11 research outputs found

    Fault-tolerant networks-on-chip routing with coarse and fine-grained look-ahead

    Get PDF
    Fault tolerance and adaptive capabilities are challenges for modern networks-on-chip (NoC) due to the increase in physical defects in advanced manufacturing processes. Two novel adaptive routing algorithms, namely coarse and fine-grained (FG) look-ahead algorithms, are proposed in this paper to enhance 2-D mesh/torus NoC system fault-tolerant capabilities. These strategies use fault flag codes from neighboring nodes to obtain the status or conditions of real-time traffic in an NoC region, then calculate the path weights and choose the route to forward packets. This approach enables the router to minimize congestion for the adjacent connected channels and also to bypass a path with faulty channels by looking ahead at distant neighboring router paths. The novelty of the proposed routing algorithms is the weighted path selection strategies, which make near-optimal routing decisions to maintain the NoC system performance under high fault rates. Results show that the proposed routing algorithms can achieve performance improvement compared to other state of the art works under various traffic loads and high fault rates. The routing algorithm with FG look-ahead capability achieves a higher throughput compared with the coarse-grained approach under complex fault patterns. The hardware area/power overheads of both routing approaches are relatively low which does not prohibit scalability for large-scale NoC implementations

    Exploring Self-Repair in a Coupled Spiking Astrocyte Neural Network

    Get PDF
    It is now known that astrocytes modulate the activity at the tripartite synapses where indirect signaling via the retrograde messengers, endocannabinoids, leads to a localized self-repairing capability. In this paper, a self-repairing spiking astrocyte neural network (SANN) is proposed to demonstrate a distributed self-repairing capability at the network level. The SANN uses a novel learning rule that combines the spike-timing-dependent plasticity (STDP) and Bienenstock, Cooper, and Munro (BCM) learning rules (hereafter referred to as the BSTDP rule). In this learning rule, the synaptic weight potentiation is not only driven by the temporal difference between the presynaptic and postsynaptic neuron firing times but also by the postsynaptic neuron activity. We will show in this paper that the BSTDP modulates the height of the plasticity window to establish an input-output mapping (in the learning phase) and also maintains this mapping (via self-repair) if synaptic pathways become dysfunctional. It is the functional dependence of postsynaptic neuron firing activity on the height of the plasticity window that underpins how the proposed SANN self-repairs on the fly. The SANN also uses the coupling between the tripartite synapses and γ -GABAergic interneurons. This interaction gives rise to a presynaptic neuron frequency filtering capability that serves to route information, represented as spike trains, to different neurons in the subsequent layers of the SANN. The proposed SANN follows a feedforward architecture with multiple interneuron pathways and astrocytes modulate synaptic activity at the hidden and output neuronal layers. The self-repairing capability will be demonstrated in a robotic obstacle avoidance application, and the simulation results will show that the SANN can maintain learned maneuvers at synaptic fault densities of up to 80% regardless of the fault locations

    Low Cost Interconnected Architecture for the Hardware Spiking Neural Networks

    Get PDF
    A novel low cost interconnected architecture (LCIA) is proposed in this paper, which is an efficient solution for the neuron interconnections for the hardware spiking neural networks (SNNs). It is based on an all-to-all connection that takes each paired input and output nodes of multi-layer SNNs as the source and destination of connections. The aim is to maintain an efficient routing performance under low hardware overhead. A Networks-on-Chip (NoC) router is proposed as the fundamental component of the LCIA, where an effective scheduler is designed to address the traffic challenge due to irregular spikes. The router can find requests rapidly, make the arbitration decision promptly, and provide equal services to different network traffic requests. Experimental results show that the LCIA can manage the intercommunication of the multi-layer neural networks efficiently and have a low hardware overhead which can maintain the scalability of hardware SNNs

    SPANNER: A Self-Repairing Spiking Neural Network Hardware Architecture

    Get PDF

    Scalable Networks-on-Chip Interconnected Architecture for Astrocyte-Neuron Networks

    Get PDF
    corecore