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Abstract—Networks-on-Chip (NoC) were designed to enhance the 

communication performance of Multi-processor Systems-on-Chip 

(MPSoC). NoCs are equipped with buffered input channels which 

queue incoming data and minimise routing stress especially under 

uneven traffic distributions. Buffer utilization of a router node 

provides an early indication to potential local congestion. In this 

work we propose a novel Spiking Neural Network (SNN) based 

congestion prediction model to predict input buffer utilization as 

a congestion parameter to minimize impact of potential local 

congestion. Router-level and Network-level models are proposed 

in predicting congestion at each NoC router node. Results show 

that the router and network models can predict buffer utilization 

patterns with an average accuracy of 91.89% and 93.76%, 

respectively.    

Keywords— Networks-on-Chip; congestion prediction; Spiking 

Neural Networks 

I. INTRODUCTION 

      The number of processing cores on a single chip has 

increased to support parallel multi-processor Systems-on-Chip 

(SoCs) that  can support complex computation and dense 

communication demands [1]. These SoCs face bandwidth, 

scalability and latency issues if using existing bus-based 

interconnect systems [2]. To meet the communication 

challenges in multi-core systems, scalable network interconnect 

paradigms have been proposed including communication 

topology, routing schemes, arbitration, switching, and flow 

control [3], [4].  Networks-on-Chip (NoC) was designed to 

address existing scalability and latency issues. Furthermore, it 

enhances communication bandwidth by providing multiple 

parallel paths to boost data transmission between processing 

cores [5].  

      Congestion is an important factor in NoC performance 

degradation, and it occurs when large levels of traffic data is 

routed through specific router nodes [6]. These nodes under 

high traffic loads start to cause delays in data transmission. 

NoCs can distribute traffic uniformly across networks to avoid 

possible congestion [7], and such traffic flow depends on the 

routing algorithm, application mapping and network topology. 

These parameters influence traffic flow and cause non-uniform 

traffic distribution in NoC network. Quality of Service (QoS) is 

the notable measure to determine network congestion and can 

be maximized by avoiding uneven traffic load in NoC [8].  
Neural networks are inspired from biological neurons to 

process information and perform human like activities i.e., 
decision, identification, classification etc. [9]. Over the years, 
they have emerged as powerful tools for classification and 

prediction. Spiking Neural Networks (SNN) use a more realistic 
neural behaviour by incorporating spikes for learning and 
encoding statistical information. SNNs are comprised of 
complex mathematical equations to process information in a 
spatio-temporal domain [10]. Nowadays, SNNs can be 
implemented on hardware with low area and power overhead 
[11] enabling new application areas.  

NoC traffic patterns are temporal in nature and these 
temporal patterns can be used by SNNs to identify and predict 
potential NoC congestions [12]. This work proposes a novel 
SNN using Spike-Response-Model (SRM) neurons that can 
predict traffic congestion in NoCs. Work investigates two 
congestion models based on the level of abstraction: 1) router 
model and 2) network model. Both models are trained and tested 
on temporal traffic patterns to predict NoC congestion at each 
node. Both models can predict congestion 30 clock cycles in 
advance of it occurring. The predicted output can be used by 
congestion handling mechanisms or adaptive routing algorithms 
to minimize network latency by bypassing router nodes with 
trending congestion hazards. The overall goal of this work is to 
analyse prediction performance of the proposed SRM based 
SNN prediction and to identify efficient, low-cost prediction 
solution for NoC congestion. 

Section II reports background on SNN networks and existing 
NoC congestion solutions. Section III introduces the proposed 
SNN-based NoC hotspot prediction methodology, and the 
established experimental setup along with simulation results are 
discussed in section IV. Section V presents conclusion and 
outlines future work. 

II. BACKGROUND 

This section explains the cause of congestion in NoC and 
provides brief overview of existing congestion prediction and 
handling techniques for NoC systems.   

