770 research outputs found

    Fault Tolerant Flight Control of Unmanned Aerial Vehicles

    Get PDF
    Safety, reliability and acceptable level of performance of dynamic control systems are the major keys in all control systems especially in safety-critical control systems. A controller should be capable of handling noises and uncertainties imposed to the controlled process. A fault-tolerant controller should be able to control a system with guaranteed stability and good or acceptable performance not only in normal operation conditions but also in the presence of partial faults or total failures that can be occurred in the components of the system. When a fault occurs in a system, it suddenly starts to behave in an unanticipated manner. Thereby, a fault-tolerant controller should be designed for being able to handle the fault and guarantee system stability and acceptable performance in the presence of faults/damages. This shows the importance and necessity of Fault-Tolerant Control (FTC) to safety-critical and even nowadays for some new and non-safety-critical systems. During recent years, Unmanned Aerial Vehicles (UAVs) have proved to play a significant role in military and civil applications. The success of UAVs in different missions guarantees the growing number of UAVs to be considerable in future. Reliability of UAVs and their components against faults and failures is one of the most important objectives for safety-critical systems including manned airplanes and UAVs. The reliability importance of UAVs is implied in the acknowledgement of the Office of the Secretary of Defense in the UAV Roadmap 2005-2030 by stating that, ”Improving UA [unmanned aircraft] reliability is the single most immediate and long-reaching need to ensure their success”. This statement gives a wide future scenery of safety, reliability and Fault-Tolerant Flight Control (FTFC) systems of UAVs. The main objective of this thesis is to investigate and compare some aspects of fault tolerant flight control techniques such as performance, robustness and capability of handling the faults and failures during the flight of UAVs. Several control techniques have been developed and tested on two main platforms at Concordia University for fault-tolerant control techniques development, implementation and flight test purposes: quadrotor and fixedwing UAVs. The FTC techniques developed are: Gain-Scheduled Proportional-Integral-Derivative (GS-PID), Control Allocation and Re-allocation (CA/RA), Model Reference Adaptive Control (MRAC), and finally the Linear Parameter Varying (LPV) control as an alternative and theoretically more comprehensive gain scheduling based control technique. The LPV technique is used to control the quadrotor helicopter for fault-free conditions. Also a GS-PID controller is used as a fault-tolerant controller and implemented on a fixedwing UAV in the presence of a stuck rudder failure case

    Cooperative Virtual Sensor for Fault Detection and Identification in Multi-UAV Applications

    Get PDF
    This paper considers the problem of fault detection and identification (FDI) in applications carried out by a group of unmanned aerial vehicles (UAVs) with visual cameras. In many cases, the UAVs have cameras mounted onboard for other applications, and these cameras can be used as bearing-only sensors to estimate the relative orientation of another UAV. The idea is to exploit the redundant information provided by these sensors onboard each of the UAVs to increase safety and reliability, detecting faults on UAV internal sensors that cannot be detected by the UAVs themselves. Fault detection is based on the generation of residuals which compare the expected position of a UAV, considered as target, with the measurements taken by one or more UAVs acting as observers that are tracking the target UAV with their cameras. Depending on the available number of observers and the way they are used, a set of strategies and policies for fault detection are defined. When the target UAV is being visually tracked by two or more observers, it is possible to obtain an estimation of its 3D position that could replace damaged sensors. Accuracy and reliability of this vision-based cooperative virtual sensor (CVS) have been evaluated experimentally in a multivehicle indoor testbed with quadrotors, injecting faults on data to validate the proposed fault detection methods.Comisión Europea H2020 644271Comisión Europea FP7 288082Ministerio de Economia, Industria y Competitividad DPI2015-71524-RMinisterio de Economia, Industria y Competitividad DPI2014-5983-C2-1-RMinisterio de Educación, Cultura y Deporte FP

