
Computing and Informatics, Vol. 21, 2002, 489–505

FAULT-TOLERANT FPGA-BASED SYSTEMS

Khaled Elshafey

System and Computer Engineering Department

Faculty of Engineering, Al-Azhar University

Cairo, Egypt

e-mail: k elshafey@hotmail.com

Jan Hlavička

Computer Science and Engineering Department

Czech Technical University

Karlovo nám. 13, 121 35 Prague 2, Czech Republic

Manuscript received 23 April 2002; revised 30 October 2002

Communicated by Norbert Frǐstacký

Abstract. This paper presents a new approach to on-line fault tolerance via recon-
figuration for the systems mapped onto field programmable gate arrays (FPGAs).
The fault detection, based on self-checking technique, is introduced at applica-
tion level; therefore our approach can detect the faults of configurable logic blocks
(CLBs) and routing interconnections in the FPGAs concurrently with the normal
system work. A grid of tiles is projected on the FPGA structure and a certain num-
ber of spare CLBs is reserved inside every tile. The number of spare CLBs per tile,
which will be used as a backup upon detecting any faulty CLB, is estimated in accor-
dance with the probability of failure. After locating the faulty CLBs, the faulty tile
will be reconfigured with avoiding the faulty CLBs. Our proposed approach uses
a combination of hardware and software redundancy. We assume that a module
external to the FPGA controls automatically the reconfiguration process in addi-
tion to the diagnosis process (DIRC); typically this is an embedded microprocessor
having some storage for the various tile configurations. We have implemented our

approach using Xilinx Virtex FPGA. The DIRC code is written in JBits software
tools. In response to a component failure this approach capitalizes on the unique
reconfiguration capabilities of FPGAs and replaces the affected tile with a func-
tionally equivalent one that does not rely on the faulty component. Unlike fixed



490 K. Elshafey, J. Hlavička

structure fault-tolerance techniques for ASICs and microprocessors, this approach

allows a single physical component to provide redundant backup for several types
of components.

Keywords: FPGAs, configurable logic blocks (CLBs), fault tolerance, reconfigu-
ration, redundancy

1 INTRODUCTION

Design of fault-tolerant systems (FTS) is gaining popularity and importance, be-
cause high reliability and high availability are becoming a standard requirement.
Typical application areas are the transportation, communications, on-line process
control, or multiple-access transaction processing. Fault tolerance (FT) can be car-
ried out by means of using spare resources to replace the faulty ones and to take over
their function. However, it mostly leads to increased area overhead and degradation
in the system performance, but also to the increase in energy consumption, heat
dissipation and weight and volume increase. Due to the current progress in semi-
conductor technology, these drawbacks are becoming less important and are largely
overweighed by the desirable functional properties of the resulting systems.

There are many approaches to FTS design that can be classified according to
several criteria. To the most important criteria belongs the level of FT tool applica-
tion. Here we can distinguish three main streams: system-level FT, building block
(intermediate) level FT and component-level FT. As the designers mostly cannot
change the internal structure of the components used, the first two approaches are
used more frequently and are therefore developed to a higher degree of sophistica-
tion [17]. This paper, on the other hand, deals with the idea of embedding the FT
directly in the components with the goal of designing FTS.

The regular structure of FPGAs and their inherent redundancy make them an
almost ideal tool for the implementation of low-level FT technique. Since a typical
design uses only a portion of the logic and interconnect resources of the FPGA, the
unused resources can provide spares to be used to replace the faulty ones. To use
these spares systematically, we must solve the following main problems:

• detection of a failure during the component application,

• location of the fault to within a replaceable unit,

• reconfiguration of the FPGA structure in accordance with the diagnostic data
obtained.

These three problems will be treated in the present paper.



Fault-Tolerant FPGA-Based Systems 491

2 DIFFERENT APPROACHES TO FPGA FAULT TOLERANCE

Recent advances in fabrication technology and device architecture have resulted in
tremendous growth of FPGA density. Currently commercially available devices can
map up to one million or more system gates, for instance Xilinx Virtex FPGA series
has densities from 50 k to 1M system gates [20]. Because of their short turnaround
time and programmability in the field, they have been widely used for rapid pro-
totyping and hardware emulation of VLSI chips and other purposes. Now they are
increasingly used in mainstream applications, such as communications or digital sig-
nal processing [3]. One important class are SRAM-based FPGAs, which can easily
be reprogrammed any number of times. As FPGAs increase in size and comple-
xity, their probability of faults also increases; therefore thorough testing becomes
increasingly important. FPGAs may suffer from a variety of faults. These include:
wires having breaks or two wires being electrically connected; a programmable con-
nection being inoperative so that the wires can only be connected or can only be
disconnected; and a programmable logic element not capable of being programmed
as intended due to various faults. Thus, a testing procedure ensuring reliable reuse
and functional modifiability of FPGAs is needed [15].