A. Literature review 

NoCs have become an essential paradigm for Multi-
processor System on Chip (MPSoC) in communicating and 
sharing data between processing nodes [13]. NoCs are widely 
adopted in MPSoC’s to satisfy the need in achieving minimize 
latency and high bandwidth requirements. NoC performance is 
influenced by several network parameters i.e. routing algorithm, 
topology, application mapping etc. [14]. These factors define the 
overall traffic flow and influences behaviour of NoC traffic 
patterns. Ideally, the NoC was designed to achieve even traffic 
distribution across many nodes by transmitting data via multiple 
paths. But in reality, NoCs face congestion problem due to 
uneven traffic distribution caused by network parameters [15]. 
NoC congestion is not an instant phenomenon, it happens in 



phases before it occupies a whole or part of a network. Fig.1 
illustrates different phases of congestion in NoC routers [13]. 
Congestion occurs inside the router when incoming data packets 
from different channels are trying to compete to route towards 
the same output channel (as shown in Fig 1-a). Among all 
competitors, one input channel will be allocated to route data 
through the output channel while the rest of the incoming data 
packets are set to queue in the input channel buffers.  
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Fig. 1 (a). Switch contention (dashed lines show multiple switch request to the 

north output).  (b). Effect of congestion and Backpressure. 

Since routers have limited buffer slots, arrival of many data 
packets in a short period can cause local congestion. A 
congested router will stop receiving data packets from 
neighbouring nodes and start developing back pressure towards 
adjacent nodes by queuing data at the input buffers of 
neighbouring nodes. The Backpressure effect is shown in Fig 
1(b). These neighbouring nodes stop receiving data from their 
neighbours and hence causes backpressure towards their 
adjacent nodes until the whole network becomes congested. 
Research suggests that congestion handled at local levels 
improves overall performance of NoC system by minimizing the 
impact of backpressure [7]. 

In 2D mesh based NoCs, routing algorithm plays an 
important role in traffic distribution and transmission across 
NoC [14]. In recent years, number of routing algorithms are 
developed e.g. XY, Odd-Even etc. to provide solution for traffic 
distribution in NoC systems [3]. These routing systems are static 
in nature and cause flow of traffic towards specific nodes leading 
to congestion. To overcome non-uniform traffic distribution 
problems adaptive routing algorithms are proposed. These 
routing algorithms react on on-path congestion level and change 
course of incoming data packets through optimal alternative 
path towards destination node. Dynamic AD (DyAD) [16], 
Dynamic XY (DyXY) [17] etc. are most commonly used 
adaptive routing algorithms in NoCs. Adaptive routing 
algorithms minimize the effect of potential congestion hazard 
and maximize network throughput. These routing algorithms 

have low network visibility (having information of adjacent 
nodes only) and respond to on-path congestion by selecting least 
congested on-path node as next hop. This adaptive selection 
often leads to misjudgement problem and routes data towards 
highly congested node which may cause further congestion [18].  

 Congestion-aware adaptive routing algorithms are 
introduced to supress misjudgement problem caused by adaptive 
routing algorithm. These routing algorithms require additional 
network information and processes multiple data simultaneously 
i.e., selection function, Output Buffer Length (OBL), arbitrator 
usage etc., to find optimal path for routed data packets. Selection 
function based on OBL uses occupancy information of on-path 
routers to identify least congested router for incoming data 
packets [19]. Selection function used Neighbour-on-Path (NoP) 
algorithm process buffer occupancy level of all neighbouring 
nodes before forwarding data towards next hop. Some CAAR 
utilize switch information for adaptive routing decisions. A 
Path-Congestion Aware Adaptive Routing (PCAR) algorithm 
requires on-path buffer occupancy information as well as 
crossbar demand of each output channel to identify optimal on-
path router [13]. Similarly, a modified Odd-Even routing 
algorithm depends on switch contention and the neighbour’s 
occupancy to deflect data packets through the least congested 
path [20]. A Congestion control scheme utilizes dynamic input 
arbitration and an adaptive routing path selection is proposed to 
intelligently balance traffic distribution to enhance NoC 
performance by 70% with cost of 6% area overhead [21]. 

