
TNNLS-2016-P-6482 
 

1

  
Abstract—Recent research has shown that a glial cell of 

astrocyte underpins a self-repair mechanism in the human brain 
where spiking neurons provide direct and indirect feedbacks to 
pre-synaptic terminals. These feedbacks modulate the synaptic 
transmission probability of release (PR). When synaptic faults 
occur the neuron becomes silent or near silent due to the low PR of 
synapses; whereby the PRs of remaining healthy synapses are 
then increased by the indirect feedback from the astrocyte cell. In 
this paper, a novel hardware architecture of Self-rePAiring 
spiking Neural NEtwoRk (SPANNER) is proposed, which mimics 
this self-repairing capability in the human brain. This paper 
demonstrates that the hardware can self-detect and self-repair 
synaptic faults without the conventional components for the fault 
detection and fault repairing. Experimental results show that 
SPANNER can maintain the system performance with fault 
densities of up to 40%, and more importantly SPANNER has only 
a 20% performance degradation when the self-repairing 
architecture is significantly damaged at a fault density of 80%.  

 
Index Terms—Self-repair, Astrocytes, Spiking neural network, 

Fault tolerance, Electronic systems, FPGA, Hardware. 
 

I. INTRODUCTION 
LECTRONIC systems are ubiquitous and underpin nearly all 
aspects of industrial and social endeavour. Fault tolerance 

in electronic systems is a design challenge due to down-scaling 
of semiconductor devices. A wide range of permanent and 
temporary failures [1] in electronic systems are a result of either 
manufacturing defects (e.g. stuck-at faults), environmental 
effects (e.g. power supply voltage fluctuation and temperature 
variation), or soft errors [2] (e.g. Single Event Upset, Single 
Event Transient errors due to cosmic rays etc.). These lead to 
varied levels of performance degradation [3], [4] and ultimately 
unreliable systems. The ability to sense failure, classify it and 
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implement corrective action in order to sustain functional 
operation of a system, is an ultimate design requirement for 
electronic engineers of safety critical systems and even devices 
of large scale. Current fault-tolerant computing methods 
incorporate redundancy or replication models [5]–[9], 
techniques for error correcting [10], and FPGA-based radiation 
hardening [7] however they fail to provide the capability to 
detect faults and implement repair at fine levels [5]–[8], [10], 
[11]. As a result, alternative methods which allow fault 
detection, diagnosis and repair at finer levels of granularity [10] 
is required. ‘Evolutionary’ approaches have taken inspiration 
from biology in providing system reliability via self-repair and 
self-organisation properties [12], and their success underpins 
the belief that future systems will need to harness similar 
mechanisms found in nature. Existing bio-inspired approaches 
[13] have exploited the reconfigurability of FPGAs to provide 
adaptive repair at finer-levels of granularity although the FPGA 
building blocks are typically coarse which means repair is done 
at a coarse-level. More importantly, the repair decision process 
is not distributed and therefore can itself be easily 
compromised. We know that as devices scale in size due to 
large many-core systems, the random nature of faults means 
this is a significant challenge [9]. Therefore, we need to explore 
new approaches to assist in developing highly adaptive, 
distributed computing systems [10].  

Significant advances in neuroscience have provided us with 
insights into how networks in the brain process and 
communicate information in a robust and power-efficient 
manner. Currently Spiking Neural Networks (SNNs) are the 
most promising model as they capture the key information 
processing and communication capabilities of the brain [14]. 
Compared to traditional neural networks, SNNs reflect the 
dynamic behaviours and information processing mechanisms 
of a biological neural system, and also exhibit temporal pattern 
processing [15] and fault-tolerant capabilities as seen in their 
biological counterparts [16]. For example, SNNs are able to 
enhance the fault-tolerant capability of neural network due to 
the inherent nature of distributed computing and therefore, 
unlike traditional computing devices, any degradation in the 
computational capability correlates with the density of faulty 
connections or neurons. However, until recently the key 
question of what coordinates the repair process in the brain has 
been unanswered. Similar to the structural plasticity observed 
in biological neural networks, a novel learning algorithm is 
proposed in the approach of [17] whereby it can rewire the 
readout networks of the liquid state machine. If synapses have a 
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low probability of release that reduces the firing rate of the 
neuron, these synapses would exhibit reduction of local 
synaptic variables and the inactive connections would get 
swapped by more active connections. However, in the proposed 
paper we go further and provide a solution to the problem of 
how repair is done not only within a group of synapses but 
across a multi-layer network. The proposed network model is 
much richer and captures the self-repairing capability of 
biological neural networks.  

Progress has been made in investigating how the astrocytes, 
one sub-type of glial cells, play a crucial role in the fine-grained 
self-repairing capability of neural networks [18], [19]. 
Astrocyte cell was only considered as abundant glial cell 
previously, which supports physical structuring of brain, 
however recently researchers reconsidered its function and 
thought that it involves a number of activities in the brain, 
including the behaviour regulation of ion pathways, modulation 
of synaptic formation, and especially the neural network repair 
[18], [20]. Recent computational models [21], [22] have 
successfully demonstrated that astrocytes regulate the synaptic 
transmissions and exhibit a fine-grained self-repairing 
capability in the spiking neural network, however to date no 
research has explored this capability in hardware. Current 
approaches are mainly focused on the hardware 
implementation of astrocyte cell and its fundamental 
interactions with spiking neurons. The digital circuits for 
neuron-astrocyte interactions were proposed in the approach of 
[23], [24], where an Izhikevich model [25] and a FitzHugh 
Nagumo model [26] (i.e. simplified Hodgkin Huxley model) 
were used as neuron models, and dynamic models in the 
research work of [27], [28] and [27], [29] were employed to 
describe the behaviours of astrocyte. Based on the same models 
in the approach of [23], the neuron-astrocyte network model 
was further optimised for the digital hardware implementations 
in the research work of [30], which achieves a relatively low 
hardware overhead and maintains the scalability of neural 
networks.  

In the previous works of [21], [22], the authors have 
proposed a computational astrocyte-neuron network model 
which captures the self-repairing behaviours of SNNs, and 
demonstrates that the network can still maintain the target 
functions even when the faults are present. In this paper, we 
propose, for the first time, a hardware architecture of 
astrocyte-neuron network, i.e. SPANNER, to emulate the 
fault-tolerant capability in the hardware devices. A preliminary 
version of this paper is published in [31]; however this paper 
provides new sections to present more technical details on the 
SPANNER hardware architecture, and extensive new 
experimental results to demonstrate the self-repairing 
capability and system scalability. In particular, graceful 
degradation performance for both spatial (quantity) and 
temporal degrees of injected faults are assessed in this paper. 
These are all new results, not published elsewhere. The results 
demonstrate that the implementation of astrocyte-neuron 
network in FPGA can mimic the structure of biological neuron 
network via the inherent parallelism of hardware, where the 
fault-tolerant capability of hardware system is enhanced using 

the self-repairing model. This has crucial implications for 
future reliable computing where applications can be mapped to 
self-repairing SNN architectures and implemented in hardware 
to provide highly adaptive and robust computing systems. The 
reminder of this paper is organized as follows: Section II 
outlines the authors’ astrocyte-neuron network computational 
model and presents the hardware architecture of SPANNER in 
detail. Section III presents experimental results which analyse 
the hardware system performance and also demonstrates the 
repair capability of SPANNER under different fault conditions. 
Section IV provides a detailed discussions regarding the 
performance of the SPANNER, and section V concludes the 
paper. 

