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Abstract— Network congestion is one of the critical reasons for 

degradation of data throughput performance in Networks-on-

Chip (NoCs), with delays caused by data-buffer queuing in 

routers. Local buffer or router congestion impacts on network 

performance as it gradually spreads to neighbouring routers and 

beyond. In this paper, we propose a novel approach to NoC traffic 

prediction using Spiking Neural Networks (SNNs) and focus on 

predicting local router congestion so as to minimise its impact on 

the overall NoCs throughput. The key novelty is utilising SNNs to 

recognise temporal patterns from NoC router buffers and 

predicting traffic hotspots. We investigate two neural models, 

Leaky Integrate and Fire (LIF) and Spike Response Model (SRM) 

to check performance in term of prediction coverage. Results on 

prediction accuracy and precision are reported using a synthetic 

and real-time multimedia applications with simulation results of 

the LIF based predictor providing an average accuracy of 88.28%-

96.25% and precision of 82.09%-96.73% as compared to 85.25%-

95.69% accuracy and 73% and 98.48% precision performance of 

SRM based model when looking at congestion formations 30 clock 

cycles in advance of the actual hotspot occurrence. 

Keywords— Networks-on-Chip; congestion prediction; network 

traffic; Spiking Neural Networks  

I. INTRODUCTION 

The downsizing of the transistor has enabled many 

processing cores to be integrated on a single chip to form a 

scalable and parallel multi-processor System-on-Chip [1]. 

These devices are highly dependent on resource utilization and 

system reliability as they exploit parallel computation for 

performance gains and require scalable, high interconnect 

bandwidth between processor cores [2]. In particular, for multi-

processor systems the interconnect challenges includes 

communication topology, routing schemes, arbitration, 

switching, and flow control [3]. Networks-on-Chip (NoC) has 

been proposed [4] to address these communication challenges 

where information is communicated as small packets of data. 

The NoC provides high bandwidth and concurrent 

communication channels for transferring of data between 

multiple cores [5]. NoCs face congestion problems due to 

uneven workload distribution across many routers [3] leading 

to hotspots of congestion. The Quality of Service (QoS) of a 

NoC is a measurement of run time performance. One promising 

solution to maximise the QoS is adaptive routing algorithms 

which aim to balance the traffic congestion across many routers 

in the NoC [6].  

To date neural networks have shown success in the domains 

of pattern recognition and prediction [7] and in particular, 

Spiking Neural Networks (SNNs) can now be implemented in 

hardware [8-9] with low area overheads. Therefore, neural 

networks can be explored as a mechanism for prediction of NoC 

traffic congestions, i.e., identify hotspots before they occur. In 

this paper, the temporal nature of SNNs is harnessed for hotspot 

prediction in NoCs. The SNN training algorithm of SpikeProp 

with Leaky Integrate and Fire (LIF) and also Spike Response 

Model (SRM) neuron models are explored in the prediction of 

router congestion. The ultimate goal of the proposed work is to 

use a hardware scalable SNNs to predict network congestion 

and support a congestion handling scheme to minimise router 

traffic unbalance.  

Major contributions of this paper include: 

 Novel use of SNNs in the prediction of congestion in NoC 

architectures. 

 Simulation and evaluation of two SNN models to evaluate 

prediction coverage on NoC architecture. 

 Validation of results and performance of SNN models 

under different traffic applications generated by Noxim 

simulator.  

Section II provides background on SNN networks and 

existing approaches. Section III reports on the SNN-based NoC 

hotspot prediction methodology, and the experimental setup is 

outlined in section IV. Section V present simulation results and 

section VI provides a conclusion and outlines future work. 

II. PRELIMINARIES 

This section gives a brief introduction to the cause and 

effects of congestion on NoC architectures and also presents an 

overview of existing research on congestion prediction. 

A. Congestion and Effects on NoC Performance  

In NoC architectures, routing switches and network channels 

are susceptible to congestion due to the unbalanced load 

distribution caused by executing applications[6]. Different 

routing algorithms i.e., XY, Even-Odd etc. are employed to 

overcome traffic unbalancing problem in on-chip interconnects. 

Goal of routing algorithms are to distribute load across all 

available routing paths. Routing algorithms can be classified as 

Deterministic and Adaptive where Deterministic algorithms 

follow a fixed path from source to destination node. Adaptive 

algorithms can change routing path depending on current 

network conditions. These algorithms mostly use buffer 

information to identify on-path congestion where routers have 

limited numbers of available buffers to compensate unbalanced 

traffic flows. One promising solution is to add additional 
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buffers on input and output ports of routers. These buffers can 

avoid the backpressure effect by queuing more input packets 

and stopping the spread of congestion towards neighbouring 

nodes however queuing will cost further delays in packet 

transmission that will also affect overall system performance 

(latency and throughput). The congestion problem will still 

persist if these buffers are filled [10], [11].” 

Consider that a 4-input buffer NoC router (router-X) 

encounters with burst traffic. The neighbouring/on-path routers 

are equipped with an adaptive routing algorithm which can 

react to congested nodes and re-route data through alternative 

path. Hence the data packet is routed towards the destination 

node thus keeping the flow away from the congested node. The 

data packets queued at input buffers adds to the network delay 

as these packets are soaked out of network thus affecting 

network throughput.  

Now, consider a router-X with 6-input buffers to provide 

more space to incoming data packets. The additional buffers 

will compensate the formation and spread of congestion 

towards neighbouring node. As the adaptive routing algorithm 

will have available spaces in router-X therefore data packets 

will be forwarded towards router-X. As the router is 

encountered with burst traffic it may soon run-out of buffers. 

The data packets queued in the additional buffers have to wait 

more than usual before getting forwarded by the router-X. 

These additional packet delays will add further to the network 

delay. As more packets are soaked out of the network this will 

further affect network throughout. . 

Path congestion occurs in three phases [12] including 1). 

Switch contention inside router. If a number of packets from 

different input channels compete for the same output channel, 

switch contention will occur (Shown in Fig. 1(a)); 2). Router 

congestion. Several inputs from multiple channels are 

competing to connect with same output channel, only one 

channel will get access to output channel and rest of packets are 

queued at input buffers of their respective channels: and 3). 

Channel congestion. As input buffers have limited data storage 

capacity and may run out of space on arriving of new data. 

Queue of packets causes back pressure to neighbour routers and 

data starts queuing in buffers of neighbour nodes. This back 

pressure untimely leading to cluster or network congestion as 

shown in Fig 1(b). 

Network topology, arbitration, switching and data flow 

mechanisms must be considered to avoid NoC congestion[3]. 

