
Predicting Networks-on-Chip Traffic Congestion with

Spiking Neural Networks
Aqib Javed, Jim Harkin, Liam McDaid, Junxiu Liu

School of Computing, Engineering and Intelligent Systems,

Ulster University, Magee Campus, Derry, Northern Ireland, United Kingdom

Abstract— Network congestion is one of the critical reasons for

degradation of data throughput performance in Networks-on-

Chip (NoCs), with delays caused by data-buffer queuing in

routers. Local buffer or router congestion impacts on network

performance as it gradually spreads to neighbouring routers and

beyond. In this paper, we propose a novel approach to NoC traffic

prediction using Spiking Neural Networks (SNNs) and focus on

predicting local router congestion so as to minimise its impact on

the overall NoCs throughput. The key novelty is utilising SNNs to

recognise temporal patterns from NoC router buffers and

predicting traffic hotspots. We investigate two neural models,

Leaky Integrate and Fire (LIF) and Spike Response Model (SRM)

to check performance in term of prediction coverage. Results on

prediction accuracy and precision are reported using a synthetic

and real-time multimedia applications with simulation results of

the LIF based predictor providing an average accuracy of 88.28%-

96.25% and precision of 82.09%-96.73% as compared to 85.25%-

95.69% accuracy and 73% and 98.48% precision performance of

SRM based model when looking at congestion formations 30 clock

cycles in advance of the actual hotspot occurrence.

Keywords— Networks-on-Chip; congestion prediction; network

traffic; Spiking Neural Networks

I. INTRODUCTION

The downsizing of the transistor has enabled many

processing cores to be integrated on a single chip to form a

scalable and parallel multi-processor System-on-Chip [1].

These devices are highly dependent on resource utilization and

system reliability as they exploit parallel computation for

performance gains and require scalable, high interconnect

bandwidth between processor cores [2]. In particular, for multi-

processor systems the interconnect challenges includes

communication topology, routing schemes, arbitration,

switching, and flow control [3]. Networks-on-Chip (NoC) has

been proposed [4] to address these communication challenges

where information is communicated as small packets of data.

The NoC provides high bandwidth and concurrent

communication channels for transferring of data between

multiple cores [5]. NoCs face congestion problems due to

uneven workload distribution across many routers [3] leading

to hotspots of congestion. The Quality of Service (QoS) of a

NoC is a measurement of run time performance. One promising

solution to maximise the QoS is adaptive routing algorithms

which aim to balance the traffic congestion across many routers

in the NoC [6].

To date neural networks have shown success in the domains

of pattern recognition and prediction [7] and in particular,

Spiking Neural Networks (SNNs) can now be implemented in

hardware [8-9] with low area overheads. Therefore, neural

networks can be explored as a mechanism for prediction of NoC

traffic congestions, i.e., identify hotspots before they occur. In

this paper, the temporal nature of SNNs is harnessed for hotspot

prediction in NoCs. The SNN training algorithm of SpikeProp

with Leaky Integrate and Fire (LIF) and also Spike Response

Model (SRM) neuron models are explored in the prediction of

router congestion. The ultimate goal of the proposed work is to

use a hardware scalable SNNs to predict network congestion

and support a congestion handling scheme to minimise router

traffic unbalance.

Major contributions of this paper include:

 Novel use of SNNs in the prediction of congestion in NoC

architectures.

 Simulation and evaluation of two SNN models to evaluate

prediction coverage on NoC architecture.

 Validation of results and performance of SNN models

under different traffic applications generated by Noxim

simulator.

Section II provides background on SNN networks and

existing approaches. Section III reports on the SNN-based NoC

hotspot prediction methodology, and the experimental setup is

outlined in section IV. Section V present simulation results and

section VI provides a conclusion and outlines future work.

II. PRELIMINARIES

This section gives a brief introduction to the cause and

effects of congestion on NoC architectures and also presents an

overview of existing research on congestion prediction.

A. Congestion and Effects on NoC Performance

In NoC architectures, routing switches and network channels

are susceptible to congestion due to the unbalanced load

distribution caused by executing applications[6]. Different

routing algorithms i.e., XY, Even-Odd etc. are employed to

overcome traffic unbalancing problem in on-chip interconnects.

Goal of routing algorithms are to distribute load across all

available routing paths. Routing algorithms can be classified as

Deterministic and Adaptive where Deterministic algorithms

follow a fixed path from source to destination node. Adaptive

algorithms can change routing path depending on current

network conditions. These algorithms mostly use buffer

information to identify on-path congestion where routers have

limited numbers of available buffers to compensate unbalanced

traffic flows. One promising solution is to add additional

Manuscript File

buffers on input and output ports of routers. These buffers can

avoid the backpressure effect by queuing more input packets

and stopping the spread of congestion towards neighbouring

nodes however queuing will cost further delays in packet

transmission that will also affect overall system performance

(latency and throughput). The congestion problem will still

persist if these buffers are filled [10], [11].”

Consider that a 4-input buffer NoC router (router-X)

encounters with burst traffic. The neighbouring/on-path routers

are equipped with an adaptive routing algorithm which can

react to congested nodes and re-route data through alternative

path. Hence the data packet is routed towards the destination

node thus keeping the flow away from the congested node. The

data packets queued at input buffers adds to the network delay

as these packets are soaked out of network thus affecting

network throughput.

Now, consider a router-X with 6-input buffers to provide

more space to incoming data packets. The additional buffers

will compensate the formation and spread of congestion

towards neighbouring node. As the adaptive routing algorithm

will have available spaces in router-X therefore data packets

will be forwarded towards router-X. As the router is

encountered with burst traffic it may soon run-out of buffers.

The data packets queued in the additional buffers have to wait

more than usual before getting forwarded by the router-X.

These additional packet delays will add further to the network

delay. As more packets are soaked out of the network this will

further affect network throughout. .

Path congestion occurs in three phases [12] including 1).

Switch contention inside router. If a number of packets from

different input channels compete for the same output channel,

switch contention will occur (Shown in Fig. 1(a)); 2). Router

congestion. Several inputs from multiple channels are

competing to connect with same output channel, only one

channel will get access to output channel and rest of packets are

queued at input buffers of their respective channels: and 3).

Channel congestion. As input buffers have limited data storage

capacity and may run out of space on arriving of new data.

Queue of packets causes back pressure to neighbour routers and

data starts queuing in buffers of neighbour nodes. This back

pressure untimely leading to cluster or network congestion as

shown in Fig 1(b).

Network topology, arbitration, switching and data flow

mechanisms must be considered to avoid NoC congestion[3].

Buffer, links and status register are on-chip resources of NoC

architecture and flow control mechanisms use these resources

to minimize transmission delay[13]. Nodes with higher routing

loads are more susceptible to congestion[3], [10]. Mostly, NoC

architecture are employed with Warm-hole Flow Control

(WFC) mechanism to packetize data into small chunks (called

flits: header, body and tail) and transmit them in a pipelined

form. Routing functions establish set of routing channels as

soon as it receives header flit. Body flits followed by tail flit

routed on same channels. As tail flit leave the router, routing

function cancel the reservation and reallocate it to next on queue

header flit. Unfortunately, blockage of header flit along

established path cause body and tail flits to wait on host router

[14]. Queuing of packetized data leads router into congestion

that will ultimately cause back pressure to neighbour routers.

Virtual Channels (VC) can be used with buffers to minimize

effects of flow control mechanisms.

 Recent studies [3], [12], [15] showed that local congestion

has a significant impact on network performance. Data

transmission between source to destination nodes can suffer

with high latency if congestion is encountered. The proposed

work focuses on the router congestion to avoid local congestion

and restrict the spreading of congestion to neighbouring routers.

B. Related work

Adaptive routing algorithms with local or global information

require congestion information across all nodes to make

decisions. Depending on path diversity, adaptive algorithms re-

route data packets around congestion nodes or flatten the

distribution of traffic among the links. The key inhibitor in an

adaptive routing algorithm is its need to have local and global

network information, which is difficult to obtain without

increased area and delays in decision making.