II. SELF-REPAIR MECHANISM IN SPANNER HARDWARE 

A. Self-repair arising from a coupled astrocyte-neuron system 
This subsection provides the interaction mechanism between 

the astrocytes and neurons and how it gives rise to a 
self-repairing SNN. The research work of [32] showed that 
about half synapses have very close connections with neurons 
and also astrocytes, i.e. they actually communicate at three 
terminals, which are defined by the tripartite synapse. When 
various neurotransmitters bind to respective receptors at the 
astrocyte cell, the calcium level (ܽܥଶା) inside the astrocyte 
increases; and this transmit increase in  ܽܥଶା propagates the 
calcium waves and releases the astrocytic gliotransmitters. 
Astrocytes are in communications with neurons via an indirect 
feedback mode, and modulate the transmission PRs of all 
synapses in the astrocytes domain of coverage. This synaptic 
modulation is the key process for the self-repairing mechanism 
when the synapses are broken or have low transmission 
probabilities.   

Fig. 1 describes a tripartite synapse. When an action 
potential arrives at pre-synaptic terminal, a type of 
neurotransmitter, i.e. glutamate, is released which binds to the 
receptors at the post-synaptic dendrite. It depolarizes the 

 
Fig. 1. A tripartite synapse. 
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post-synaptic neuron. After sufficient depolarization, the ܽܥଶା 
flows into the dendrite via the voltage gated calcium channels. 
This process synthesises and releases endocannabinoids from 
the post-synaptic dendrite. The endocannabinoid, a type of 
retrograde messenger, is known to travel back to pre-synaptic 
terminals from the post-synaptic dendrite. In this approach, the 
endocannabinoid is 2-arachidonyl glycerol (2-AG) and it feeds 
back in two ways: (1) Direct feedback. The released 2-AG 
binds to type 1 Cannabinoid Receptors (CB1Rs) directly on the 
pre-synaptic terminal. It decreases the transmission PR of the 
synapse and is termed as Depolarization-induced Suppression 
of Excitation (DSE); and (2) Indirect feedback. Another 
released amount of 2-AG binds to the CB1Rs of an astrocyte 
cell. This increases ܫ ଷܲ  levels inside the astrocyte, and then 
triggers a transient release of calcium. Consequently the 
glutamate is released from astrocyte, which feeds back to 
pre-synaptic group I metabotropic Glutamate Receptors 
(mGluRs) at the pre-synaptic terminal. It increases the 
transmission PR of the synapse and is termed as e-SP. 

B. Self-repairing Model 
When a post synaptic neuron fires, 2-AG is released which is 

modelled as: 

 
ݐ݀(ܩܣ)݀ = ஺ீ߬ܩܣ− + ݐ)ߜ஺ீݎ −  ௦௣) (1)ݐ

where ܩܣ is the quantity of the released 2-AG; ߬஺ீ  is decay 
rate of 2-AG; ݎ஺ீ is production rate of 2-AG; ݐ௦௣ is the time of 
the post-synaptic spike. When the 2-AG binds to CB1Rs on the 
astrocyte, ܫ ଷܲ is generated depending on the amount of released 
2-AG and can be given by: 

 
ܫ)݀ ଷܲ)݀ݐ = ܫ ଷܲ∗ − ܫ ଷܲ߬௜௣య +  (2) ܩܣ௜௣యݎ

where ܫ ଷܲ  is the quantity within the cytoplasm, ܫ ଷܲ∗  is the 
baseline of ܫ ଷܲ when the astrocyte cell is in a steady state with 
no input received, ߬௜௣య  is decay rate of ܫ ଷܲ , and ݎ௜௣య  is 
production rate of ܫ ଷܲ. 

The Li-Rinzel model [33] is employed to model the ܽܥଶା 
dynamics within the astrocyte cell. It uses three channels, i.e. ܬ௣௨௠௣, ܬ௟௘௔௞ and ܬ௖௛௔௡, for modelling.  ܬ௣௨௠௣ models how ܽܥଶା 
is stored within the Endoplasmic Reticulum (ER) by pumping ܽܥଶା  out of the cytoplasm into the ER via 
Sarco-Endoplasmic-Reticulum ܽܥଶା - ATPase (SERCA) 
pumps, ܬ௟௘௔௞  is ܽܥଶା which leaks out from the ER and goes 
into the cytoplasm, and ܬ௖௛௔௡  models the opening of ܽܥଶା 
channels by the mutual gating of ܽܥଶା and ܫ ଷܲ concentrations. 
The following equations are used in the model [34]: ݀(ܽܥଶା)݀ݐ = ,ଶାܽܥ)௖௛௔௡ܬ ℎ, ܫ ଷܲ) + −(ଶାܽܥ)௟௘௔௞ܬ  (3) (ଶାܽܥ)௣௨௠௣ܬ

 

 
݀ℎ݀ݐ = ℎஶ − ℎ߬௛  (4) 

where ܬ௖௛௔௡  is ܽܥଶା  release depending on the ܽܥଶା  and ܫ ଷܲ 

concentrations, ܬ௣௨௠௣ is the amount of stored ܽܥଶା within the 
ER via the SERCA pumps, ܬ௟௘௔௞ is the ܽܥଶା leaking out of the 
ER and ℎ is the fraction of activated ܫ ଷܴܲ௦. The parameters ℎஶ 
and ߬௛ are given by: 

 ℎஶ = ܳଶܳଶ +  ଶା (5)ܽܥ

and 

 ߬௛ = 1ܽଶ(ܳଶ +  ଶା) (6)ܽܥ

where 

 ܳଶ = ݀ଶ ܫ ଷܲ + ݀ଵܫ ଷܲ + ݀ଷ (7) ܬ௖௛௔௡ is given by: ܬ௖௛௔௡ = ஼݉ஶଷݎ ݊ஶଷ ℎଷ(ܥ଴ − (1 +  ଶା) (8)ܽܥ(ଵܥ

where ݎ஼  is the maximal Calcium Induced Calcium Release 
(CICR) rate, ܥ଴ is the total free ܽܥଶା cytosolic concentration, ܥଵ is the ER/cytoplasm volume ratio, and ݉ஶ and ݊ஶ are the ܫ ଷܲ  Induced Calcium Release (IICR) and CICR channels 
respectively, which are given by Eq. (9) and (10): 

 ݉ஶ = ܫ ଷܲܫ ଷܲ + ݀ଵ (9) 

and 

 ݊ஶ = ଶାܽܥଶାܽܥ + ݀ହ (10) ܬ௟௘௔௞ and ܬ௣௨௠௣ are described by: 

௟௘௔௞ܬ  = ଴ܥ)௅ݎ − (1 +  ଶା) (11)ܽܥ(ଵܥ
and 

௣௨௠௣ܬ  = ாோݒ ଶ݇ாோଶ(ଶାܽܥ) +  ଶ (12)(ଶାܽܥ)

where ݎ௅  is the ܽܥଶା  leakage rate, ݒாோ  is the maximum 
SERCA pump uptake rate and ݇ாோ  is the SERCA pump 
activation constant. 