Buffer, links and status register are on-chip resources of NoC 

architecture and flow control mechanisms use these resources 

to minimize transmission delay[13]. Nodes with higher routing 

loads are more susceptible to congestion[3], [10]. Mostly, NoC 

architecture are employed with Warm-hole Flow Control 

(WFC) mechanism to packetize data into small chunks (called 

flits: header, body and tail) and transmit them in a pipelined 

form. Routing functions establish set of routing channels as 

soon as it receives header flit. Body flits followed by tail flit 

routed on same channels. As tail flit leave the router, routing 

function cancel the reservation and reallocate it to next on queue 

header flit. Unfortunately, blockage of header flit along 

established path cause body and tail flits to wait on host router 

[14]. Queuing of packetized data leads router into congestion 

that will ultimately cause back pressure to neighbour routers. 

Virtual Channels (VC) can be used with buffers to minimize 

effects of flow control mechanisms.  

    Recent studies [3], [12], [15] showed that local congestion 

has a significant impact on network performance. Data 

transmission between source to destination nodes can suffer 

with high latency if congestion is encountered. The proposed 

work focuses on the router congestion to avoid local congestion 

and restrict the spreading of congestion to neighbouring routers. 

B. Related work   

Adaptive routing algorithms with local or global information 

require congestion information across all nodes to make 

decisions. Depending on path diversity, adaptive algorithms re-

route data packets around congestion nodes or flatten the 

distribution of traffic among the links. The key inhibitor in an 

adaptive routing algorithm is its need to have local and global 

network information, which is difficult to obtain without 

increased area and delays in decision making.  

Regular mesh NoCs use a static two-dimensional routing 

algorithm called XY routing [16]. In XY, data travels in the X-

dimension before moving in the Y-dimension while trans-

versing from source to destination nodes. A congestion aware 

adaptive XY routing (DyXY) [17] approach was proposed to 

improve XY latency problems. Depending on the neighbour 

congestion status, DyXY transmits data in either X or Y 

directions. The Odd-Even (OE) routing algorithm [18] is 

proposed to avoid dead-lock caused in XY routing. DyAD [19] 

is a hybrid routing algorithm which gives both static and 

adaptive routing conditions. Depending on path congestion, 

DyAD dynamically switch between routing algorithms. If path 

is clear then the OE (static) routing algorithm will be deployed 

to transmit data, if the path is congested then the odd-even turn 

(adaptive) algorithm will be used to transmit data towards 

destination node. A routing controller in adaptive routing 

algorithms determine the minimal path to optimize NoC 
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Fig. 1 (a). Illustration of switch contention (dashed lines show multiple switch 

request to the North output).  (b). Effect of congestion and Backpressure. 



 
performance. Therefore overall performance of routing 

algorithms are dependent on the routing controller [15].  Most 

routing algorithms monitor local traffic to identify on path 

congestion and re-route data through less congested node. This 

approach uses congestion information of the neighbouring 

routers to identify and forward data packets through least 

congested on-path nodes. These routing algorithms have 

misjudgement problems [20] as they forward  data packets 

towards congested nodes. These queued data packets add into 

the spread of congestion across non-congested neighbouring 

nodes, thus affecting network performance by increasing the 

packet latency and decreasing network throughput [3], [20]. 

Congestion-Aware Adaptive Routing (CAAR) methods [15] 

are key research areas in tackling NoC congestion. CAAR use 

selection functions to react to congestion. Output buffer length 

(OBL) selection functions [14] use buffer occupancy 

information of downstream routers to make decisions.  

Selection strategies based on Neighbours-on-Path concepts use 

free slot information of all neighbours to select next hop. Some 

selection functions use switch contention information as an 

additional metric for decision purpose. A Path-Congestion 

Aware Adaptive Routing (PCAR) algorithm use free buffer 

slots and crossbar demand as metrics to a selection function. An 

Odd-Even turn model for mesh platform with build-in 

guaranteeing QoS arbitration use  buffer information and switch 

values to identify congestion-free minimal path[15].  

All these works are reactive to congestion and use real-time 

network values i.e. available buffer slots, crossbar demand etc.  

to calculate on path congestion. These congestion-aware 

techniques are helpful in reducing the effect of an already 

occurred congestion, via bypassing the flow of data through 

other available, less congested channels. Hence, minimizing the 

workload of overburdened routers and therefore enhancing 

overall NoC efficiency. These CAAR algorithms have no prior 

information about congestion until they reach close to the 

congested node. NoC efficiency can be increased further if 

congestion in a network or node is predicted before arrival of 

data packets close to congested nodes. It provides enough time 

for a routing node to react on potential congestion and re-route 

data through alternative paths. This advanced prediction and 

data re-routing technique reduces the probability of predicted 

nodes entering into a congestion state, thus improving overall 

network throughput  [13].  

Work presented in [21] used a low power application-driven 

traffic pattern table for predicting end to end traffic to 

dynamically adjust the working frequencies/voltages of the 

routers in NoC. It achieves 86% dynamic power savings in NoC 

links with 21% packet latency overheads. Other solutions 

include the execution of task mapping at run time, to meet real-

time traffic constraints [22]. However due to time variation in 

application behaviour, task mapping has limited effort on 

improving the latency performance [23].  

i.  Neural Network and Prediction: 

Neural Networks (NNs) comprise of neurons (computational 

nodes) and synapses (communication links) to classify 

nonlinear and dynamic behaviours of systems. Depending on 

type of neural architecture and mathematical modelling, NNs 

can be classified into different categories. Neurons in Artificial 

Neural Network (ANN) are organized in different topologies, 

usually in the form of layers, where information processed in 

each neuron layer is transferred to subsequent layers and 

collated an output layer.  Neurons are modelled by an activation 

function that is applied when a change in neuron input occurs 

[24]. Comparably to synapses in biological neurons, ANN 

neurons are connected through synaptic weights and ANNs use 

learning algorithms i.e., backpropagation to update synaptic 

weights to establish a relationship between connected (input 

and output) neurons [25]. To date neural networks have shown 

improvement in the domains of pattern recognition and 

prediction [26][27][28][29]. Therefore, neural networks will be 

explored as a mechanism for detection and prediction of 

network traffic congestion patterns in real-time applications. 

An Evolving Fuzzy Neural Network (EFuNN) based low 

latency path prediction algorithm is proposed in [30] to 

minimize latency issues caused by congestion-aware routing 

algorithms. The proposed work showed slight improvement in 

routing latency by incorporating existing congestion 

information however, the model failed to predict on path 

congestion. 