Regular mesh NoCs use a static two-dimensional routing

algorithm called XY routing [16]. In XY, data travels in the X-

dimension before moving in the Y-dimension while trans-

versing from source to destination nodes. A congestion aware

adaptive XY routing (DyXY) [17] approach was proposed to

improve XY latency problems. Depending on the neighbour

congestion status, DyXY transmits data in either X or Y

directions. The Odd-Even (OE) routing algorithm [18] is

proposed to avoid dead-lock caused in XY routing. DyAD [19]

is a hybrid routing algorithm which gives both static and

adaptive routing conditions. Depending on path congestion,

DyAD dynamically switch between routing algorithms. If path

is clear then the OE (static) routing algorithm will be deployed

to transmit data, if the path is congested then the odd-even turn

(adaptive) algorithm will be used to transmit data towards

destination node. A routing controller in adaptive routing

algorithms determine the minimal path to optimize NoC

Router C

H-

Full

Don’t sendDon’t send

Router B Router A

Full Full

Backpressure

Block

FIFO

FIFO

FIFO

FIFO

FIFO

Routing Table
Arbitration Unit

North

East

West

South

Core

North

East

West

South

Core

Crossbar (a)

(b)

Fig. 1 (a). Illustration of switch contention (dashed lines show multiple switch

request to the North output). (b). Effect of congestion and Backpressure.

performance. Therefore overall performance of routing

algorithms are dependent on the routing controller [15]. Most

routing algorithms monitor local traffic to identify on path

congestion and re-route data through less congested node. This

approach uses congestion information of the neighbouring

routers to identify and forward data packets through least

congested on-path nodes. These routing algorithms have

misjudgement problems [20] as they forward data packets

towards congested nodes. These queued data packets add into

the spread of congestion across non-congested neighbouring

nodes, thus affecting network performance by increasing the

packet latency and decreasing network throughput [3], [20].

Congestion-Aware Adaptive Routing (CAAR) methods [15]

are key research areas in tackling NoC congestion. CAAR use

selection functions to react to congestion. Output buffer length

(OBL) selection functions [14] use buffer occupancy

information of downstream routers to make decisions.

Selection strategies based on Neighbours-on-Path concepts use

free slot information of all neighbours to select next hop. Some

selection functions use switch contention information as an

additional metric for decision purpose. A Path-Congestion

Aware Adaptive Routing (PCAR) algorithm use free buffer

slots and crossbar demand as metrics to a selection function. An

Odd-Even turn model for mesh platform with build-in

guaranteeing QoS arbitration use buffer information and switch

values to identify congestion-free minimal path[15].

All these works are reactive to congestion and use real-time

network values i.e. available buffer slots, crossbar demand etc.

to calculate on path congestion. These congestion-aware

techniques are helpful in reducing the effect of an already

occurred congestion, via bypassing the flow of data through

other available, less congested channels. Hence, minimizing the

workload of overburdened routers and therefore enhancing

overall NoC efficiency. These CAAR algorithms have no prior

information about congestion until they reach close to the

congested node. NoC efficiency can be increased further if

congestion in a network or node is predicted before arrival of

data packets close to congested nodes. It provides enough time

for a routing node to react on potential congestion and re-route

data through alternative paths. This advanced prediction and

data re-routing technique reduces the probability of predicted

nodes entering into a congestion state, thus improving overall

network throughput [13].

Work presented in [21] used a low power application-driven

traffic pattern table for predicting end to end traffic to

dynamically adjust the working frequencies/voltages of the

routers in NoC. It achieves 86% dynamic power savings in NoC

links with 21% packet latency overheads. Other solutions

include the execution of task mapping at run time, to meet real-

time traffic constraints [22]. However due to time variation in

application behaviour, task mapping has limited effort on

improving the latency performance [23].

i. Neural Network and Prediction:

Neural Networks (NNs) comprise of neurons (computational

nodes) and synapses (communication links) to classify

nonlinear and dynamic behaviours of systems. Depending on

type of neural architecture and mathematical modelling, NNs

can be classified into different categories. Neurons in Artificial

Neural Network (ANN) are organized in different topologies,

usually in the form of layers, where information processed in

each neuron layer is transferred to subsequent layers and

collated an output layer. Neurons are modelled by an activation

function that is applied when a change in neuron input occurs

[24]. Comparably to synapses in biological neurons, ANN

neurons are connected through synaptic weights and ANNs use

learning algorithms i.e., backpropagation to update synaptic

weights to establish a relationship between connected (input

and output) neurons [25]. To date neural networks have shown

improvement in the domains of pattern recognition and

prediction [26][27][28][29]. Therefore, neural networks will be

explored as a mechanism for detection and prediction of

network traffic congestion patterns in real-time applications.

An Evolving Fuzzy Neural Network (EFuNN) based low

latency path prediction algorithm is proposed in [30] to

minimize latency issues caused by congestion-aware routing

algorithms. The proposed work showed slight improvement in

routing latency by incorporating existing congestion

information however, the model failed to predict on path

congestion.

An ANN based hotspot prediction mechanism was

previously presented in [10] that monitored online statistical

data to predict hotspot interconnect with an average efficiency

of between 62-92%. However, it is not scalable with high

latency and hardware overheads. In the approach of [31], a two

layered neural network technique is demonstrated which is able

to detect and re-route data under congestion. It uses the

hamming network to compute the link buffer utilization and

then uses the competitive network to find the worst congestion

node. Throughput was increased by 15%, however it does not

explore the prediction of congestion.

These approaches used ANNs to predict congestion and to

the best of the authors’ knowledge none have considered SNNs

in classifying temporal NoC traffic patterns for prediction of

congestion.

SNNs are third generation NNs and claimed as more suitable

learning tools for processing spatiotemporal information [32].

SNNs take rate encoded inputs as spikes and process encoded

information between the input and output layers of the neural

network in a temporal format. In ANNs, neural layers are

updated with inputs in a single time step, whereas in SNNs

inputs are applied in temporal form over a time series of steps.

The key advantage is that SNNs exhibit low hardware area and

power overheads compared to ANNs as the core neural

computations are different [33].

NoC architectures process digital data and the traffic patterns

that flow between NoC are temporal/discrete in nature.

Therefore, this work proposed SNN based prediction model that

process temporal NoC traffic patterns to predict local

congestion.

ii. SNN Model

SNNs closely mimic the operations of the biological nervous

systems by incorporating different neural information

dimensions such as time, frequency, and phase [34][35].

Depending on neural complexity, different SNN models are

proposed to present more biologically realistic neurons [9]. This

work explores Leaky Integrate and Fire (LIF) neurons & Spike

Response Model (SRM) neurons to model neural networks.

LIF Neural Model: The LIF neuron model is effective in

modelling biological neurons for simulating spiking networks

[36] because it provides good trade-off between computational

complexity and hardware area cost. LIF neurons are driven by

exponentially decaying synaptic currents generated by its

synaptic afferents[37]. It integrates all synaptic input currents

to produce a spike after it reaches a certain threshold [38]. The

neuron membrane potential 𝑢𝑖(𝑡) of 𝑖th neuron at time of ′𝑡′
leaks out to a resting potential in the absence of an input current.

It is described by

 𝜏𝑚
𝑑(𝑢𝑖)

𝑑𝑡
= −𝑢𝑖(𝑡) + 𝑅𝐼𝑖

𝑠𝑦𝑛
(𝑡), (1)

where 𝜏𝑚 describes the membrane time constant of the neuron,

𝑅 is the membrane resistance and 𝐼𝑖
𝑠𝑦𝑛

(𝑡) is synaptic current of

𝑖th neuron. On arrival of each spike, membrane potential

changes. When it crosses certain threshold, neuron fires a spike

and goes to a refractory period.

 SRM Neural Model: Spike response model is generalized

variation of LIF neuron model. Neuron membrane potential

excitation and fire are explicitly relay on time of the last

spike.[39] The membrane potential ‘𝑢’ of cell ‘𝑖’ at time ‘𝑡’,

𝑢𝑖(𝑡) is defined as:

 𝑢𝑖(𝑡) = ƞ(𝑡 − ṫ) + ∫ 𝜀(𝑡 −
∞

0
ṫ, 𝑠)𝐼(𝑡 − 𝑠)𝑑𝑠, (2)

where 𝜀 (also called linear filter of membrane) is linear response

to input current 𝐼(𝑡 − 𝑠). ‘ṫ’ is the time of last spike of neuron

𝑖. The time dependency in membrane potential enables the

refractoriness in neuron. Kernel ‘ƞ’ is response of neuron to its

own spike.