Having modelled the 2-AG release and the ܽܥଶା dynamics 
within the cell, the direct and indirect effects from DSE and 
e-SP can be given as follows. The DSE is assumed to change 
linearly with the released 2-AG, which is described by: 

ܧܵܦ  = ܩܣ ×  ஺ீ (13)ܭ

where AG is the amount of released 2-AG, ܭ஺ீ  is the scaling 
factor for the DSE and released 2-AG. Inside the astrocyte cell, 
calcium dynamic modelled by (3) regulates the release of 
glutamate which is described by:  

 
ݐ݀(ݑ݈ܩ)݀ = ௟௨ீ߬ݑ݈ܩ− + ݎீ ௟௨ݐ)ߜ −  ஼௔) (14)ݐ

where ݑ݈ܩ is the quantity of released glutamate; ߬ீ௟௨ is decay 
rate of glutamate; ீݎ ௟௨ is production rate of glutamate; and ݐ஼௔ 
is the time of the ܽܥଶା  crosses the threshold. The released 
glutamate drives the generation of e-SP. The level of e-SP is 
modelled by: 
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 ߬௘ௌ௉ ݐ݀(ܲܵ݁)݀ = −݁ܵܲ +݉௘ௌ௉(15) (ݐ)ݑ݈ܩ 

where ߬௘ௌ௉  is the decay rate of e-SP generation, ݉௘ௌ௉  is a 
weighting constant used to control the weight of e-SP. 

In this approach, the Leaky Integrate and Fire (LIF) [35] is 
used as the neuron model which is given by: 

 ߬௠ ݐ݀ݒ݀ = (ݐ)ݒ− + ܴ௠෍ ௦௬௡௜ܫ ௠௜ୀଵ(ݐ)  (16) 

where ߬௠ is the time constant, ݒ is the membrane potential of 
the neuron, ܴ௠  is the membrane resistance, ܫ௦௬௡௜ (ݐ)  is the 
current injected to the membrane from synapse ݅ . The 
refractory period for the neuron model is a period of 2ms. 

For the synapse model, a probabilistic-based model 
employed which is based on the failure and success 
mechanisms of synaptic neurotransmitter release observed in 
approaches of [22], [36]. A uniformly distributed pseudo- 
random number generator generates a random number, i.e. ݀݊ܽݎ. If this random number is less than or equal to the PR, a 
fixed current ܫ௜௡௝ is injected into the neuron which is shown by: 

௦௬௡௜ܫ  (ݐ) = ൜ܫ௜௡௝, ݀݊ܽݎ ≤ ܴܲ0, ݀݊ܽݎ > ܴܲ  (17) 

The associated PR of each synapse is determined by the DSE 
and e-SP together, which is given by: ܴܲ(ݐ) = 100(଴ݐ)ܴܲ) × ((ݐ)ܧܵܦ + 100(଴ݐ)ܴܲ) ×  (18) ((ݐ)ܲܵ݁

where ܴܲ(ݐ଴) is the initial PR for each synapse. When a fault is 
simulated, the synapse is damaged and for this condition ܴܲ(ݐ଴) is set to the fault PR value.  

In summary, a SNN network fragment, shown in Fig. 2, is 
used to illustrate the self-repairing principle of the 
astrocyte-neuron networks. This network includes one 
astrocyte (A), two neurons (N1 and N2), and each neuron has 
several synapse inputs. From Fig. 2 it can be seen that the 2-AG 
(DSE) is a local signal for the synapses associated with each 
neuron. It tunes the PRs of all synapses associated with one 
neuron. However as the astrocyte cell A connects to all the 
synapses in the network, the e-SP is a global signal for all the 
synaptic terminals. Two different statuses of the network are 
used to demonstrate the self-repairing principle. First case is a 
healthy network which is shown by Fig. 2(a). For this network 
after the input spike trains are presented, the 2-AG are released 

from post-synaptic neuron which lead to the generation of DSE 
and e-SP. They compete at the pre-synaptic terminals and 
archive a stable state for the transmission PR of each synapse. 
Second case is the network with partial faults, which is shown 
by Fig. 2(b). In this network several synapses connected to the 
neuron N2 are damaged, which cause the stop of the 
direct/indirect feedbacks from N2. Consequently the balance 
between DSE and e-SP is broken for the synapses of N2. 
However due to the indirect feedback of e-SP from astrocyte 
cell, the PRs of healthy synapses of N2 are enhanced to help the 
neuron N2 maintain the target output. This is a brief 
introduction of the self-repairing principle of the 
astrocyte-neuron network, and more details of this principle can 
be found in our previous research work of [21], [22]. Note that 
the astrocyte-neuron model is based on cellular level which can 
handle rate codes and the firing frequency is limited only by the 
refractory period of neurons in principle. 

C. SPANNER hardware architecture 
This subsection presents the concepts and design details of 

the proposed SPANNER hardware. The SPANNER hardware 
architecture is based on the astrocyte- neuron SNN of section 
II.A and B. It includes three facilities – probabilistic tripartite 
synapse, LIF model [35], and the De Pitta et al. astrocyte model 
[34]. These three facilities are introduced in detail in the 
following text. 

1). Neuron Facility. The role of the neuron facility is to 
receive the currents from the connected synapses, and output 
spikes if the membrane potential, i.e.  (ݐ)ݒ in (16), is greater 
than the neuron threshold. Furthermore, while the neuron is 
depolarizing, it also generates the post synaptic DSE and 2-AG 
signals. The LIF model is used in the neuron facility as it is one 
of the most common neuron models requiring relatively low 
computational resources [37] which is more suited to 
implement large-scale network hardware systems.  

Fig. 3 illustrates the internal block architecture of the neuron 
facility where the components in grey implement the release 
process of 2-AG and DSE. The input signals of neuron facility 
are from the synapse components. The output signals are 
neuron spike, 2-AG and DSE. Total current injected to the 
neuron from all synapses is calculated by the neuron current 
generator block. According to Eq. (16) of the LIF model, the 
injected current introduces the membrane potential voltage 
change. The voltage change rate generator in the neuron 
facility is employed to calculate the quantity of change. As the 
LIF neuron is modelled by the differential equation of (16), a 
neuron voltage register block is used to store the membrane 
potential voltage which is updated by the voltage change rate 
generator at each time step. The neuron voltage register outputs 
the membrane potential to a spike generator which compares 
the membrane potential (ݒ) with a firing threshold (ݒ௧௛). If ݒ  ௧௛, the spike generator does not output spikes; otherwise aݒ>
spike is generated. After spiking, the neural membrane 
potential goes to reset voltage for a refractory period (e.g. 2ms 
in this approach). This process is implemented by the neuron 
refractory period judge component inside the neuron facility. 