 In addition, flow control mechanisms, switching and task 
mapping also contribute in NoC congestion. Mostly NoC are 
equipped with Warm-hole Flow Control (WFC) mechanism to 
divide data packets into small chunks called flits [22]. These flits 
are added with head and tail flits to identify starting and ending 
of data transmission. Routing function establishes routing 
channels as soon as it receives header flit. Once the header flit is 
received, the communication channel starts receiving data 
packets until tail flit arrived. On arrival of the tail flit, routing 
function cancels the reservation of a channel and allocates it to 
the next incoming header flit. The problem arises when these 
routing flits are stuck in on-path congestion and stop receiving 
incoming data flits. Thus, keeping the dedicated channel path 
and host router occupied and busy. This queuing of data flits 
causes backpressure towards neighbouring nodes which leads to 
global congestion. Virtual Channels (VC) with additional 
buffering space can be used to overcome the backpressure effect 
caused by traffic flow mechanisms [23]. NoC congestion has a 
devasting effect on network performance and requires timely 
action on local congestion to avoid its spread across the network 
[12], [13]. Proximity Congestion Awareness (PCA) technique 
used switching behaviour of neighbouring nodes (called stress 
values) to make switching decisions in order to avoid network 
congestion and increase network load by 20 times [24]. 

SoCs require task mapping to execute multiple tasks 
simultaneously and meet real-time design constraints. 
Applications are mapped on processing elements to execute 
tasks. Tasks mapped randomly during run-time execution causes 
communication delays and latency issues. Task allocation 
controls net traffic flow in NoC interconnects and requires 
optimization to spread traffic across a network. Congestion-
Aware Task Mapping (CATM) are proposed to dynamically 



allocate tasks on NoC-based MPSoCs to minimize effects of 
congestion in NoC and maximize network throughput [25]. 
Congestion-aware dynamic mapping heuristics are proposed to 
evaluate effects of dynamic task allocation in NoC infrastructure 
and have shown 78% reduction in NoC congestion. Research 
investigated the performance of mapping heuristics on NoC-
based SoCs with dynamic workloads to identify best task 
mapping application to minimize NoC congestion. Work 
showed that path load mapping was effective in NoC congestion 
reduction and significantly reduced execution time by 19.3 % 
[26]. Task allocation requires additional time for processing, 
decision and allocation. Research shows that dynamic task 
allocation time can be neglected in applications with large 
execution time but for small execution times, application task 
mapping adds into latency and throughput issues [15], [27].    

All the above techniques are reactive to congestion and 
activates when congestion has already occurred in the network. 
These techniques can significantly reduce the impact of 
congestion but not fully supress the potential hazard of 
congestion. NoCs require a solution to predict congestion in 
advance to improve overall system performance. NoC 
congestion prediction is an on-going research problem and 
limited work is available to avoid the impact of congestion. The 
Traffic-Based Routing Algorithm (TBRA) is a hybrid routing 
algorithm that use switch contention and on-path router 
occupancy level to switch between Odd-Even and XY routing 
algorithm to predict and ditch on-path congestion [18]. An 
efficient runtime Congestion-Aware Scheduling (CWS) based 
on the link utilizations is proposed to predict traffic pattern in 
reconfigurable NoC systems[28]. The proposed model shows up 
to 66% improvement in average network latency and 32% in 
average throughput. A traffic flow predictor [4] is proposed to 
control packet injection rate of each node in order to regulate 
steady number of packets in the network to avoid congestion. 
Prediction-based Flow Control showed an average 49% 
reduction in global delay. NoC traffic prediction provides 
solution for smooth uniform traffic flow across network but also 
helps to minimize energy consumption by efficient resource 
allocation. Router with built-in low-power Application Driven 
Traffic Pattern Table (ATPT) model is proposed to record traffic 
flow and use historical data to predict incoming data [29].  This 
predicted data flow is then used to optimize voltage frequency 
of a router to save up to 86% of dynamic power. 

