchanges with a lower cost of establishing common ground through conversation or provide 

other means for establishing common ground beyond brief text messages.  

Difficulty assessing engagement without social translucence.  

In addition to challenges establishing common ground via text message, there were also a 

number of important social cues missing. Challenges related to coordinating opportunities for 

engagement via text messaging, described in the prior section, were further exacerbated by the 

lack of cues that could help coaches and their clients to maintain awareness of each other’s 

actions and context.  

Previous research in HCI used the notion of  social translucence [80] to identify 

important characteristics of digital systems for fluid social interactions, including visibility of the 

other party’s status and availability. In our study, social translucence was lacking because 

coaches could not see when their clients were available to receive messages, or otherwise 

occupied, and had no additional information to interpret a lack of responsiveness or curt replies. 

Our attempts to impose external structure to promote coordination, for example allowing coaches 

and clients to list the times they would be available, were only partially successful. Previous 

research has explored conversational coaching via other text-based platforms that offer more 

visibility of a the user’s status to better enable social translucence [168,242]; however, further 

research is required to support the fluid social interactions at heart of health coaching. 

One potential direction is to utilize sensing capabilities of mobile platforms to infer a 

user’s state and status [71]. Contemporary smartphones are able to capture considerable amounts 
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of data about their users, and many contextual factors are relevant for chronic disease self-

management [195,209]. In our study, this awareness of clients’ context could have helped human 

coaches tailor their support, and offered more visibility into when they should persist with 

messaging or pull back. For automated coaching systems, contextual data could help to 

determine the times when clients will be most receptive to messaging [150,185]. However, 

prioritizing the visibility of a user’s state is in tension with preserving their privacy [80]. Health 

coaching is deeply personal, and future work could explore this tradeoff in the context of health 

coaching, which may be different than in the workplace.  

Heightened and unmet expectations for personalization.  

Our study showed that text messaging as a coaching medium had several important 

limitations. At the same time, coaching over text messaging, combined with integration of self-

tracking data, left participants with specific expectations for the type of support they would 

receive. In contrast with in-person coaching, participants appreciated that t2.coach was available 

every day to offer support and answer questions. Furthermore, by including self-tracking of 

meals and BG levels, participants expected the content of coaching to be highly specific to their 

own meals and behaviors, and wished for more specific suggestions about how to modify their 

common meals, or for other recipes to try. Yet this expectation for personalized support 

grounded in their self-tracking data was largely unmet in both groups. While half of the coaches 

attempted to review participants’ records, they found this process inconsistent with their typical 

practice of relying on in-depth conversations with clients to obtain needed information. 

Furthermore, reviewing data collected by multiple clients would require considerable investment 

of time and efforts from the coaches [164]. 
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In contrast with t2.coach, which focused on holistic coaching via goal setting and action 

planning, other prior coaching interventions have focused on feedback related to specific meals, 

images, or behaviors [57,120,165]. Given the positive coaching experience observed with 

t2.coach, it’s possible that these approaches could be combined. In addition, data-driven systems 

can take advantage of machine learning to reduce the need for data analysis by human experts to 

personalize support. For example, many automated “coaching” interventions focus primarily on 

automatically generating targeted feedback on behaviors, captured with self-tracking and mobile 

sensing [57,130]. In addition, there is a growing body of research on nutrition-grounded and 

conversational recommendation systems, to make healthy recommendations based on what 

individuals have logged [53,220,239]. Indeed, because computational systems are able to process 

large amounts of data and make statistical inferences, automated systems may be especially well 

equipped to make certain kinds of recommendations, for example based on patterns in self-

tracking data. 

Unique advantages of chatbots as virtual coaches 

While the virtual setting for coaching presented barriers for human coaches, it gave the 

chatbot a number of unique advantages. In particular, participants appreciated the “patience” and 

consistency of the chatbot, as well as the choice and autonomy it offered. While human coaches 

often went off-script to narrow their suggestion to a single goal, the chatbot consistently 

followed the protocol and always offered a menu of choices, which was highly appreciated by 

participants. Furthermore, the tone of its messages, carefully scripted by a team of experts in 

health behavior communication, was perceived as supportive and motivational. This is consistent 

with the argument by Bickmore and colleagues that automated conversational agents may not 

only be effective clinical communicators, but can be superior to human practitioners in some 
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ways, because they can consistently follow clinical communication guidelines and best practices 

[22]. The chatbot’s insistence to always offer a menu of options helped create a sense of 

autonomy for participants, who appreciated the freedom to find a goal that suited them. This 

emphasizes the importance of tone, style, and personality in chatbot design [66], and reaffirms 

for future interventions the common practice of designing conversational agents based on 

clinically validated protocols [91,146,159,223]. 

A second potential advantage was the chatbot’s persistent nature, which allowed it to be 

“annoying but helpful,” which many participants viewed as necessary in achieving desired 

behavior change. While human coaches were sometimes hesitant to appear too “pushy”, the 

chatbot’s insistence was appreciated by the participants, who admitted, however begrudgingly, 

that the persistence was necessary to help them go through with the changes and meet their 

goals. In some ways, this is consistent with research in text-messaging interventions for health 

promotion, suggesting that consistent messages at a regular cadence can effectively spur 

behavior change, even with little interactive engagement from participants [93,110,115]. This 

suggests that brevity and consistency may be important design goals for chatbots in health.  

Future directions for virtual health coaching 

While t2.coach was designed as a scripted chatbot, our results also have implications for 

the design of AI-based chatbots in health coaching. Often, the approach to building more 

realistically human chatbots in the AI community relies on learning from large data sets of 

example dialog between humans to train a dialog model [97,227]. Our results problematize this 

approach for virtual health coaching. In this study, both participants and coaches reported 

notable differences with their prior in-person experiences, and human coaches encountered 

substantial difficulties translating their expert approach to a text-based virtual setting. This 
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suggests that a dialog model trained on in-person exchanges is unlikely to generalize to a virtual 

setting. Even a corpus of virtual coaching exchanges may be fraught, because of the messiness 

we observed as coaches adjusted to the text-based medium. Meanwhile, the chatbot was able to 

cultivate a similar experience without completely human-like dialog, suggesting multiple paths 

to effective conversational health coaching interventions. Together, these results suggest that 

pursuing more human-like coaching chatbots by learning from human-human exchanges may not 

be the right approach, and more research is necessary to first characterize what works for virtual 

coaching conversations, perhaps looking to the content of commercially successful coaching 

platforms [30,173].  

In addition, our results suggest opportunities for systems that combine human health 

coaches with automated systems like chatbots. Notably, there was a synergy between areas 

where each excelled. The human coaches outperformed the chatbot in longer, more in-depth 

exchanges, while the chatbot was effective at daily, brief interactions. However, there are open 

questions about different ways to conceptualize this combination. On one hand, “humbots” 

described by Grudin and Jacues use humans quietly behind the scenes and often do not disclose 

human involvement to their users [103]. On the other hand, Seering and colleagues envisioned a 

way for chatbots to be embedded within social settings like forums or message threads [225]. In 

this vision, chatbots do not masquerade as humans, but exist within a conversational thread 

explicitly labeled as bots, and serving a supportive role for other humans in the interaction. In the 

case of coaching, the human might engage in less frequent, more in-depth conversations, while 

one or many chatbots engage in daily, automated check-ins. However, how to handle the handoff 

of information between bots and humans in the loop as well as how to balance the two are still 

open questions. Furthermore, the comparative benefits and limitations of these different 
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approaches have not been studied directly and require further research, as well as unpacking the 

ethical implications of how to label AI agents in human-AI collaboration [76,158] 

4.3 Conclusion 

Translating an intervention that works in an in-person setting to a virtual one is not 

always straightforward.  In a text-based virtual coaching setting, an automated chatbot was able 

to cultivate an equivalently coach-like experience, and was advantaged by sticking to the script 

to offer choices, and persistently checking in. Human coaches offered empathy and were able to 

engage in deeper discussion, but encountered frustrations and barriers establishing common 

ground and coordinating engagement with clients over text messaging. Future virtual coaching 

interventions can incorporate more data driven personalization and consider novel ways to 

combine automated and human expertise. 
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Chapter 5: Aim III 

Explore artificial intelligence approaches to enable 

micro-coaching dialogs 

 

The previous studies described in this dissertation highlighted the potential of both 

conversational and machine learning powered coaching interventions. However, they also 

pointed to two major challenges. First, they showed that computational approaches that rely on 

complete and extensive self-tracking records (like meal logs with blood glucose records) will be 

limited in their ability to produce useful results because few individuals engage in self-

monitoring consistently over time. Second, they showed the importance of short and to-the-point 

conversations to promote engagement. Recall that in Aim 1, participants found recording 

detailed meal and blood sugar logs to be burdensome; this need for extensive logging was an 

insurmountable barrier for many in the study. In Aim 2, we saw that lengthy dialog flows needed 

to be shortened substantially or users would disengage, suggesting that supportive coaching 

dialogs needs to accomplish their objective with as few conversational turns as possible.  

The results of Aim 2 also outlined clear directions for automated coaching approaches 

that would be complementary to human coaching practice. First, they showed that users of the 

chatbot valued the brief, consistent, and focused interaction. In contrast, the human coaches were 

valued for more in-depth discussions, but these were rare because users’ and coaches’ schedules 

did not always align as they were going about their busy lives. Brief conversations with an 

automated coach could complement other interactions with coaching practitioners. Second, the 

participants of studies conducted in Aims 1 and 2 wished for more feedback on the specific 
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meals they had eaten to know whether they were on track with their goals, and also wanted more 

suggestions and ideas for what to do differently that were personalized to their preferences and 

meal history.  

Taken together, these findings point to a particular focus area and set of design needs for 

automated conversational health coaching interventions. Specifically, I propose a concept called 

micro-coaching; brief, targeted conversations about specific planned behaviors — in this case on 

nutrition, brief conversations about planned meals. 

In contrast with the fully-automated approach described in Aim 1, micro-coaching is 

intended as a synergistic component within a larger coaching intervention. For example, 

individuals could work with a healthcare expert to identify an appropriate and meaningful health 

goal through in depth conversation. Alternatively, the individual’s goal could derive from a set of 

recommendations based on automated analysis of self-tracking data. Once the goals are 

established, the aim of micro-coaching dialogs is to support individuals in achieving their goal 

when leading their daily lives. 

The previous studies described in this dissertation, together with review of literature on 

coaching (Section 2.6.2) helped to formulate several design needs for micro-coaching dialog 

systems (Figure 18). First, the system needs to be able to automatically assess whether the user 

is on track to achieve their goal with a planned meal. The assessment must be automatic in order 

to provide timely, in-the-moment support. Second, the system must offer feedback to the user 

based on the goal assessment. This could be positive reinforcement if the user is on track, or an 

acknowledgement and explanation if they are not. Third, if the user is not on track, the system 

must offer suggestions for how to modify their plan to better align with the goal. These 

suggestions should be personalized to an individual’s preferences, and the context of the 
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alternatives available to them. Throughout all three phases of support, an overarching design 

need is for conversations to be as brief and targeted as possible.  

 

Figure 18. Proposed structure for micro-coaching dialogs.  

The three design needs function as distinct phases of the conversation, each with their 

own potential complexities and nuances. The remainder of the research presented in this thesis 

focuses on the first need — the ability to automatically assess whether an individual’s planned 

meal is likely consistent with their nutrition goals. This step is a prerequisite to enable the 

subsequent steps of offering feedback and suggestions, and itself presents considerable 

complexity.  

Achieving this vision requires a more intelligent approach than the scripted, finite state 

agent t2.coach from Aim 2. To automatically assess if a meal is consistent with a goal, the 

system needs an understanding of what the user is eating, how those foods relate to the goal, and 

a strategy for asking follow-up questions.  

5.1.1 Exploring the design space for micro-coaching systems 

There are several approaches to develop more intelligent conversational agents. One such 

approach to designing more intelligent conversational agents is primarily data-driven, where 
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machine learning (ML) models are trained with thousands of example dialogs from large corpora 

to learn how to respond to new, unseen inputs [97]. Such approaches have made tremendous 

strides in realistically human-like responses in in open-ended chit-chat conversation and many 

task-based applications [2]. However, these approaches rely on massive corpora from which to 

learn [227], and few such corpora exist for health-specific applications like health coaching 

[146].  