FPGA FT has been the focus of several recent papers [2, 4, 12]. In [12] the au-
thors proposed a low-overhead FT FPGA system approach that capitalizes on the
unique reconfiguration capabilities of FPGAs. The physical design is partitioned
into tiles and the tiles are partitioned into subtiles, each containing at least one
spare CLB. Tiling provides many advantages in the implementation of fault-tolerant
FPGA systems. First, the amount of memory needed to store the set of alterna-
tive configurations is smaller than the amount required to store a set of complete
configurations. In addition, it increases reliability.

To enforce the fault-tolerance at run-time, all tile configurations are stored in
an external memory before the circuit begins its operation. The system normally
runs with the original configuration until a fault is detected. Upon detection, the
circuit ceases the functional mode until the proper reconfiguration of the faulty tile
is activated. The result of this reconfiguration is the elimination of the faulty CLB
and its replacement by a fault-free one. However, there are unspecified test and
diagnosis mechanisms assumed, the number of spare elements not estimated, and
the size of tiles is not specified either.

In [2], a dynamic FT approach for CLBs of an FPGA has been introduced. An
on-line testing, diagnosis, and fault tolerance techniques are integrated into a unified
framework. The testing is performed in two spare regions (vertical and horizontal)
of the chip called self-testing areas (STARs), concurrently with the normal system
operation in the rest of the chip as shown in Figure 1. After a STAR is completely
tested, it roves across the chip so that eventually the entire FPGA is tested. Roving
involves transferring a portion of the system function into the previous STAR and
configuring a STAR in the just released region. A STAR consists of several disjoint
tiles, which are tested concurrently. Every tile contains a test structure called BIS-
TER. Both the testing process and the STAR roving mechanism rely on run-time



492 K. Elshafey, J. Hlavička

reconfiguration (RTR) and are controlled by a Test and Reconfiguration Controller
(TREC) external to the FPGA. TREC is implemented as an embedded processor
with means for fault tolerance. TREC reads the test results from every BISTER,
and when test failures are reported by a BISTER, TREC initiates diagnostics to
locate the faults, and performs the reconfigurations needed to bypass the located
faults. However, this approach detects faults in the STAR, so if a fault occurred
in the working area, it will not be detected until this area is under test. This ap-
proach considers the FPGA at a low level of abstraction, as a matrix of a CLBs
interconnected through general routing switches. The specific characteristics of the
application circuit mapped onto the FPGA are not taken into account. The fault
latency (the interval between the occurrence of a fault and its detection) is bounded
by the interval required for testing the entire FPGA.

Fig. 1. Moving area under test across the chip

In [4], a high-level approach to the design of fault-tolerant systems by using
on-line detection and reconfiguration in FPGA architectures has been introduced.
Here the fault detection techniques are introduced at the application system level.
The underlying idea is partitioning the dataflow path of the application circuit
into disjoint subgraphs in which self-checking is achieved. These subgraphs are
then suitably grouped into disjoint clusters, each of which is mapped onto a tile
(portion of the FPGA). When a fault is detected in a subgraph (subtile) of the
tile the whole tile is reconfigured onto a spare tile of the FPGA without requiring
a specific diagnostic phase. The main advantages of this approach are limiting the
circuit complexity of the overall system through reducing the number of checking
points, as well as reducing the total latency by avoiding a specific diagnostic phase.
However, this approach is very area consuming because the whole faulty tile will be
reconfigured onto a spare tile in spite of the fact that only a part of the tile (maybe
only one CLB) is faulty, another problem is the size of the spare tile. We know that
the sizes of the tiles are not equal and they are based on the application circuit.
Therefore the spare tile to be used to replace a tile must be large enough to host
the largest tile mapped onto the FPGA, and in this case there will be more wasted
CLBs.

Our approach is based on a tiling approach as in [2, 4, 12], but with some
differences. There is specific testing and diagnosis mechanisms used, the faults are



Fault-Tolerant FPGA-Based Systems 493

detected on-line, the number of spare elements is flexible, and the JBits tool is used
to control the FT process. The designer partitions the physical circuit into a set of
tiles and applies a self-checking technique for each tile. The sizes of the device tiles
are equal to the sizes of the application tiles, with some spare CLBs added for the
purpose of the FT. We aim to minimize the area overhead by locating the faulty cells
inside the faulty tile and using spare cells inside the same faulty tile instead of the
faulty ones during the reconfiguration process. The sizes of the tiles will be small
because each individual disjoint sub graph including its checker will be mapped onto
a different tile and this will lead to the simplicity of the reconfiguration process.