B. Neural Network and prediction: 

Neural Networks are abstract and simplified mathematical 
counterparts of biological neurons to perform brain like decision 
and classification functions. NNs are comprised of neurons 
(computational nodes) and synapses (communication links) and 
the Artificial Neural Network (ANN) is most widely used NN 
model. These neurons are connected in form of layers and 
transfer information to subsequent layers to generate numeric in 
the output layer. NNs access information during the learning 
process and store information in form of weights between 
neurons. After training of NNs, statistical inputs are then passed 
through neural layers with stored information to perform 
prediction, classification and recognition tasks. The values 
generated by output layer neurons are deemed to classify 
nonlinear and dynamic behaviours of systems. Spiking neural 
networks mimics closely to biological neurons and are termed 

as third generation NN models. SNNs encodes and process 
information in the form of temporal spikes. Contrary to ANNs, 
outputs generated by SNNs depend on the time between spikes. 
Recently, ANNs have been employed to cope with congestion 
problems in NoC systems. A state-of the art multi-layered ANN 
based hotspot prediction model was proposed for mesh-based 
NoCs that uses buffer occupancy level of each network node to 
predict location of potential congestion [22]. The ANN mode 
showed an average accuracy of 62-92%, however it lacks 
scalability for higher NoCs and causes latency issues. Another 
NN based prediction technique used a hamming network to 
compute the link buffer utilization in identifying the worst 
congestion node and re-routing data from that node to minimize 
congestion hazards [30].  

 All known pervious neural network approaches used ANNs 
to predict NoC congestion using different constraints. NoC 
interconnect generates and transfers information in the form of 
digital data. NoC traffic patterns are temporal in nature and can 
be used by SNN for training and testing to predict NoC 
congestion. A recent study shows SNNs as computationally 
more reliable and exhibits a low hardware and power 
requirements [11]. In this work we considered temporal traffic 
patterns as an input for SRM based SNN model to predict local 
congestion in NoC system. 

C. SNN prediction model: 

Spiking neurons transmit and process statistical information 

by a series of firing times called spikes. NoC generates 

temporal traffic patterns which can be by SNN to analyze 

system behavior more accurately. This work proposed Spike 

Response neuron Model SRM with Spikeprop as a learning 

algorithm to predict NoC congestion. 

Spike response model is generalized version of Integrate and 

Fire (I&F) neuron model, where membrane potential explicitly 

relay on pre-synaptic and post-synaptic spikes time[31]. The 

membrane potential ‘𝑢’ of cell ‘𝑖’ at time ‘𝑡’, 𝑢𝑖(𝑡) is defined 

as: 

𝑢𝑖(𝑡) = ƞ(𝑡 − ṫ) + ∫ 𝜀(𝑡 −
∞

0
ṫ, 𝑠)𝐼(𝑡 − 𝑠)𝑑𝑠, (1) 

where 𝜀  (also called linear filter of membrane) is linear 

response to input current 𝐼(𝑡 − 𝑠). ‘ṫ’ is the time of last spike 

of neuron 𝑖 . The time dependency in membrane potential 

enables the refractoriness in neuron. Kernel ‘ƞ’ is response of 

neuron to its own spike.  

     Bothe’s Spikeprop (aka spike propagation [32]) is an error-

backpropagation training algorithm designed for Spiking 

neurons. Spikeprop is designed to minimize the error between 

actual firing times 𝑡𝑗
𝑎 at output neuron j and desired firing time 

𝑡𝑗
𝑑 at output neuron j, using the following equation: 

 𝐸 =
1

2
 ∑ (𝑡𝑗

𝑎 − 𝑡𝑗
𝑑)2

𝑗∈𝐽
.    (21) 

III. METHODOLOGY 

NoC congestion occurs with the concentration of data traffic 

at specific nodes. This can be prevented by adopting 

precautionary measures i.e., uniform traffic distribution across 

the network and by avoiding potential hotspot nodes. Research 

shows that local congestion has a devastating effect on NoC 



performance [7], [29]. Congestion handled locally can avoid its 

spread across the network through backpressure. It also helps 

to re-route data through alternative paths thus improving overall 

NoC latency and throughput performance. This work proposes 

a congestion prediction model to aid congestion handler or 

congestion aware adaptive routing algorithms, by bypassing 

data traffic from potential hotspot nodes. This benefits NoC 

routers by avoiding the build-up of congested pathways and 

thus improves overall throughput performance.  

NoC routers are equipped with buffers at input channels and 

these buffers queue incoming traffic to supress effect of local 

congestion towards neighbouring node. Congested nodes cause 

backpressure effect once these input buffers channels are 

completely occupied. Since these buffer utilizations provide 

early indication for congestion that will affect overall NoC. 