An ANN based hotspot prediction mechanism was 

previously presented in [10] that monitored online statistical 

data to predict hotspot interconnect with an average efficiency 

of between 62-92%. However, it is not scalable with high 

latency and hardware overheads. In the approach of [31], a two 

layered neural network technique is demonstrated which is able 

to detect and re-route data under congestion. It uses the 

hamming network to compute the link buffer utilization and 

then uses the competitive network to find the worst congestion 

node. Throughput was increased by 15%, however it does not 

explore the prediction of congestion.  

These approaches used ANNs to predict congestion and to 

the best of the authors’ knowledge none have considered SNNs 

in classifying temporal NoC traffic patterns for prediction of 

congestion. 

SNNs are third generation NNs and claimed as more suitable 

learning tools for processing spatiotemporal information [32].  

SNNs take rate encoded inputs as spikes and process encoded 

information between the input and output layers of the neural 

network in a temporal format. In ANNs, neural layers are 

updated with inputs in a single time step, whereas in SNNs 

inputs are applied in temporal form over a time series of steps. 

The key advantage is that SNNs exhibit low hardware area and 

power overheads compared to ANNs as the core neural 

computations are different [33].  

NoC architectures process digital data and the traffic patterns 

that flow between NoC are temporal/discrete in nature. 

Therefore, this work proposed SNN based prediction model that 

process temporal NoC traffic patterns to predict local 

congestion.   

ii.  SNN Model 

SNNs closely mimic the operations of the biological nervous 

systems by incorporating different neural information 

dimensions such as time, frequency, and phase [34][35]. 

Depending on neural complexity, different SNN models are 

proposed to present more biologically realistic neurons [9]. This 

work explores Leaky Integrate and Fire (LIF) neurons & Spike 

Response Model (SRM) neurons to model neural networks.  

LIF Neural Model: The LIF neuron model is effective in 

modelling biological neurons for simulating spiking networks 



 
[36] because it provides good trade-off between computational 

complexity and hardware area cost. LIF neurons are driven by 

exponentially decaying synaptic currents generated by its 

synaptic afferents[37]. It integrates all synaptic input currents 

to produce a spike after it reaches a certain threshold [38]. The 

neuron membrane potential 𝑢𝑖(𝑡) of 𝑖th neuron at time of ′𝑡′ 
leaks out to a resting potential in the absence of an input current. 

It is described by 

 𝜏𝑚
𝑑(𝑢𝑖)

𝑑𝑡
= −𝑢𝑖(𝑡) + 𝑅𝐼𝑖

𝑠𝑦𝑛
(𝑡), (1) 

where 𝜏𝑚 describes the membrane time constant of the neuron, 

𝑅 is the membrane resistance and 𝐼𝑖
𝑠𝑦𝑛

(𝑡) is synaptic current of 

𝑖th neuron. On arrival of each spike, membrane potential 

changes. When it crosses certain threshold, neuron fires a spike 

and goes to a refractory period. 

   SRM Neural Model: Spike response model is generalized 

variation of LIF neuron model. Neuron membrane potential 

excitation and fire are explicitly relay on time of the last 

spike.[39] The membrane potential ‘𝑢’ of cell ‘𝑖’ at time ‘𝑡’, 

𝑢𝑖(𝑡) is defined as: 

 𝑢𝑖(𝑡) = ƞ(𝑡 − ṫ) + ∫ 𝜀(𝑡 −
∞

0
ṫ, 𝑠)𝐼(𝑡 − 𝑠)𝑑𝑠, (2) 

where 𝜀 (also called linear filter of membrane) is linear response 

to input current 𝐼(𝑡 − 𝑠). ‘ṫ’ is the time of last spike of neuron 

𝑖. The time dependency in membrane potential enables the 

refractoriness in neuron. Kernel ‘ƞ’ is response of neuron to its 

own spike.  

  Spikeprop-Learning Algorithm: In past few decades different 

learning algorithms for SNNs have been proposed to impose a 

precise input-output mapping of spike trains to SNNs. Bothe’s 

SpikeProp [40] is based on arithmetic calculations and the 

concept is very similar to the back propagation algorithm for 

ANNs. SpikeProp learns and updates the cost function in terms 

of the difference between actual firing times 𝑡𝑗
𝑎 at output neuron 

j and the desired firing time 𝑡𝑗
𝑑 at output neuron 𝑗 by 

 𝐸 =
1

2
 ∑ (𝑡𝑗

𝑎 − 𝑡𝑗
𝑑)2

𝑗∈𝐽
.    (3) 

To minimize the squared difference E, the weight 𝑤𝑖𝑗
𝑘  of each 

separate connection 𝑘 of the synaptic terminal between pre-

synaptic input of neuron 𝑖 to neuron 𝑗 should be calculated by  

 ∆𝑤𝑖𝑗
𝑘 = −ƞ

𝜕𝐸

𝜕𝑤𝑖𝑗
𝑘  (4) 

where ƞ is learning rate of the network. 

This work focuses on identifying patterns that leads to 

congestion and evaluates prediction capability of the proposed 

SNN for NoC architecture on synthetic and multimedia 

applications. 

III. SNN-BASED NOC TRAFFIC HOTSPOT PREDICTION   

This paper proposes the novel use of an SNN in predicting 

NoC traffic congestion. This work proposed two congestion 

prediction models based on LIF and SRM neurons. Both 

models are integrated with SpikeProp learning algorithm to 

update synaptic weights between spiking neurons. This section 

discusses proposed prediction methodology and congestion 

criteria to identify and predict local congestion in NoC 

architecture.  

 

A. Proposed Prediction Methodology 

To design an SNN based prediction methodology for NoC 

architectures, we considered all factors that leads towards the 

formation of congestion. Local congestion does not happen 

immediately but sources from an overburden node and 

accumulates over time. As more data is pushed towards an 

overloaded node, it starts to queue data in the input buffers and 

starts to effect network throughput. When this router enters 

congestion there are often many routers which are not 

congested. Due to the process of backpressure, these 

uncongested nodes begin to enter into a congestion state. NoC 

traffic is highly dependent on following three factors: (i) 

location of the router, (ii) application running on the system and 

(iii) Packet Injection Rate (PIR). The approach of [10] 

investigated the effeteness of buffer utilization data in 

determining NoC behaviour especially for congestion 

prediction.  

This work considered router input buffer utilization as a 

congestion prediction parameter pattern. Every router has a 

different buffer utilization pattern depending on the mapped 

application therefore, every router will be treated independently 

to identify congestion. We propose a layer of SNN over the 

routing nodes where each router is connected with its own SNN. 

This model will help to identity the location of a router and its 

congestion status. SNNs takes buffer utilization as an input and 

gives predictive congestion status as an output. The proposed 

prediction model is scalable with network sizes, traffic 

scenarios, topologies and NoC simulator as each node requires 

its own SNN that is responsible for prediction of local 

congestion.  