After the neuron outputs a spike and sufficiently depolarized, 
Fig. 2. Network fragments illustrating endocannabinoid medicated self-repair 
[22]. 
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the endocannabinoid of 2-AG is generated which feeds back to 
the pre-synaptic terminal via DSE. This process is implemented 
by the four components of the last row in Fig. 3 (highlighted in 
grey). Similar to the change of membrane potential, a 2-AG 
change rate generator and 2-AG register blocks are employed 
to implement the 2-AG release behaviours. The 2-AG value is 
also used by the DSE change rate generator to calculate the 
change of DSE value according to Eq. (13). Similarly, a DSE 
register stores and updates the DSE value at each time step 
which is an output of the neuron facility. 

The key functions of the neuron facility are summarized as 
follows: It receives input from synapses, calculates and updates 
the neural membrane potential, and outputs spikes, 2-AG and 
DSE signals (see Eq. (1) and (13)). The 2-AG binds to the 
astrocyte and drives the e-SP which leads to the increase of 
synaptic PRs indirectly, however the DSE decreases the 
synaptic PRs directly, see Eq. (18). The astrocyte and synapse 
facilities and their functions are described in the following text. 
Note that Fig. 3 shows the diagram of a neuron facility which 
contains only one neuron, however more neurons can be 
included in a single neuron facility using the time-multiplexing 
[38] and packet switching [39] techniques. By using these 

techniques, multiple neurons can share the same physical 
computing components to save the silicon area; the neurons and 
astrocytes communicate with each other by routing and 
transferring the packets. This optimisation is not explored in 
this work as the key focus is on exploring the self-repair 
dynamics in hardware. 

2). Astrocyte Facility. The astrocyte facility, shown in Fig. 4, 
receives the input of 2-AG from the post-synaptic neurons, and 
drives the signal of e-SP. After the astrocyte facility receives 
the 2-AG, the first step is to generate ܫ ଷܲ (Eq. (2)) which is 
calculated by the ܫ ଷܲ generator; and the value of ܫ ଷܲ is updated 
by the ܫ ଷܲ register. Then the released ܫ ଷܲ binds to ܫ ଷܴܲ௦ on the 
ER, which triggers the release of ܽܥଶା. Three channels, ܬ௖௛௔௡, ܬ௟௘௔௞ and ܬ௣௨௠௣ (Eq. (3)), are used to model the ܽܥଶା dynamics 
within the astrocyte cell. These components are highlighted in 
yellow in Fig. 4. The ܽܥଶା generator and ܽܥଶା register are the 
core component (highlighted in blue in Fig. 4) to calculate the 
quantal release of ܽܥଶା . The ܽܥଶା  generator receives the 
signals from ܬ௖௛௔௡, ܬ௟௘௔௞ and ܬ௣௨௠௣ components, calculates the 
change value of ܽܥଶା; and the ܽܥଶା register stores and updates 
the ܽܥଶା value.  

 
Fig. 3. Neuron facility. 

 
Fig. 4. Astrocyte facility. 
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For the three channels of ܬ௟௘௔௞ ௣௨௠௣ܬ ,  and ܬ௖௛௔௡ , the ܬ௟௘௔௞ 
and ܬ௣௨௠௣  calculator components receive the input signal of ܽܥଶା from the ܽܥଶା register and calculate the values of ܬ௟௘௔௞ 
and ܬ௣௨௠௣  for the ܽܥଶା  generator. In comparison to the 
channels of ܬ௟௘௔௞  and ܬ௣௨௠௣ , the calculation of ܬ௖௛௔௡  is more 
complex. The ܬ௖௛௔௡ generator has four inputs: ܽܥଶା, ݉ஶ (i.e. 
IICR), ݊ஶ (i.e. CICR), and h (i.e. the fraction of ܫ ଷܴܲ௦). The 
first input ܽܥଶା is from the ܽܥଶା  register. The second input ݉ஶ is generated by the ݉ஶ calculator whose input signal ܫ ଷܲ 
comes from the ܫ ଷܲ register. The third input ݊ஶ is generated by 
the ݊ஶ calculator whose input signal, ܽܥଶା, comes from ܽܥଶା 
register. The fourth input ℎ  is generated by the ℎ  register. 
Equation (4) illustrates that ℎ  (i.e. the fraction of activated ܫ ଷܴܲ௦) is calculated from ߬௛ and ℎஶ. In the astrocyte facility, ߬௛ is generated by the ߬௛ calculator whose input signal, ܽܥଶା, 
is from the ܽܥଶା register. The other value of ℎஶ is generated 
by the ℎஶ calculator which has two inputs (see Eq. (5)) - ܽܥଶା 
and ܳଶ. The ܽܥଶା input is from the ܽܥଶା register, and ܳଶ  is 
generated by the ܳଶ calculator whose input signal ܫ ଷܲ comes 
from the ܫ ଷܲ register. Using the aforementioned ܳଶ, ℎஶ and ߬௛ 
calculators, the change of ℎ (i.e. ߂ℎ) is calculated by the ℎ 
generator. Then ℎ is updated by the ℎ register and sent to the ܬ௖௛௔௡ generator. Based on all four inputs (ܽܥଶା, ݉ஶ, ݊ஶ, and ℎ) 
the ܬ௖௛௔௡ generator calculates the value of ܬ௖௛௔௡ which is output 
to the ܽܥଶା generator. 

After the ܽܥଶା  generator receives all the input values of ܬ௟௘௔௞ ௣௨௠௣ܬ ,  and ܬ௖௛௔௡ , it calculates the change in ܽܥଶା  (i.e. ܽܥ߂ଶା) and sends it to the ܽܥଶା  register for updating. The 
change of ܽܥଶା, i.e. calcium dynamics, releases the glutamate 
inside the astrocyte, and then leads to the e-SP. In the glutamate 
and e-SP generation processes, the ܽܥଶା spike generator in the 
astrocyte facility describes the behaviours of calcium dynamics; 
the glutamate generator and its corresponding register 
calculates and updates the quantity of released glutamate (Eq. 
(14)); similarly the e-SP generator and corresponding register 
calculates and updates the released e-SP (Eq. (15)), which is the 
output signal of the astrocyte facility.  