3 FAULT MODEL

The CLB usually consists of three types of logic modules: D flip-flops, multiplexers
and look-up tables (LUTs) [20]. Multiplexers and LUTs are typical configurable
devices, while D flip-flops are not really configurable, although their asynchronous
control signals (reset, clock) are configurable by means of multiplexers. Our ap-
proach detects the faults at the application system level, so it can detect CLB faults
or the routing switches and wires faults. However, our fault location algorithm can
locate faults only in the CLBs, therefore we presume that the CLBs may be faulty,
while the switches and wires are fault-free. For instance, LUT faults are such that
any number of the configuration bits could be stuck-at or could have address line
faults (functional inputs). In our approach, any number of faulty CLBs can be
detected. There are two classes of faults, the first containing faults that are inde-
pendent and identically distributed (iid), i.e., uniformly distributed faults, where
each element fails with independent probability. Secondly, there are nonuniform
faults (clustering model), which postulate the existence of non-overlapping regions,
alternatively known as quadrats or blocks [13]. For our study we will assume the
first class.

4 ON-LINE TESTING APPROACH

As the reconfiguration should happen during the application run, we need a reliable
tool to discover any failure immediately after its occurrence. A method that may
serve this purpose is the self-checking for the given class of faults [1]. This means that
using a code checker, we can determine whether the circuit output is correct or not,
without knowing the correct output value. It is desirable to design circuits, including
checkers, to be self-checking for as many faults as possible. Error detecting codes
form the basic framework for the design of a concurrent checking methodology [10].
The use of on-line testing (i.e., checking circuits in conjunction with coded outputs
to detect faults) has many advantages over off-line testing, because the output errors
are detected immediately upon occurrence and the diagnostic software is eliminated
or at least substantially simplified. However, more hardware is required, including
the checker, and the additional hardware must be checked too.



494 K. Elshafey, J. Hlavička

Our approach to the on-line testing will be based on the partitioning of the
digital system into tiles and using distributed checkers in the tiles to provide the
fault location by identifying the checker by which the error is detected [6, 7].

Each circuit tile contains an individual circuit with coded output to be checked,
and a checker. The FPGA is partitioned into device tiles equivalent to the circuit
tiles, as shown in Figure 2. This operation is performed prior to mapping the circuit
onto the FPGA. An optimized algorithm has to be used to reduce the number of
checkers in the application circuit to save the area and reduce the total time.

Fig. 2. Proposed FPGA tile

For on-line error detection we chose the Berger code. The structure [1] of a to-
tally self-checking checker for this code is shown in Figure 3. The circuitN1 generates
checks bits from the information bits. The two-rail equality checker, N2, compares
the check bits of the input word with the check bits generated by N1. Finally,
a hardcore logic (exclusive-OR) is used to generate only one error signal.

Fig. 3. Totally self-checking checker for Berger code

We evaluated the proposed approach by applying it to six MCNC bench-
marks [9]. These benchmarks have the form of two-level AND-OR expressions
computed by Berkeley’s minimizer Espresso [5]. They do not use coded signals,
so the output functions were first encoded in a unidirectional code, such as Berger
or m-out-of-n code, which allows the detection of all multiple unidirectional errors.



Fault-Tolerant FPGA-Based Systems 495

Each physical circuit was partitioned into different numbers of tiles in order to
find the partition that has the minimum overhead by comparing it with the case
of the single tile mode, i.e., a single checker for the whole circuit. For example, in
the Newcpla2 benchmark, 44CLBs are used for implementing the circuit in a single
tile mode with a maximum delay of 40.6 ns. The number of utilized CLBs for two,
three, five, and ten tiles (checkers) is 51, 54, 58, and 58 with a maximum delay of
39.03 ns, 33.84 ns, 40.29 ns, and 35.5 ns, respectively. The best choice of the number
of tiles is two if we need a minimum area overhead and three if we need a minimum
time overhead.

Table 1 compares the number of CLBs used and the maximum delay in the case
of no checker, single checker and distributed checker. This comparison was made
using the Xilinx XC4003 family and the Xilinx Foundation CAD tool version ‘3.1’.

Bench. # # Without checker Single checker Distributed checker
in out CLBs Delay CLBs Delay CLBs Delay Checkers

Dc1 4 7 4 14.2 10 25.31 9 20.38 2

Br2 12 8 63 48 93 57.24 93 62.02 2

Inc 7 9 33 27.4 63 39.05 70 35.9 2

Newtpla2 10 4 15 23.2 24 30.58 22 27.4 2

Squar5 5 8 8 18 15 26.26 15 27.73 2

Newcpla2 7 10 31 28 44 40.6 54 33.84 3

Table 1. Experimental results

The experimental results demonstrate that the area measured by the number
of CLBs is nearly duplicated after using the self-checking technique. Comparing
single and distributed checkers, the results show that the overhead depends on the
application. The maximum area overhead for the distributed tiles approach was 23%
higher than the single tile approach in the Newcpla2 circuit, while the maximum time
overhead for the distributed approach was 19% smaller than the single approach
in the Dc1 circuit. The results presented in this paper make the extra hardware
required for distributed checkers more attractive in view of its impact on self-test.