     Routing algorithms are responsible for data transmission 

from source to destination nodes. Adaptive routing algorithms 

and CAAR algorithms are only able to see congestion in their 

neighbouring nodes (discussed in Section II) and often suffered 

with misjudgement issues[20]. These routing algorithms gets 
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Fig. 2.   4x4 NoC integrated with proposed SNN based congestion prediction 
model at each NoC node 



 

the opportunity to use prediction information to re-route the data 

through alternative nodes and hence preventing the node to enter 

into congestion state without effecting network throughput. 

Using the hotspot status of all routers and traffic patterns we may 

predict the congestion of whole network however this is not the 

scope of this initial work.  

  Routers can be classified based on spatial location such as 1). 

Inner router and 2). Corner router. Due to uneven traffic 

distribution, Inner routers are more prone to network congestion 

as compared to corner routers [3]. Fig. 2 depicts an example 4x4 

NoC architecture, where Router ID# [11, 12, 21, 22 etc.] are 

inner routers and Router ID# [00, 10, 20, 30 etc.] are corner 

routers. Routers are interconnected with bi-directional channels 

through buffers. Buffer utilization data will be extracted from 

these buffers of each router for training and validation of SNN 

to predict NoC congestion. 

B. Congestion Criteria.  

Network congestion is one of the critical reasons for 

degradation of data throughput performance in NoCs.  

Congestion occurs when a network fails to deliver packets from 

source to destination within a predefined time (time required for 

data from the source node towards destination node i.e., 

latency). Data queues in input buffers are the foremost cause of 

delays that effects network latency and throughput 

performance. Congestion adds delays in packet re-transmission 

which impacts predefined transmission time/network 

latency.Buffer Utilization is an important NoC performance 

parameter [41], [10] and have been demonstrated as a most 

effective parameter in identifying congestion. The proposed 

congestion prediction criteria is based on overall input buffer 

utilization. For example, the router shown in Fig. 3 has five 

inputs (North, East, South, West and Local Interface). Each 

input buffer can store up to 4 data packets, i.e. for five inputs 

there are a total of 20 data slots.  

For any given router, if the buffer slots of all input channels 

are 50% or more occupied by queued data, with at least one 

fully occupied channel (full channel=4), then the router will be 

considered as congested. Therefore, for any given traffic 

scenario and selection strategy, utilization patterns that contains 

one fully occupied input channel with overall occupancy level 

of 50% or more, are defined as congestion patterns, and those 

patterns that produce occupancy level less than 50% are 

considered as non-congestion patterns. Compared to previous 

congestion criteria in [10], [42], the proposed congestion 

criteria labels each congestion inducing pattern irrespective of 

traffic distribution, injection rate, topology and network size. 

The hardware implementation of the SNN prediction model 

manages NoC congestion and that requires time to process 

utilization information in order to make a prediction on local 

congestion and to re-route data through alternative paths to 

avoid the potential congestion hotspot. The SNN requires 5-7 

clock cycles to predict a router status and also requires 

additional  clock cycles to forward information towards the 

congestion handling mechanisms. The congestion handling 

mechanism  consumes 3-4 clock cycles to process  congestion 

information and make an alternative routing path decision.  

Defining prediction time (in clock cycles) is a critical 

element in the design of the prediction algorithm as it should 

not be significant in size whereby  an incorrect alternative 

routing decision is made that  causes delays in packet latency. 

At the same time, prediction time should not be too short such 

that it does not provide sufficient time for the congestion 

handing mechanism to avoid the formation of potential hazard 

[10].  

Therefore, from early experimentation we considered an 

optimised 30 clocks look-ahead benchmark to predict local 

congestion and forward prediction information towards the 

congestion handling mechanism for suppression of any 

negative impact. In this work it is assumed that the proposed 

SNN predictor will predict congestion 30 clock cycles in 

advance to provide enough time for the congestion handling 

algorithm to react on it.  

 

C. Prediction Model: 

   NoC router throughput is measured in term of the number of 

flits per clock cycle. Local congestion drastically affect network 

throughput by forcing routers to queue data at input buffers[3]. 

Using both synthetic and multi-media application traces, we 

have collected buffer utilization levels of all network routers. 

Data extracted from each router is used for training and 

validation of its connected SNN predictor (as shown in Fig.4). 

To evaluate our approach, synthetic traffic patterns and a 

multimedia application were run independently on the NoC 

simulator [42] to generate utilization data for each router. Every 

node has its own SNN to predict local congestion (discussed in 

section III.A). Therefore, for each traffic trace, buffer utilization 

patterns of each node will be fed into its own SNN for training 

and validation. The PIR was increased to generate congestion 

in NoC architecture.  

    As explained in section II, a single congested router may 

affect performance of the whole network by forcing its 

neighbouring routers to enter into a congestion state. By 

monitoring the router input buffer occupancy levels, the spiking 

neural network will be able to identify and predict potential 

hotpots caused by either back pressure of neighbour routers or 

by high traffic flow/loads. 

    The scope of this work is limited to evaluating the prediction 

coverage of the proposed (LIF and SRM based) SNN models 

under various traffic conditions, and to identify an efficient 

solution based on prediction performance. The SNN model with 

the higher congestion prediction coverage will be integrated 

inside each NoC router to minimize the impact of potential 

congestion and thus improves network throughput and latency. 

 

 
Fig. 3. Buffer Utilization model with 4-buffer slots for each input (Green are 
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D. SNN Encoding 

    SNN encoding depends on the temporal pattern at which 

neurons generate spikes. Spiking neural models work on spike 

arrival time and encode information in the spatial domain.  SNN 

neurons read spikes over specific periods of time before 

reacting on it. This work used SpikeProp as a learning algorithm 

that works on spike propagation from the input layer to the 

output layer. So, neurons in the SNN layer will read the time of 

the input spike, process it through a hidden layer and then 

produce a spike to the output layer. An example timing diagram 

of the proposed prediction method is shown in Fig. 5. Neural 

Time Frame (NTF) is defined as time required by SNN to 

process information from input layer neuron till generation of 

spike at output layer neurons. NTF is used for monitoring spike 

patterns and at the end of the fixed time, the NTF window 

provides time to spiking neurons to undergo through refractory 

period. We assumed that SNN runs at higher frequency 

(SNN_clk) to generate output spike with in one NoC clock 

cycle (NoC_clk). As spikes are based on current buffer levels, 

each neuron will fire a spike based on its current occupancy 

level. In this approach, it is assumed that each input buffer has 

four available slots to pipeline incoming data and spike time 

associated to them are 𝑡0,𝑡1,𝑡2,𝑡3 and 𝑡4 respectively, where 𝑡0 

depicts all slots are empty and 𝑡4 reflects all slots are occupied. 