The output signals of e-SP (from the astrocyte facility) and 
DSE (from neuron facility) feed back to the synapse facilities, 
which regulate the PRs of pre-synaptic terminals. More details 
are given in next subsection. In addition, research work of [40] 

showed that the astrocyte communicates with large number of 
synapses (~10ହ) and several neurons (~8) in the human brain. 
Thus for a large scale spiking neural network, only a small 
number of astrocyte facilities are required, e.g. 6 neuron 
facilities for every one astrocyte. However the astrocytes can 
greatly enhance the fault-tolerant capabilities of the systems 
and still maintain the scalability due to the low ratio of 
requirements. In addition, the authors proposed a hierarchical 
Networks-on-Chip (H-NoC) diagram in previous work [39] to 
address the interconnection challenge within the spiking 
neurons, and an extended hierarchical astrocyte network 
architecture (HANA) in [41] to provide information exchanges 
between astrocyte cells and neurons. These interconnected 
strategies can be employed to support the interconnectivity and 
scalability of the astrocyte-neuron hardware systems.  

3). Synapse Facility. The internal structure of synapse 
facility is shown in Fig. 5, which is based on a probabilistic 
synapse model. The input signals include input spikes, DSE 
signal (from neuron facility), e-SP (from astrocyte facility), and 
a seed signal which controls the random number generation. 
Additionally, a fault injection enable signal controls the fault 
injection to the synapse. If it is active, the synapse is set to be 
faulty by reducing the transmission PR to zero. Only one output 
(i.e. synapse output) is associated with the synapse facility, and 
it connects to the component of neuron facility.  

Each synapse has an initial transmission PR, e.g. it is 0.5 in 
the research work of [22]. However if faults occur at synapse 
facility, the PR goes to very low. In this approach, it is 
simulated by enabling the fault injection signal in Fig. 5 and the 
PR is set to be zero. The PR value is stored in the PR register 
component which connects to a comparator. The PR value is 
compared with a random number. If the PR is larger, then the 
synapse facility has a valid output; otherwise invalid output is 
presented, see Eq. (17). A random number generator [42] is 
used for this process, which only generates a random number 
when the input spike is presented.  

If no faults occur at synapse facility, the synaptic PRs are 
controlled by the DSE and e-SP. Two PR adjustors, highlighted 
by blue in Fig. 5, are used to change the PR. The PR adjustor 
that connects to the DSE is a direct feedback, and reduces the 
PR value; the other PR adjustor associated with the input of 
e-SP increases the PR value. The PR generator component 

Fault injector PR register

PR adjustor
(direct signalling)

PR adjustor
(indirect signalling)

PR generator

Random number generator Comparator

Fault injection enable

DSE

e-SP

Seed

PR decrease

PR increase

ΔPR

PR initial value

PR

Random 
number

Synapse output

PR

Input spikes

 
Fig. 5. Synapse facility.
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takes these two signals as inputs, then calculates the change of 
PR, i.e. ΔPR, and outputs it to the PR register component for 
the update. This process modulates the PRs and implements the 
self-repairing mechanism, e.g. when faults occur, the PR 
adjustor associated with e-SP will enhance the transmission 
PRs of the healthy synapses which can help the neuron 
maintain the target output. Extensive experiments are carried 
out in section III to demonstrate the fault-tolerant capabilities of 
the proposed hardware SPANENR.  

D. Optimized design of the SPANNER 
In this subsection, the optimization of the SPANNER 

hardware at system and facility levels are discussed. First, the 
input spike processing rate is improved using a pipeline 
strategy at the system level. A high input spike processing rate 
is beneficial as the system processing capability is improved. In 
the SPANNER hardware system each facility depends on a set 
of data as inputs where they are only available after the 
computing of the previous facility calculations. Consequently, 
there is a data dependency between the three facilities, e.g. the 
astrocyte facility depends on the neuron facility, which requires 
the output data from the synapse facility. Assume that the 
processing times of the synapse, neuron and astrocyte facilities 
are ݐ௦, ݐ௡ and ݐ௔, respectively; then the input spike processing 
rate (SPR) before pipelining is given by: 

 
 ܴܵܲ = ௦ݐ)/1 + ௡ݐ +  ௔) (19)ݐ

 
where SPR is equal to the reciprocal of the total processing time 
of three facilities. For each spike input train data, the total 
processing time directly governs the input spike processing rate. 
A pipeline strategy is employed in this approach, which can 
break the data dependencies and permit a set of operations to be 
grouped together, and therefore allow different facilities to 
execute in parallel and improve the processing rate of the input 
spike train. Fig. 6 shows the pipelining strategy used at the 
system level. It can be seen that three facilities are running in 
parallel, e.g. the synapse facility is processing the ݇௧௛  input 
spike, the neuron and astrocyte facilities are processing the (݇ − 1)௧௛  and (݇ − 2)௧௛  input data, respectively. Thus 
SPANNER hardware can process input spike data more quickly. 

The input spike processing rate after pipelining (ܴܵܲ′) is given 
by: 

 
 ܴܵܲᇱ = 1/max	(ݐ௦, ,௡ݐ  ௔) (20)ݐ
 
where max	(ݐ௦, ,௡ݐ (௔ݐ  denotes the maximum value of the 
processing time among the three facilities. It can be seen that ܴܵܲᇱ > ܴܵܲ which indicates the pipelining strategy at system 
level achieves a faster spike processing rate.  

Secondly, the SPANNER hardware can be further optimised 
at the facility level to reduce the total process time (i.e. latency). 
Section II.C presents the architectures of these facilities. It 
shows that the astrocyte facility has several operations that can 
be executed in parallel (e.g. ܬ௟௘௔௞, ܬ௣௨௠௣ and ܬ௖௛௔௡ calculators 
etc.); thus it can also be optimized using the pipelining strategy. 
Therefore, the pipelining strategy is also applied to the 
astrocyte facility to increase the concurrency and reduce the 
total processing time. The detailed results using the pipelining 
strategies at the system and facility levels are provided in the 
next section. 

III. EXPERIMENTAL RESULTS 
The test bench setup is presented firstly in this section, and 

then the detailed experimental results are provided for the 
proposed SPANNER hardware system. In the experiments, the 
self-repair mechanism is evaluated and verified in the real-time 
FPGA hardware platform. The dynamic behaviours of synapses 
under different level faulty scenarios are discussed. This 
section also gives the results of hardware performance analysis 
of the proposed SPANNER, including the FPGA hardware and 
software simulation performance comparison, required 
computing time of different solutions, and resource cost 
analysis. 

A. Testbench setup 
An example SPANNER FPGA implementation was created 

using the neuron, astrocyte and synapse facilities shown in Fig. 
7. In this spiking neuron network, it has one astrocyte and two 
neurons where each neuron is associated with 10 synapses. The 
initial PRs for all the synapses are 0.5, and the average 
frequencies for the input spike trains are 10Hz. As shown in the 
synapse facility, every synapse has a fault injection enable 
input. A fault is injected into the synapse when the enable 
signal is set high. When a neuron spikes, 2-AG is generated 
which initiates the creation of DSE (from the neuron facility) 
and e-SP (from the astrocyte facility). These signals are fed 
back to the synapses and influence the pre-terminal 
transmission PR values. All the components are modularized 
and parameterized, and implemented on FPGA hardware as 
illustrated in Fig. 7.  