An alternative approach is knowledge-based. Similar to frame-based conversational 

agents, these systems often include elements of natural language processing (NLP) to 

characterize the user’s utterance and identify relevant entities in input text (named entity 

recognition; NER). These entities are then matched to a knowledge base to inform the chatbots 

next action and possible responses. These approaches build on a rich history of knowledge-

driven and rule-based decision support systems [17,26,175,231]. For example, this approach has 

been used to create an interactive medication advisor, looking up queried medications in a 

medication knowledge base of contraindications [7].  

The distinction between data-driven and knowledge-based approaches is in some ways a 

false dichotomy. Other than end-to-end dialog models, where inputs are mapped directly to 

output utterances, dialog systems are often created by combining multiple specialized sub-

systems [97,169]. For example, a natural language understanding (NLU) system can process user 

utterances, while a separate component manages the dialog and decides why type of response to 

reply with (Figure 19). Some of these sub-components can be data-driven, employing ML, while 

others are rule-based.  
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Figure 19. Common architectural diagram of frame-based conversational agents. Adapted 

from Gao 2018 [97] 

With the aim of keeping conversations brief and efficient, reinforcement learning (RL) is 

an ML approach particularly well suited to dialog management [97,154,240].  With RL, a system 

learns through trial and error while interacting with an environment [240], and can be used to 

help dialog systems achieve their intended outcomes more efficiently, for example to help a 

chatbot that allows people to book movie tickets succeed with fewer questions [154].  

While an RL approach has the potential to result in shorter conversations, it does require 

a corpus of data to learn from. Without an existing data set for health coaching dialogs, and 

because it’s infeasible to learn directly from exchanges between coaches and clients, there is the 

possibility of creating new dialog data sets with crowdsourcing [228,273]. Researchers have 

used crowdsourcing to create new data sets for many chit-chat and task-based dialog use cases 

[227,228,273]. However, the coaching domain is unique because of the expert knowledge 

required, and differs from task-based and chit-chat application areas. Importantly, because the 

data set is for only one sub-component of the system, significantly less data is necessary than 

would be needed for an end-to-end model [97].  
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In this research aim, I explore multiple AI approaches to implement the first phase of 

micro-coaching dialogs — asking follow-up questions about meal to determine whether the user 

is on track to achieve their goal — with the following research questions: 

Research Question 3.1: How do expert coaches formulate follow-up questions about 

meals their client is planning on eating to understand whether the client is likely to 

achieve their nutrition goal?  

Research Question 3.2: How can existing, structured nutrition knowledge resources be 

utilized to design and implement a natural language understanding (NLU) system for 

dialogs about meals and generates a set of follow-up questions?  

Research Question 3.3: What are comparative benefits and limitations of different types 

of dialog management approaches for coaching chatbots, considering those that use 

reinforcement learning (RL), those that choose their questions randomly, rule-based, and 

fully-scripted. Specifically, how do these chatbots compare on their ability to reach their 

end goal, their conversational length, and their perceived coherence and user experience? 

5.2 Part 1: Characterize expert approaches to micro-coaching dialogs 

To explore how expert coaches approach asking follow-up questions about meals, we 

conducted a small interview and structured survey study. In particular, we wanted to know types 

of questions health coaches would ask their clients about specific meals in order to assess 

whether a meal is consistent with a nutrition goal.  

5.2.1 Methods 

Health coaches, who were Certified Diabetes Care and Education Specialists (CDCES) 

were recruited from professional networks to participate in the study.  
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First, CDCESs joined for an interview where we asked coaches how they would interact 

with clients in the hypothetical scenario when they were always available in real time to discuss 

their clients’ planned meals.  

In  addition, each coach completed a survey that prompted them to list the questions they 

would ask a hypothetical client about their meal if the only information the coach had available 

was a brief text description of the meal, and the nutrition goal the client is working on. In each 

survey, the prompt was repeated for 10 meals across 5 nutrition goals, and coaches were asked to 

list 3 to 5 questions per meal. We inductively categorized the yielded set of questions listed for 

each meal/goal pair in the survey to find patterns and groupings. 

After completing the survey on their own time, participants returned for a second 

interview to discuss some of their specific responses, as well as to member-check the findings.  

5.2.2 Results 

Two CDCESs participated, competing surveys for a total of 20 meals covering 10 distinct 

nutrition goals and generating 60 questions. 

We found that there was a very limited set of question types across all of the meal-goal 

pairs. At the highest level of distinction, some questions sought to search by asking individuals 

to list any additional food items not already mentioned, while other questions sought to drill-

down on the details of food items that had already been mentioned. As shown in Table 20, the 

four main question types were “what else?”, “what kind?”, “how much?”, and “how was it 

prepared?”.  

Within the question types, there are some variations. Some questions apply generically to 

the entire meal (e.g., “What else will you have with your meal?”) while other question reference 

specific components of the meal (e.g., “What else will you put in your burrito?”). In addition, 
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meal-specific questions sometimes referenced sub-components of a meal that were not explicitly 

stated in the meal description, for example asking about the amount of bread in “a ham 

sandwich.”  

Table 20. Types of meal-related questions asked my health coaches 

Question 

Category 
Question Type Example 

Search What else? “What else will you have with your meal?” 

Drill-down 

What kind? “What kind of chicken will you have?” 

How much? “What portion of rice will you eat?” 

How prepared? “How was your spinach prepared?” 

 

Considering which questions were applicable to which goals, we found that search 

questions were applicable across all goals. In contrast, drill-down questions were applicable to 

some goals and not others. For example, “How much?” questions were applicable to quantitative 

goals, while “What kind?” questions were more applicable to qualitative goals. In addition, some 

of the questions took different forms in the context of different goals. For example, “What 

kind?” questions might be asking about the fat content of yogurt (e.g., 0%, 2% or full fat) for a 

goal about lean proteins, while asking if the yogurt is plain  or flavored for a goal about added 

sugars. 

5.2.3 Discussion  

Through this mixed methods study, we found that the space of possible questions is 

relatively small and well structured. The relevant questions depend on the content of the meal, so 

there is a need to not only identify the component elements of the meal, but also determine which 

foods would be applicable to which questions. In addition, we found that the relevant questions 
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also depend on the goal in question, which implies a need to examine multiple goals, and 

consider each goal separately from a dialog management perspective.  

5.3 Part 2: Designing a knowledge-based system for natural language 

understanding (NLU) and generating follow-up questions 

5.3.1 Overview of the system 

Based on the implications of the study in Part 1, we sought to take advantage of existing 

nutrition knowledge resources to design a pipeline for 1) processing user utterances describing a 

meal, 2) representing key goal-relevant attributes of those food items, 3) determining when, 

based on those attributes, there is enough information to determine if a meal is consistent with a 

goal, and 4) generating a set of possible follow-up questions. A visual overview of the pipeline is 

presented in Figure 20. 

First, to parse food items from natural language descriptions of meals, we utilized 

Nutritionix, a commercial solution for named entity recognition (NER) of food items [275]. 

Nutritionix has been used as a component of other natural language food projects [188], and can 

handle common misspellings as well as brand name items. Each entry maps to the USDA Food 

Composition Database for nutrient estimates [252]. For many combination foods, Nutritionix 

includes a sub-recipe listing a food item’s component ingredients. For example, “ham sandwich” 

has the components “ham,” and “bread,” which enables asking questions about meal sub-

components not explicitly stated in the meal descriptions. In addition, to represent the amount of 

each food. We applied a rule-based NLP function to identify food quantities, extending open 

source code from the FoodKG project [113].  

In order to both determine whether food items were consistent with a given goal, as well 

as to determine which questions would be applicable to which food items, we incorporated food 
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types and categories from an existing and widely used food ontology, FoodOn [75]. For 

example, considering the question “What else will you put in your <food_item>?”, some foods 

are likely to be containers for other foods, like sandwiches or burritos. In FoodOn, these types of 

foods are listed as “multi-component food items,” which can be used as a heuristic to determine 

which food items the question is applicable to.  

These attributes also help the system determine when a meal is or is not consistent with a 

goal. For example, for the goal “Choose lean proteins,” attributes indicating which foods are 

proteins, and which proteins are lean or fatty, can be used to determine when all proteins have 

been clarified to be either fatty or lean, and the stop criteria are met.  

In the last step, the system considers the question types relevant to the goal and the 

attributes present in the user’s meal description to generate a set of possible follow questions, or 

“actions.”  

 

Figure 20. Outline of the process of parsing meal descriptions from input dialog utterances.  
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5.3.2 Choosing three goals as case studies  

Because the applicable question types vary for different goals, it’s important to consider 

multiple different nutrition goals when designing and evaluating the system. Specific nutrition 

goals can vary for different individuals, but there are many themes and similarities across them. 

We chose three nutrition goals to examine as case studies. Candidate goals were compiled from 

an existing knowledge base of diabetes-focused health goals [61], which were refined through 

the focus group in Aim 2, as well as the personalized goals from Aim 1. Some key dimensions of 

variance between goals are presented in Table 11. 

Table 21. Dimensions of variance in common nutrition goals for individuals with type 2 

diabetes 

Dimension Facet Example 

Qualitative vs. 

quantitative 

Qualitative 

Quantitative (amounts) 

Quantitative (proportions) 

Choose lean proteins 

Eat no more than 2 portions of carbs (30g) 

Make ½ my meal non-starchy vegetables 

Presence vs. 

absence 

Presence/increase 

Absence/decrease 

Both/replace 

Choose whole fruits 

Choose foods without added sugar 

Replace 1 portion of carbs with protein 

 

In addition, we sought to choose goals that were a reasonable level of difficulty for most 

individuals with diabetes, both in terms how often individuals achieve each goal, as well as how 

accurate individuals are in self-assessing goal attainment. If a goal is too easy to achieve, and 

individuals already understand whether they are achieving it, a dialog probing about details of 

the meal may not be necessary. Conversely, if a goal is too difficult, or users almost never agree 

with expert assessment of goal attainment, it may necessitate nutrition knowledge and  education 

outside the scope of a brief micro-coaching dialog.  
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To examine the difficulty of each goal, we completed an analysis with an existing data set 

of meal logs with both user-assessed and expert-assessed goal attainment labels, which was 

collected as a part of the deployment study in Aim 1, Section 3.4, as well as prior self-tracking 

studies [41,70]. The data set included over 3,000 meals with assessments for over 30 nutrition 

goals. Because users could have multiple goals selected, there were nearly 9,000 goal evaluations 

for those 3,000 meals.  

We calculated descriptive statistics summarizing the average goal attainment across all 

meals in the data set, as well as the average agreement between user-entered and expert-entered 

goal attainment labels. Based on these analyses, we arrived at a set of 3 goals to continue with 

for the crowdsourcing experiments, presented in Table 22. These goals varied to give coverage 

of all of the dimensions. Full results of this analysis are summarized in Supplementary Table I. 

Table 22. Nutrition goals selected for crowdsourcing experiments 

Nutrition Goal Qualitative vs. 

quantitative 

Presence vs. 

absence 

Choose lean proteins 
Qualitative 

 
Presence/increase 

Eat no more than 2 portions of 

carbs in each meal 

Quantitative 

(amounts) 

 

Absence/decrease 

Make ½ my meal fruits and/or 

non-starchy vegetables 

Quantitative 

(proportions) 
Both/replace 

 

For each of the three goals, we determined the action set — the set of potentially relevant 

follow-up question — based on the results of Study 1. See Table 23 for a summary of which 

actions apply to each goal.  
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Table 23. Summary of the action space for each nutrition goal, with examples.  

Goal Action set Example 

All goals 
What else? 

“What else will you have with your 

meal?” 

What else in <container-

food>? 
“What will you put in your burrito?” 

Fallback 
“Could you please describe your meal 

using different words” 

Choose lean proteins What kind 

<ambiguous_protein>?  

“What kind of chicken? (for example 

breast or thigh, with or without skin)” 
How prepared 

<preparable_food>? “How will your chicken be prepared?” 

Eat no more than 2 

portions of carbs (30g) 
How much <goal_related>? 

“How much rice will you eat? (one fist 

is about the size of one cup)” 

Make ½ my meal fruits 

and/or non-starchy 

vegetables 

How much 

<goal_consistent>? 

“How much broccoli will you eat? (one 

fist is about the size of one cup)” 

How much 

<goal_inconsistent>? 