Also 𝑇𝑖  is the maximum time at which a neuron fires a spike; 

after that time, it is reset to zero. The SNN processes the data in 

time 𝑇𝑝 and gives an output in time 𝑇𝑜 (𝑇𝑝+𝑇𝑖  <𝑇𝑜<𝑡𝑚), where 

𝑡𝑚 is the maximum output spike time. The output of the SNN 

indicates a router status as either Congested (𝑡𝑐) or un-

congested (𝑡𝑛𝑐).  To minimize latency and sufficiently predict 

ahead of the time of congestion occurring, 𝑇𝑝 must be small in 

duration. During simulations, SNN models with different 

parameters were explored to minimize overall processing time; 

e.g. the number of hidden layers and number of neurons in each 

layer that not only decreases training time but also improves the 

prediction capability of proposed model.  

IV. EXPERIMENTAL SETUP  

This section presents the experimental setup established to 
generate utilization data from NoC architectures and the use of 
data in SNN prediction of congestion hotspots. Synthetic and 
multimedia application traffic patterns are used as target 
applications. These applications are mapped to the network 
simulator to generate buffer utilization data for each router. PIR 
is increased to generate router congestion. Datasets with 
predefined congestion values are used for training of proposed 
prediction models. NoC architectures use a random selection 
strategy with an XY routing algorithm which enables each router 

to send data randomly hence creating the probability of 
congestion at different NoC nodes.    

A. Simulation Setup 

     Experiments were carried out using synthetic and multimedia 
application data traces for checking the effectiveness of the 
proposed SNN predictor. These traces contained mapping 
information for each NoC node (e.g., source node, destination 
node and PIR) to generate network traffic. Inner nodes are more 
prone to congestion therefore this work utilised a 4x4 2D mesh 
topology with random selection strategy that provides enough 
inner and corner hotspot nodes (shown in Fig.4) to analyse 
prediction coverage of the proposed prediction model under 
different traffic patterns. Depending on the location of the router, 
each router is connected between 2-4 neighbouring routers 
through network channels. We used the Noxim simulator [43] 
which is an open source cycle accurate simulator to extract 
buffer utilization data for the SNN training and validation. All 
routers have 2 VCs per input port, and each input  has 4 buffering 
slots. Parameters used for Noxim are defined in table 1. 
Simulations were run for 1,000 clocks to generate buffer 
utilization data. Input buffer patterns that lead to congestion after 
30 clocks cycles were defined as congestion occurring patterns, 
and patterns which didn’t transform into congestion after 30 
cycles are noted as un-congested patterns. Collected data was 
divided (60:40) for training and validation purposes, 
respectively. 

         TABLE 1       NOXIM CONFIGURATION PARAMETERS  

Simulator Noxim 

Topology Mesh 

Network Size 4x4 

Arbitration Round Robin 

Selection Strategy Random 

Packet Size Two Flits 

Traffic Distribution Synthetic, Multimedia 

Routing Algorithm XY routing 

Buffer Depth 8 Flits / 4 Packet Slots 

Flit Size 32-Bit 

It is assumed that buffer information for each input will 
arrive as an individual packet and will be updated after a fixed 
time. As the SNN predictor receives inputs as temporal patterns, 
buffer levels are encoded as a spike time of input to a neuron. 
The time required for the SNN to process input patterns and 

 

 
Fig. 4.  Connections between router input channels and proposed SNN based 
congestion prediction model. 

 
Fig. 5.    Timing diagram of SNN for encoding and transmission of temporal 

information. 
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generate an output is termed as a processing time, as noted in 
Fig. 5.  

i. Traffic Scenarios  

To check the effectiveness of the proposed SNN predictors 
we considered two traffic scenarios: a). Synthetic traffic scenario 
and b) real-time application scenario.  

a. Synthetic Traffic Scenarios 

The Noxim simulator provides built-in synthesis traces to 
evaluate network performance under varied traffic loads. These 
traces include transpose1, transpose 2, butterfly and shuffle. A 
4x4 2D mesh topology (shown in Fig.2) is used as the structure 
for performance evaluation of the synthetic traffic. 

Transpose traffic: In transpose1, router (𝑥, 𝑦)sends packets 
to (𝑁 − 1 − 𝑥, 𝑀 − 1 − 𝑦), where N and M represents size of 
mesh along horizontal and vertical axis respectively.  

Transpose2 traffic: allows a router (𝑥, 𝑦) to communicate 
with router (𝑦, 𝑥). Transpose1 and transpose2 are symmetric and 
transpose to each other.  

Butterfly traffic: Packets are sent using (𝑘 − 𝑎𝑟𝑦  𝑛 −
𝑓𝑙𝑦: 𝑘𝑛) configuration, where n is used to direct output stages 
and k is the radix of each switch. 

Shuffle traffic:  this traffic send packets from (𝑥, 𝑦) to  
((𝑁 + 𝑥 − 1)𝑚𝑜𝑑 𝑁, (𝑁 + 𝑦 − 1)𝑚𝑜𝑑 𝑁 ). 

b. Real-Time Multi-Media Traffic Scenarios  

We considered  a Multimedia System (MMS) and Moving 
Picture Experts Group-4 (MPEG-4) application traces to analyse 
performance on real-time multi-media traffic scenarios. MMS 
and MPEG-4 application traces (source node, destination node 
and PIR) are mapped into the Noxim simulator. More detail on 
extraction of real-time multi-media traffic traces to map on 2D 
NoC are discussed in [44]. Once the applications are mapped, 
data packets are traversed through 2D mesh using routing 
algorithms and a selection strategy (Table 1) to generate 
utilization datasets. 

MultiMedia System (MMS): A generic MMS benchmark 
consisting of the H.263 video encoder-decoder and mp3 audio 
encoder-decoder were designed in [10] to evaluate performance 
of  heterogeneous architectures. The MMS application includes 
40 tasks that are scheduled across NoC nodes using mapping 
information (traces) generated using [45], [46]. The MMS traces 
are mapped on 4x4 NoC using Noxim. 