5 DIAGNOSIS ALGORITHM

The on-line error detection method proposed in the previous section will locate the
fault to within a tile, because all error signals from all tiles are fed into an encoder
and the output of the encoder specifies the faulty tile. To locate the faulty CLBs,
we must apply an off-line diagnosing algorithm [19], to the faulty tile. As mentioned
earlier, we presume that the CLBs may be faulty, while the interconnections are
fault-free. The diagnosis algorithm will be applied by rows and by columns and
every intersection of the faulty rows and faulty columns indicates a faulty CLB.
An external Diagnosis and Reconfiguration Controller (DIRC) unit will control this
process.



496 K. Elshafey, J. Hlavička

During fault location, the rows of CLBs of the faulty tile will be configured
into pairs. In the first programming phase, the first CLB row will be configured so
that every CLB becomes a circuit under test (CUT) and the second row a tree of
self-checking checkers — see Figure 4. Here we assume that all CLBs are configured
to implement the same logic function in double-rail logic, so that their outputs are
always in the 1-out-of-2 codes. In the second programming phase, the rows exchange
their roles. The checkers in one row are connected to form a self-checking tree of
checkers, while there is no connection between the CUTs. Only one checker is needed
to verify the outputs of each CUT. The next checker receives the responses from the
previous checker and at the same time receives the outputs from one CUT, and so
on. Finally we have a row of CUTs tested by only one row of checkers and the chip
I/O blocks (IOBs) directly observe the final responses of the last checker. The same
process will be repeated to test the columns, and the intersection of the rows and
columns will indicate the faulty CLBs. The CLB logic modules are configured, the
test pattern generator is applied off-chip, and each CLB is completely tested.

Fig. 4. One programming phase

This diagnosis method can be applied to all types of SRAM-based FPGAs.
In this paper we concentrated on Xilinx Virtex device, which can support partial
reconfiguration. In the Virtex device, each CLB consists of two slices (S0, S1), every
slice is equivalent to one CLB cell as in Xilinx XC4000 series. Each slice consists of
two LUTs (F,G), multiplexers, two flip-flops, and two unregistered outputs (X, Y ).
CLB can be configured with configuration memory cells, using the Xilinx Foundation
CAD tool, version 3.1. Simulation shows that the application of this approach works
well for implementation, i.e., the routing/placement succeeded.

6 CHECKER LOGIC FUNCTION

The logic function implemented by one checker cell should be able to compare out-
puts of two CUTs, and at the same time to check the outputs of each CUT. The two
outputs of each CUT are complemented, for instance configuring the F LUT as XOR
and the G LUT as exclusive-NOR (NXOR) [18]. The multiplexer configurations are
controlled so that the output of the F LUT will be connected to the X output and
the output of the G LUT to Y output. The same test patterns will be applied to all
CUTs simultaneously. Therefore their response must be identical, which means that



Fault-Tolerant FPGA-Based Systems 497

only the patterns 0101 and 1010 will be accepted by the checker. The first output
line of one CUT compares with the first output line of the next CUT, the second
output line of the first CUT with the second output line of the next CUT. Similarly,
the same checker should be able to check that the two output lines of each CUT
are complemented. The results of the comparisons are fed into the next testing cell
to compare with another CUT’s output lines, etc. Hence, the testing cell can deal
with these four inputs and produce two outputs according to Table 2. If both CUT
outputs give the same 1-out-of-2 codes, then both CUTs are fault free. In Table 2
we thus do not have to consider the patterns 1001 and 0110, normally accepted by
the double-rail checkers. This restriction allows us to use a very simple structure of
the checker, as shown in Figure 5.

All CLBs of the faulty tile are fully tested for all single faulty LUTs with two
test configurations (TCs) observing two CUT outputs. In [18], only two TCs (XOR,
NXOR) are needed to test a LUT of any size. Therefore, in the first TC, F LUTs
are configured as XOR and the G LUTs as NXOR. In the second TC, F LUTs are
configured as NXOR and the G LUTs as XOR. Two programming phases are used
to check the rows of the faulty tile per TC, and other two programming phases for
columns per TC. Therefore, the total number of the programming phases needed
are eight. At each phase all configured data and test sequences must be loaded from
off-chip to the SRAM part and operational inputs of the CLB respectively. With
respect to testing a single CLB, we use our fault model to generate the test patterns.
A complete test set for one row of CLBs is then easily composed of the patterns
generated for an individual CLB.