“How much rice will you eat? (one fist 

is about the size of one cup)” 

 

In addition, we wrote a set of rule-based stop criteria based on the logic underlying each 

of the three goals and the attributes of foods in the meal. The initial version of all stop criteria are 

presented in Table 24. 

Table 24. Summary of stop criteria logic for each of the three goals.  

Goal Stop criteria 

Choose lean proteins [any(proteins) and none(ambiguously_fatty_protein)] 

  or 

[none(proteins) and (n_food_items > 2) and asked_what_else] 

Eat no more than 2 

portions of carbs (30g) 

[any(carbs) and all(has_amount(carbs))] 

  or  

[none(carbs) and (n_food_items > 2) and asked_what_else] 

Make ½ my meal fruits 

and/or non-starchy 

vegetables 

[all(has_amount(fruit_veg)) and 

all(has_amount(non_fruit_veg))] 

  or  

[none(fruit_veg) and (n_food_items > 2) and 

asked_what_else] 

  or  

[none(non_fruit_veg) and (n_food_items > 2) and 

asked_what_else] 

5.3.3 Evaluation  

In the prior section, we described a knowledge-based system to process user utterances 

describing meals, produce a set of possible follow-up questions, and determine when a meal is 

likely consisted with a goal or not. Because the stop criteria are the culmination of the prior steps 
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in the pipeline (Figure 20), if the logic for the stop criteria result in accurate predictions, it 

suggests the components further up the pipeline are reasonably performant as well. Therefore, to 

evaluate the system, we created a set of dialogs with crowd workers describing meals, and 

examined the concordance between the system’s determinations and the determinations of 

registered dietitians (RDs) who reviewed the dialogs.  

Methods 

Crowdsourced meal dialogs 

We wanted to test the NLU system with dialogs about a diverse set of meals. Each dialog 

started with a “seed” meal to prompt crowd workers with content to describe. Meal images were 

drawn from prior self-tracking studies, like those described in Aims 1 and 2, as described in 

Section 5.3.2. For this evaluation, 10 meals were selected at random, balanced on the user, the 

type of meal (e.g., breakfast, lunch, or dinner) and the number of word tokens used to describe 

the meal. Each image was reviewed to ensure the food item(s) were clearly visible. Based on the 

image, and user-entered description, a member of the research team wrote an ingredient list, 

plainly listing the names of the food items in the photo.  

To create the dialogs, we posted human intelligence tasks (HITs) to Amazon’s 

Mechanical Turk (mTurk) platform. Each HIT included the seed meal image and ingredients, 

which were rendered as a photo to prevent copy-pasting verbatim, and a text-message 

conversation history between a fictious health coach and their client (Figure 21). Each crowd 

worker was asked to review the conversation history and the meal image/ingredients, and answer 

the question posed by the health coach. Each conversation started with the same opening 

question: “What are you thinking of having for <meal_type>?”.   
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Figure 21. Example crowdsourcing task to create crowdsourced dialogs. 

Completed HITs were reviewed manually to ensure they were sensical. After posting 

each batch of HITs, the responses were processed following the pipeline described in Section 

5.3.1, and then the next response was chosen randomly from the available question types.  

Each meal was used as a seed for 3 dialogs per goal, for a total of 90 dialogs (30 per 

goal). Each dialog continued until it was clear that there was enough information to determine 

whether the described meal achieved the goal, according to both the logic defined in Table 24 

and manual review by member of the research team.  

RD evaluation survey 

For each of the 3 goals, we selected 5 dialogs where the stop criteria were met, indicating 

that here was enough information and the conversation could end, as well as 5 dialogs where the 
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stop criteria had not been met (Figure 22). The dialogs were balanced on the number of turns to 

prevent any potential confounding effects of conversation length.   

 
Figure 22. Study design for the evaluation of the natural language understanding (NLU) 

system, specifically the stop criteria  

In a Qualtrics survey, RDs (n=2) assessed whether they thought there was enough 

information to determine whether the meal the individual was describing would likely meet their 

nutrition goal, or not for each of the 30 dialogs. If there was enough information, RDs also 

labeled whether the goal was met or not, and if there was not enough information, indicated what 

missing information was necessary for them to make the determination.  

Inter-rater agreement was calculated with Cohen’s Kappa statistic. After adding their 

initial labels, disagreeing items were discussed, and RDs had the option to change their labels. 

We calculated both the inter-rater agreement and accuracy of the systems determinations with 

those of the RDs. 

In addition to inter-rater reliability and accuracy, I performed a qualitative error analysis 

to better understand the cause of situations where the system’s predictions were incorrect. For 

each of the dialogs where one of the RDs disagreed with the prediction of the rule-based stop 

criteria, I categorized the reason for the disagreement and tabulated the frequency of each type of 

error.  
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Results 

Interrater agreement between the two RDs was initially only moderate  (𝜅 = 0.46). Most 

of the disagreements were due to differing definitions of lean proteins between the two RDs. For 

the ½ fruit and vegetables goal, one of the RDs also made an assumption that if amounts for 

certain non-starchy vegetables (like carrots in soup) were not listed, they were likely small. After 

clarifying the rubric for the 3 goals, RDs adjusted some of their initial labels, resulting in a 

substantially improved inter-rater agreement score (𝜅 = 0.87).  

Considering the agreement between the rule-based system and RDs, the average inter-

rater agreement score indicated substantial agreement about whether there was enough 

information in the dialog to determine if the goal would be achieved (𝜅 = 0.67). Considering the 

overall accuracy of predictions of the rule-based system, the terminal states were accurate 83% 

of the time, and accuracy decreased as the goals increased in complexity (Table 25). 

Table 25. Average accuracy of stop criteria from the rule-based system with expert 

registered dietitian (RD) annotations 

Goal Accuracy 

All goals 83% 

Choose lean proteins 95% 

Eat no more than 2 portions of 

carbs (30g) 
80% 

Make ½ my meal fruits and/or 

non-starchy vegetables 
75% 

 

When there was enough information to for the system to make a prediction about whether 

the meal was consistent with the goal, those labels were 81.8% accurate with RD labels. These 

evaluation results suggest that the rule-based system is reasonably performant.  
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Results of the error analysis are presented in Table 26. The most common reason for error 

was that the dialog did not include a drill-down question asking about a food that likely 

contained a large quantity of other food items, like a smoothie. A handful of additional errors 

were due to disagreements about food item attributes with the labels from the FoodOn ontology, 

or errors with the Nutritionix named entity recognition system. The results suggest that there was 

not a single point of failure responsible for all of the errors.  

Table 26. Error types, examples, and counts from the error analysis of the natural 

language understanding (NLU) system 

Label type Error type Examples Count 

Enough 

information to 

assess meal/goal 

achievement 

Unasked drill-down 

question 
• Amount of fruit in a smoothie 

(Carb and Fruit/Veg goals) 

4 

Disagreement about 

food item attribute  
• Soy milk (Lean proteins) 

• Milk (Carbohydrate) 

3 

Nutritionix missing 

sub-recipe 
• System does not know that 

“Chicken noodle soup” contains 

“chicken” “noodles” or 

“vegetables” 

1 

Assumed amount of 

food items 
• Assumed quantity of carrots and 

onions would be less than the 

amount of shrimp, lima beans, and 

corn already stated (3 cups) 

1 

Meal/goal 

achievement 

Differing amount 

estimates 
• Is "1 cup of noodles" more or less 

than 30 grams? 

3 

 

Discussion 

We designed a system for NLU of meal-related dialogs, incorporating expert knowledge 

to determine relevant food attributes, whether goals were achieved, and what follow-up questions 

could be asked. The results of the evaluation suggest that the system performs reasonably well in 

determining whether or not an individual is likely to achieve a given nutrition goal, though there 

is certainly room from improvement from 80% accuracy. Closer inspection of the performance 

of the individual components — the NER system and the food ontology — could indicate where 
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additional improvements are necessary. In addition, the rule-based stop criteria could be 

improved upon, for example by treating the stop condition as a supervised learning problem, 

taking into account more features and the few considered by the rule-based criteria. However, the 

lingering disagreements between the two RDs suggests a subjective element to goal assessments 

that may introduce challenges in creating a gold standard.  

5.4 Part 3: Comparing rule-based and data-driven dialog management  

The knowledge-based system described in the prior section (5.3) can identify possible 

responses for the chatbot coach, but does not include any logic to indicate which response is 

likely to be most informative in a given situation. Instead, the dialog manager component of the 

overall system determines which question to ask next (Figure 23). 

 

Figure 23. System overview highlighting the dialog management component. 

Dialog management is a critical component of micro-coaching dialogs because of the 

design need to keep conversations concise. Certain questions are likely to be more informative 

than others, and choosing the right question is crucial to keeping conversations short. In this 
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work, we explore two main approaches: rule-based and data-driven, and compare them with 

other approaches that may be used for dialog management (such as fully-scripted, and random). 

5.4.1 Rule-based dialog management 

The food items and attributes identified by the NLU system can be used as features to 

inform the selection of the next question to ask. For example, for the lean proteins goal, if one of 

the food items identified is an ambiguous protein then the system should ask “what kind” in an 

attempt to disambiguate whether the protein is lean or fatty. 

Informed by the results of the study with health coaches in Section 5.2, we built on the 

infrastructure from Section 5.3 to design a simple, rule-base algorithm to choose the next action 

(Algorithm 1). To prevent premature closure of conversations, the rule-based system had a 

constraint to always ask one search question before the dialog was considered complete. For 

instance, for a goal about carbohydrate portions, if two high-carb food items were eaten, but only 

one was mentioned in the initial description, the conversation might end prematurely without 

searching for unmentioned or hidden food items. This constrained ensures at least some amount 

of search questions in each dialog.   

Algorithm 1. Rule-based logic for dialog management 

Repeat  

If there is a goal-related food item to ask a drill-down question about, then ask 

that question 
(e.g., if there is an ambiguously fatty protein for the lean proteins goal, then ask 

“what kind of <ambiguously fatty protein>?,” or if there is a carbohydrate for the 

carbohydrate portions goal, then ask “how much <carbohydrate>?”) 

Else if there is a “container food”, then ask “what else in <container food>?” 

Else ask “what else?” 

until stop criteria is met and at least one search question has been asked 
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5.4.2 Data-driven dialog management 

The same food items and attributes identified by the NLU system can also be used as 

features for an ML-based dialog management system. Reinforcement Learning (RL) is a 

machine learning approach that is well suited to the task of learning to choose the best action in a 

given circumstance [240]. However, data-driven approaches like RL require a corpus of 

examples to learn from. 

A key consideration in training an RL model is the distinction between online and offline 

learning [240]. With online learning, an RL agent interacts with an environment following its 

own policy to explore and learning from trial-and-error. The online approach is common when 

the environment can be simulated or there is a low cost to exploring through the multiple 

iterations required for learning. In contrast, with offline learning, an RL agent learns from an 

existing data set of the actions, consequences, and rewards of another agent interacting with the 

environment. Offline RL is common when interacting with the environment is costly, or there is 

little margin for error, including many settings in the medical domain [245]. Often, a lack of 

knowledge about the policy that generated the training data adds additional complexity to offline 

reinforcement learning [127]. However, creating dialogs through a random search policy can 

sidestep much of this potential complexity and bias [245]. RL methods that learn from data 

generated with a different policy are referred to as off-policy methods [240,245]. 

Without an existing data set for micro-coaching dialogs, we used crowdsourcing to create 

a corpus of meal-related dialogs. Because of the potentially high costs and wasted resources of 

paying crowd workers for multiple iterations of online learning, we created a corpus of dialogs 

for offline learning.  
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In this section, I introduce the RL algorithm used in this analysis, q-learning, followed by 

a description of the state space and rewards. Then, I present two validation studies, first with 

simulated data, and then with a new, crowdsourced data set of meal dialogs.  

RL algorithm: Q-learning 

Q-learning [240,260,261] is an off-policy algorithm that aims to learn the action-value 

function 𝑄(𝑠, 𝑎), which estimates the value of taking a particular action 𝑎 ∈ 𝒜 while in a 

discrete state 𝑠 ∈ 𝒮. The value is the reward 𝑟 ∈ ℝ gained from moving to the next state 𝑠′ plus 

the sum of rewards that could be accumulated from 𝑠′ onwards, reduced by a discount factor 𝛾 ∈

[0,1].  By observing the reward when moving from 𝑠 to 𝑠′, the q values are updated iteratively 

following a temporal distance learning algorithm (Algorithm 2). Through these iterations, the 

learned action-value function 𝑄 approximates 𝑞∗, which is the optimal action-value function.  