Moving Picture Experts Group-4 (MPEG-4): MPEG-4 is a 
widely used standard video decoder application to benchmark 
system performance [47]–[49]. MPEG4 application traces 
mimic the communication of interactive audio-visual scenes 
between nodes and they are generated using Mesh based On-
Chip interconnection Architectures (MOCA) in [44]. Using the 
Noxim simulator, these traces are mapped across NoC nodes to 
generate buffer utilization patterns.  

ii. Hotspot Generation  

Routers are more likely to get congested under high traffic 
loads. A small increment in PIR increases the amount of data in 
the NoC channels hence increases network latency. Fig. 6 shows 
the effect of PIR on network latency using synthetic and multi-

media applications. The figure shows that a high PIR leads the 
network into congestion. After a certain increment level in PIR, 
the network reached saturation. With further increases in PIR the 
network throughput plateaus out as the routers become 

 

Fig. 7. Congestion distribution across different traffic scenarios  

 

Fig. 8.   Maximum buffer utilization on each router for MMS 

 

Fig. 6.  Average delays under different PIRs and traffic traces  
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congested. To generate congestion conditions in the NoC 
architecture, PIR must be high enough to maintain the network 
in saturation condition. Depending on the routing algorithm 
used, saturation points fall at different PIR values for distinct 
traffic scenario. As illustrated from Fig. 6, every traffic pattern 
has a different saturation point, but all traffic patterns enter into 
congestion after PIR=~0.5. In this work, PIR is increased up to 
0.5 to force routers to enter into congestion. This enables the 
SNN predictor to be evaluated. Fig.7 illustrates the overall traffic 
distribution to determine the percentage of traffic labelled as 
congested and non-congested. It is depicted that Tranpose-1 and 
transpose-2 traffic scenarios have generated the highest density 
(>30%) of congestion patterns whereas the shuffle traffic 
scenario generated (~11%) the least congestion causing patterns.  

Fig. 8 shows the number of flits routed by each router during 
1,000 clocks cycles: routers 0,0 through to 3,3 as per Fig.2. For 
the MMS application, it is depicted from generated patterns that 
inner routers have more traffic loads compared to corner routers. 
Because of application mapping and routing algorithm, these 
routers have to process more data packets and are more prone to 
congestion. It is also clear from utilization datasets that some 
router doesn’t even enter into congestion because of traffic 
distribution. As the MMS application has a static traffic 
distribution, patterns are likely to repeat randomly. According to 
the proposed congestion criteria in Section III-B, it is evident 
from figure 8, that only three routers ID#[11, 12 and 13] entered 
into congestion state. If congestion for these routers is predicted 
in advance, then the network can prevent the impact from back 
pressure via re-routing packets on alternate paths. The same 
selection criteria will be used for MPEG-4, transpose1, 
transpose2, Butterfly and Shuffle traffic.  

iii. SNN Architecture  

 The SNN predictor is modelled and simulated using 

MATLAB and uses a fully connected 3-layer model (shown in 

Fig. 4). In the proposed prediction model, the number of 

connected input channels defines the number of input layer 

neurons, and the level of connected buffers reflects the time of 

first spike to input neuron. The number of input channels 

depends on the location of the node in the NoC. For the 4x4 

NoC, inner routers have more input channels as compared to 

corner router (as shown in Fig.2). The output layer of the SNN  

has one neuron and its spike time will determine the predicted 

router status (i.e., congested, non-congested) after 30 clocks. 

The number of hidden layers and number of neurons in each 

hidden layer depends on the complexity of the dataset 

(utilization patterns). In order to minimize network size without 

compromising network performance, we analysed different 

numbers of hidden layers with different number of neurons in 

each layer, i.e., to find the optimal hidden layer size. The SNN 

is optimized to a size where further reduction in hidden layer 

neurons will start reducing the prediction performance.  During 

the SNN training, the neuron membrane threshold ‘𝜃’ and 

learning rate ‘τ’ help to regulate synaptic weights to generate 

spikes within the predefined time (NTF). These parameters are 

tuned to improve the learning rate of synapse weights and firing 

times of the SNN with in one NTF. Simulations were run on 

training datasets to achieve less than 5% Mean Square Error 

(MSE). The SNN predictor was developed in MATLAB for 

training and validation of NoC hotspot data. The parameters 

used for the configuration of the proposed SNN model are 

defined in Table 2. 
TABLE 2         SNN CONFIGURATION PARAMETERS 

Parameter Value 

Neurons in input layer 3-4 for corner nodes and 5 for inner 

nodes 

Neurons in hidden layer 15  

Neurons in output layer 1 neuron (congested/non-congested) 

Threshold (𝜽) 40 

Learning rate (τ) 3 

Mean Square Error (MSE) ≤ 5% 

The proposed model is highly scalable and can be 

implemented with any NoC size, mapping information, selection 

strategy and architecture. For any NoC configuration, the SNN 

is required to train on initial traffic patterns generated using a 

defined configuration to predict local congestion. The 

experimental setup has considered synthetic and multimedia 

applications to analyse prediction coverage under varying traffic 

scenarios. Each application has different traces for mapping on 

4x4 NoC (discussed in Section IV.A.i. Traffic Scenarios). As a 

change in the mapping information changes source/destination 

nodes thus altering traffic flow which ultimately changes 

location of congestion. Section-IV-A(ii) discussed 

experimentation conditions that leads to hotspot formation and 

in Fig.8 and example of hotspot formation in an 4x4 NoC using 

MMS application traces is depicted.  

Neural Computation begins with the start of a neural time 

frame (Fig. 5) and buffer utilization data arrives at the input 

neurons of the connected SNN predictor. A control signal (NTF) 

is part of the SNN that will allow input neurons to read 

utilization values from the Noxim simulator. Neurons in the 

SNNs are trained to produce spikes at each layer within 

predefined time (𝑇𝑖 , 𝑇𝑝 and 𝑇𝑜 (section III.D)). After a 

predefined time, a control signal disables the SNN from reading 

inputs from the buffers. The SNN will take time to process the 

information and a compute result. Data is processed through the 

network layers in the form of spikes and the final result is the 

aggregated in the output network layer. The spike time of the 

output neuron determines the status of the router as congested or 

non-congested after 30 clock cycles. For a given input, if the 

SNN predictor spikes within a defined time ‘𝑡𝑐’ (i.e. time is used 

to classify patterns as congested) then the network is more prone 

to getting congested; if the SNN predictor spikes after that time 

‘𝑡𝑛𝑐’, then the NoC router will not get congested for the next 30 

clock cycles. In MATLAB, SNNs are trained to generated 

output spikes within the output spike time 𝑇𝑜. Once an output 

neuron spikes and information is forwarded to the congestion 

handling mechanism, the control signal (NTF) resets and 

enables the input layer of neurons to read buffer utilization 

values from Noxim and to then propagate spikes through the 

hidden layer towards output layer to predict potential hotspots.  
 

iv. Performance Analysis Parameters 
 

The proposed prediction models are analyse using two 

confusion matrix-based performance parameters: prediction 

accuracy (𝑃
𝑎
) and prediction precision (𝑃

𝑝
).  