The test time, which is defined as the time required for the test configurations
plus the time required for the test generation [11] is:

TestTime ∼= 8× SRAMsize/frequency, (1)

where, frequency is the reconfiguration clock in which the data must be loaded from
off-chip. The off-chip memory size for our approach is:

OffchipMemorySize ∼= 8× SRAMsize. (2)

I1 I2 I3 I4 Z1 Z2

0 1 0 1 0 1

1 0 1 0 1 0

Any other Com bin. 0 0

Table 2. Truth table of the checker logic function

7 ESTIMATING THE NUMBER OF SPARE CLBS

After locating the faulty CLBs inside the tile, the reconfiguration process has to
be started by avoiding the faulty ones and using the spare ones. Therefore, it is



498 K. Elshafey, J. Hlavička

Fig. 5. Checker logic function

necessary to know the number of the spare CLBs before the reconfiguration process
takes place. The number of spare cells in a tile of size t utilized CLBs is at least [13,
14]:

Sp =

(

1

1− p

) t

4

(3)

and at most:

Sp =

(

1

1− p

) t

2

, (4)

where p is the overall probability of faulty elements distributed in the fashion
described in the fault model and t is the number of CLBs.

For instance, with p = 0.2, for a circuit tile of size 3× 3 CLBs, the parameters t
will equal to 9. The number of spare CLBs (Sp), calculated according to (3) is
nearly equal to 2. Therefore, the total size of the tile on the device will be 11 CLBs.

Based on (3), or (4), the number of spare CLBs per tile was calculated off line.
This number has an effect on the level of FT needed because it specifies the number
of faulty elements that can be tolerated inside the tile, the number of all possible
different configurations generated per tile, and the storage overhead.

The number of spare elements may be assigned per tile or per subtile. In the
case of assigning per tile, the tile will be partitioned into a number of subtiles, each
one of the subtiles having at least one spare CLB. For high reliability, the spare
elements can be assigned per subtile, where the number of spare elements assigned
will be larger and the level of fault tolerance will be high. However, there will be
a higher overhead. After assigning the number of spare CLBs per tile and finding
that it is smaller than the number of faulty CLBs, the reconfiguration process will
only be done if the device still has other unused CLBs.

Table 3 shows the number of spare CLBs in three of the above benchmark
circuits, with fixed p = 0.2. The number of spare CLBs is first assigned per tile and
then the tiles are partitioned into a certain number of subtiles with at least one spare
CLB. Secondly, the tiles are first partitioned into a certain number of subtiles and
the number of spare CLBs is estimated per subtile depending on its utility CLBs.
We note that when the tile size is large, the number of spare elements estimated in
each case is nearly the same. However, when the tile size is small, the difference
between the numbers of spare elements is larger on the side of the subtile case. This
means that the assignment of spares per subtile does not guarantee higher reliability
than the assignment of spares per tile, except in the case of small tile sizes.



Fault-Tolerant FPGA-Based Systems 499

Bench. Tile 1
Size (CLB) Sp/tile Subtiles

#Sub-tiles Sp/Sub-tiles

Newcpla2 21 3.2 5 6.3

Inc 39 8.8 10 12.4

Br2 43 11 11 13.6

Bench. Tile 2
Size (CLB) Sp/tile Subtile

#Sub-tiles Sp/Sub-tiles

Newcpla2 16 2.4 4 5

Inc 31 5.6 8 10

Br2 50 16 13 16

Bench. Tile 2
Size (CLB) Sp/tile Subtile

#Sub-tiles Sp/Sub-tiles

Newcpla2 17 2.6 4 5

Inc — — — —

Br2 — — — —

Table 3. The number of spare CLBs

8 PROPOSED FAULT-TOLERANT APPROACH

The faulty tile located by the diagnosis procedure is then circumvented by a new
configuration downloaded from an external memory. This is possible because some
of the CLBs are used as spares for the rest. Upon detecting an error in a certain
tile, DIRC will automatically be used to handle the fault tolerance process. In
comparison with the TREC controller used in [2], which supports test, diagnosis,
and reconfiguration processes, DIRC will be simpler because the testing process is
already done on-line. DIRC will apply a diagnostic algorithm to locate the faulty
CLB cells inside the device and then start the reconfiguration process. In the case
of devices that support the full reconfiguration, e.g., the Xilinx 4000 family, DIRC
will reload the bitstream data to the device, avoiding the faulty CLB cells. DIRC
was designed by the JBits software package [8, 16]. In the case of the devices, which
support partial reconfiguration, e.g., Virtex family, all possible configurations of
the tiles will be generated off-line and stored in an external configuration memory.
After locating the faulty element and by using the mapping look-up table, DIRC
moves the partial reconfiguration data from the external configuration memory to
the adequate positions in the configuration RAM of the FPGA as shown in Figure 6.