 Spikeprop-Learning Algorithm: In past few decades different

learning algorithms for SNNs have been proposed to impose a

precise input-output mapping of spike trains to SNNs. Bothe’s

SpikeProp [40] is based on arithmetic calculations and the

concept is very similar to the back propagation algorithm for

ANNs. SpikeProp learns and updates the cost function in terms

of the difference between actual firing times 𝑡𝑗
𝑎 at output neuron

j and the desired firing time 𝑡𝑗
𝑑 at output neuron 𝑗 by

 𝐸 =
1

2
 ∑ (𝑡𝑗

𝑎 − 𝑡𝑗
𝑑)2

𝑗∈𝐽
. (3)

To minimize the squared difference E, the weight 𝑤𝑖𝑗
𝑘 of each

separate connection 𝑘 of the synaptic terminal between pre-

synaptic input of neuron 𝑖 to neuron 𝑗 should be calculated by

 ∆𝑤𝑖𝑗
𝑘 = −ƞ

𝜕𝐸

𝜕𝑤𝑖𝑗
𝑘 (4)

where ƞ is learning rate of the network.

This work focuses on identifying patterns that leads to

congestion and evaluates prediction capability of the proposed

SNN for NoC architecture on synthetic and multimedia

applications.

III. SNN-BASED NOC TRAFFIC HOTSPOT PREDICTION

This paper proposes the novel use of an SNN in predicting

NoC traffic congestion. This work proposed two congestion

prediction models based on LIF and SRM neurons. Both

models are integrated with SpikeProp learning algorithm to

update synaptic weights between spiking neurons. This section

discusses proposed prediction methodology and congestion

criteria to identify and predict local congestion in NoC

architecture.

A. Proposed Prediction Methodology

To design an SNN based prediction methodology for NoC

architectures, we considered all factors that leads towards the

formation of congestion. Local congestion does not happen

immediately but sources from an overburden node and

accumulates over time. As more data is pushed towards an

overloaded node, it starts to queue data in the input buffers and

starts to effect network throughput. When this router enters

congestion there are often many routers which are not

congested. Due to the process of backpressure, these

uncongested nodes begin to enter into a congestion state. NoC

traffic is highly dependent on following three factors: (i)

location of the router, (ii) application running on the system and

(iii) Packet Injection Rate (PIR). The approach of [10]

investigated the effeteness of buffer utilization data in

determining NoC behaviour especially for congestion

prediction.

This work considered router input buffer utilization as a

congestion prediction parameter pattern. Every router has a

different buffer utilization pattern depending on the mapped

application therefore, every router will be treated independently

to identify congestion. We propose a layer of SNN over the

routing nodes where each router is connected with its own SNN.

This model will help to identity the location of a router and its

congestion status. SNNs takes buffer utilization as an input and

gives predictive congestion status as an output. The proposed

prediction model is scalable with network sizes, traffic

scenarios, topologies and NoC simulator as each node requires

its own SNN that is responsible for prediction of local

congestion.

 Routing algorithms are responsible for data transmission

from source to destination nodes. Adaptive routing algorithms

and CAAR algorithms are only able to see congestion in their

neighbouring nodes (discussed in Section II) and often suffered

with misjudgement issues[20]. These routing algorithms gets

20 21 22

10 11 12

00 01 02

30 31 32

23

13

03

33

Inner nodes

Corner nodes

SNNSNNSNN

SNNSNNSNN

SNN

SNNSNN

SNNSNNSNNSNN

SNN

Fig. 2. 4x4 NoC integrated with proposed SNN based congestion prediction
model at each NoC node

the opportunity to use prediction information to re-route the data

through alternative nodes and hence preventing the node to enter

into congestion state without effecting network throughput.

Using the hotspot status of all routers and traffic patterns we may

predict the congestion of whole network however this is not the

scope of this initial work.

 Routers can be classified based on spatial location such as 1).

Inner router and 2). Corner router. Due to uneven traffic

distribution, Inner routers are more prone to network congestion

as compared to corner routers [3]. Fig. 2 depicts an example 4x4

NoC architecture, where Router ID# [11, 12, 21, 22 etc.] are

inner routers and Router ID# [00, 10, 20, 30 etc.] are corner

routers. Routers are interconnected with bi-directional channels

through buffers. Buffer utilization data will be extracted from

these buffers of each router for training and validation of SNN

to predict NoC congestion.

B. Congestion Criteria.

Network congestion is one of the critical reasons for

degradation of data throughput performance in NoCs.

Congestion occurs when a network fails to deliver packets from

source to destination within a predefined time (time required for

data from the source node towards destination node i.e.,

latency). Data queues in input buffers are the foremost cause of

delays that effects network latency and throughput

performance. Congestion adds delays in packet re-transmission

which impacts predefined transmission time/network

latency.Buffer Utilization is an important NoC performance

parameter [41], [10] and have been demonstrated as a most

effective parameter in identifying congestion. The proposed

congestion prediction criteria is based on overall input buffer

utilization. For example, the router shown in Fig. 3 has five

inputs (North, East, South, West and Local Interface). Each

input buffer can store up to 4 data packets, i.e. for five inputs

there are a total of 20 data slots.

For any given router, if the buffer slots of all input channels

are 50% or more occupied by queued data, with at least one

fully occupied channel (full channel=4), then the router will be

considered as congested. Therefore, for any given traffic

scenario and selection strategy, utilization patterns that contains

one fully occupied input channel with overall occupancy level

of 50% or more, are defined as congestion patterns, and those

patterns that produce occupancy level less than 50% are

considered as non-congestion patterns. Compared to previous

congestion criteria in [10], [42], the proposed congestion

criteria labels each congestion inducing pattern irrespective of

traffic distribution, injection rate, topology and network size.

The hardware implementation of the SNN prediction model

manages NoC congestion and that requires time to process

utilization information in order to make a prediction on local

congestion and to re-route data through alternative paths to

avoid the potential congestion hotspot. The SNN requires 5-7

clock cycles to predict a router status and also requires

additional clock cycles to forward information towards the

congestion handling mechanisms. The congestion handling

mechanism consumes 3-4 clock cycles to process congestion

information and make an alternative routing path decision.

Defining prediction time (in clock cycles) is a critical

element in the design of the prediction algorithm as it should

not be significant in size whereby an incorrect alternative

routing decision is made that causes delays in packet latency.

At the same time, prediction time should not be too short such

that it does not provide sufficient time for the congestion

handing mechanism to avoid the formation of potential hazard

[10].

Therefore, from early experimentation we considered an

optimised 30 clocks look-ahead benchmark to predict local

congestion and forward prediction information towards the

congestion handling mechanism for suppression of any

negative impact. In this work it is assumed that the proposed

SNN predictor will predict congestion 30 clock cycles in

advance to provide enough time for the congestion handling

algorithm to react on it.

C. Prediction Model:

 NoC router throughput is measured in term of the number of

flits per clock cycle. Local congestion drastically affect network

throughput by forcing routers to queue data at input buffers[3].

Using both synthetic and multi-media application traces, we

have collected buffer utilization levels of all network routers.

Data extracted from each router is used for training and

validation of its connected SNN predictor (as shown in Fig.4).

To evaluate our approach, synthetic traffic patterns and a

multimedia application were run independently on the NoC

simulator [42] to generate utilization data for each router. Every

node has its own SNN to predict local congestion (discussed in

section III.A). Therefore, for each traffic trace, buffer utilization

patterns of each node will be fed into its own SNN for training

and validation. The PIR was increased to generate congestion

in NoC architecture.

 As explained in section II, a single congested router may

affect performance of the whole network by forcing its

neighbouring routers to enter into a congestion state. By

monitoring the router input buffer occupancy levels, the spiking

neural network will be able to identify and predict potential

hotpots caused by either back pressure of neighbour routers or

by high traffic flow/loads.

 The scope of this work is limited to evaluating the prediction

coverage of the proposed (LIF and SRM based) SNN models

under various traffic conditions, and to identify an efficient

solution based on prediction performance. The SNN model with

the higher congestion prediction coverage will be integrated

inside each NoC router to minimize the impact of potential

congestion and thus improves network throughput and latency.