    Safety mechanisms for the reliable operation of 3D vehicles

    Get PDF
    The safety and reliability of unmanned vehicles is a growing concern in our modern society. This work proposes and implements mechanisms to minimize risks in the operation of 3D vehicles. A brief analysis is performed to identify high priority risks and low complexity solutions are proposed in order to avoid or minimize their impact. To cope with critical power failures, an autonomous current monitoring system was studied and implemented after analyzing two different techniques: resistive and magnetic current sensing. Furthermore, a fall detection system capable of detecting rotational and free falls was developed and evaluated. Lastly, an obstacle detection and avoidance system relying on multiple smart sensors was proposed. Several simulation tests were performed for different velocities to obtain processing delays and stopping times and thus, the minimal safe flying distance for the avoidance of obstacles.A segurança na operação fiável de veículos não tripulados é uma preocupação crescente na nossa sociedade moderna. Este trabalho propõe e implementa mecanismos para minimizar os riscos no manuseamento destes veículos. Uma breve análise é realizada para identificar os componentes com maior risco de ocorrerem problemas e soluções de baixa complexidade são propostas a fim de evitar ou minimizar o seu impacto. Para lidar com falhas de energia críticas, um sistema de monitorização de corrente foi estudado e implementado após analisar duas técnicas diferentes: detecção de corrente resistiva e magnética. Além disso, foi desenvolvido e avaliado um sistema de detecção de quedas rotacionais e livres. Por último, foi proposto um sistema de detecção e anti-colisão de obstáculos baseado em múltiplos sensores inteligentes. Diversos testes de simulação foram realizados para obter atrasos de processamento e tempos de travagem. Deste modo foi possível calcular a distância de segurança mínima de travagem face à detecção de um obstáculo

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Fault Tolerance Analysis of L1 Adaptive Control System for Unmanned Aerial Vehicles

    Get PDF
    Trajectory tracking is a critical element for the better functionality of autonomous vehicles. The main objective of this research study was to implement and analyze L1 adaptive control laws for autonomous flight under normal and upset flight conditions. The West Virginia University (WVU) Unmanned Aerial Vehicle flight simulation environment was used for this purpose. A comparison study between the L1 adaptive controller and a baseline conventional controller, which relies on position, proportional, and integral compensation, has been performed for a reduced size jet aircraft, the WVU YF-22. Special attention was given to the performance of the proposed control laws in the presence of abnormal conditions. The abnormal conditions considered are locked actuators (stabilator, aileron, and rudder) and excessive turbulence. Several levels of abnormal condition severity have been considered. The performance of the control laws was assessed over different-shape commanded trajectories. A set of comprehensive evaluation metrics was defined and used to analyze the performance of autonomous flight control laws in terms of control activity and trajectory tracking errors. The developed L1 adaptive control laws are supported by theoretical stability guarantees. The simulation results show that L1 adaptive output feedback controller achieves better trajectory tracking with lower level of control actuation as compared to the baseline linear controller under nominal and abnormal conditions

    Fitness function determination of uav anomaly detection in large data set via pso

    Get PDF
    This project is based on fitness function determination of Unmanned Aerial Vehicle (UAV) anomaly detection in large data set. Fitness function is a solution to the issue as input and outputs how "fit" or "excellent" the answer is with regard to the problem under discussion. Based on previous research there are limited used of Particle Swarm Optimization (PSO). In this project, by using the PSO method define the fault of motor or blade by detecting it with acceleration, it is measure of how quickly speed changes with time. The measure of acceleration is expressed in units of (metres per second) per second or metres per second squared (m/s2). PSO method along with the monitoring based, can identify where exactly the fault has happened. Vibration velocity will be increase about two times from the normal velocity if the fault detected. To reduce the costing part of the Unmanned Aerial Vehicle (UAV) testing and detection of fault, the data is collected by using software in the loop with three program such as mission planner, ardupilot and flight gear. Through the simulation, that has been done it is verified by using PSO the fault occur at the motor/blade of UAV can be detected with a true positive detection rate of 76%

    Fault Diagnosis and Fault Handling for Autonomous Aircraft

    Get PDF

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example
    corecore