9 RECONFIGURATION PROCESS

Our FT approach is based on tiling technique. Each tile is composed of a set of
physical resources (CLBs and interconnect), an interface specification that denotes



500 K. Elshafey, J. Hlavička

Fig. 6. Structure of the fault-tolerant FPGA system

the connectivity to neighboring tiles, and a net-list. The tiles of small sizes help to
reduce the amount of configuration memory by reducing the size of the component
that is reconfigured. All possible configurations of the tiles are generated off-line.
The number of all possible configurations for a certain tile of area size T CLBs
(utility and spare), and tolerating M faulty CLBs are:





r

M



 ,M ≤ Sp.

Here we assume that for every set of M faulty CLBs we generate only one
configuration.

For example, tile of area size 3 × 4 CLBs (including three spare CLBs), has
12 possible different configuration files in case of tolerating single faulty CLB, each
configuration file has the size of X bytes. Each new configuration is interchangeable
with the original, as the interface between the tile and the surrounding areas of
the design is fixed and the tile’s function remains unchanged. The timing of the
circuit may vary, however, due to the changes in routing. All possible configuration
bitstream files are indexed into a look-up table. This index will help in selecting
the proper configuration file, which does not use the faulty CLBs. For reducing the
storage overhead and increasing the reliability, the tile can be partitioned into three
subtiles, each subtile consisting of 4 CLBs, including one spare CLB. In this case,
only the subtiles which contain the faulty CLBs will be partially reconfigurable,
keeping the function performed by the tile. There are 12 possible configurations for
the three subtiles, each configuration (of the size about X/3 bytes) is independent.
Therefore, partitioning the tile into subtiles reduces the storage overhead by about
67% and allows for tolerating any single fault in a subtile but up to 3 faulty CLBs
in the whole tile.



Fault-Tolerant FPGA-Based Systems 501

10 DESIGN OF DIRC UNIT USING JBITS

JBits is an application program interface (API) to the Xilinx configuration bit-
stream [8]. This API permits Java applications to dynamically modify Xilinx Virtex
bitstreams. This interface operates either on bitstreams generated by Xilinx design
tools, or on bitstreams read back from actual hardware. This provides the capa-
bility of designing and modifying circuits for Xilinx Virtex FPGA devices, which is
achieved by providing access to all the resources of a Virtex device. The advantage
of this approach is primarily that of speed. Java programs performing such reconfi-
gurations can be compiled and run very quickly. JBits may be used as a stand-alone
tool or as a basis to produce other tools, including traditional place and route CAD
applications, as well as more application specific tools.

The bitstream file of the circuit application can be generated using Xilinx Foun-
dation or using JBits. After detecting an error in a certain tile, the diagnosis algo-
rithm is used to locate the faulty CLBs inside the faulty tile, then the reconfiguration
process is started, avoiding the faulty CLBs and using the spare ones as shown in
Figure 7. Therefore, it is necessary to know the number of the spare CLBs per tile
before the reconfiguration process takes place.

Fig. 7. Shows the high level block diagram for the Jbits code

The DIRC unit performs two main processes for the FPGA: diagnosis of the
faulty CLBs and the reconfiguration.

Diagnosis process. After receiving an error signal from a certain tile, and based
on the tile size and its CLB addresses inside the FPGA, the DIRC unit will



502 K. Elshafey, J. Hlavička

generate the eight programming phases needed for the diagnosis process and the
test pattern generation. The faulty tile will be configured by these programming
phases one by one to locate the faulty CLBs by finding the intersection between
the error signals generated from its rows and columns as shown in Figure 7.

Reconfiguration process. As mentioned before, all configuration bitstream files
for all the tiles are generated offline and placed into a mapping look-up table.
These configuration files are indexed to indicate which element(s) they do not
use. For instance, tile A of size 2 × 2 having one spare CLB has four different
configuration files. These files are indexed as A-1, A-2, A-3, and A-4. Here A-1
means that this configuration file does not use the CLB number one, and so on.
Upon locating the faulty CLBs as a result of applying the diagnosis algorithm,
DIRC seeks in the look-up table to find the index of the proper configuration
bitstream file, which does not use the faulty CLBs to be downloaded into the
same location of the faulty tile. This can be done using the functions listed in
Figure 8.