Therefore, this work proposed the prediction of input buffer 

utilization to indicate the potential hotspot threat. In NoC 

interconnect system, each router generates different utilization 

values. These values depend on behaviour of traffic flow 

pattern towards routing node defined by routing algorithm and 

mapped application. Buffer utilization values are temporal in 

nature and can be used directly by SNN for training and testing 

of congestion prediction model.  

A. Prediction models 

We proposed two SRM based congestion prediction 

models: Router-level model and Network-level model to 

predict congestion for each NoC node. Both spiking neuron- 

based models use utilization values from each router and 

process temporal information to predict local congestion (the 

prediction is 30 clock cycles in advance). The predictive 

utilization values are then forwarded to adaptive routing 

algorithm/ congestion handler to take appropriate routing 

actions.  
i.  Router-level Prediction Model. 
     In router model, every router has its own SNN and input 

layer of SNN is connected to input channel buffer values (as 

shown in Fig. 2(a)). Number of nodes in NoC reflects number 

of required SNNs. These SNNs can read buffer occupancy 

values directly from input channels to predict router congestion. 

The size of each SNN depends on router location i.e., inner 

nodes have 5 input channels and corner nodes have 3-4 

channels.  
ii. Network-level Prediction Model.  

This model proposes one SNN for the whole NoC network. 

Buffer utilization values from each channel is unified as a single 

router utilization value. These router utilization values are fed 

into SRM based congestion prediction model to predict local 

congestion for each NoC node. Fig. 2(b) illustrate proposed 

network model. 

B. Congestion Criteria: 

NoC local congestion can be defined as  

“A router is deemed congested if the accumulated value of 

buffer occupancy levels is more than 60% of the total buffering 

slots in one router, and at least one buffer channel is fully 

occupied.”[12]   

     Consider the example shown in Fig. 3 where router-X and 

router-Y are receiving routing data from four neighbouring 

nodes (north, west, south and east) and processing core through 

5 input channels. Data routed through router-X and router-Y 

generates (3, 2, 1, 3, 2) and (1, 3, 3, 4, 2) buffer utilization 

patterns, respectively. These patterns are directly input to the 

router-level SNN, whereas in the network-level these 

utilization values are unified before been forwarding to the 

network-level SNN. Router-X patterns shows 55% occupancy 

as compared to 65% buffer occupancy in router-Y. According 

to the congestion definition, router-Y is labelled as congested 

and traffic patterns that lead a router into congestion are called 

‘congestion causing’ patterns. 

IV. EXPERIMENTS 

This section describes the experimentation procedure 

conducted in performing simulation, implementation and 

analysis of the proposed congestion prediction model.   

A. Modelling and Analysis 

The experimental setup was established to measure 

prediction accuracy of proposed SRM based congestion 

prediction models. Experiment was carried out on synthetic and 

real-time multimedia application traces. Noxim [33], a cycle 

accurate NoC simulator, is used to map synthetic and 

multimedia application on NoC system to generate buffer 

utilization patterns at each NoC node. Input buffer utilization 

values depend on mapped application, routing algorithm and 

Packet Injection Rate (PIR). For evaluation, we used standard 

XY routing algorithm and set PIR at 0.5 to generate local 

congestion at each node. Performance is evaluated on six traced 

based traffic patterns, four synthetic (transpose-1, transpose-2, 

butterfly and shuffle) and two real-time multimedia (MPEG-4 

and MMS) applications. These applications are mapped 

 
               (a)                                                           (b) 

Fig 2. Proposed SNN prediction models (a) Router level and (b) Network level   
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Fig. 3. Buffer Utilization model with 4-buffer slots for each input (Green 
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independently for generation of data traffic across NoC to fetch 

buffer utilization patterns.  

    Noxim simulation is executed for 2000 clocks cycles with 

1000 warmup clocks. Buffer utilization data values are fetched 

at each clock to obtain 1000 clocked samples for each network 

node. These samples are then classified as congested or non-

congested according to congestion criteria explained in section 

III-B. Our research aim to predict local congestion with 30 

clocks in advance. SRM based prediction algorithm are 

modelled and simulated in MATLAB. Utilization dataset 

generated from NoC simulator are fed into SRM for training 

and validation.   