Algorithm 2. Offline Q-learning adapted from Sutton & Barto [240] 

Initialize 𝑄(𝑠, 𝑎) = 0 for all 𝑠 ∈ 𝒮 𝑎 ∈ 𝒜 

Repeat (for each dialog) 

Initialize 𝑆 from the initial meal description 

Repeat (for each dialog turn) 

Choose 𝐴 following a random policy 

Take action 𝐴, observe 𝑅 and 𝑆′ 
𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝐴)] 
𝑆 ← 𝑆′ 

𝛼 ← 𝛼 − 𝜔 

until 𝑆 is terminal 

 

The hyperparameters for the q-learning algorithm are the learning rate 𝛼 ∈ [0,1], which 

controls the step size of each q-value update, the learning rate decay 𝜔 ∈ (0, 0.01], which 

gradually decreases the learning rate 𝛼 over the course of training, and the discount-rate 𝛾 ∈

[0,1], which discounts the value of future rewards thereby increasing the influence of immediate 

rewards.  
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Once q-values have been learned offline from an existing data set, the algorithm can be 

applied to prospectively collected dialogs, following a policy based on the pretrained Q-values. 

In a given state 𝑆, the best action according to the Q-values can be attained from 𝑚𝑎𝑥𝑎𝑄(𝑆, 𝑎). 

However, always greedily following the best action can pigeonhole the algorithm to following a 

particular path, and will not be able to continue learning about other paths. Therefore, the greedy 

algorithm can be modified so that at each turn a random action is taken with probability 𝜀 ∈

[0,1]. The algorithm of online Q-learning with an 𝜀-greedy policy is described in Algorithm 3. 

 Algorithm 3. Online Q-learning, adapted from Sutton & Barto [240] 

Initialize 𝑄(𝑠, 𝑎) for all 𝑠 ∈ 𝒮 𝑎 ∈ 𝒜 with learned offline 

Repeat (for each dialog) 

Initialize 𝑆 from the initial meal description 

Repeat (for each dialog turn) 

Choose 𝐴 following an 𝜀-greedy policy 

Take action 𝐴, observe 𝑅 and 𝑆′ 
𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝐴)] 
𝑆 ← 𝑆′ 

𝛼 ← 𝛼 − 𝜔 

until 𝑆 is terminal 

 

State space and reward function 

Two key considerations in applying q-learning to micro-coaching dialogs are 

representing the state space 𝒮 and the reward function.  

Considering 𝒮, the larger the state space is, the more observations that are necessary for 

the algorithm to converge. Therefore, smaller state spaces are desirable for a proof of concept. 

The nutrition knowledge applied to each dialog turn when creating the corpus presents a number 

of natural features to represent the state of the conversation. For instance, the number of food 

items identified by the NER system may be informative, as would the presence or absence of 

certain types of food items. For example, for the goal to “Choose lean proteins” the presence or 

absence of any proteins in the meal would be a relevant feature to determine which questions 
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would be informative. Based on these features, we designed minimalist, discrete state spaces for 

each of the three nutrition goals used as case studies in this analysis (Table 27). 

Table 27. State features and state space size for the three nutrition goals 

Goal  State Space Feature Values N States 

Choose lean proteins 

Number of food items (0, 5) 

24 Any proteins? (0, 1) 

All proteins non-ambiguous? (0, 1) 

Eat no more than 2 

portions of carbs (30g) 

Number of food items (0, 5) 

24 Any carbohydrates? (0, 1) 

All carbohydrates with amounts? (0, 1) 

Make ½ my meal fruits 

and/or non-starchy 

vegetables 

Number of food items (0, 5) 

96 

Any fruits and/or non-starchy vegetables? (0, 1) 

Any carbohydrates or proteins? (0, 1) 

All fruit and vegetables have amounts? (0, 1) 

All carbs and proteins have amounts? (0, 1) 

 

Considering the reward function, it was of primary importance to reward reaching a 

terminal state, meaning a state where the stop criteria are fulfilled, with as few conversational 

turns as possible. The highest reward (𝑟 = 10) was given for reaching a terminal state. To 

reward questions that resulted in additional information, for example, finding additional food 

items or identifying a goal-relevant food item, a smaller reward was given (𝑟 = 3). To 

incentivize short conversations, a small penalty (𝑟 = −1) was given for questions that resulted in 

no changes to the state representation, suggesting that they were non-informative.  

Creating a corpus for offline learning 

In order to train a model with actual data, we needed data to learn from. To create a 

corpus for training the RL model, we used crowdsourcing following a similar process to section 

5.3.3. For the crowdsourced corpus, the dialog management was handled by a random policy 

— the coaches’ follow-up question was chosen at random from the possible question type.  

We selected 25 meal images and ingredient lists to serve as seed meals for crowdsourced 

dialogs. Each meal was the seed for 4 dialogs per goal, for a total off 300 dialogs (100 per goal). 
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Each dialog continued for a total of 10 turns. The resulting corpus included 300 dialogs and 

3,000 total conversational turns. The corpus is available for other researchers to use on GitHub in 

a JSON format similar to other open dialog data sets [228].5 Descriptive statistics of the corpus 

are presented in Appendix for Chapter 5, Section B.  

Validation experiments with simulated data 

To validate this q-learning approach as a proof of concept, we first conducted an 

experiment with simulated data. The intention behind the simulation was to capture the logic for 

what might happen with actual dialogs after asking certain questions. In the simulated 

environment, each of the agent’s dialog actions led to a change in state with a given probability.  

For example, the “what else” action led to the discovery of 1-3 new food items with a 90% 

probability. The simulation was also designed so that certain questions would indeed be more 

informative in certain states. For example, with the lean protein goal, asking “what kind of 

<ambiguously lean or fatty protein>?” would find a non-ambiguous lean or fatty protein and 

receive a high reward with an 80% probability if there were proteins present in the meal (i.e., any 

protein = 1), but would result in no change to the state and therefore 0 reward if there were no 

proteins to ask about.  

Methods 

We iteratively trained the q-learning model with the simulated data for hundreds of 

episodes. One training episode corresponded to observing all of the turns in a single dialog from 

beginning to end. We tuned the hyper parameters for the learning rate 𝛼, the learning rate decay 

𝜔, the discount-rate 𝛾, and the number of training episodes by examining the changes in q value 

for convergence and the consistency in performance across multiple rounds of training.  

 
5 https://github.com/elliotgmitchell/micro-coaching-corpus 

https://github.com/elliotgmitchell/micro-coaching-corpus
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To visualize changes in the q-values over the course of training, we plotted the change in 

q-values for each action in a given state over the training episodes.  

To keep the simulation realistic to the planned offline learning use case, the training 

phase followed a random policy through the simulation.  

To examine the performance of trained q-values, we then simulated the prospective, 

online collection of new dialogs between two policies: 1) a policy that greedily follows the 

action with the highest q-value, and 2) the same random policy that was used for training. We 

compared the average length of dialogs between the greedy-q and random policies, as well as the 

average reward attained per episode.  

Results 

As shown in Table 28, the tuned q-learning algorithm was able to learn a policy that 

resulted in shorter conversations, compared to a random policy.  

Table 28. Average conversation lengths (number of turns) and reward earned per episode 

in the experiment with simulated data 

 
Greedy-q policy Random policy 

Conversation length (turns)* 2.36 (SD = 1.88) 3.34 (SD = 2.67) 

Reward per episode* 9.99 (SD = 1.62) 9.41 (SD = 1.91) 

     *p < 0.001  

Examining the change in q-values over the course of training suggested that the algorithm 

was correctly unpacking the signal in the simulated data, and finding different actions to be more 

valuable in different states. A side-by-side comparison of the q-value history for two different 

states and the “lean protein” goal is presented in Figure 24, which shows that the most valuable 

actions (the actions with the highest q-values) were correctly identified; in the situation where 

there are ambiguous proteins, the most valuable action is “what kind” to try to disambiguate that 
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protein. In contrast, when no proteins have been identified, the most valuable action is “what 

else,” to continue searching for proteins in the meal.   

In addition, the q-value histories in Figure 24 show that the q-values begin to find signal 

and converge after 25 to 50 episodes, suggesting that a corpus of 100 dialogs or less should be 

sufficient for training.  

History of q-values for a state where the most 

valuable action is expected to be  “what kind” 

 

History of q-values for a state where the most 

valuable action is expected to be  “what else” 

 
State: 

n_food_items = 2 

any_protein = 1 

all_protein_non_ambiguous = 0 

State: 

n_food_items = 2 

any_protein = 0 

all_protein_non_ambiguous = 0 

Figure 24. Comparison of change in q-values over training between two different 

states in offline learning with simulated data. 

The only difference between the two states is whether any proteins have been mentioned by the 

user. If a protein has been mentioned, then the most valuable action is to ask “what kind” of 

protein it is to determine if it’s fatty or lean. In contrast, that question is not as valuable when 

there are not proteins present, and instead asking “what else” to find addition food items that 

might be proteins is more valuable. 

Validation experiments with crowdsourced data 

After validating the q-learning approach with simulated data, we trained a q-learning 

agent for each of the three goals using the crowdsourced dialogs.  

Methods 

The training data set was the corpus of 100 dialogs per goal, which was built using 25 

meal images as seeds for the dialog. Following similar methods to the simulated data, we trained 
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3 separate q-learning models, one for each of the 3 goals. We inspected the changes in q-values 

over the course of training for convergence to tune the hyperparameters. Training for each goal 

ran for 150–200 episodes, randomly sampling the next dialog from the set of 100 dialogs.  

In addition, I examined the dataset’s coverage of the state space. For q-learning to 

converge, it needs to continue visiting each state-action pair [240,260], so if there are any states 

that do not appear in the data, then there may not be enough data to learn reliable q-values for 

those states.  

Results 

Examining the changes in q-values over the course of training demonstrated similar 

patterns to those found with simulated data. As seen in Figure 25, for the goal “Choose lean 

proteins,” a policy based on q-values correctly learned to ask “what kind” questions when 

ambiguously fatty proteins are present and a number of other foods had been identified, but 

instead asked “what else” to continue searching if no proteins have been mentioned.   

History of q-values when “what kind” is a 

logical action; multiple food items have been 

identified, and at least one is an ambiguously 

fatty protein 

 

History of q-values when “what else” is a 

logical action; multiple food items have been 

identified, and no proteins have been 

mentioned

 
State: 

n_food_items = 4 

any_protein = 1 

all_protein_non_ambiguous = 0 

State: 

n_food_items = 4 

any_protein = 0 

all_protein_non_ambiguous = 0 

Figure 25. Change in q-values over 200 training episodes for two different states, for the 

goal “Choose lean proteins.” 
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Interestingly, the RL agent did not always favor asking “what kind” questions when an 

ambiguously fatty protein was present. If there were few food items present (1 or 2) the agent 

would continue to search by valuing “what else” or “what else in” questions (Figure 26).  

 
State: 

n_food_items = 2 

any_protein = 1 

all_protein_non_ambiguous = 0 

 

Figure 26. Change in q-values over 200 training episodes for the goal “Choose lean 

proteins,” when only two foods are mentioned and one is a protein.  

Higher q-values suggest an action will be more valuable in a given state. 

For the second goal (Figure 27), “Eat no more than 2 portions of carbs in each meal 

(30g)”, we similarly found that the RL agent would correctly favor asking “how much” questions 

to quantify the carbohydrate consent of the meal when at least one carbohydrate was present, but 

would instead search by asking “what else in” questions  when no carbohydrates had been 

mentioned yet. 

For the third goal (Figure 28), “Make ½ of my meal fruit and/or non-starchy vegetables”, 

we found a similar pattern: the RL agent learned to prioritize asking for amounts of fruits and 

non-starchy vegetables when at least one had been mentioned without an amount. If amounts 

were present for all fruits and vegetables, it would instead prioritize asking about non-fruits and 

non-vegetables, like carbohydrates and proteins. 
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History of q-values when “how much” is a 

logical action; at least one carbohydrate has 

been mentioned with no quantity 

 

History of q-values when “what else in” is a 

logical action; there is only one food item 

present and it is not a carbohydrate 

 
State: 

n_food_items = 4 

any_carbs = 1 

amount_carbs_all = 0 

State: 

n_food_items = 1 

any_carbs = 0 

amount_carbs_all = 0 

Figure 27. Change in q-values over 150 training episodes for two different states, for the 

goal “Eat no more than 2 portions of carbs in each meal (30g).”  