The proposed SPANNER system was developed using 
VHDL and based on a Xilinx Virtex-7 FPGA VC707 
evaluation kit, which includes a Virtex-7 XC7VX485T- 
2FFG1761C FPGA device. For all experiments the following 
setup was used: 200MHz system frequency, the user interface 
in the evaluation board (e.g. rotary switch, buttons etc.) was 
used for injecting faults of different types (e.g. permanent/ 

 
Fig. 6. Pipelining strategy at the system level in the SPANNER. 
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temporary faults). The failure model in [43] is employed for 
this approach. If the synapses are faulty, the failures result in 
permanent malfunctions of the circuit blocks, i.e. they fail to 
respond to the spikes completely and stop generating any 
activations. Thus in this approach, if a synapse is faulty, it is 
modelled as a dead/broken synapse and the corresponding PR is 
set to zero. The SPANNER hardware implementation used the 
forward Euler method of integration to solve the equations of 
our model and the IEEE 754 floating-point data format with 
double-precision (i.e. 64-bit) is used for the numerical 
representation. This permits the same numerical accuracy as the 
software simulations of the computer program. 

In addition, a similar monitoring framework from previous 
work by the authors [44] was employed to capture data during 
runtime execution on the FPGA. For example, a signal monitor 
component was designed which can probe the signals between 
the facilities (e.g. neuron, astrocyte and synapse) and collect the 
data in real-time. The signal lines shown in Fig. 7 (coloured 
yellow) were monitored during hardware execution. The values 
of these signals are collected and uploaded to the desktop 
computer in real-time for performance analysis.  

Based on the SPANNER system in Fig. 7, the experimental 
results are given in the next subsections, which demonstrate 
dynamic behaviours of the SPANNER and how self-repair can 
occur at the synapse facilities. Note that the experimental data 
was collected using the monitoring mechanism, however the 
data was analysed and visualised using the Matlab R2014a 
software. 

B. Results with no faults, 40% and 80% partial faults 
In the SPANNER system of Fig. 7, ten synapses are 

connected to each of the two neurons, which is similar to the 
diagram shown in Fig. 2. In this approach, the fault density 
denotes the percentage of faulty synapses in a synapse group, 

e.g. a fault density of 80% means eight synapses are faulty in a 
ten-synapse group. When the synapse is faulty, its PR is set to 
zero. In the experiments, faults occur to the synapses associated 
with neuron #2. The fault densities of 0%, 40% and 80% were 
used to test the self-repairing capabilities of the SPANNER 
system. The hardware signal monitor in Fig. 7 is used to 
observe all the signals inside the FPGA device and transmits 
the results to the computer. The experiment runs for a period of 
600s which permits the repair process to complete as outlined 
in the approach of [22]. 

In first experiment, the fault density is 0%, i.e. no fault 
occurs. The results of neuron #1 is shown in Fig. 8 (dark blue). 
Note that Fig. 8 also shows the results of neuron #1 under other 
fault conditions. In the current experiment (e.g. the fault density 
is 0%), the results are shown in dark blue. The results of neuron 
#2 are not given due to the limited space, but the profiles are 

 

 
Fig. 7. The SPANNER FPGA hardware with one astrocyte and two neurons. 

Fig. 8. Neuron #1 in the SPANNER. Colour codes represent the results of neuron 
#1 when the fault densities of neuron #2 is: no fault (dark blue), 40% (red), 80%
(light blue). 
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similar to neuron #1. When the pre-synaptic stimuli presents, 
both neurons fire. It occurs while coupling with astrocyte 
process via 2-AG signal pathway. Two synapses from neuron 
#1 (i.e. the first and tenth) are chosen to illustrate the 
transmission PR values. From Fig. 8, it can be seen that when 
the fault density is 0%, the first and tenth synapse have similar 
profiles for the PRs, i.e. both the initial and average values are 
~0.5 and ~0.25, respectively. During the initial stage, after the 
e-SP and DSE are generated and modulate the synapse 
transmission, the PR values reduce from ~0.5 to ~0.25. The 
DSE values are not exactly the same for individual neurons. 
However the e-SP, as a global signal for both neurons, is the 
same for neuron #1 and #2. Their output frequencies (i.e. the 
average firing rate of neurons) are also included, which are 
similar (~7Hz) and correctly match the results achieved from 
SPANNER software model [22].  

For next experiment, the fault density is increased to 40%, 
i.e. 40% synapses of neuron #2 (i.e. four synapses) are set to 
fault conditions where the associated PR values are reduced to 
zero. The plots in red in Fig. 8 presents the results for neuron 
#1. It can be seen that neuron #1 and associate synapses, as 
expected, are unaffected. However, the behaviour of neuron #2 
is different. For a fault density of 40% we set four of the ten 
synapses of neuron #2 to have a zero PR value; e.g. the first 4 
synapses are faulty and synapses 5 – 10 are healthy. The time to 
damage the synapses are distributed randomly, e.g. in this 
experiment the first to fourth synapses are damaged at 166, 277, 
58 and 494 seconds, respectively. Fig. 9 plots the results for 
neuron #2 and its first and tenth synapses. The red vertical line 
in the Fig. 9(a), (b) and (d) depicts the fault injection time, e.g. 
in Fig. 9(a) the first synapse is faulty after 166s and the PR is 
zero after that time point. The PR of the third synapse drop to 
zero from 58s, i.e. injecting faults. And from 166, 277 and 494 
seconds, other three synapses (i.e. first, second and fourth 
synapses) are damaged sequentially. It can be seen that from 
58s, the faulty synapse lead to a reduced firing rate of neuron #2 
depicted in the Fig. 9(d) which means the output frequency of 
neuron #2 experiences a slight decrease. This zero PR on the 

third faulty synapse reduces the associated DSE signal (see Fig. 
9(c)); then causes an imbalance in neuron cell dynamic and 
e-SP enhances the healthy synapses (5-10) associated with 
neuron #2; therefore the PR values of the healthy synapses are 
increased (e.g. tenth synapse is only shown in Fig. 9(b) due to 
space), in order to maintain the dynamic balance or output of 
the neuron. As a result, the average output frequency of neuron 
#2 gradually returns back to its original pre-fault value after a 
period of time. The same process applies to other faulty 
synapses. Therefore, the PR of healthy synapses increased after 
the synapse is faulty and the output of neuron #2 is maintained. 
In summary, when faults occur in some synapses, the process to 
maintain the neuron average firing rate through redistribution 
of PRs across all the synapses, is considered as the 
self-repairing mechanism. This experiment demonstrates this 
capability via the re-establishing of the average firing rate. The 
advantage of this self-repairing mechanism is further 
demonstrated through a more critical condition when a higher 
fault density of 80% is used. 