B. Performance criteria: 

    Utilization patterns generated by Noxim are split into two for 

training and validation. To analyse prediction performance of 

the proposed prediction model, SRM is fed with 60% of the 

dataset to train the neural network and validates on 40% of the 

unseen utilization patterns. Simulation performance of each 

router is evaluated in the form of prediction accuracy 𝑃𝑎 defined 

by  

𝑃𝑎 =
(∑ 𝑇𝑃 + ∑ 𝑇𝑁)

∑(𝑃 + 𝑁)
 (1) 

where congested patterns are labelled as positive (𝑃) and non-

congested patterns are termed as negative (𝑁) . 𝑇𝑃  and 𝑇𝑁 

expresses true prediction of (𝑃) and (𝑁) patterns, respectively. 

A threshold of 80% prediction accuracy was used as a 

benchmark in order allow comparison of performances across 

network nodes node. Overall performance of spiking prediction 

models is evaluated on average prediction performance.   

C.  Simulation results 

Prediction accuracy of proposed prediction models are 

validated on unseen 40% dataset. Prediction accuracy of each 

node in network model is shown in Fig. 4.  It is depicted that 

network model outperformed in prediction of local congestion 

in every synthetic traffic scenario. Specifically, in transposed 

traffic, the network model predicted congested/non-congested 

values above the 80% accuracy benchmark at each NoC node. 

For MPEG-4 traffic application, router-level SRM prediction 

model predicted congestion above performance benchmark in 

more network nodes then network model. Whereas in MMS 

application, both model showed uniform prediction accuracy 

above performance metrics. 

Table 1 shows average prediction accuracies of router-level 

and network-level models on synthetic and real-time traffic 

applications. It is depicted that for transpose-1, transpose-2, 

bufferfly and shuffle synthetic traced based applications, 

network model shows an average network prediction of 

95.39%, 96.33%, 93.86% and 95.73% as compared to 85.28%, 

92.72%, 88.28% and 92.91% router-level SRM based 

prediction model accuracy. Furthermore, network model has 

shown more than 90% prediction accuracy across all synthetic 

applications.  
      TABLE 1                  PREDICTION ACCURACY [%] 

 R-Model N-SRM 

Transpose-1 85.28 95.39 

Transpose-2 92.72 96.33 

Butterfly 88.28 93.86 

Shuffle 92.91 95.73 

MPEG-4 95.45 84.95 

MMS 96.69 96.28 

Average 91.89 93.76 

Router-level prediction model has proven an effective 

congestion prevention technique for multimedia applications. It 

shows 95.45% and 96.69% average prediction accuracy as 

compared to 84.95% and 96.28% average accuracy in MPEG-

4 and MMS applications, respectively.  

D. Comparison with existing neural predicion models 

The proposed router-model and network-model SRM based 

predictors show 85.28-96.69% and 84.95-96.33% accuracy, 

respectively. The existing ANN based congestion prediction 

model [22] showed 62-96% accuracy on synthetic and 

multimedia application traffics. The proposed SRM based 

spiking neural prediction model has outperformed existing 

neural prediction techniques.  

V. CONCLUSION 

     In this work we proposed an SRM based spiking neural to 

predict local congestion in 2-D NoCs, where two prediction 

models of router-level and network-level were used to predict 

congestion at each node. Both were able to predict 30 clocks in 

advance of any actual congestion occurring. Simulation results 

shows that network model is more accurate than the router-level 

model because of its visibility towards varying traffic patterns 

across all network nodes. Furthermore, the network model 

exhibits lower area overheads for hardware implementation.  

     These prediction models can be implemented along with 

existing congestion handling mechanisms or adaptive routing 

algorithms. The proposed models provide predictive buffer 

utilizing values and future work will demonstrate how 

congestion managing techniques can use this information to 

take appropriate actions early and prevent congestion 

occurring.  
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Fig 4. Prediction accuracy for each router using (a) Router model and (b) 

Network model 
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