Higher q-values suggest an action will be more valuable in a given state 

 
History of q-values when “how much 

consistent” is a logical action; at least one fruit 

or non-starchy vegetables is missing amounts 

and 4 food items have been identified 

 

History of q-values when “how much 

inconsistent” is a logical action; amounts are 

present for all fruits/vegetables, and 4 food 

items have been identified 

 
State: 

n_food_items = 4 

any_fruit_veg = 1 

any_non_fruit_veg = 1 

amt_fruit_veg_all = 0 

amt_non_fruit_veg_all = 0 

State: 

n_food_items = 4 

any_fruit_veg = 1 

any_non_fruit_veg = 1 

amt_fruit_veg_all = 1 

amt_non_fruit_veg_all = 0 

Figure 28. Change in q-values over 150 training episodes for two different states, for the 

goal “Make ½ of my meal fruit and/or non-starchy vegetables.” 
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Considering the state-space coverage for the first goal, “Choose lean proteins” (Figure 

29), all states are well represented except for one: when only one food item has been mentioned, 

and it is a protein, but it is ambiguous. For example, the user stating “I’m eating chicken” would 

result in this state.  

 
Figure 29. State space coverage for "Choose lean proteins" 

The x-axis is labeled with the value tuples for the 3 state features:  

(n_food_items, any_protein, all_protein_non_ambiguous) 

 

For the second goal, “Eat no more than 2 portions of carbs” (Figure 30), there is 

relatively low coverage for states with a large number of food items (3 or more), but none of 

them are carbohydrates. 

 
Figure 30. State space coverage for "Eat no more than 2 portions of carbs" 

The x-axis is labeled with the value tuples for the 3 state features:  

(n_food_items, any_carbs, amt_carbs_all) 
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The third goal “Make ½ my meal fruits and/or non-starchy vegetables” (Figure 31), has a 

considerably larger state space than the other two goals. Coverage was spotty when there were 

two food items identified, and exactly one was a fruit/vegetable and the other was non-

fruit/vegetable. For example, “an apple and peanut butter,” or “chicken and broccoli” would be 

examples of meal descriptions with low coverage in the corpus.  

 
Figure 31. State space coverage for “Make ½ my meal fruits or non-starchy vegetables” 

The x-axis is labeled with the value tuples for the 3 state features:  

(n_food_items, any_fruit_veg, any_non_fruit_veg, amt_fruit_veg_all, amt_non_fruit_veg_all) 

 

Overall, these results suggest reasonable coverage, with the caveat that if some states 

appear in the test set, q-learning may not have had the opportunity to learn reasonable q-values 

for that state.  

Discussion 

We applied q-learning to a specific use case within micro-coaching dialogs: to prioritize 

asking more informative questions within a given set of possible questions. With simulated data, 

we found that q-learning was able to uncover the patterns in the simulation, to correctly prioritize 

more informative questions based on a discrete state representation, and resulted in significantly 

shorter conversations within the parameters of the simulation.  
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To apply q-learning to actual dialogs, we used crowdsourcing to create a medium-scale 

corpus of 300 dialogs. When training the q-learning model, we found similar patterns in the 

changes to q-values as were observed in the simulation. In situations, were drill-down questions 

were expected to be the most informative, they had a higher expected value according the q-

function. This suggests both that the simulation was likely a reasonably valid representation of 

what could happen in micro-coaching dialogs, and also that the q-values trained from the 

crowdsourced corpus are likely to result in shorter conversations. Evaluating the performance of 

the trained model for new meals requires the creation of additional dialogs. In the next section, 

we evaluate the trained q-learning model against the rule-based and random policies, to evaluate 

whether the RL-policy would result in shorter conversations.  

5.5 Part 4: Evaluation 

In the prior sections of this Aim, I have characterized the expert knowledge necessary for 

meal-related micro-coaching dialogs and explored multiple AI approaches to facilitate automated 

conversational micro-coaching. In Section 5.3, I introduced a knowledge-based system for 

natural language understanding (NLU). In Section 5.4, in introduced two approaches to dialog 

management, one rule-based, and the other data-driven, using reinforcement learning.  

In this section, I seek to evaluate and compare these approaches by using them to 

generate new dialogs about unseen meals, with the following research questions.  

Research Question 3.3: What are comparative benefits and limitations of different types 

of dialog management approaches for coaching chatbots, considering those that use 

reinforcement learning (RL), those that choose their questions randomly, rule-based, and 

fully-scripted. Specifically, how do these chatbots compare on their ability to reach their 

end goal, their conversational length, and their perceived coherence and user experience? 
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Methods 

Four chatbot conditions 

To address our research questions, we compared multiple versions of dialog management 

for a micro-coaching chatbot. Three of these approaches utilized the knowledge-based structure 

for NLU and generating possible responses, but differed in the approach to dialog management: 

1) The rule-based chatbot utilized the rule-based algorithm introduced in section 5.4.1.  

2) The RL  chatbot utilized the trained q-learning models from section 5.4.2.  

3) As a baseline comparison, we also included dialogs with the random policy that was 

used for creating the crowdsourced corpus in section 5.4.2.  

In addition to these three conditions, we also included a fourth condition as an additional 

comparator. The scripted condition was a deterministic, finite state-based chatbot. The scripted 

condition differed from the other 3 because it did not include any of the NLP or knowledge-

engineering approaches that were common among the other 3 chatbots. Instead, the scripted 

chatbot asked the same set of follow-up questions for each goal. The scripted questions were 

based on the same question types as the other conditions, but were rephrased to be appliable to 

the entire meal, and were not able to reference any specific components of the meal by name. 

The set of question in the scripted condition was longer for more complex goals, with the lean 

protein goal including just 2 follow-up questions, the carbohydrate goal including 2, and the non-

starchy vegetable goal including 5. In addition, because the scripted condition did not include 

any logic for stop criteria, each dialog was exactly the length of the script, regardless of how the 

users replied. The complete scripted dialogs are included in Supplementary Table J. 
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Crowdsourced dialog test set 

With 10 meal images that were not a part of the training set for RL, we crowdsourced 2 

dialogs per meal, per goal for each of the 4 conditions, resulting in a total of 240 evaluation 

dialogs.  

Dialog length 

To examine the length of conversations,  we compared the average number of dialog 

turns across each of the conditions, and tested for significance with pairwise Wilcoxon tests 

between the RL condition and three comparators, using a Bonferroni correction for multiple 

hypothesis tests.  

Perceived dialog quality 

For each of the four chatbots, we solicited crowd worker feedback on the quality of 

coaching dialogs with a pairwise comparison design. Pairwise comparison is commonly used to 

compare multiple entities on some subjective property, for example in preference elicitation and 

decision-making research [112,219]. Crowd workers were asked to consider the overall quality 

of the coach’s question-asking strategy (following [155]), as well as the naturalness and 

coherence of messages from the coach (following [156]).  

With 10 dialogs per goal and 4 conditions, there were a total of 60 unique comparisons 

per goal. Crowd workers completed surveys on mTurk with 30 randomly-selected comparisons. 

For each comparison, participants were shown two dialogs, and asked which of the two was 

superior in each of the 3 quality constructs (Figure 32).  

Participants were recruited from mTurk, and needed to be United States residents with a 

90% approval rate to be eligible. Participants were compensated $5 for completing the survey. 
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Figure 32. Illustration of the pairwise comparison task to evaluate dialog quality 

For each of the four chatbots, I calculated how often that chatbot was chosen as higher in 

the quality constructs compared to the other three conditions. This resulted in an overall “win 

percentage” for each condition, for each of the 3 quality constructs, as well as a composite 

quality score from averaging the three constructs (strategy, naturalness, coherence) together. 

In addition, to compare quality assessment based on the length of dialogs, I examined 

how often the winning dialog was longer (more turns), or shorter (fewer turns), or deemed it a tie 

if the dialogs were the same length. 

Perceived user experience  

A separate set of participants was recruited to evaluate the perceived user experience of 

interacting with the coach using the Subjective Assessment of Speech System Interfaces measure 

(SASSI; [119]), with a between subjects design. Participants reviewed 10 dialogs from the same 

chatbot, related to the same goal, and then were asked to consider the experience of the user and 

complete the full SASSI questionnaire. Each participant was compensated with $8 for 

completing the survey through the mTurk platform.  
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To test for differences in survey responses, scores were compared between the four 

chatbot conditions. Because survey measures are ordinal, values between the conditions were 

compared with the Kruskal-Wallis test, a non-parametric version of a one-way ANOVA.  

Stop criteria for the scripted chatbot 

Unlike the other 3 chatbots, which continued until reaching the stop criteria, the scripted 

chatbot always asked the same questions, regardless of the responses offered by the user. This 

meant that the scripted dialogs may not contain sufficient information to determine if the 

described meal is consistent with a goal. To quantify this discrepancy, I applied the same stop 

criteria to the scripted dialogs, to examine how often the scripted dialogs reach the stop criteria. 

If a dialog does not reach the stop criteria, there is likely insufficient information to determine if 

the meal is likely consistent with the goal. 

Results 

Dialog length 

As shown in Figure 33, conversations with the RL chatbot were consistently shorter to 

meet their stop criteria. Conversations were an average of 3.56 turns long in the RL condition, 

compared with 4.18 turns in the rule-based condition, and 5.75 turns in the random condition. 

Scripted conversations were predictably an average of 4.33 turns long. A breakdown of 

conversation length across the 3 goals is presented in Table 29. The more complex goal “Make ½ 

my meal fruits and/or non-starchy vegetables” generally had much longer conversations on 

average than the other two goals. RL showed the most improvement over the random baseline 

for the goal “Eat no more than 2 portions of carbs (30g)” 
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**p<0.01; ***p<0.001, ****p < 0.0001 

Figure 33. Box-and-whisker plot comparing the number of conversational turns per dialog 

across the four chatbot conditions.  

Table 29. Average turn length across the four conditions, by nutrition goal 

 Random Scripted Rule-based RL 

Overall 5.75 (± 3.65) 4.33 (± 1.24) 4.18 (± 2.22) 3.56 (± 2.30) 

  Goal 1 “Choose lean 

proteins” 
3.75 (± 2.59) 3.00 (± 0) 3.60 (± 2.20) 3.10 (± 2.41) 

  Goal 2 “Eat no more 

than 2 portions of carbs 

(30g)” 

6.60 (± 4.07) 4.00 (± 0) 3.45 (± 1.35) 2.55 (± 1.02) 

  Goal 3 “Make ½ my 

meal fruits and/or non-

starchy vegetables” 

6.90 (± 3.28)  6.00 (± 0) 5.50 (± 2.44) 5.05 (± 2.36) 

 

Perceived dialog quality 

15 participants completed a pairwise quality comparison survey. The win percentage 

results are presented in Table 30. The higher quality condition varied by goal. The scripted 
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condition won most often in head-to-head quality comparisons, especially for goal #1, “choose 

lean proteins,” and goal #3 “1/2 fruits and non-starchy vegetables. For goal #2, “no more than 2 

portions carbs,” the RL chatbot was the most natural and coherent, while the rule-based chatbot 

had the better question-asking strategy.  

Considering the length of conversations (Table 31), shorter dialogs were considered 

natural more often, while longer dialogs were considered to have a better question-asking 

strategy.  

Table 30. Quality construct “win percentage” for the four chatbots, by goal.  

  Win Percentage 

Goal Condition Strategy Naturalness Coherence Composite 

Choose lean 

proteins 

RL 34% 45% 34% 38% 

scripted 66% 49% 66% 61% 

rule-based 64% 57% 55% 59% 

random 36% 49% 44% 43% 

No more than  

2 portions 

carbs   

RL 48% 62% 56% 55% 

scripted 47% 53% 51% 50% 

rule-based 58% 47% 53% 53% 

random 47% 36% 40% 41% 
      

1/2 fruits and 

non-starchy 

vegetables 

RL 35% 38% 37% 37% 

scripted 71% 66% 66% 68% 

Rule-based 42% 46% 46% 45% 

random 50% 49% 50% 50% 

 

Table 31. Quality construct “win percentage” by dialog length  

(excluding the scripted chatbot) 

  Win Percentage 

 Strategy Naturalness Coherence Composite 

Shorter Dialog Wins 32% 46% 40% 39% 

Longer Dialog Wins 48% 33% 39% 40% 

Tie 21% 21% 21% 21% 
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Perceived user experience 

When examining differences in perceived user experience through the SASSI, which has 

a minimum score of 1 and a maximum of 5, 36 individuals completed the survey, and we found 

no statistically significant differences were detected (Figure 34, 𝐻 = 0. 