With a fault density of 80% only two healthy synapses 
associated with neuron #2 (synapse 9 and 10) remain. The 
runtime execution in hardware is depicted in Fig. 8 (light blue) 
for neuron #1 and in Fig. 10 for neuron #2. Fig. 8 shows that 
neuron #1 is still unaffected when neuron #2 experiences the 
failures. However, for neuron #2, the first 8 synapses are 
damaged with a random time-distributed fault injection strategy 
which is shown by red vertical lines in Fig. 10. It can be seen 
that the more synapses which are damaged, the greater the 
increase in the strength of the remaining healthy synapses. The 
PR values of healthy synapses increase significantly (e.g. tenth 
synapse in Fig. 10(b) is only shown) after final fault injection 
time (i.e. 548s), which are much larger than the PR values when 
the fault density is 40%. When the fault density is 40%, the 
enhanced PR value of healthy synapse is ~0.3; however, when 
the fault density is 80%, the enhanced PR value is ~0.7. The 
increasing action of the PR values demonstrates the repair 
process by the astrocyte where the PRs of healthy synapses are 
increased to compensate for the loss. Fig. 10 also shows that the 

Fig. 9. Neuron #2 under 40% fault density. Fig. 10. Neuron #2 under 80% fault density. 
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average firing rate of neuron #2 has a slight decrease after final 
fault injection time (i.e. 548s). However, this cannot be seen as 
a disadvantage of the proposed self-repairing mechanism. The 
healthy synapses are enhanced enough to maintain the system 
performance; however as the majority of synapses (80%) 
associated with neuron #2 are faulty, there is a marginal 
performance degradation which is a reasonable expectation 
given the significant high fault density. The analysis of 
performance degradation is discussed further in section III.D. 

C. Temporary faults 
The previous section presented the results under various fault 

densities that were injected to the system permanently, i.e. exist 
continuously after they occur. Besides the permanent faults, 
temporary faults are also very common in electronic systems 
[4], [11], where they only exist for a period of time and 
disappear again. In the following experiment, the faults are 
injected temporarily between time 200 and 400 seconds into 
synapses 1-8 associated with neuron #2 (e.g. fault density is 
80%). The fault injection time for the 8 synapses are random, 
but all the fault injections are stopped at time 400s (i.e. after 
that the PRs are set to initial values). Fig. 11 depicts the results 
from neuron #2. The first synapse, shown by Fig. 11(a), is one 
of the faulty synapse. Its PR is zero between time 233s (i.e. 
fault injection time) and 400s, which simulates a temporary 
fault. After the faults disappear at 400s, the PRs of faulty 
synapses return to their pre-fault values. It can be seen that 
when the temporary faults occur, the PRs of healthy synapses, 
e.g. tenth synapse of neuron #2, are increased via the e-SP 
feedback from the astrocyte facility; and the neuron output 
frequency returns to 7Hz gradually. Thus the self-repair process 
causes these PRs to increase with the aim to maintain the 
neuron target output as close as possible. In the time period of 
faults occur, the average firing rate of neuron #2, shown by Fig. 
11(c), decreases slightly especially when all 8 synapses are 
damaged; however this is due to the significant level of faults 
injected. In this experiment, the results clearly show that the 
proposed SPANNER hardware system can self-adopt and 
self-repair under various number of synapses that are faulty at 

different times. Therefore the results in the section of III.B and 
III.C demonstrate that the SPANNER has an efficient 
self-repairing capability for different fault levels and 
conditions.  

D. Performance comparison between hardware system and 
software simulation 

This subsection provides a comparison between the 
hardware system and software simulation which aims to give a 
fair evaluation of the proposed SPANNER hardware system. 
The hardware results are based on a Xilinx FPGA, see section 
III.A for detail. The software simulation is running Matlab 
R2014a on the desktop computer with an i7-2600 3.4GHz 
processor and 4GB memory. The neuron average frequencies 
are the outputs of the entire system and therefore reflect the 
performance of the proposed self-repairing mechanism. They 
are used for the comparison between the hardware system and 
computer software simulations. The average frequency is the 
mean value of neuron firing. All the average frequencies are 
calculated based on the hardware and software data reported in 
section III.B. 

Table I gives the average frequencies of different platforms, 
i.e. software simulation approach [22] and hardware 
implementation in this approach, under various fault densities. 
It can be seen that the software simulation and hardware system 
are consistent; e.g. between 0.01Hz to 0.09Hz difference. It 
verifies that the proposed SPANNER hardware implementation 
achieves a good accuracy with the software simulation model 
of [22]. Table I also provides a quantitative analysis of the 
proposed self-repairing mechanism under different fault 
densities. It can be seen that the average frequency of neuron #1 
maintains the same level (7Hz) no matter what the fault density. 
However, for neuron #2, the average frequency has a slight 
degradation when the fault density is high, e.g. having a 5% and 
20% degradation for 40% and 80% fault densities, respectively. 
When the fault density is 40%, the degradation of average 
frequency is only 5% which means the proposed SPANNER 
hardware can repair and reach an acceptable system 
performance. When the fault density increases to 80%, the 
degradation is 20%. However it should be noted that with such 
a high fault density, this amount of frequency degradation is 
expected, as the conventional fault-tolerant mechanism for 
electronic systems normally fail completely when the fault 
density is greater than ~35% [3], [4]. SPANNER hardware can 
provide graceful degradation. 

Fig. 11. Neuron #2 under 80% fault density with temporary faults. 
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E. Performance analysis of the SPANNER system 
The performance analysis in terms of spike processing rate 

(SPR), required computing time and resource cost are reported 
in this subsection. In the SPANNER hardware a pipelining 
strategy was implemented at the system level to increase the 
input spike processing rate. When we compare the hardware 
implementation with and without the system level pipelining 
strategy, the ܴܵܲ  and ܴܵܲ′  are 39 MHz and 58 MHz, 
respectively. Thus the pipelining strategy at the system level 
achieves a ~49% higher spike processing rate. The pipelining 
strategy was also employed at the astrocyte facility to optimise 
reduction of the total SPANNER processing time. The results 
in Table II are the required computing times of SPANNER 
with/without the optimized astrocyte facilities. It can be seen 
that if simulating 600s of the biological spiking neural network, 
the SPANNER hardware with and without the optimized 
astrocyte facility exhibits 58 and 7 seconds runtime, 
respectively. Therefore, the optimized astrocyte design 
achieves a ~88% hardware speed improvement.  

The required simulation time is also given in Table II which 
is 64s. Comparing the SPANNER software execution time with 
the hardware demonstrates that the hardware is approximately 
9 times faster. It should be noted that the main contribution of 
this approach lies in the self-repairing capability in hardware 
using the astrocytes cells merged within spiking neural 
networks. However, as the SPANNER hardware is a parallel 
neuron computing system, it can achieve a faster computing 
speed than a software simulation. This accelerated computing 
capability has the potential, with further developments, for 
simulating a large-scale astrocyte-neuron system in real-time 
[45], [46]. 