11 CASE STUDY

A DIRC prototype has been successfully implemented based on our technique of re-
configuration using the Virtex Device Simulator (VirtexDS), which simulates at the
device/bitstream level, providing an interface, which operates much like actual hard-
ware. All possible bitstream configurations for only one tile of Newcpla2 benchmark
of size 3 × 4 of CLBs including three spare CLBs were generated offline. There are
12 possible bitstream configuration files for this tile for tolerating single faulty CLB,
each of size 69.9 kB, and this will result in the storage overhead. We used the Board-
Scope graphical interface as a debugger — which can access all the resources of the
device (LUTs, IOBs, . . . ) — to the circuits applied onto VirtexDS. We step the clock
of the design downloaded onto the FPGA a number of times as a debugging feature
using the BoardScope. We debugged the configuration file creating a faulty CLB by
modifying its configuration to differ from fault-free CLBs. The error was detected
through accessing IOBs by using the Boardscope. Eight diagnosis bitstream files for
diagnosing LUTs were generated by the DIRC, and downloaded onto the tile one by
one to locate the faulty CLB. The faulty CLB was located and the tile reconfigured
by another configuration bitstream file that avoids the faulty CLB. This procedure
is currently being transferred to the real Xilinx hardware device.

12 CONCLUSIONS

The reconfiguration method proposed here concentrates on the CLBs, i.e., on the
lowest level of the FPGA structure where the reconfiguration is possible. Thus it
uses a relatively small area overhead, but the fault location and reconfiguration al-
gorithms become more complex than in case of reconfiguration at a higher level.



Fault-Tolerant FPGA-Based Systems 503

/* Creating a JBits Object and reading in a bitstream file */

JBits jbits = new Jbits (Device Type);

Jbits.readPartial (input file);

/* Download the bitstream to device */

board. SetConfiguration (device, jbits.getPartial ());

/* Reading an error signal from an Input/Output Block (IOB) */

jbits.getIOB();

/* Generating one of the programming phases for the faulty tile */

for (row = the row of the first CLB in the tile;

row< the row of the last CLB of the tile; row++)

for (col = the column of the first CLB in the tile;

col< the column of the last CLB; col++) {

int XOR_F[] = Expr.F_LUT ("F1 ^ F2 ^ F3 ^ F4");

int NXOR_G[] = Expr.G_LUT ("~(G1 ^ G2 ^ G3 ^ G4)"); // the NOT.

If (XOR_F != null)

Jbits.set(row, col, LUT.SLICE0_F, XOR_F);

If (NXOR_G != null)

Jbits.set(row, col, LUT.SLICE0_G, NXOR_G);

.

}

/* Generating test patterns */

int [] stimulus = new int [] {0, 1, 0, 1,};

SetPinValue (pin, stimulus[i]);

/* Download the chosen partial configuration file

from the Off-chip memory */

board.setConfiguration (device, jbits.getPartial());

Fig. 8. The Jbits code to perform diagnosis and reconfiguration

A combination of hardware and software tools is used to achieve the FT property of
the resulting circuit. Concurrent checkers are used to detect errors during computa-
tion, and the faulty CLB is located by a combination of software routine with a set
of hardware checkers. The extra hardware required for distributed checkers implies
some area and time overhead, however the gain is a good diagnostic resolution. The
number of spare elements per tile needed for the reconfiguration process was esti-
mated. Finally, a suitable alternative configuration is selected and downloaded from
an external memory in case that the faulty CLB has been successfully located. The
advantage of this approach is primarily that of speed. Java programs performing
such reconfigurations can be compiled and run very quickly. We have implemented
a prototype DIRC system and we demonstrated an application running on VirtexDS
with the BoardScope debugging tool. The search for most suitable size and shape



504 K. Elshafey, J. Hlavička

of a tile remains an open problem for further optimization of the fault recovery
mechanism.

Acknowledgment

This research was in part supported by grant #102/01/0566 “Built-in Self-Test
Equipment Optimization Methods in Integrated Circuits” of the Czech Grant Agen-
cy (GACR).

REFERENCES

[1] Abramovici, M.—Breuer, M. A.—Friedman, A. D.: Digital Systems Testing
and Testable Design. IEEE Revised Printing, 1990 by AT&T.

[2] Abramovici, M.—Stroud, C.—Hamiliton, C.—Wijesuriya, S.—Verma, V.:
Using Roving STARs for On-Line Testing and Diagnosis of FPGAs in Fault-Tolerant
Applications. Proc. IEEE Intn’l. Test Conf., pp. 973–982, 1999.

[3] Andraka, R. J.: Building a High Performance Bit Serial Processor in an FPGA.
Proc. of Design SuperCon ’96, 1996, pp. 5.1–5.21.