Fig. 3. Buffer Utilization model with 4-buffer slots for each input (Green are

free slots; Red are occupied slots)

Y East / West

N
o

rt
h

So
u

th

X East

So
u

th
N

o
rt

h

Core
Core

West

D. SNN Encoding

 SNN encoding depends on the temporal pattern at which

neurons generate spikes. Spiking neural models work on spike

arrival time and encode information in the spatial domain. SNN

neurons read spikes over specific periods of time before

reacting on it. This work used SpikeProp as a learning algorithm

that works on spike propagation from the input layer to the

output layer. So, neurons in the SNN layer will read the time of

the input spike, process it through a hidden layer and then

produce a spike to the output layer. An example timing diagram

of the proposed prediction method is shown in Fig. 5. Neural

Time Frame (NTF) is defined as time required by SNN to

process information from input layer neuron till generation of

spike at output layer neurons. NTF is used for monitoring spike

patterns and at the end of the fixed time, the NTF window

provides time to spiking neurons to undergo through refractory

period. We assumed that SNN runs at higher frequency

(SNN_clk) to generate output spike with in one NoC clock

cycle (NoC_clk). As spikes are based on current buffer levels,

each neuron will fire a spike based on its current occupancy

level. In this approach, it is assumed that each input buffer has

four available slots to pipeline incoming data and spike time

associated to them are 𝑡0,𝑡1,𝑡2,𝑡3 and 𝑡4 respectively, where 𝑡0

depicts all slots are empty and 𝑡4 reflects all slots are occupied.

Also 𝑇𝑖 is the maximum time at which a neuron fires a spike;

after that time, it is reset to zero. The SNN processes the data in

time 𝑇𝑝 and gives an output in time 𝑇𝑜 (𝑇𝑝+𝑇𝑖 <𝑇𝑜<𝑡𝑚), where

𝑡𝑚 is the maximum output spike time. The output of the SNN

indicates a router status as either Congested (𝑡𝑐) or un-

congested (𝑡𝑛𝑐). To minimize latency and sufficiently predict

ahead of the time of congestion occurring, 𝑇𝑝 must be small in

duration. During simulations, SNN models with different

parameters were explored to minimize overall processing time;

e.g. the number of hidden layers and number of neurons in each

layer that not only decreases training time but also improves the

prediction capability of proposed model.

IV. EXPERIMENTAL SETUP

This section presents the experimental setup established to
generate utilization data from NoC architectures and the use of
data in SNN prediction of congestion hotspots. Synthetic and
multimedia application traffic patterns are used as target
applications. These applications are mapped to the network
simulator to generate buffer utilization data for each router. PIR
is increased to generate router congestion. Datasets with
predefined congestion values are used for training of proposed
prediction models. NoC architectures use a random selection
strategy with an XY routing algorithm which enables each router

to send data randomly hence creating the probability of
congestion at different NoC nodes.

A. Simulation Setup

 Experiments were carried out using synthetic and multimedia
application data traces for checking the effectiveness of the
proposed SNN predictor. These traces contained mapping
information for each NoC node (e.g., source node, destination
node and PIR) to generate network traffic. Inner nodes are more
prone to congestion therefore this work utilised a 4x4 2D mesh
topology with random selection strategy that provides enough
inner and corner hotspot nodes (shown in Fig.4) to analyse
prediction coverage of the proposed prediction model under
different traffic patterns. Depending on the location of the router,
each router is connected between 2-4 neighbouring routers
through network channels. We used the Noxim simulator [43]
which is an open source cycle accurate simulator to extract
buffer utilization data for the SNN training and validation. All
routers have 2 VCs per input port, and each input has 4 buffering
slots. Parameters used for Noxim are defined in table 1.
Simulations were run for 1,000 clocks to generate buffer
utilization data. Input buffer patterns that lead to congestion after
30 clocks cycles were defined as congestion occurring patterns,
and patterns which didn’t transform into congestion after 30
cycles are noted as un-congested patterns. Collected data was
divided (60:40) for training and validation purposes,
respectively.

 TABLE 1 NOXIM CONFIGURATION PARAMETERS

Simulator Noxim

Topology Mesh

Network Size 4x4

Arbitration Round Robin

Selection Strategy Random

Packet Size Two Flits

Traffic Distribution Synthetic, Multimedia

Routing Algorithm XY routing

Buffer Depth 8 Flits / 4 Packet Slots

Flit Size 32-Bit

It is assumed that buffer information for each input will
arrive as an individual packet and will be updated after a fixed
time. As the SNN predictor receives inputs as temporal patterns,
buffer levels are encoded as a spike time of input to a neuron.
The time required for the SNN to process input patterns and

Fig. 4. Connections between router input channels and proposed SNN based
congestion prediction model.

Fig. 5. Timing diagram of SNN for encoding and transmission of temporal

information.

X

Input Hidden Output

South

West

Core

North

East

Towards
routing

algorithm

Ti Tp

SNN_clk

SNN Process

Time (T)

Spike Train

To

tc tncte th tf

Ti Tp

te th tf

NTF

NoC_clk

generate an output is termed as a processing time, as noted in
Fig. 5.

i. Traffic Scenarios

To check the effectiveness of the proposed SNN predictors
we considered two traffic scenarios: a). Synthetic traffic scenario
and b) real-time application scenario.

a. Synthetic Traffic Scenarios

The Noxim simulator provides built-in synthesis traces to
evaluate network performance under varied traffic loads. These
traces include transpose1, transpose 2, butterfly and shuffle. A
4x4 2D mesh topology (shown in Fig.2) is used as the structure
for performance evaluation of the synthetic traffic.

Transpose traffic: In transpose1, router (𝑥, 𝑦)sends packets
to (𝑁 − 1 − 𝑥, 𝑀 − 1 − 𝑦), where N and M represents size of
mesh along horizontal and vertical axis respectively.

Transpose2 traffic: allows a router (𝑥, 𝑦) to communicate
with router (𝑦, 𝑥). Transpose1 and transpose2 are symmetric and
transpose to each other.

Butterfly traffic: Packets are sent using (𝑘 − 𝑎𝑟𝑦 𝑛 −
𝑓𝑙𝑦: 𝑘𝑛) configuration, where n is used to direct output stages
and k is the radix of each switch.

Shuffle traffic: this traffic send packets from (𝑥, 𝑦) to
((𝑁 + 𝑥 − 1)𝑚𝑜𝑑 𝑁, (𝑁 + 𝑦 − 1)𝑚𝑜𝑑 𝑁).

b. Real-Time Multi-Media Traffic Scenarios

We considered a Multimedia System (MMS) and Moving
Picture Experts Group-4 (MPEG-4) application traces to analyse
performance on real-time multi-media traffic scenarios. MMS
and MPEG-4 application traces (source node, destination node
and PIR) are mapped into the Noxim simulator. More detail on
extraction of real-time multi-media traffic traces to map on 2D
NoC are discussed in [44]. Once the applications are mapped,
data packets are traversed through 2D mesh using routing
algorithms and a selection strategy (Table 1) to generate
utilization datasets.

MultiMedia System (MMS): A generic MMS benchmark
consisting of the H.263 video encoder-decoder and mp3 audio
encoder-decoder were designed in [10] to evaluate performance
of heterogeneous architectures. The MMS application includes
40 tasks that are scheduled across NoC nodes using mapping
information (traces) generated using [45], [46]. The MMS traces
are mapped on 4x4 NoC using Noxim.