 

Figure 34. Average user experience scores across the four chatbot conditions, measured 

with the Subjective Assessment of Speech Systems Interfaces (SASSI; [119]) 

Stop criteria for the scripted chatbot 

Dialogs from the scripted chatbot reached the stop criteria only 65% percent of the time. 

5.6 Discussion 

In this Aim, I explored multiple artificial intelligence approaches to design a 

conversational coaching intervention. Informed by the results of prior aims, I proposed a set of 

design needs for micro-coaching dialogs — brief conversations to provide support for planning 

specific meals. Enabling such an approach required the ability to automatically determine 
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whether an individual is likely to achieve their chosen goal, based on the description of their 

meal, which was the focus area of this research.  

Specifically, I designed and evaluated a knowledge-based system that processes user 

utterances describing their meals and generates a set of possible follow-up questions. In addition, 

I compared multiple approaches to dialog management, including rule-based and data-driven 

approaches.  

5.6.1 Alternatives to knowledge-based natural language understanding 

In order to design a chatbot that can converse intelligently with users about their meals, 

we needed to integrate food-related knowledge. To this end, I designed and evaluated a 

knowledge-based system for natural language understanding (NLU) of meal-related 

conversations. The system incorporated existing tools for named entity recognition (NER) of 

food items, as well as a food ontology (FoodOn), to tag foods with relevant attributes like their 

primary macronutrient, and whether they likely contained sub-foods within them. This 

representation was used to inform both a set of possible follow-up questions about the meal, as 

well as for a rule-based criteria to assess whether the meal was likely consistent with a nutrition 

goal.  

This system was able to assess when there was sufficient information to determine if a 

meal was consistent with a goal with more than 80% accuracy, and was also 80% accurate at 

making predictions about whether meals were consistent with a health goal. These results 

suggest the feasibility of such an approach. However, there are many potential directions to 

explore to improve the accuracy of this approach.  

One approach would be to improve the underlying components of the overall system. As 

described in the error analysis, in some cases the NER system did not correctly identify the food 
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items, for example parsing “rice crispy cereal” as “rice” and “cereal.” Improvements to the 

accuracy of the system for complete and partial matches would improve the downstream analysis 

[226]. In addition, in some circumstances we found that the food ontology, FoodOn [75], was 

missing categorizations, for example, “grits” was only listed in its dry, unprepared form, not as a 

combination-food, prepared with multiple additions like butter or cheese. Updates to expand the 

ontology could improve performance as well. 

In this work, the rule-based stop criteria were rigid, and limited to a discrete set of 

attributes to determine whether a meal likely met a goal. In a second direction to improve upon 

the system, these features could also be used, along with the full input text, as an ML classifier, 

treating the problem as a supervised learning task. This would require annotations added to a 

data set like the corpus of dialogs created in this aim. Such a gold standard would require expert 

resources to create, and the initial lack of agreement between expert labels suggests subjectivity 

and a challenge to creating a single set of gold standard labels, and may also place a ceiling on 

performance [99].  

There are also alternative approaches to meal logging that are not text-based, for example 

food photo diaries. Researchers have examined photo-based food logs as a lightweight approach 

to logging, but photos by themselves do not contain the features necessary to assess goal 

achievement [62,78]. Considering the difference in performance across the three different goals, 

the results were not uniform — in particular the goal to “make 1/2 of my meal fruits and/or non-

starchy vegetables” was less accurate than the other two. Since it is based on the visual plate 

proportions in the USDA MyPlate guidelines [250], a visual approach may be more successful 

for this goal. ML learning can be applied to food photos to detect component food items, or 

estimate nutrient values through comparison with other meal photos [135,136,172,270]. 
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However, these systems are often inaccurate, or require additional database lookup and 

confirmation form users, which can increase the burden of logging. In addition, requiring a photo 

negates the ability to engage in meal planning, which the text-based micro-coaching approach 

facilitates. Once a meal is ready to eat, there’s less that can be done to help support changes in-

the-moment. In addition, text-based approaches can tie explanations and feedback back to the 

words people used to describe their own meals, which could facilitate more understanding and 

learning than the food items detected from a meal image. Future work could directly compare 

text- and photo-based approaches for lightweight logging as input to micro-coaching support.  

5.6.2 Comparative advantages of rule-based vs. data-driven dialog management  

In the culmination of this aim, we compared multiple approaches to dialog management 

for micro-coaching dialogs, including scripted, rule-based, and data-driven approaches. The 

scripted chatbot always asked the same goal-relevant questions, regardless of the meal and 

responses, The rule-based chatbot took advantage of the goal-relevant food features identified 

with the expert system to determine the next question with a small set of rules. The data-driven 

system used the same features as the rule-based system, but instead selected the next question 

based on a reinforcement learning (RL) algorithm. The RL algorithm, q-learning, was trained on 

a sample corpus of 300 dialogs created through crowdsourcing and learned which questions to 

ask to most quickly learn the goal-relevant aspects of the meal.  

We tested the RL and rule-based chatbots by comparing the length of conversations with 

a random policy, as well as a scripted chatbot with none of the knowledge-based components of 

the other three chatbot. We also examined how individuals perceived the strategy, coherence, 

naturalness, and usability of the different chatbots, by asking crowd workers to rate the 

conversations and complete a usability assessment in a survey study.  
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The results of the evaluation study suggest that each chatbot approach had distinct 

strengths. Principally, the RL chatbot succeeded in its intended purpose of completing 

conversation with the fewest number of questions asked. The RL and rule-based chatbots, which 

both collected necessary information and reached the stop criteria 100% of the time, were 

generally perceived as less coherent and natural in pairwise comparisons. In contrast, the fully-

scripted chatbot was rated as higher quality than the other chatbots; however, it only succeeded 

in collecting information needed to assess goal attainment 65% of the time. In addition, these 

pairwise comparisons considered each dialog in isolation, which may not have captured 

perceptions of the repetitiveness of the scripted chatbot overtime, as compared to the more 

dynamic chatbots. 

These results are consistent with previous research on AI-driven conversational agents. 

For example, researchers of conversational symptom checkers have found that individuals dislike 

it when questions are asked in a seemingly random or nonsensical order [249], which may have 

been the case for the RL chatbot especially. This is also consistent with arguments in clinical 

decision support that models and explanations ought to align with the way humans think about a 

problem to be adopted and trusted [43]. 

These tensions also suggest a number of potential directions for future work. One 

approach could be to add additional inputs to the RL’s reward function to consider not only the 

conversation length, but also the perceived user quality of resulting questions. Another approach 

could be to incorporate elements of explainable-AI to offer explanations for why a particular 

question is being asked [249].  

Considering the length of dialogs, shorter exchanges were deemed more natural, but 

counterintuitively, longer dialogs were rated as having a better question-asking strategy. It’s 
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possible that this result was due to a disconnect between crowd workers’ understanding of a 

high-quality coaching strategy, for example assuming that more questions implied a more 

through conversation. Future work could more directly examine the relationship between 

conversation length and user perceptions of the chatbot, as well as considering the quality ratings 

from those with more coaching expertise. 

Considering the pros and cons of a data-driven approach, while RL resulted in shorter 

conversations, it did require the use of crowdsourcing to create a dialog corpus to learn from. 

While the resources for such a corpus were relatively modest (about $200 per 100 dialogs), the 

data set was not necessary for the rule-based approach. Still, both approaches were relatively 

simple, considering only a small number of features about the meal in question. To scale up 

either approach, either a more complex rule-based system to handle more cases, or a more 

sophisticated RL algorithm, would require additional resources. For the rule-based system, 

expert input would be needed to craft the additional rules and features in a more complex system. 

More complex rule-based systems, for example for motivational interviewing, can require 

hundreds or thousands of rules [224], and expert input to create a large number of rules could be 

more resource intensive than crowdsourcing. In contrast, scaling up the RL algorithm with more 

features in the state space, or a more sophisticated algorithm may require an incrementally larger 

corpus to learn from, but the other resource requirements of the approach remain the same. 

Because these results demonstrate the feasibility of using RL to manage follow-up question 

asking in dialogs, pursuing more complex RL approaches is a promising vein for future work. 

RL-based approaches also have the advantage of being able to continue to learn and adapt their 

approach once deployed [240], whereas a rule-based system would need to be explicitly 

redesigned and revised [175]. These results are consequential, in part, because little research has 
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compared user perceptions of rule-based vs. data-driven dialog management systems side-by-

side. 

5.6.3 Future directions for micro-coaching 

The research activities in this aim constitute initial steps towards enabling a larger 

proposed vision for micro-coaching dialogs. The results suggest feasibility of AI-based 

approaches for the first component, assessing the consistency of a planned meal with a nutrition 

goal. Additional proposed components of micro-coaching include offering feedback based on the 

goal assessment, as well as support in the form of personalized suggestions to modify the plan.  

Feedback was something that participants in all of the prior studies of this thesis 

expressed a keen interest for. This applied to feedback on achieving particular goals, as well as 

overall improvements to self-management and health outcomes. Feedback and explanations are 

also important part of learning [39]. Considering the theoretical foundations of health coaching, 

feedback helps to establish accountability, as well as an opportunity for education and increasing 

an individual’s nutrition knowledge [196,266]. Considering the information-motivation-

behavioral skills (I-M-B) model of behavior change, feedback supports information needs related 

to eating goal-consistent meals, and positive feedback and accountability can also help to 

maintain an individual’s motivation [89,199].  

The rule-based approach to assessing meal dialogs against goals enables feedback with 

explanations as well, because the connection between each food item mentioned and the systems 

assessment is clear. Considering, for example, the goal to choose lean proteins, this would enable 

the system to explain to an individual that they did achieve their goal by eating “chicken breast 

without skin,” or that they did not because they ate “bacon.” Future work could explore 
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additional ways of delivering feedback during micro-coaching conversations, and their impact on 

motivation and engagement.  

The third proposed component of micro-coaching dialogs applies when a user’s plan is 

inconsistent with their health goal — the coaching system can offer suggestions for how to adjust 

the plan to make it more consistent with the goal. Offering suggestions connects to the IMB 

model because it aims to cultivate behavioral skills — by receiving suggestions, users learn ways 

in which their commonly eaten meals can be more consistent with their self-management goals. 

In addition, personalizing suggestions to the preferences and context of the individual is deeply 

connected to the tenets of health coaching, by prioritizing personalize support and individual 

autonomy.  

Such an approach would also require nutrition knowledge, but of a different form. 

Specifically, knowledge of what foods go well with each other, how meals could be adjusted to 

be more consistent with a goal, as well as similar, alternative meals would all be useful. In 

addition, personalizing suggestions would necessitate a representation of the user’s preferences 

and context. Given these constraints, conversational recommender systems may offer a 

promising direction for future research. Conversational recommender systems are dialog systems 

that search among alternatives in a database (for example of restaurants or products) taking into 

account a user’s preferences across multiple sessions. Such an approach could be applied to a 

database of recommendations, and research in meal similarity and ingredient substitution could 

also be applied in crafting suggestions [113,172,271]. 

5.7 Conclusion 

This aim presents a human-centered vision for more intelligent, automated coaching 

interventions. Based on the results of prior studies with individuals with type 2 diabetes, I 
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proposed a framework for micro-coaching dialogs to support individuals in achieving their 

nutrition goals. In this aim, I took a human-centered approach to integrating AI methods, like 

reinforcement learning, into the design of self-management support tools. Specifically, the user 

studies conducted as a part of prior aims informed the design needs, and the question-asking 

approach for the chatbots was built on findings from user studies. Principally, individuals wanted 

feedback and suggestions about their goals, with conversations that were as brief as possible. 

Together, these studies present initial steps towards developing intelligent micro-coaching 

dialogs, with implications and directions for future work.  
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Chapter 6: Conclusion 

This thesis examined computational approaches and interaction styles, particularly 

conversational interaction styles, to enable automated health coaching systems. Specifically, the 

approaches focused on supporting self-management for individuals with type 2 diabetes.  