[4] Antola, A.—Piuri, V.—Sami, M.: On-Line Diagnosis and Reconfiguration of
FPGA Systems. Proc. of IEEE Electronic Design, Test, and Application Workshop,
Christchurch, New Zealand, 29–31 January 2002, pp. 291–296.

[5] Brayton, R. K.—Hachtel, G.—McMullen, C.—Sangiovanni-

Vincentelli, A.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publisher, 1984.

[6] Elshafey, K.—Hlavička, J.: An On-Line Self-Checking Approach for Testing
FPGA Logic Blocks. 10th International Scientific and Applied Science Conference,
ET’2001, Sozopol, Bulgaria, September 26–28, Book 1, pp. 162–167, 2001.

[7] Elshafey, K.—Hlavička, J.: On-Line Detection and Location of Faulty CLBs
in FPGA-Based Systems. Proc. of IEEE Design and Diagnostics of Electronic Cir-
cuits and Systems Workshop (DDECS’02), Brno (Czech Republic), pp. 183–190,
17–19. 4. 2002.

[8] ftp://customer@ftp.xilinx.com/download/JBits2 8.exe.

[9] ftp://ic.eecs.berkeley.org.

[10] Gupta, S. K.—Pradhan, D. K.: Utilization of On-Line (Concurrent) Checkers
during Built-In Self-Test and Vice Versa. IEEE Trans., on Computers, Vol. 45, 1996,

No. 1.

[11] Haung, W. K.—Lombadi, F.: A General Technique for Testing FPGAs. IEEE

VLSI Test Symp., Priceton NJ, pp. 450–455, 1996.

[12] Lach, J.—Mangione-Smith, W. H.—Potkonjak, M.: Low Overhead Fault-
Tolerant FPGA System. IEEE Transaction on VLSI System, Vol. 6, 1998, No. 2,
pp. 212–221.

[13] Laforge, L. E.: Configuration of Locally Spared Arrays in the Presence of Multiple
Fault Types. IEEE Trans., on Computers, Vol. 48, 1999, No. 4, pp. 398–416.



Fault-Tolerant FPGA-Based Systems 505

[14] Laforge, L. E.: How to Layout Arrays Spared by Rows and Columns. IEEE Inter-

national Conference on Innovative Systems in Silicon, 1997.

[15] Metra, C.—Mojoli, G.—Pastore, S.—Salvi, D.—Sechi, G.: Novel Tech-
nique for Testing FPGAs. Design Automation and Test in Europe, pp. 89-94, 1998.

[16] McMillan, S.—Guccione, S. A.: Partial Run-Time Reconfiguration Using JRTR.
10th International Conference, FPL 2000, Austria, August 2000, pp. 352–360.

[17] Pradhan, D. K.: Fault-Tolerant Computer System Design. Prentice Hall PTR Pub-
lishing Company, 1996.

[18] Renovell, M.: A Specific Test Methodology for Symmetric SRAM-Based FPGAs.
FPL 2000, LNCS 1896, pp. 300–311, 2000.

[19] Renovell, M.—Portal, J. M.—Figueras, J.—Zorian, Y.: Testing the Uni-
dimensional Interconnect Architecture of Symmetrical SRAM-Based FPGA. Proc.,
of IEEE Electronic Design, Test, and Application Workshop, Christchurch, New
Zealand, 29–31 January 2002, pp. 297–301.

[20] Xilinx. Inc., http://www.Xilinx.com.

Khaled A. M. Elshafey received the BS and MS degrees
in system and computer engineering from Al-Azhar University,
Cairo, Egypt, in 1991 and 1997, respectively. From 1999-2002,
he was awarded a scholarship to be a PhD student at Czech

Technical University (CTU) in Prague, Faculty of Electrical En-
gineering, Department of Computer Science and Engineering,
Czech Republic. He received the PhD in 2002. Currently, he
works as a teacher in the Faculty of Engineering, System and
Computer Engineering Department, Al-Azhar University, Cairo,
Egypt.

Jan Hlavi�ka (1942–2002) graduated from Faculty of Elec-
trical Engineering, Czech Technical University in 1964. He re-
ceived his PhD and DSc degrees from the same university in 1971
and 1987, respectively, and was appointed Associate Professor
and Professor by the same institution in 1985 and 1991, respec-
tively. During his fruitful scientific career, he was with the Re-
search Institute for Mathematical Machines in Prague, Siemens
Munich, and Department of Computer Science and Engineering
of the Faculty of Electrical Engineering, CTU Prague. He was
the visiting professor at TH Ilmenau (Germany), Universit de

Montréal (Canada) and Hochschule fr Bauwesen Cottbus (Germany). He is the author
and co-author of numerous scientific papers. His research interests indluded fault-tolerant
computing testing and diagnostics of digirtal circuits an systems,computer architecture,
error coding, self-checking circuits.