𝑃𝑎 =
(∑ 𝑇𝑃 + ∑ 𝑇𝑁

∑(𝑃 + 𝑁)
 (5) 

𝑃𝑝 =
Σ 𝑇𝑃

Σ𝑃
 (6) 



 
 where positive (𝑃) associates with congestion patterns and 

negative (𝑁) is associated with non-congestion patterns.  𝑇𝑃 

and 𝑇𝑁 define correct predictions of the congestion patterns 

(𝑃) and non-congestion patterns (𝑁), respectively. Simulation 

results include average prediction accuracy and prediction 

precision of the whole mesh network as well as inner and corner 

nodes to further analyse prediction performance at each node. 

V. RESULTS AND DISCUSSION 

    This section provides simulation results and outlines 

hardware utilization of proposed SNN based NoC traffic 

predictor. 

 
A. Simulation Analysis:  

    To evaluate prediction performance of the proposed 
congestion method, the dataset is divided into two parts for 
training and validation. Experimental datasets extracted from 
noxim simulator are divided 60% for training and 40% for 
validation. Neural algorithms (SNN models) are trained for each 
traffic scenario to compare prediction capabilities of SRM-based 
SNN predictor with SpikeProp used as the learning algorithm 
(SRM-Spikeprop), and the LIF neuron based SNN predictor 
with SpikeProp to update synaptic weights during training (LIF-
Spikeprop). For simulation analysis, we use congestion 
prediction accuracy and prediction precision as parameter to 
evaluate performance. To evaluate performance of both neuron 
models, results are analysed as an average prediction accuracy 
of i). the whole NoC and ii). Inner and corner routers only.  

i. Performance Evaluation Under Synthetic Traffic Application  

    Built- Noxim synthetic traces were used to generate router 
buffer utilization patterns in the NoC. To determine the 
prediction accuracy and prediction coverage of synthetic traffic, 
buffer utilization patterns from each router were fed to the SNN 
for the particular router to predict its congestion 30 clocks in 
advance.  

    The average prediction accuracy of the proposed SNN 
network models for the four synthetic traffic patterns are 
provided in Table 3. The LIF model shows an accuracy between 
88.28% to 94.84% as compared to SRM model that predicts 
congestion between 85.28% to 92.91% accuracy. 

TABLE 3         AVERAGE PREDICTION ACCURACY UNDER 
SYNTHETIC TRAFFIC TRACES  

 LIF-Spikeprop (%) SRM-Spikeprop (%) 

Transpose1 88.28 85.28 

Transpose2 90.63 92.72 

Butterfly 90.23 88.28 

Shuffle 94.84 92.91      

TABLE 4         AVERAGE PREDICTION ACCURACY OF INNER AND 
CORNER NODES SNN UNDER SYNTHETIC TRAFFIC TRACES 

 LIF-Spikeprop (%) SRM-Spikeprop (%) 

Corner Inner Corner Inner 

Transpose1 89.98 83.19 86.19 82.56 

Transpose2 88.88 95.88 91.67 95.88 

Butterfly 86.98 100.00 84.38 100.00 

Shuffle 97.19 87.81 98.46 76.25 

     Table 4 provides the performance of LIF-SpikeProp and 
SRM-Spikeprop SNN models on synthetic application traces for 
Corner and Inner router. For inner routers, the SRM based model 
gives an overall prediction accuracy of between 76.25% and 

100% as compared to LIF-based SNN predictor with between 
83.19% and 100%. For the corner router, the LIF model 
predictor exhibits between 86.98% and 97.19%, with the SRM 
model between 86.19% and 98.46% accuracy.  

TABLE 5      AVERAGE PREDICTION PRECISION UNDER SYNTHETIC 

TRAFFIC TRACES 

 LIF-Spikeprop (%) SRM-Spikeprop (%) 

Transpose1 91.97 91.97 

Transpose2 82.09 73.00 

Butterfly 88.66 88.66 

Shuffle 85.42 85.23 

     Table 5 shows prediction precision performance of the 

proposed LIF-SpikeProp and SRM-Spikeprop based SNN 

models on synthetic application traces. The LIF-based 

prediction model has shown 82.09%~91.79% prediction 

precision as compared to 73.00%-91.97% prediction precision 

for the SRM-based SNN model. 
 

ii. Performance Evaluation Under Real-Time Multi-Media 
Application 

     To determine the prediction accuracy and prediction 

coverage on real-time applications, the MPEG-4 [44] and MMS 

[2] applications traces were mapped on the Noxim simulator to 

generate buffer utilization patterns.  

 
TABLE 6       AVERAGE PREDICTION ACCURACY UNDER REAL-TIME 

MULTIMEDIA TRAFFIC TRACES  

 LIF-Spikeprop (%) SRM-Spikeprop (%) 

MPEG-4   95.73 95.45 

MMS 96.25 95.69 

    Table 6 depicts the average congestion prediction 

performance of LIF and SRM models on real-time multimedia 

applications. SRM model shows 95.45% to 95.69% accuracy as 

compared with LIF model 95.73% to 96.25% average 

prediction accuracy.  

 
TABLE 7      AVERAGE PREDICTION ACCURACY OF INNER AND 

CORNER NODES SNN UNDER REAL-TIME MULTIMEDIA TRAFFIC 
TRACES 

 LIF-Spikeprop (%) SRM-Spikeprop (%) 

corner inner corner inner 

MPEG-4 98.21 88.31 98.21 87.19 

MMS 96.48 99.56 95.73 99.56 

    Table 7 shows accuracy results for LIF-Spikeprop and SRM-

SpikeProp. For corner routers, the LIF-SpikeProp is able to 

predict congestion between 96.48% to 98.21% accurately 

compared with SRM-SpikeProp where 95.73% to 98.21% 

accuracy is achieved. However, in the inner routers the LIF 

model shows an accuracy of 88.31% to 99.56% as compared 

with SRM based model with accuracy of 87.19% to 99.56%. 

 
TABLE 8         AVERAGE PREDICTION PRECISION UNDER 

MULTIMEDIA TRAFFIC TRACES 

 LIF-Spikeprop (%) SRM-Spikeprop (%) 

MPEG-4   96.73 97.47 

MMS 93.92 98.48 

The prediction precision performance of proposed LIF-based 

and SRM-based SNN models on multi-media application traces 

are provided in table 8. SRM based prediction model predicted 

congestion with more precision (97.47%-98.48%) as compared 

to LIF based SNN model (93.92%-96.73%). 