In Aim 1, I extended computational analysis with self-tracking data — meals and blood 

glucose readings — to develop an approach to interpret patterns of association identified by 

machine learning and generate  actionable suggestions in the form of personalized nutrition 

goals. A multi-part evaluation found evidence that individuals were able to understand and act on 

goal suggestions they received in both a controlled lab setting and a deployment study. 

Qualitative findings from interviews with users revealed a nuanced account of using the system, 

and point to future design directions for data-driven coaching interventions.  

Aim 2 examined health coaching via text message by comparing human-powered and 

automated approaches. First, I designed a finite state-based chatbot t2.coach, through an 

iterative, user-centered design process. Then, in a Wizard-of-Oz study comparing the experience 

of interacting with a chatbot to the experience interacting with human coach via text messaging, I 

found that the chatbot was able to cultivate a coach-like experience that had many similarities to 

the experience of messaging with actual health coaches. In addition, the results identified unique 

areas of strength for both approaches. The automated chatbot was well suited to brief, daily 

exchanges; in contrast, human coaches excelled with more in-depth interactions, but there were 

many barriers to these conversations over text message, like a lack of expressiveness and delays 

in responses.  

The results of the studies in Aim 1 and 2 culminated in defining the focus for Aim 3.  In 

Aim 3, I defined design needs for automated coaching dialogs that focus on brief, targeted 
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conversations about specific meals, an approach I defined as micro-coaching. I outlined micro-

coaching as specifically focusing on supporting three design needs: 1) to automatically determine 

whether an individual’s meal is consistent with their nutrition goal, 2) to offer feedback on goal 

achievement, with an explanation, and 3) to offer personalized, contextually relevant suggestions 

when an individual is not on track to achieve their goal. To address the first of these design 

needs, I explored multiple artificial intelligence approaches, including a knowledge-based system 

for natural language understanding, and a data-driven, reinforcement learning approach for 

dialog management.  The results demonstrated feasibility of the knowledge-based system, and 

showed promise for RL-based dialog management to result in shorter coaching dialogs.  

6.1 Contributions 

This thesis makes a number of contributions to research in informatics, human-computer 

interaction (HCI), health coaching, and conversational interfaces.  

A method for translating machine learning insights into actionable recommendations with 

a rule-based expert system. The approach to making personalized nutrition goal suggestions 

underlying the GlucoGoalie system in Aim 1 is innovative, and builds on both advances in 

machine learning with personal health data [5,251], as well as a rich history of research in rule-

based decision support systems [203,231]. A similar approach could be applied to translate ML 

insights into actionable suggestions in other domains in and out of health and wellbeing.  

A qualitative account of individuals’ experiences receiving and using personalized goal 

recommendations from their own self-tracking data. The qualitative results of the 4-week 

deployment study in Aim 1 contribute to a growing research area of tools that integrate ML into 
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personal informatics applications. Few such tools exist [117], therefore the qualitative themes 

and impressions represent a contribution to inform future research in this area..  

A theory-driven chatbot for health coaching. In Aim 2, I presented the iterative, user-centered 

design of t2.coach, a scripted chatbot for goal setting and action planning. The design of t2.coach 

was adapted from Brief Action Planning [109], a protocol to guide practitioners through brief, 

supportive coaching interactions. While the content in t2.coach was specific to nutrition and 

exercise goals for type 2 diabetes self-management, the adapted dialogs and infrastructure could 

be extended to many other health domains by other researchers.  

A design approach for wizard-of-oz prototyping with deployment studies. The design steps 

involved in the creation of t2.coach in Aim 2 included a user study with wizard-of-oz (WOz) 

prototyping. However, while WOz studies are usually conduced in a lab setting, t2.coach is 

designed to initiate daily conversations over a number of weeks, and user interactions in a lab 

may not have been generalizable. I adapted the WOz approach to a 3-week deployment study, 

which other chatbot researchers may borrow from and improve.   

A qualitative comparison of human and automated approaches to health coaching via text 

messaging. The qualitative findings from the primary study in Aim 2 contribute to scholarly 

debate on the role of automated systems as health coaches. Some have argued that health 

coaching is innately human [218], while other researcher have pursued various approaches to 

automated conversational coaching interventions [57,84,212,235]. By directly comparing 

human-powered and automated coaching, the results of this study offer evidence for the potential 

efficacy of automated approaches, while still emphasizing the unique human advantages for 

coaching, and proposing a way in which the two can be complementary.  
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Proposed design needs for micro-coaching dialogs. Based on the results of the prior studies, in 

Aim 3 I introduce the concept of micro-coaching — brief discussions related to specific 

behaviors in the context of a health goal — and propose a set of design needs and structure for 

micro-coaching conversations. This could offer a framework for future directions of research in 

automated coaching interventions.  

A corpus of dialogs discussing specific meals. In order to train the reinforcement learning (RL) 

model in Aim 3, I used crowdsourcing to create a corpus of 300 dialogs, and a total of 3,000 

conversational turns. Currently, there are few examples of data sets in the health domain being 

made openly available [140,146,227]. Sharing this corpus with the research community would 

allow other researchers to build on the RL approach, or apply other ML methods.  

A head-to-head comparison of data-driven and rule-based dialog management approaches. 

Despite rich research both rule-based [90,223] and data-driven [2,273] conversational agents, 

little research has directly compared the two for a particular objective. The comparison of 

multiple dialog management approaches and discussion of their relative advantages in Aim 3 

therefore contributes valuable insight to researchers who are considering multiple approaches to 

implement conversational tools.  

6.2 Limitations 

The research described in this dissertation has the following limitations:  

Small sample sizes and generalizability. Across all three aims, the user studies included 

relatively small samples of participants. While participants were recruited from economically 

disadvantaged communities, they were not representative: participants were skewed female, and 
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predominantly black or Latino. The samples for Aim 1 and 2 were recruited from a single United 

States metro area, which may not account for important cultural differences nationally or 

globally [237]. Together, these factors may impact the generalizability of the qualitative 

findings.  

Short study timeframes. The user studies in Aims 1 and 2 ran for 4 and 3 weeks, respectively, 

and usage patterns and engagement may change with extended use, which could have impacted 

the findings and implications of these studies. Because of the short timeframe, we were only able 

to examine mediating factors, like self-management behaviors, and not actual changes to health 

that would manifest over a longer observation period.  

Implications drawn from wizard-of-oz chatbot. In Aim 2, we examined automated chatbots in 

comparison with text messages from human coaches, however, the chatbot was a wizard-of-oz 

prototype, not a fully automated system, which meant that responses from the chatbot were 

delayed. This created a parity in experience between the two study groups, because messages 

from human coaches would necessarily be delayed, but may limit the generalizability of some of 

our findings to fully automated systems. 

Limited sample of nutrition goals. The implementation of the first phase of micro-coaching 

dialogs in Aim 3 focuses on three particular nutrition goals as a case study. While these goals 

were chosen to be representative of a diverse set of nutrition goals, it’s possible that the findings 

and approach may not generalize to other nutrition goals we did not examine.  

User experience based on perceptions, not use. In Aim 3, the assessments of quality and user 

experience come from lay-individuals reviewing complete dialogs from one of four chatbots. 

However, the perceived user experience from reading a completed dialog may not capture the 
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perceived user experience of directly interacting with a chatbot, and may have limited the ability 

of the evaluation to detect meaningful differences in user experience. In addition, these studies 

did not allow evaluating other important aspects of individuals’ engagement with coaching 

chatbots, such as trust. Finally, this study only focused on perceptions of the coaching chatbot, 

and not on their impact on individuals’ behaviors and health. 

6.3 Future work 

The results of this thesis point to a number of areas for future work: 

Incorporate explanations alongside personalized recommendations. Future work could build 

on the approach for personalized goal recommendation from Aim 1 to not only offer 

recommendations but also explanations. In particular individuals may value not only a 

recommendation, but also why they received such a recommendation, grounded in their data. 

This additional information can serve as a form of explanation for the recommendations, and 

prior work has demonstrated the importance of explanations in facilitating nutritional learning 

[40]. For example, actionable recommendations could be enhanced by presenting visual 

summaries of the self-tracking data that informed the specific goal recommendations [79,222]. 

This direction connects to the growing field of explainable ML and AI [1,106,259]. Future work 

could further incorporate advances in explainable ML to personal informatics applications. 

Human-chatbot symbiosis for health coaching. The results of Aim 2 pointed to 

complementary application areas for human-powered and automated approaches to health 

coaching. In Aim 3, I pursued a particular vision of micro-coaching, but future work could also 

explore ways to better connect human coaches and clients with digital coaching interventions 

[212]. Pursuing a hybrid approach would also necessitate researching ways for a team of human 
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coaches to hand off care to a chatbot, and pick up again with a summary. Important research 

questions remain unanswered in the area of summarizing self-tracking interactions for use by 

clinicians as a part of their care [86], and this is another promising vein for future work.  

More sophisticated RL-based dialog management approaches. The RL approach employed 

in Aim 3, tabular q-learning, was relatively basic [240]. In addition, the features for the state 

space were limited to what the rule-based system needed. Future work could explore using 

additional meal-related features in the state space representation, as well as more complex RL-

approaches. These would potentially necessitate more training data, but would also potentially be 

able to find more interesting patterns, and learn a policy that behaves differently for meals with 

different kinds of foods. Broadly, this approach could also be applied to dialog management for 

other coaching related domains like physical activity, or with a larger set of possible actions.  

Complete micro-coaching dialogs. The research in Aim 3 considered only the first component 

of the proposed micro-coaching dialog structure, focusing on asking questions about meals to 

determine if they are consistent with a nutrition goal. The other design needs — offering 

feedback and suggestions based on the outcome of step one — present a different set of 

challenges, and would be a promising candidate for future work. Delivering feedback, for 

instance, connects to research in what kind of personality individuals prefer to feedback, some 

preferring a cheerleader while others preferring a realist [67]. Offering suggestions would also 

require nutrition knowledge, but a different type of knowledge about what foods go well with 

others, and how to modify meals to make them more consistent with a health goal. These 

knowledge sources may not be as readily available as the food item attributes from a food 
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ontology were for Aim 3, but research in meal similarity and ingredient substitution may offer a 

fruitful start [113,172,271].  

6.4 Conclusion 

As attention on the potential of AI to revolutionize healthcare has grown in recent years, 

so too have critiques, pointing out unintended consequences and ethical ramifications of 

improperly or naively applying AI to healthcare challenges. In this dissertation, I aimed to take 

human-centered approach to the design of technology-based interventions to support individuals 

with self-management [269]. From an ethical perspective, I sought to design technology for 

those who lack access to many current supportive resources, not those who are already avid 

technology users [253,254]. In addition, I did not seek to design AI systems that would replace 

human practitioners, but instead augment and extend human strengths and expertise. In doing so, 

this work builds on findings and insights from human-centered research studies to inform the 

application of computational and data-centric methods. This dissertation may serve a 

contribution to evolving and emerging models in informatics of how the computational might of 

AI can be applied to tangible healthcare challenges in a human-centric and ethically considered 

way.  
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Appendix for Chapter 3: Aim I 

A.  Data set descriptive statistics 

 

Supplementary Figure A. Kernel density estimate of the number of users with n-many 

meals in the data set. The mass of the distribution sits near the median of 67 meals logged, 

with a long tail of users logging considerably more meals. 

 

 

Supplementary Figure B. Violin plots showing the distribution of blood glucose readings 

across all users. Users varied considerably in their blood glucose levels before and after 

meals. 
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Supplementary Table A. Count of meals of each meal type for users A and B. 

User ID Meal Type Count 

A Breakfast 13 

 Lunch 10 

 Dinner 23 

 Other 12 

 Overall 

 

58 

B Breakfast 16 

 Lunch 19 

 Dinner 44 

 Other 9 

 Overall 88 

 

 

 

Supplementary Figure C. A histogram of BG impacts for users A and B. User A had less 

variability in BG impacts compared to user B. 
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Supplementary Figure D. Kernel density estimate plots of macronutrient consumption for 

users A and B. There is variability in macro consumption between and within each user. 

Note that nutrition evaluations only allowed up to 100 grams of each macronutrient, and 

user B regularly ate 100 grams or more of carbohydrates at dinner. 

 

B. Controlled experiment materials 

This section contains supplementary figures with example materials used in the 

controlled experiment.  