Moving Picture Experts Group-4 (MPEG-4): MPEG-4 is a
widely used standard video decoder application to benchmark
system performance [47]–[49]. MPEG4 application traces
mimic the communication of interactive audio-visual scenes
between nodes and they are generated using Mesh based On-
Chip interconnection Architectures (MOCA) in [44]. Using the
Noxim simulator, these traces are mapped across NoC nodes to
generate buffer utilization patterns.

ii. Hotspot Generation

Routers are more likely to get congested under high traffic
loads. A small increment in PIR increases the amount of data in
the NoC channels hence increases network latency. Fig. 6 shows
the effect of PIR on network latency using synthetic and multi-

media applications. The figure shows that a high PIR leads the
network into congestion. After a certain increment level in PIR,
the network reached saturation. With further increases in PIR the
network throughput plateaus out as the routers become

Fig. 7. Congestion distribution across different traffic scenarios

Fig. 8. Maximum buffer utilization on each router for MMS

Fig. 6. Average delays under different PIRs and traffic traces

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P

er
ce

n
ta

g
e

Traffic Distribution

Congestion Patterns Non-congestion Patterns

0

5000

10000

15000

20000

25000

30000

0 . 0 10 . 0 5 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

A
V

E
R

A
G

E

D
E

L
A

Y

PIR

tranpose1 transpose2 Shuffle

butterfly MPEG-4 MMS

congested. To generate congestion conditions in the NoC
architecture, PIR must be high enough to maintain the network
in saturation condition. Depending on the routing algorithm
used, saturation points fall at different PIR values for distinct
traffic scenario. As illustrated from Fig. 6, every traffic pattern
has a different saturation point, but all traffic patterns enter into
congestion after PIR=~0.5. In this work, PIR is increased up to
0.5 to force routers to enter into congestion. This enables the
SNN predictor to be evaluated. Fig.7 illustrates the overall traffic
distribution to determine the percentage of traffic labelled as
congested and non-congested. It is depicted that Tranpose-1 and
transpose-2 traffic scenarios have generated the highest density
(>30%) of congestion patterns whereas the shuffle traffic
scenario generated (~11%) the least congestion causing patterns.

Fig. 8 shows the number of flits routed by each router during
1,000 clocks cycles: routers 0,0 through to 3,3 as per Fig.2. For
the MMS application, it is depicted from generated patterns that
inner routers have more traffic loads compared to corner routers.
Because of application mapping and routing algorithm, these
routers have to process more data packets and are more prone to
congestion. It is also clear from utilization datasets that some
router doesn’t even enter into congestion because of traffic
distribution. As the MMS application has a static traffic
distribution, patterns are likely to repeat randomly. According to
the proposed congestion criteria in Section III-B, it is evident
from figure 8, that only three routers ID#[11, 12 and 13] entered
into congestion state. If congestion for these routers is predicted
in advance, then the network can prevent the impact from back
pressure via re-routing packets on alternate paths. The same
selection criteria will be used for MPEG-4, transpose1,
transpose2, Butterfly and Shuffle traffic.

iii. SNN Architecture

 The SNN predictor is modelled and simulated using

MATLAB and uses a fully connected 3-layer model (shown in

Fig. 4). In the proposed prediction model, the number of

connected input channels defines the number of input layer

neurons, and the level of connected buffers reflects the time of

first spike to input neuron. The number of input channels

depends on the location of the node in the NoC. For the 4x4

NoC, inner routers have more input channels as compared to

corner router (as shown in Fig.2). The output layer of the SNN

has one neuron and its spike time will determine the predicted

router status (i.e., congested, non-congested) after 30 clocks.

The number of hidden layers and number of neurons in each

hidden layer depends on the complexity of the dataset

(utilization patterns). In order to minimize network size without

compromising network performance, we analysed different

numbers of hidden layers with different number of neurons in

each layer, i.e., to find the optimal hidden layer size. The SNN

is optimized to a size where further reduction in hidden layer

neurons will start reducing the prediction performance. During

the SNN training, the neuron membrane threshold ‘𝜃’ and

learning rate ‘τ’ help to regulate synaptic weights to generate

spikes within the predefined time (NTF). These parameters are

tuned to improve the learning rate of synapse weights and firing

times of the SNN with in one NTF. Simulations were run on

training datasets to achieve less than 5% Mean Square Error

(MSE). The SNN predictor was developed in MATLAB for

training and validation of NoC hotspot data. The parameters

used for the configuration of the proposed SNN model are

defined in Table 2.
TABLE 2 SNN CONFIGURATION PARAMETERS

Parameter Value

Neurons in input layer 3-4 for corner nodes and 5 for inner

nodes

Neurons in hidden layer 15

Neurons in output layer 1 neuron (congested/non-congested)

Threshold (𝜽) 40

Learning rate (τ) 3

Mean Square Error (MSE) ≤ 5%

The proposed model is highly scalable and can be

implemented with any NoC size, mapping information, selection

strategy and architecture. For any NoC configuration, the SNN

is required to train on initial traffic patterns generated using a

defined configuration to predict local congestion. The

experimental setup has considered synthetic and multimedia

applications to analyse prediction coverage under varying traffic

scenarios. Each application has different traces for mapping on

4x4 NoC (discussed in Section IV.A.i. Traffic Scenarios). As a

change in the mapping information changes source/destination

nodes thus altering traffic flow which ultimately changes

location of congestion. Section-IV-A(ii) discussed

experimentation conditions that leads to hotspot formation and

in Fig.8 and example of hotspot formation in an 4x4 NoC using

MMS application traces is depicted.

Neural Computation begins with the start of a neural time

frame (Fig. 5) and buffer utilization data arrives at the input

neurons of the connected SNN predictor. A control signal (NTF)

is part of the SNN that will allow input neurons to read

utilization values from the Noxim simulator. Neurons in the

SNNs are trained to produce spikes at each layer within

predefined time (𝑇𝑖 , 𝑇𝑝 and 𝑇𝑜 (section III.D)). After a

predefined time, a control signal disables the SNN from reading

inputs from the buffers. The SNN will take time to process the

information and a compute result. Data is processed through the

network layers in the form of spikes and the final result is the

aggregated in the output network layer. The spike time of the

output neuron determines the status of the router as congested or

non-congested after 30 clock cycles. For a given input, if the

SNN predictor spikes within a defined time ‘𝑡𝑐’ (i.e. time is used

to classify patterns as congested) then the network is more prone

to getting congested; if the SNN predictor spikes after that time

‘𝑡𝑛𝑐’, then the NoC router will not get congested for the next 30

clock cycles. In MATLAB, SNNs are trained to generated

output spikes within the output spike time 𝑇𝑜. Once an output

neuron spikes and information is forwarded to the congestion

handling mechanism, the control signal (NTF) resets and

enables the input layer of neurons to read buffer utilization

values from Noxim and to then propagate spikes through the

hidden layer towards output layer to predict potential hotspots.

iv. Performance Analysis Parameters

The proposed prediction models are analyse using two

confusion matrix-based performance parameters: prediction

accuracy (𝑃
𝑎
) and prediction precision (𝑃

𝑝
).

𝑃𝑎 =
(∑ 𝑇𝑃 + ∑ 𝑇𝑁

∑(𝑃 + 𝑁)
 (5)

𝑃𝑝 =
Σ 𝑇𝑃

Σ𝑃
 (6)

 where positive (𝑃) associates with congestion patterns and

negative (𝑁) is associated with non-congestion patterns. 𝑇𝑃

and 𝑇𝑁 define correct predictions of the congestion patterns

(𝑃) and non-congestion patterns (𝑁), respectively. Simulation

results include average prediction accuracy and prediction

precision of the whole mesh network as well as inner and corner

nodes to further analyse prediction performance at each node.

V. RESULTS AND DISCUSSION

 This section provides simulation results and outlines

hardware utilization of proposed SNN based NoC traffic

predictor.

A. Simulation Analysis:

 To evaluate prediction performance of the proposed
congestion method, the dataset is divided into two parts for
training and validation. Experimental datasets extracted from
noxim simulator are divided 60% for training and 40% for
validation. Neural algorithms (SNN models) are trained for each
traffic scenario to compare prediction capabilities of SRM-based
SNN predictor with SpikeProp used as the learning algorithm
(SRM-Spikeprop), and the LIF neuron based SNN predictor
with SpikeProp to update synaptic weights during training (LIF-
Spikeprop). For simulation analysis, we use congestion
prediction accuracy and prediction precision as parameter to
evaluate performance. To evaluate performance of both neuron
models, results are analysed as an average prediction accuracy
of i). the whole NoC and ii). Inner and corner routers only.

i. Performance Evaluation Under Synthetic Traffic Application

 Built- Noxim synthetic traces were used to generate router
buffer utilization patterns in the NoC. To determine the
prediction accuracy and prediction coverage of synthetic traffic,
buffer utilization patterns from each router were fed to the SNN
for the particular router to predict its congestion 30 clocks in
advance.