TABLE II. REQUIRED COMPUTING TIME OF DIFFERENT SOFTWARE AND 
HARDWARE IMPLEMENTATIONS 

Platform/Implementation Time required [second] 
Biological neural network 600 

Software simulation 64 
SPANNER without optimized astrocyte facility 58 

SPANNER with optimized astrocyte facility 7 
 
Hardware resource occupied by different facilities in the 

SPANNER are given by Table III. The results include the 
astrocyte facility, the synapse and neuron facilities, and a DSE 
generator component. The results show that the largest 
component in SPANNER is the astrocyte facility, which is 
expected as its model is more complex than others. The 
resource occupied by synapse and neuron facilities is less than 
astrocyte, and the resource cost of the DSE generator is the 
lowest. Table III also gives the percentage of additional 
resources for the synapse & neuron component to implement 
the proposed self-repairing capability, e.g. the required 
numbers of the slice LUTs for the synapse & neuron 
component with/without self-repair are 11,128 and 9,865 
respectively, thus the percentage of additional required 
resources is 12.8% (11,128-9,865/9,865=12.8%). The overhead 
for the slice, slice LUTs/Registers is less than 18% which is 
generally acceptable for the fault-tolerant mechanism [4]. The 
overhead for the DSPs is 125% due to the PR modulation 

process in (18) and this can be reduced by the further hardware 
optimisation. As the aim of this paper is to demonstrate the 
principle of biological self-repair of astrocyte-neuron network 
in hardware devices, the hardware optimisation is out of scope. 
However a possible solution is discussed in our research work 
of [47], which simplifies the calcium dynamics within the 
astrocyte cells and achieves a compact hardware area for the 
astrocyte-neuron network. 

TABLE III. HARDWARE UTILIZATION OF DIFFERENT COMPONENTS 

 Astrocyte Synapse & Neuron DSE generator 
Slice LUTs 11394 9865 [12.8%]* 4353 

Slice Registers 11666 10383 [17.4%] 4688 
Slice 3552 3120 [15.4%] 1394 
DSPs 42 45 [125%] 14 

* The percentage denotes how many additional resources are required for 
the synapse & neuron component to implement the self-repairing mechanism. 

IV. DISCUSSION 
The results in section III demonstrated that if the synapses 

associated with neuron #2 are damaged with various fault level 
densities (e.g. 40%, 80%), the average frequency of the neuron 
can be maintained. Furthermore, an experiment evaluated the 
self-repair capability of the proposed system if faults occur 
simultaneously for the input synapses of both neurons, i.e. the 
synapses of both neuron #1 and #2 are damaged. In this 
experiment, the synapses associated with both neurons are 
damaged with 80% fault densities. The results showed that the 
average frequencies of both neurons decrease from ~7Hz to 
~5Hz in a similar profile as Fig. 10. It demonstrated that even 
when the inputs of both neurons are faulty, the proposed 
SPANNER still has the self-repair capability due to the PR 
enhancements of the healthy synapses of both neurons which 
are modulated by the astrocyte cell. 

For a large-scale SNN, using astrocyte cells to enhance the 
system fault-tolerant capability is more efficient than 
traditional fault tolerance techniques, which is analysed as 
follows: a). The astrocyte-neuron network is an online 
self-detecting and self-repairing system. The traditional 
techniques such as scan chain or built-in self-test only test for 
faults before power-up. This is a drawback of such offline 
testing, especially for mission critical electronic systems [11]. 
Unlike these techniques, SPANNER is an online fault detection 
mechanism and the faults can be detected while the system is 
running. The regular application is not interrupted for fault 
testing, i.e. the astrocyte cell does not introduce an intrusion for 
the fault detection process. This inherent fault-tolerant 
capability (e.g. the online fault testing with non-intrusion) 
provides an alternative solution to enhance the resilience of 
electronic systems. In addition, this testing and repair capability 
is fault-tolerant itself. For example, glia cells communicate 
with other glia cells, and therefore provide a distributed 
detection capability [21]. There is no one central controller 
which can be compromised due to faults, unlike BIST 
approaches. b). Scalability analysis. The area overhead of the 
astrocyte cell in SPANNER is used to analyse the efficiency 
regarding the occupied resource of the astrocyte cell. As 
mentioned in section II, the astrocyte cell generally enwraps ~8 



TNNLS-2016-P-6482 
 

12

neurons and ~10ହ synapses. Therefore Fig. 12 gives the results 
regarding the area overheads of the astrocyte cell for the system 
with different numbers of neurons (up to 8), e.g. if two neurons 
are included in the system, the percentage of slice LUTs 
occupied by astrocyte cell is 28.6%. Fig. 12 shows that when 
the number of neurons increases from 2 to 8, the area relative 
overhead of the astrocyte cell decreases from ~28% to ~9%. 
The area overhead of astrocyte cell (less than 10%) for one 
neuron group (8 neurons) is acceptable for the online 
fault-tolerant computing system [4]. A typical SNN includes 
large numbers of neurons and synapses, e.g. the TrueNorth chip 
has 1 million digital neurons that communicate with each other 
via 256 million synapses [48]. For these large-scale neuron 
networks, it is impossible to apply the traditional techniques 
(e.g. triple modular redundancy) to tolerant the faults, as large 
area overhead is introduced due to the replication of the same 
modules. However, the area required by the astrocyte cells in 
SPANNER increases linearly with the number of neuron 
groups (e.g. 8 neurons for each group). Note that for each 
neuron, only ten synapses are connected for the calculations in 
Fig. 12. If the number of synapses is much larger, the relative 
area overhead of the astrocyte cell is further reduced. This work 
used a small neural network as early exploration to study the 
self-repairing mechanism. Increasing the number of neurons 
can give more scope to provide high levels of reliability as there 
are more healthy synapses and neurons in the system which 
allow repair to occur. 

In addition, reliability is also a critical issue during the 
learning process in the neural network. Future work will 
investigate how to model the astrocyte-neuron network with 
self-learning and self-adapting capabilities, and apply it to 
real-world applications, e.g. pattern recognition tasks [49], 
[50], robotic applications [51]. Our previous SWAT training 
algorithm [52] and B-STDP learning rule [21] in the SNN will 
be employed to explore this aim.   

V. CONCLUSION 
A self-repairing spiking neural network hardware 

architecture, i.e. SPANNER, has been proposed in this paper 
which emulates the fault-tolerant capability of the brain. It 
includes three key components of neuron, synapse and 
astrocyte facilities. Based on these components, an 

astrocyte-neuron hardware system has been implemented. 
Extensive experiments were designed to evaluate and verify the 
system performance, e.g. under various fault densities and 
different fault types. The hardware verification results and 
resource costs were also provided. They demonstrated that 
compared with conventional fault-tolerant approaches, the 
proposed SPANNER exhibited the fine-grained self-adopt and 
self-repair capabilities for the hardware electronic devices. 

This research work can be used to aid in the development of a 
large scale bio-inspired computing platform [39], [53], [54]. 
The results in this paper are promising and provide a new 
research direction for the brain-inspired self-repairing 
mechanism using SNNs. Although defining the SPANNER 
architecture is important, the efficient interconnection for 
large-scale astrocyte-neuron systems should be also considered 
and achieved. Thus future work will consider the efficient 
interconnection of astrocyte-neurons coupling hardware 
system, and the hardware optimizations. 
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