 
Supplementary Figure E. An example item from the goal comprehension task 
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Supplementary Figure F. An example item from the goal/image matching task 

 

 

Supplementary Figure G. The “virtual buffet” for breakfast meals. 
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Appendix for Chapter 4: Aim II 

A.  Supplementary scripted dialogs from t2.coach 

Supplementary Table B. An example exchange with t2.coach for goal setting based  

on Brief Action Planning (BAP) 

User Message BAP Step/Skill 

t2.coach Hi! I have an update for you. Are you 

ready to talk about your goals? 

 

Y. Yes, right now   

N. No, remind me in 24 hours 

Follow-up 

client  y  

t2.coach You met your goal to “Make ½ my meal 

non-starchy vegetables” 75% of the time 

last week. Great job! 

 

Are you ready to start working on a new 

goal? (Y/N) 

Celebrate 

success 

client  Y  

t2.coach What goal would you like to work on for 

the next week? 

 

A. Do 30 minutes of your favorite 

aerobic exercise per day   

B. Choose whole fruits 

C. Choose low fat foods 

M. See more 

Behavioral 

Menu 

client  C  

t2.coach Here are a few ideas to help you meet 

that goal, which would you like to try? 

 

A. Choose fish instead of meat   

B. Avoid meats high in fat like 

spareribs, cow or pig feet, and ox tail   

C. Choose whole beans instead of 

refried  

M. See more 

SMART 

behavioral plan 

client  B  

t2.coach Would you like me to remind you to 

“Avoid meats high in fat like 

spareribs, cow or pig feet, and ox 

tail” at 8:00 AM? 

 

Y. Yes   

N. No 

Establish 

accountability 

client  Y  
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User Message BAP Step/Skill 

t2.coach Okay, let me summarize: 

Your goal is to “Choose low fat foods” 

Your plan is to “Avoid meats high in 

fat like spareribs, cow or pig feet, 

and ox tail” 

I will not send you a reminder. 

Do you agree? 

Y. Yes   

N. No 

Elicit a 

commitment 

statement 

client  Y  

t2.coach Ok, I’ll check in with you tomorrow. 

Keep a positive attitude and stay 

strong. You are already on the road to 

learning more about your body. Goodbye! 

Establish 

accountability 

 

Supplementary Table C. An example daily check-in dialog, based on Brief Action Planning 

(BAP) 

User Message BAP Step/Skill 

t2.coach Hello Tom! Did you meet 

your goal to “Choose low 

fat foods” today/yesterday? 

 

Y. Yes   

N. No 

Follow-up 

client  Yes!  

t2.coach Great job! 

Do you want to “Avoid meats 

high in fat like spareribs, 

cow or pig feet, and ox 

tail” again today/tomorrow, 

or try something new? 

 

Y. Yes, repeat this plan 

tomorrow   

N. No, try something new 

Recognize success  

client  Y  

t2.coach Okay, I will remind you 

again at the same time. 

Every day is a new 

opportunity to learn about 

how your body works and how 

to control blood sugar 

values. Goodbye! 

Establish accountability 
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Supplementary Figure H. A screenshot of the WordBoard application [279], configured to 

allow human coaches to quickly type and send messages from the t2.coach script. 

 

B.  Post-study measures 

Supplementary Table D. Selection of items from the Subjective Assessment of Speech 

Systems Interfaces (SASSI; [119]). Each item was answered on a Likert scale from 1 

(Strongly Disagree) to 5 (Strongly Agree). 

Subcomponent Question 

1 The system (t2.coach) is accurate 

1 The system did not always do what I wanted 

2 The system is useful 

2 The system is friendly 

3 It is clear how to send messages to the system 

3 I felt confident using the system 

4 I felt tense using the system 

4 The interaction with the system is repetitive 

5 The interaction with the system is boring 

5 I always know what to say to the system 
 

Supplementary Table E. Selection of 7 items adapted from the Shared Decision-Making 

Questionnaire (SDM-9 [144]). Underlined section are rephrased from the original measure 
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to adapt the context to health goals instead of treatment decisions. Each item was answered 

on a Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree). 

Question 

t2.coach wanted to know exactly how I wanted to be involved in choosing a 

health goal 

t2.coach told me that there are different options for choosing a health goal 

t2.coach precisely explained the advantages and disadvantages of the health 

goal choices 

t2.coach helped me understand all the information. 

t2.coach asked me which health goal I prefer. 

t2.coach and I thoroughly weighed the different health goal choices. 

t2.coach and I selected a health goal together. 

 

C.  Supplementary qualitative results 

Supplementary Table F. Prevalence of themes across participants in both groups. Gray 

cells indicate the presence of the theme for a given participant. 

 Chatbot 
Human 

Coach 

Theme 1: Participants in both 

groups felt like they were working 

with a health coach                                   

Theme 2: Human coaching has 

advantages                     

Theme 2a: Participants received 

expressions of empathy from the 

coach                                   

Theme 2b: Expanded scope of 

support                                   

Theme 3: The consistency and 

predictability of the chatbot                  

Theme 3a: Perseverance in 

pursuing goals                                   

Theme 3b: Choice and autonomy 
                                  

Theme 4: Expectations for 

personalized and continuous 

support                                   
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Supplementary Table G. Prevalence of themes from interviews with human coaches. Gray 

cells indicate the presence of the theme for a given participant. 

 Coach #1 Coach #2 Coach #3 Coach #4 

Theme 2: Human coaching has 

advantages, but encounters 

barriers with text messaging         

Theme 2b: Text messaging 

created barriers to effective 

communication          

Theme 2c: Coaching without 

nuance and context         

Theme 2d: Attempts for deeper 

engagement sometimes 

backfired         

Theme 2d: Coaches want a 

rewarding experience, too, but 

rarely received it         

 

Supplementary Table H. Illustrative quotes from each group of participants for each sub-

theme related to the experience of working with a health coach 

Sub-Theme Human Coaching Chatbot 

Setting 

actionable 

goals 

“Yeah the goals were – the 

goals weren’t hard to meet or 

anything. They were basically 

suggestions pointing me in the 

right direction.” P13 (HC) 

“I did find a friend. She does 

walk with me… I do walk with a 

friend and we did from here to 

[], walking.” P8 (Chatbot) 

Increased 

Motivation  

“I like it better than you know, 

you try to work on the key issue 

like motivate it for me. It gives 

me motivation and teach me” 

P15 (HC) 

“Yeah, but it gave me motivation 

to doing more, like, you know, 

days I just didn’t feel like doing, 

you know. So, this one gave me 

motivation.” P8 (Chatbot) 

Learning and 

knowledge 

“The coaching was very 

informative for you, you know, 

okay, let’s try this and let’s try 

that, okay you know what you 

are supposed to eat, what’s 

vegetables, what’s fruits… you 

know, my eating habits and 

stuff like that.” P14 (HC) 

“Like a teacher… You know a 

teacher teaches… Okay and 

that’s what a coach does too but 

a coach is more open because 

they work in many areas at one 

time.” P9 (Chatbot) 



 

 

 

 

241 

Sub-Theme Human Coaching Chatbot 

It Felt 

Conversational 

“You know, you text somebody 

and they take your – you know, 

it’s like you’re talking to 

somebody.” P15 (HC) 

“The communication helps a lot 

– being able to communicate 

with someone my plan and then 

the feedback from the Coach.” 

P11 (Chatbot) 

Building a 

relationship 

“Well, you know, once the 

coach was done, I missed it. I 

know that because I knew once 

I got started with the coach, I 

started to looking forward to 

chat with the coach…” P17 

(HC) 

“Yes, it was nice to talk to 

somebody, you know, about 

diabetes because I don’t even 

want to talk to stuff like that this 

with my girl.” P6 (Chatbot) 

Increased 

Mindfulness 

“This program helped me to be 

a little more conscious of the 

time and hence I guess helped 

me to focus my attention on 

eating at a set time” P17 (HC) 

“I get a message every morning, 

it was like telling for me to select 

the goal for the day, so it was 

like ‘okay, today I’m gonna eat 

more fruits,’ in my breakfast 

oatmeal or put more vegetables 

in my dinner.” P10 (Chatbot) 

Accountability 

“The person is making sure 

you’re doing what you said you 

are going to with your goals 

and that was good, that is why I 

like that” P14 (HC) 

“It just gave me a note of, a sign 

of accountability… once you put 

it in writing you can’t erase it… 

Somebody else has a copy of 

what you have done. So you got 

to”  

P9 (Chatbot) 
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Appendix for Chapter 5: Aim III 

A. Goal attainment and difficulty analysis 

Supplementary Table I. Summary of goal attainment and user-expert agreement over 3000 

meals. Goals used as case studies in Aim 3 are indicated in bold.  

Goal name 
Meal 

count 

Goal 

attainment 

User-expert 

Agreement 

Choose foods without added sugar 433 81% 85% 

Replace ½ carb choice with 'free foods' 44 70% 77% 

Water instead of sugary beverages 317 62% 72% 

Decrease your protein to 1½ protein choices 11 55% 55% 

Decrease your carbs to 2½ carb choices 13 54% 54% 

Eat more fruits and/or vegetables 491 54% 66% 

Choose low fat foods 410 51% 57% 

Decrease your fat to 3½ fat choices 28 50% 54% 

Replace ½ carb choice with 'free foods' 12 50% 67% 

Low glycemic index 152 48% 66% 

Choose lean proteins 1047 48% 61% 

Drink water instead of sugary beverages 430 46% 56% 

Decrease your carbs to 2 carb choices 11 45% 55% 

Decrease your protein to 2 protein choices 36 44% 44% 

Drink water 567 44% 64% 

Variety of fruits and vegetables 762 44% 61% 

Include more vegetables 308 43% 88% 

Make ¼ of my meal protein 159 36% 48% 

Choose whole grain carbs 242 31% 56% 

Half fruits and vegetables 369 31% 65% 

Vegetable fats 126 30% 44% 

Reduce portion size 387 29% 53% 

Choose whole fruits 385 26% 66% 

Whole fruits 172 25% 94% 

Include more fruit 238 22% 89% 

Make ¼ of my meal carbs 515 21% 37% 

Choose plant proteins 108 20% 59% 

Choose plant proteins 379 16% 49% 

Decrease your carbs to 2½ carb choices 25 16% 44% 

Choose whole grains 456 15% 70% 

Low fat dairy 207 11% 81% 
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B. Crowdsourced corpus descriptive statistics 

The complete corpus of micro-coaching dialogs is available on GitHub at 

https://github.com/elliotgmitchell/micro-coaching-corpus.  

Supplementary Figure I and Supplementary Figure J summarize the length of messages 

from crowd workers in the corpus, with word count and character counts. There is a diversity of 

response lengths, and importantly, all of the responses are fewer than 160 characters, suggesting 

they are a reasonable length for SMS messaging.  

Supplementary Figure K shows how the count of food items parsed by Nutritionix 

increases as conversations increase in length. The number of food items identified increases most 

after the first turn, and then gradually increases in subsequent turns.  

 
Supplementary Figure I. Histogram of crowd worker response lengths (word count) 

https://github.com/elliotgmitchell/micro-coaching-corpus
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Supplementary Figure J. Histogram of crowd worker response lengths (character count) 

 

 
Supplementary Figure K. Box-and-whisker plot of the cumulative count of food items 

parsed by the depth of the conversation. 
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C. The scripted micro-coaching chatbot 

Supplementary Table J. Questions for each goal in the “scripted” chatbot condition. 

Goal  Question type Question text 

Choose lean 

proteins 

what_else What else will you have with your meal? 

any(lean protein) 
Will you have any lean proteins with your 

meal, like chicken breast or egg whites? 

Eat no more than 2 

portions of carbs 

(30g) 

what_else What else will you have with your meal? 

how_much(carbs) 

What portion of carbohydrates like rice, pasta, 

or bread will you eat? For example, one fist is 

about one cup 

how_much(fruit) 
What amount of fruit will you eat? For 

example, one fist is about one cup 

Make ½ my meal 

fruits and/or non-

starchy vegetables 

what_else What else will you have with your meal? 

how_much(fruit) 
What amount of fruit will you eat? For 

example, one fist is about one cup 

how_much(non-

starchy veg) 

What amount of non-starchy vegetables will 

you eat? For example, one fist is about one 

cup 
how_much(protein) All fruit and vegetables have amounts? 

how_much(carbs) 

What portion of carbohydrates like rice, pasta, 

or bread will you eat? For example, one fist is 

about one cup 
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