 The average prediction accuracy of the proposed SNN
network models for the four synthetic traffic patterns are
provided in Table 3. The LIF model shows an accuracy between
88.28% to 94.84% as compared to SRM model that predicts
congestion between 85.28% to 92.91% accuracy.

TABLE 3 AVERAGE PREDICTION ACCURACY UNDER
SYNTHETIC TRAFFIC TRACES

 LIF-Spikeprop (%) SRM-Spikeprop (%)

Transpose1 88.28 85.28

Transpose2 90.63 92.72

Butterfly 90.23 88.28

Shuffle 94.84 92.91

TABLE 4 AVERAGE PREDICTION ACCURACY OF INNER AND
CORNER NODES SNN UNDER SYNTHETIC TRAFFIC TRACES

 LIF-Spikeprop (%) SRM-Spikeprop (%)

Corner Inner Corner Inner

Transpose1 89.98 83.19 86.19 82.56

Transpose2 88.88 95.88 91.67 95.88

Butterfly 86.98 100.00 84.38 100.00

Shuffle 97.19 87.81 98.46 76.25

 Table 4 provides the performance of LIF-SpikeProp and
SRM-Spikeprop SNN models on synthetic application traces for
Corner and Inner router. For inner routers, the SRM based model
gives an overall prediction accuracy of between 76.25% and

100% as compared to LIF-based SNN predictor with between
83.19% and 100%. For the corner router, the LIF model
predictor exhibits between 86.98% and 97.19%, with the SRM
model between 86.19% and 98.46% accuracy.

TABLE 5 AVERAGE PREDICTION PRECISION UNDER SYNTHETIC

TRAFFIC TRACES

 LIF-Spikeprop (%) SRM-Spikeprop (%)

Transpose1 91.97 91.97

Transpose2 82.09 73.00

Butterfly 88.66 88.66

Shuffle 85.42 85.23

 Table 5 shows prediction precision performance of the

proposed LIF-SpikeProp and SRM-Spikeprop based SNN

models on synthetic application traces. The LIF-based

prediction model has shown 82.09%~91.79% prediction

precision as compared to 73.00%-91.97% prediction precision

for the SRM-based SNN model.

ii. Performance Evaluation Under Real-Time Multi-Media
Application

 To determine the prediction accuracy and prediction

coverage on real-time applications, the MPEG-4 [44] and MMS

[2] applications traces were mapped on the Noxim simulator to

generate buffer utilization patterns.

TABLE 6 AVERAGE PREDICTION ACCURACY UNDER REAL-TIME

MULTIMEDIA TRAFFIC TRACES

 LIF-Spikeprop (%) SRM-Spikeprop (%)

MPEG-4 95.73 95.45

MMS 96.25 95.69

 Table 6 depicts the average congestion prediction

performance of LIF and SRM models on real-time multimedia

applications. SRM model shows 95.45% to 95.69% accuracy as

compared with LIF model 95.73% to 96.25% average

prediction accuracy.

TABLE 7 AVERAGE PREDICTION ACCURACY OF INNER AND

CORNER NODES SNN UNDER REAL-TIME MULTIMEDIA TRAFFIC
TRACES

 LIF-Spikeprop (%) SRM-Spikeprop (%)

corner inner corner inner

MPEG-4 98.21 88.31 98.21 87.19

MMS 96.48 99.56 95.73 99.56

 Table 7 shows accuracy results for LIF-Spikeprop and SRM-

SpikeProp. For corner routers, the LIF-SpikeProp is able to

predict congestion between 96.48% to 98.21% accurately

compared with SRM-SpikeProp where 95.73% to 98.21%

accuracy is achieved. However, in the inner routers the LIF

model shows an accuracy of 88.31% to 99.56% as compared

with SRM based model with accuracy of 87.19% to 99.56%.

TABLE 8 AVERAGE PREDICTION PRECISION UNDER

MULTIMEDIA TRAFFIC TRACES

 LIF-Spikeprop (%) SRM-Spikeprop (%)

MPEG-4 96.73 97.47

MMS 93.92 98.48

The prediction precision performance of proposed LIF-based

and SRM-based SNN models on multi-media application traces

are provided in table 8. SRM based prediction model predicted

congestion with more precision (97.47%-98.48%) as compared

to LIF based SNN model (93.92%-96.73%).

B. Discussion:

 In the synthetic traffic application, patterns are more likely to

repeat after certain time intervals. In a regular traffic flow, these

patterns are easy to predict. As depicted in Table 3, Butterfly

traffic shows 100% prediction accuracy in corner routers. That

happens because of the nature of regular application, were an

increase in PIR increases network delay but doesn’t affect traffic

patterns in the network. Problems arise when nodes start

entering into the congestion state. Congestion in a node causes

delays in transmission of the data flowing through the congested

node. Congestion changes the behaviour of data flow patterns

and hence makes difficulties for prediction algorithm. Neural

networks are exceptionally good at learning under changing

behaviour, specifically for temporal patterns in digital NoC,

SNNs are an ideal candidate to predict congestion. Congestion

prediction is difficult for those routers which show irregularities

in utilization patterns under high PIR.

 Simulation results shows that LIF-SpikeProp performed well

in predicting congestion under different traffic conditions as

compared to the SRM-SpikeProp model. In the synthetic traffic

application, SRM-Spikeprop model predict congestion in with

92.91% maximum average accuracy as compared to LIF-

SpikeProp model 94.84%. In the real-time multimedia

application, LIF-SpikeProp model predicts congestion up to

95.69% accurately as compared to SRM based model that shows

96.25% peak average prediction accuracy. Moreover, LIF based

prediction model gives an overall prediction precision between

82.09% and 96.73% as compared to SRM-based SNN predictor

with between 73% and 98.48%.

 As explained in Section II-A, Inner routers are more

susceptible to congestion. Tables 4 and 7 show the prediction

accuracy of both models in inner and corner nodes. Results for

inner routers shows that both neural models gives an overall

maximum prediction accuracy of 100% (butterfly traffic traces).

Whereas in corner nodes, LIF-SpikeProp and SRM-SpikeProp

are capable to predict congestion with 98-21% and 98.46% peak

average accuracy respectively. Overall results shows that LIF

model predict congestion with more accurately and precisely as

compared to SRM mode.

 The scope of this work is limited to check congestion

prediction coverage of spiking neurons in NoC architecture.

The overall efficiency of network is dependent on congestion

prediction and congestion handling mechanism. In this work,

the SNN congestion predictor showed good prediction accuracy

and in term of prediction coverage, the LIF-Spikeprop predictor

was more accurate as compared to SRM-Spikeprop. The output

of the SNN predictor is ideally forwarded to a routing algorithm

or congestion handling mechanism to enable a new routing

decision to be made in advance of the congestion being created.

This aspect of the work is not addressed in this paper and

focuses only on the prediction capability.

C. Hardware Area Overhead:

The work from [50] provide area estimates in evaluating the

compactness of the proposed SNN predictor. By using the same

approximation for neural model (shown in Fig. 4) we can

calculate hardware overhead with respect to EMBRACE static

and adaptive router [51], [52]. In NoC architecture, one static

router, one adaptive router, one neurons, and one synapse will

utilize 201 × 10−3 𝑚𝑚2, 56 × 10−3 𝑚𝑚2, 9 × 10−6 𝑚𝑚2 and

24 × 10−8 𝑚𝑚2 area respectively using 90 nm CMOS

technology. In this work we proposed a layer of SNN predictors

over the NoC where each router is connected to its own SNN.

Therefore, we will evaluate hardware overhead in term of SNN

to router overhead percentage. Hardware cost for one fully

connected 3-layer SNN model [5:10:1] is 288 × 10−6 𝑚𝑚2.

Therefore, hardware costs for SNN is ~0.14% of static router

whereas in adaptive router SNN increases the hardware by

~0.51%. SRM neuron consumes 2.5 times more hardware area

as compared to LIF model[53], [54]. Comparing with

EMBRACE static and adaptive router, SRM costs ~0.35% and

~1.26% area overhead. Analysis shows that overall hardware

cost for SNN predictors is very low which makes them suitable

for implementation on NoC for congestion prediction.

