5,538 research outputs found

    Fault-Tolerant FPGA-Based Systems

    Get PDF
    This paper presents a new approach to on-line fault tolerance via reconfiguration for the systems mapped onto field programmable gate arrays (FPGAs). The fault detection, based on self-checking technique, is introduced at application level; therefore our approach can detect the faults of configurable logic blocks (CLBs) and routing interconnections in the FPGAs concurrently with the normal system work. A grid of tiles is projected on the FPGA structure and a certain number of spare CLBs is reserved inside every tile. The number of spare CLBs per tile, which will be used as a backup upon detecting any faulty CLB, is estimated in accordance with the probability of failure. After locating the faulty CLBs, the faulty tile will be reconfigured with avoiding the faulty CLBs. Our proposed approach uses a combination of hardware and software redundancy. We assume that a module external to the FPGA controls automatically the reconfiguration process in addition to the diagnosis process (DIRC); typically this is an embedded microprocessor having some storage for the various tile configurations. We have implemented our approach using Xilinx Virtex FPGA. The DIRC code is written in JBits software tools. In response to a component failure this approach capitalizes on the unique reconfiguration capabilities of FPGAs and replaces the affected tile with a functionally equivalent one that does not rely on the faulty component. Unlike fixed structure fault-tolerance techniques for ASICs and microprocessors, this approach allows a single physical component to provide redundant backup for several types of components

    A FPGA-Based Reconfigurable Software Architecture for Highly Dependable Systems

    Get PDF
    Nowadays, systems-on-chip are commonly equipped with reconfigurable hardware. The use of hybrid architectures based on a mixture of general purpose processors and reconfigurable components has gained importance across the scientific community allowing a significant improvement of computational performance. Along with the demand for performance, the great sensitivity of reconfigurable hardware devices to physical defects lead to the request of highly dependable and fault tolerant systems. This paper proposes an FPGA-based reconfigurable software architecture able to abstract the underlying hardware platform giving an homogeneous view of it. The abstraction mechanism is used to implement fault tolerance mechanisms with a minimum impact on the system performanc

    UA2TPG: An untestability analyzer and test pattern generator for SEUs in the configuration memory of SRAM-based FPGAs

    Get PDF
    This paper presents UA2TPG, a static analysis tool for the untestability proof and automatic test pattern generation for SEUs in the configuration memory of SRAM-based FPGA systems. The tool is based on the model-checking verification technique. An accurate fault model for both logic components and routing structures is adopted. Experimental results show that many circuits have a significant number of untestable faults, and their detection enables more efficient test pattern generation and on-line testing. The tool is mainly intended to support on-line testing of critical components in FPGA fault-tolerant systems

    Methodology of highly reliable systems design

    Get PDF
    Práce představuje alternativní metodiku k již existujícím technikám pro návrh číslicových systémů se zvýšenou spolehlivostí implementovaných do obvodů FPGA a doplňuje některé nové vlastnosti při realizaci a testování těchto systémů. Práce se opírá o využití částečné dynamické rekonfigurace obvodu FPGA při návrhu systémů odolných proti poruchám, kde může být částečná rekonfigurace využita jako mechanizmus pro opravu a zotavení systému po výskytu poruchy. Práce nejprve představuje obecné principy diagnostiky, testování a spolehlivosti číslicových systémů včetně stručného popisu programovatelných obvodů FPGA a jejich architektury. Dále pokračuje přehledem současných metod a technik při návrhu a implementaci systémů odolných proti poruchám do obvodů FPGA, kde jsou popsány zejména techniky z oblasti detekce a lokalizace poruch, opravy a posuzování kvality návrhu. Nejdůležitější částí práce je popis metodiky pro návrh, implementaci a testování systémů odolných proti poruchám, která byla vytvořena pro obvody FPGA, jejichž konfigurační paměť je založena na pamětech typu SRAM. Nejprve je prezentována technika pro vytváření a automatizované generování hlídacích obvodů pro číslicové systémy a komunikační protokoly v FPGA, následně je prezentovaná referenční architektura spolehlivého systému implementovaného do FPGA včetně několika odolných architektur využívajících principu částečné dynamické rekonfigurace jako mechanizmu opravy a zotavení po výskytu poruchy. Dále je popsán způsob řízení rekonfiguračního procesu a testovací platforma pro snadné testovaní a ověření kvality systémů odolných proti poruchám implementovaných dle navržené metodiky. V závěru jsou diskutovány experimentální výsledky a přínos práce.In the thesis, a methodology alternative to existing methods of digital systems design with increased dependability implemented into FPGA is presented, new features which can be used in the implementation and testing of these systems are demonstrated. The research is based on the use of FPGA partial dynamic reconfiguration for the design of fault tolerant systems. In these applications, the partial dynamic reconfiguration can be used as a mechanism to correct the fault and recover the system after the fault occurrence. First, the general principles of diagnostics, testing and digital systems dependability are presented including a brief description of FPGA components and their architectures. Next, a survey of currently used methods and techniques used for the design and implementation of fault tolerant systems into FPGA is described, especially the methods used for fault detection and localization, their correction, together with the principles of evaluating fault tolerant systems design quality.  The most important part of the thesis is seen in the description of the design methodology, implementation and testing of fault tolerant systems implemented into FPGAs which uses SRAMs as the configuration memory. First, the methodology of developing and automated checker components design for digital systems and communication protocols is presented. Then, a reference architecture of a dependable system implemented into FPGA is demonstrated including several fault tolerant architectures based on the use of partial dynamic reconfiguration as the mechanism of fault correction and the recovery from it. The principles of controlling the reconfiguration process are described together with the description of the test platform which allows to test and verify the design of fault tolerant systems based on the methodology presented in the thesis. The experimental results and the contribution of the thesis are discussed in the conclusions.

    Homeostatic Fault Tolerance in Spiking Neural Networks : A Dynamic Hardware Perspective

    Get PDF
    Fault tolerance is a remarkable feature of biological systems and their self-repair capability influence modern electronic systems. In this paper, we propose a novel plastic neural network model, which establishes homeostasis in a spiking neural network. Combined with this plasticity and the inspiration from inhibitory interneurons, we develop a fault-resilient robotic controller implemented on an FPGA establishing obstacle avoidance task. We demonstrate the proposed methodology on a spiking neural network implemented on Xilinx Artix-7 FPGA. The system is able to maintain stable firing (tolerance ±10%) with a loss of up to 75% of the original synaptic inputs to a neuron. Our repair mechanism has minimal hardware overhead with a tuning circuit (repair unit) which consumes only three slices/neuron for implementing a threshold voltage-based homeostatic fault-tolerant unit. The overall architecture has a minimal impact on power consumption and, therefore, supports scalable implementations. This paper opens a novel way of implementing the behavior of natural fault tolerant system in hardware establishing homeostatic self-repair behavior

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    Microprocessor fault-tolerance via on-the-fly partial reconfiguration

    Get PDF
    This paper presents a novel approach to exploit FPGA dynamic partial reconfiguration to improve the fault tolerance of complex microprocessor-based systems, with no need to statically reserve area to host redundant components. The proposed method not only improves the survivability of the system by allowing the online replacement of defective key parts of the processor, but also provides performance graceful degradation by executing in software the tasks that were executed in hardware before a fault and the subsequent reconfiguration happened. The advantage of the proposed approach is that thanks to a hardware hypervisor, the CPU is totally unaware of the reconfiguration happening in real-time, and there's no dependency on the CPU to perform it. As proof of concept a design using this idea has been developed, using the LEON3 open-source processor, synthesized on a Virtex 4 FPG
    corecore