 



 
B. Discussion: 

    In the synthetic traffic application, patterns are more likely to 

repeat after certain time intervals. In a regular traffic flow, these 

patterns are easy to predict. As depicted in Table 3, Butterfly 

traffic shows 100% prediction accuracy in corner routers. That 

happens because of the nature of regular application, were an 

increase in PIR increases network delay but doesn’t affect traffic 

patterns in the network. Problems arise when nodes start 

entering into the congestion state. Congestion in a node causes 

delays in transmission of the data flowing through the congested 

node. Congestion changes the behaviour of data flow patterns 

and hence makes difficulties for prediction algorithm. Neural 

networks are exceptionally good at learning under changing 

behaviour, specifically for temporal patterns in digital NoC, 

SNNs are an ideal candidate to predict congestion. Congestion 

prediction is difficult for those routers which show irregularities 

in utilization patterns under high PIR.  

    Simulation results shows that LIF-SpikeProp performed well 

in predicting congestion under different traffic conditions as 

compared to the SRM-SpikeProp model. In the synthetic traffic 

application, SRM-Spikeprop model predict congestion in with 

92.91% maximum average accuracy as compared to LIF-

SpikeProp model 94.84%. In the real-time multimedia 

application, LIF-SpikeProp model predicts congestion up to 

95.69% accurately as compared to SRM based model that shows 

96.25% peak average prediction accuracy. Moreover, LIF based 

prediction model gives an overall prediction precision between 

82.09% and 96.73% as compared to SRM-based SNN predictor 

with between 73% and 98.48%. 

    As explained in Section II-A, Inner routers are more 

susceptible to congestion. Tables 4 and 7 show the prediction 

accuracy of both models in inner and corner nodes. Results for 

inner routers shows that both neural models gives an overall 

maximum prediction accuracy of 100% (butterfly traffic traces). 

Whereas in corner nodes, LIF-SpikeProp and SRM-SpikeProp 

are capable to predict congestion with 98-21% and 98.46% peak 

average accuracy respectively. Overall results shows that LIF 

model predict congestion with more accurately and precisely as 

compared to SRM mode.  

      The scope of this work is limited to check congestion 

prediction coverage of spiking neurons in NoC architecture. 

The overall efficiency of network is dependent on congestion 

prediction and congestion handling mechanism. In this work, 

the SNN congestion predictor showed good prediction accuracy 

and in term of prediction coverage, the LIF-Spikeprop predictor 

was more accurate as compared to SRM-Spikeprop. The output 

of the SNN predictor is ideally forwarded to a routing algorithm 

or congestion handling mechanism to enable a new routing 

decision to be made in advance of the congestion being created. 

This aspect of the work is not addressed in this paper and 

focuses only on the prediction capability.  

C. Hardware Area Overhead:  

The work from [50] provide area estimates in evaluating the 

compactness of the proposed SNN predictor. By using the same 

approximation for neural model (shown in Fig. 4) we can 

calculate hardware overhead with respect to EMBRACE static 

and adaptive router [51], [52]. In NoC architecture, one static 

router, one adaptive router, one neurons, and one synapse will 

utilize 201 × 10−3 𝑚𝑚2, 56 × 10−3 𝑚𝑚2, 9 × 10−6 𝑚𝑚2 and 

24 × 10−8 𝑚𝑚2 area respectively using 90 nm CMOS 

technology. In this work we proposed a layer of SNN predictors 

over the NoC where each router is connected to its own SNN. 

Therefore, we will evaluate hardware overhead in term of SNN 

to router overhead percentage. Hardware cost for one fully 

connected 3-layer SNN model [5:10:1] is 288 × 10−6 𝑚𝑚2. 

Therefore, hardware costs for SNN is ~0.14% of static router 

whereas in adaptive router SNN increases the hardware by 

~0.51%. SRM neuron consumes 2.5 times more hardware area 

as compared to LIF model[53], [54]. Comparing with 

EMBRACE static and adaptive router, SRM costs ~0.35% and 

~1.26% area overhead. Analysis shows that overall hardware 

cost for SNN predictors is very low which makes them suitable 

for implementation on NoC for congestion prediction.  

D. Comparison against Existing Neural Prediction 

Techniques: 

In the NoC, ANNs are used in congestion aware routing 

algorithms. The only work of congestion prediction in NoCs is 

presented in [10], where an ANN-based predictor forecasts 

congestion based on synthetic and real-time multimedia 

applications. It uses a multi-layer ANN as an independent 

processing element (PE) in the NoC architecture that is capable 

of reading utilization data of neighbouring routers and 

predicting congestion with an accuracy ranging from 65% to 

92%.  

Due to the temporal nature of buffer utilization patterns, the 

SNN based prediction model showed an improved accuracy of 

88.28%-95.69% compared to the ANN model [10]. Our 

proposed SNN predictor is computationally fast and requires 

less clock cycles to process data for the prediction task. The 

ANN model used one neural network for a 4x4 cluster which 

increases workload in determining exact congestion location to 

routing algorithm. However, our work proposed a layer of 

SNNs where every router has its own SNN predictor. In term of 

hardware overhead, the proposed models utilized 0.14%-0.51% 

and 0.35%-1.26% additional hardware as compared to 5.6% for 

the ANN based predictor. Thus, the two proposed configuration 

costs only exhibit minimal hardware overhead and provide 

improved prediction accuracy.  

VI. CONCLUSION 

In this work we proposed a novel SNN based congestion 

predictor that uses buffer utilization to predict congestion 30 

clocks in advance of it occurring. Every router is associated 

with one SNN to identify hotspot locations. The proposed SNN 

prediction strategy is based on the integration of the 

backpropagation SpikeProp training algorithm with two spiking 

LIF and SRM neurons to encode synaptic weights. The two LIF 

and SRM neuron models were explored to assess which is most 

effective for prediction. Both SNN Predictors were trained and 

validated on synthetic and multimedia application traffic traces 

to evaluate prediction performances. This work explored and 

analysed the prediction performance of proposed SNN 

predictors on i) overall NoC network array and ii)  on Inner and 

corner routers only. Simulation results showed that LIF-

SpikeProp provided better prediction performance with 

88.28%-96.25% accuracy and 82.09%-96.73% precision as 

compared to SRM-SpikeProp with 85.25%-95.69% accuracy 

and 73%-98.48% prediction precision. Both models performed 

exceptionally well in predicting NoC congestion. Results 



 
suggests that the LIF-Spikeprop model has a slight performance 

advantage on SRM-Spikeprop model. 

Future work includes exploration of other parameters i.e. 

channel latency, traveling time and link utilization to enhance 

prediction performance.  In next step we will introduce and 

assess congestion handling/routing mechanisms that will 

receive the prediction outcome from the SNN and be able to 

avoid the creation of the congested path by re-routing the data 

in advance. 
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