D. Comparison against Existing Neural Prediction

Techniques:

In the NoC, ANNs are used in congestion aware routing

algorithms. The only work of congestion prediction in NoCs is

presented in [10], where an ANN-based predictor forecasts

congestion based on synthetic and real-time multimedia

applications. It uses a multi-layer ANN as an independent

processing element (PE) in the NoC architecture that is capable

of reading utilization data of neighbouring routers and

predicting congestion with an accuracy ranging from 65% to

92%.

Due to the temporal nature of buffer utilization patterns, the

SNN based prediction model showed an improved accuracy of

88.28%-95.69% compared to the ANN model [10]. Our

proposed SNN predictor is computationally fast and requires

less clock cycles to process data for the prediction task. The

ANN model used one neural network for a 4x4 cluster which

increases workload in determining exact congestion location to

routing algorithm. However, our work proposed a layer of

SNNs where every router has its own SNN predictor. In term of

hardware overhead, the proposed models utilized 0.14%-0.51%

and 0.35%-1.26% additional hardware as compared to 5.6% for

the ANN based predictor. Thus, the two proposed configuration

costs only exhibit minimal hardware overhead and provide

improved prediction accuracy.

VI. CONCLUSION

In this work we proposed a novel SNN based congestion

predictor that uses buffer utilization to predict congestion 30

clocks in advance of it occurring. Every router is associated

with one SNN to identify hotspot locations. The proposed SNN

prediction strategy is based on the integration of the

backpropagation SpikeProp training algorithm with two spiking

LIF and SRM neurons to encode synaptic weights. The two LIF

and SRM neuron models were explored to assess which is most

effective for prediction. Both SNN Predictors were trained and

validated on synthetic and multimedia application traffic traces

to evaluate prediction performances. This work explored and

analysed the prediction performance of proposed SNN

predictors on i) overall NoC network array and ii) on Inner and

corner routers only. Simulation results showed that LIF-

SpikeProp provided better prediction performance with

88.28%-96.25% accuracy and 82.09%-96.73% precision as

compared to SRM-SpikeProp with 85.25%-95.69% accuracy

and 73%-98.48% prediction precision. Both models performed

exceptionally well in predicting NoC congestion. Results

suggests that the LIF-Spikeprop model has a slight performance

advantage on SRM-Spikeprop model.

Future work includes exploration of other parameters i.e.

channel latency, traveling time and link utilization to enhance

prediction performance. In next step we will introduce and

assess congestion handling/routing mechanisms that will

receive the prediction outcome from the SNN and be able to

avoid the creation of the congested path by re-routing the data

in advance.

REFERENCES

[1] M. Amin, M. Shakir, A. Javed, M. Hassan, and S. A.

Raza, “Low-cost fault tolerant methodology for real

time MPSoC based embedded system,” Int. J.

Reconfigurable Comput., vol. 2014, 2014.

[2] J. Liu, J. Harkin, Y. Li, and L. Maguire, “Online traffic-

aware fault detection for networks-on-chip,” J. Parallel

Distrib. Comput., vol. 74, no. 1, pp. 1984–1993, 2014.

[3] M. Tang, “Analysis on Local Congestion of Network-

on-Chip,” in Proceedings of the 2nd International

Conference on Computer Science and Electronics

Engineering (ICCSEE 2013), 2013, no. Iccsee, pp.

2863–2866.

[4] A. Benmessaoud Gabis and M. Koudil, “NoC routing

protocols – objective-based classification,” J. Syst.

Archit., vol. 66–67, pp. 14–32, 2016.

[5] U. Y. Ogras and R. Marculescu, “Prediction-based flow

control for network-on-chip traffic,” Proc. DAC-44, pp.

839–844, 2006.

[6] J. Liu, S. Member, J. Harkin, Y. Li, S. Member, and L.

P. Maguire, “Fault-Tolerant Networks-on-Chip

Routing With Coarse and Fine-Grained Look-Ahead,”

IEEE Trans. Comput. Des. Integr. Circuits Syst., vol.

35, no. 2, pp. 260–273, 2016.

[7] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,”

Nature, vol. 521, pp. 436 – 444, 2015.

[8] J. Liu, J. Harkin, L. P. Maguire, L. J. McDaid, J. J.

Wade, and G. Martin, “Scalable Networks-on-Chip

Interconnected Architecture for Astrocyte-Neuron

Networks,” IEEE Trans. Circuits Syst. I Regul. Pap.,

vol. 63, no. 12, pp. 2290–2303, 2016.

[9] J. Liu, J. Harkin, L. P. Maguire, L. J. Mcdaid, and J. J.

Wade, “SPANNER : A Self-Repairing Spiking Neural

Network Hardware Architecture,” IEEE Trans. Neural

Networks Learn. Syst., vol. 29, no. 4, pp. 1287–1300,

2018.

[10] E. Kakoulli, V. Soteriou, and T. Theocharides,

“Intelligent hotspot prediction for network-on-chip-

based multicore systems,” IEEE Trans. Comput. Des.

Integr. Circuits Syst., vol. 31, no. 3, pp. 418–431, 2012.

[11] U. Y. Ogras and R. Marculescu, “Prediction-based

Flow Control for Network-on-Chip Traffic,” in

Proceedings - Design Automation Conference, July 24-

28, 2006, San Francisco, California, USA, 2006, pp.

839–844.

[12] E. J. Chang, H. K. Hsin, S. Y. Lin, and A. Y. Wu, “Path-

congestion-aware adaptive routing with a contention

prediction scheme for network-on-chip systems,” IEEE

Trans. Comput. Des. Integr. Circuits Syst., vol. 33, no.

1, pp. 113–126, 2014.

[13] H. Cai, Y. Yang, F. Qu, J. Wu, and B. Wang,

“Congestion Prediction Algorithm for Network on

Chip,” vol. 11, no. 12, pp. 7392–7398, 2013.

[14] G. Ascia, V. Catania, M. Palesi, I. C. Society, D. Patti,

and I. C. Society, “Implementation and Analysis of a

New Selection Strategy for Adaptive Routing in

Networks-on-Chip,” IEEE Trans. Comput., vol. 57, no.

6, pp. 809–820, 2008.

[15] P. Huang and W. Hwang, “An Adaptive Congestion-

Aware Routing Algorithm for Mesh Network- on-Chip

Platform.”

[16] J. Latif, S. Azam, H. N. Chaudhry, and T. Muhammad,

“Performance Evaluation of Modern Network-on-Chip

Router Architectures,” vol. 2, no. 2, 2016.

[17] Ming Li, Qing-An Zeng, and Wen-Ben Jone, “DyXY -

a proximity congestion-aware deadlock-free dynamic

routing method for network on chip,” 2006 43rd

ACM/IEEE Des. Autom. Conf., pp. 849–852, 2006.

[18] S. K. Subramaniam and R. Nilavalan, “Network

Performance Optimization Using Odd and Even

Routing Algorithm for pipeline network,” in 2016 8th

Computer Science and Electronic Engineering

(CEEC), 2016, pp. 118–123.

[19] S. T. Atik, M. M. Imran, J. N. Mahi, J. A. Jeba, Z. I.

Chowdhury, and M. S. Kaiser, “An Adaptive Routing

Algorithm for on-chip 2D Mesh Network with an

Efficient Buffer Allocation Scheme,” in 2018

International Conference on Computer,

Communication, Chemical, Material and Electronic

Engineering (IC4ME2), 2018, pp. 1–4.

[20] H. Tseng, R. Wu, W. Chang, Y. Lin, and D. Duh, “An

Efficient Traffic-Based Routing Algorithm for 3D

Networks-on-Chip,” in Int’l Conf. Embedded Systems,

Cyber-physical Systems, & Applications (ESCS’16),

2016, pp. 73–79.

[21] Y. S. C. Huang, K. C. K. Chou, and C. T. King,

“Application-driven end-to-end traffic predictions for

low power NoC design,” IEEE Trans. Very Large Scale

Integr. Syst., vol. 21, no. 2, pp. 229–238, 2013.

[22] E. Carvalho, N. Calazans, and F. Moraes, “Congestion-

aware task mapping in NoC-based MPSoCs with

dynamic workload,” Proc. - IEEE Comput. Soc. Annu.

Symp. VLSI Emerg. VLSI Technol. Archit., no. April,

pp. 459–460, 2007.

[23] T. Chen, W. Fu, B. Xie, and C. Wang, “Packet triggered

prediction based task migration for network-on-chip,”

in 20th Euromicro International Conference on

Parallel, Distributed and Network-based Processing

Packet, 2012, vol. 38, no. 4, pp. 316–324.

[24] L. Ali, A. Rahman, A. Khan, M. Zhou, A. Javeed, and

J. A. L. I. Khan, “An Automated Diagnostic System for

Heart Disease Prediction Based on χ 2 Statistical Model

and Optimally Configured Deep Neural Network,” vol.

7, 2019.

[25] I. Khan, H. Zhu, D. Khan, and M. K. Panjwani,

“Photovoltaic Power prediction by Cascade forward

artificial neural network,” pp. 145–149, 2017.

[26] S. H. Adil, M. Ebrahim, and K. Raza, “Prediction of

Eye State Using KNN Algorithm,” 2018 Int. Conf.

Intell. Adv. Syst., pp. 1–5, 2018.

[27] M. Saghir, Z. Bibi, S. Bashir, and F. H. Khan, “Churn

Prediction using Neural Network based Individual and

Ensemble Models,” 2019 16th Int. Bhurban Conf. Appl.

Sci. Technol., pp. 634–639, 2019.

[28] J. Latif, C. Xiao, A. Imran, and S. Tu, “Medical

Imaging using Machine Learning and Deep Learning

Algorithms: A Review,” 2019 2nd Int. Conf. Comput.

Math. Eng. Technol., pp. 1–5, 2019.

[29] M. Jawad, A. Rafique, I. Khosa, I. Ghous, J. Akhtar,

and S. M. Ali, “Improving Disturbance Storm Time

Index Prediction Using Linear and Nonlinear

Parametric Models : A Comprehensive Analysis,”

IEEE Trans. Plasma Sci., vol. 47, no. 2, pp. 1429–1444,

2019.

[30] M. Rezaei-ravari, “Low Latency Path Prediction

Mechanism in 2D - NoC,” Electr. Eng. (ICEE), Iran.

Conf., pp. 1565–1570, 2018.

[31] H. Cai, Y. Yang, F. Qu, J. Wu, and B. Wang,

“Congestion Prediction Algorithm for Network on

Chip,” TELKOMNIKA Indones. J. Electr. Eng., vol. 11,

no. 12, pp. 7392–7398, 2013.

[32] X. Wang, X. Lin, and X. Dang, “Supervised learning in

spiking neural networks : A review of algorithms and

evaluations,” Neural Networks, vol. 125, no. 2020

Special Issue, pp. 258–280, 2020.

[33] B. Han, A. Sengupta, and K. Roy, “On the Energy

Benefits of Spiking Deep Neural Networks : A Case

Study,” in International Joint Conference on Neural

Networks (IJCNN), 2016, no. 1, pp. 971–976.

[34] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire,

“A Supervised Learning Algorithm for Learning

Precise Timing of Multiple Spikes in Multilayer

Spiking Neural Networks,” IEEE Trans. Neural

Networks Learn. Syst., pp. 1–14, 2018.

[35] W. Maass, “On the relevance of time in neural

computation and learning,” in Lecture Notes in

Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1997.

[36] A. Mohemmed, S. Schliebs, S. Matsuda, and N.

Kasabov, “Method for training a spiking neuron to

associate input-output spike trains,” in IFIP Advances

in Information and Communication Technology, 2011.

[37] Q. Yu, H. Tang, K. C. Tan, and H. Yu, “A brain-

inspired spiking neural network model with temporal

encoding and learning,” Neurocomputing, 2014.

[38] W. Gerstner and M. W. Kistler, Spiking Neuron

Models. Cambridge University Press, 2002, 2002.

[39] R. Jolivet, T. J. Lewis, W. Gerstner, R. Jolivet, T. J.

Lewis, and W. Gerstner, “Generalized Integrate-and-

Fire Models of Neuronal Activity Approximate Spike

Trains of a Detailed Model to a High Degree of

Accuracy,” J. Neurophysiol., no. 92, pp. 959–976,

2004.

[40] S. M. Bohte, J. N. Kok, and H. La Poutre, “SpikeProp :

Backpropagation for Networks of Spiking Neurons

Error-Backpropagation in a Network of Spik- ing

Neurons,” Esann, no. May, pp. 419–424, 2000.

[41] N. Mastronarde and C. Ababei, “Benefits and costs of

prediction based DVFS for NoCs at router level,” in

27th IEEE International System-on-Chip Conference

(SOCC), 2014, pp. 255–260.

[42] N. Alfaraj, J. Zhang, Y. Xu, and H. J. Chao, “HOPE :

Hotspot Congestion Control for Clos Network On

Chip,” in Proceedings of the Fifth ACM/IEEE

International Symposium, Pittsburgh, PA, 2011, no. c,

pp. 17–24.

[43] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D.

Patti, “Noxim : An Open , Extensible and Cycle-

accurate Network on Chip Simulator,” 2015 IEEE 26th

Int. Conf. Appl. Syst. Archit. Process., pp. 162–163,

2015.

[44] V. D. B, M. Ho, V. Nguyen, and T. Ngo, “The Analyzes

of Network-on-Chip Architectures Based on NOXIM

Simulator,” in Advances in Information and

Communication Technology. ICTA 2016. Advances in

Intelligent Systems and Computing, vol 538. Springer,

Cham, 2017, vol. 1, pp. 603–611.

[45] Z. Fang, W. U. Ning, Z. Xiaoqiang, Z. Lei, and Y. E.

Yunfei, “An Energy-Aware Voltage-Frequency Island

Partition Method for NoC,” Chinese J. Electron., vol.

25, no. 3, 2016.

[46] J. Liu et al., “Self-repairing learning rule for spiking

astrocyte-neuron networks,” in Lecture Notes in

Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2017.

[47] T. Bjerregaard and S. Mahadevan, “A Survey of

Research and Practices of Network-on-Chip,” ACM

Comput. Surv., vol. 38, no. 1, pp. 1–51, 2006.

[48] Z. Qian et al., “A Support Vector Regression (SVR) -

Based Latency Model for Network-on-Chip (NoC)

Architectures,” IEEE Trans. Comput. Des. Integr.

Circuits Syst., vol. 35, no. 3, pp. 471–484, 2016.

[49] N. Architectures, K. Srinivasan, and K. S. Chatha, “A

Technique for Low Energy Mapping and Routing in

Network-on-Chip Architectures,” in ISLPED ’05.

Proceedings of the 2005 International Symposium on

Low Power Electronics and Design, August 8-10,2005,

San Diego, California, USA, 2005, pp. 387–392.

[50] J. Liu, J. Harkin, M. Mcelholm, and L. Mcdaid, “Case

Study : Bio-inspired Self-adaptive Strategy for Spike-

based PID Controller,” 2015 IEEE Int. Symp. Circuits

Syst., pp. 2700–2703, 2015.

[51] S. Carrillo et al., “Advancing interconnect density for

spiking neural network hardware implementations

using traffic-aware adaptive network-on-chip routers,”

Neural Networks, vol. 33, pp. 42–57, 2012.

[52] J. Harkin, F. Morgan, L. Mcdaid, S. Hall, B. Mcginley,

and S. Cawley, “A Reconfigurable and Biologically

Inspired Paradigm for Computation Using Network-

On-Chip and Spiking Neural Networks,” Int. J.

Reconfigurable Comput., vol. 2009, 2009.

[53] A. Rosado, M. Bataller, and J. Guerrero, “FPGA

implementation of Spiking Neural Networks,” in

Proceedings of the 1st IFAC Conference on Embedded

Systems, Computational Intelligence and Telematics in

Control - CESCIT , Germany, 2012, vol. 45, no. 4, pp.

139–144.

[54] A. Pulikkakudi et al., “Fault-tolerant Learning in

Spiking Astrocyte-Neural Networks on FPGAs,” in

31st International Conference on VLSI Design (VLSID

2018) & 17th International Conference on Embedded

Systems (ES 2018), 2018.

