5 research outputs found

    Area-driven partial reconfiguration for SEU mitigation on SRAM-based FPGAs

    Get PDF
    This paper presents an area-driven Field-Programmable Gate Array (FPGA) scrubbing technique based on partial reconfiguration for Single Event Upset (SEU) mitigation. The proposed method is compared with existing techniques such as blind and on-demand scrubbing on a novel SEU mitigation framework implemented on the ZYNQ platform, supporting various SEU and scrubbing rates. A design space exploration on the availability versus data transfers from a Double Data Rate Type 3 (DDR3) memory, shows that our approach outperforms blind scrubbing for a range of availability values when a second order polynomial IP is targeted. A comparison to an existing on-demand scrubbing technique based on Dual Modular Redundancy (DMR) shows that our approach saves up to 46% area for the same case study

    VHDL Design of Robot Controller for Autonomous Robot Movement in Maze

    Get PDF
    V této práci je popsán návrh a implementace řídicí jednotky robota určeného pro samočinný pohyb v bludišti. Jedná se o exemplární systém, který je určen pro testování a ověřování metodik pro zajištění odolnosti proti poruchám. Součástí práce je uvedení do problematiky spolehlivosti číslicových systémů, především systémů založených na technologii programovatelných hradlových polí (FPGA). Práce se také zabývá představením technik pro zajištění odolnosti číslicových systémů proti poruchám, pozornost je věnována možnostem FPGA v této oblasti včetně představení možností využití částečné dynamické rekonfigurace.This master thesis describes design and implementation of a robot controller for autonomous movement in a maze. Robot represents an exemplary system, which is designed for testing and validation of fault-tolerance methodologies. A part of this work contains introduction to reliability of digital systems, especially those which are based on Field Programmable Gate Array (FPGA). Moreover, this introduces techniques that ensure robustness against faults in digital systems; attention is devoted to the usage of FPGA technology in this area and a technique called partial dynamic reconfiguration.

    Nuevas técnicas de inyección de fallos en sistemas embebidos mediante el uso de modelos virtuales descritos en el nivel de transacción

    Get PDF
    Mejor software y más rápido. Este es el desafío que se deriva de la necesidad de construir sistemas cada vez más inteligentes. En cualquier diseño embebido actual, el software es un componente fundamental que dota al sistema de una alta capacidad de configuración, gran número de funcionalidades y elasticidad en el comportamiento del sistema en situaciones excepcionales. Si además el desarrollo del conjunto hardware/software integrado en un System on Chip (SoC), forma parte de un sistema de control crítico donde se deben tener en cuenta requisitos de tolerancia a fallos, la verificación exhaustiva de los mismos consume un porcentaje cada vez más importante de los recursos totales dedicados al desarrollo y puesta en funcionamiento del sistema. En este contexto, el uso de metodologías clásicas de codiseño y coverificación es completamente ineficiente, siendo necesario el uso de nuevas tecnologías y herramientas para el desarrollo y verificación tempranos del software embebido. Entre ellas se puede incluir la propuesta en este trabajo de tesis, la cual aborda el problema mediante el uso de modelos ejecutables del hardware definidos en el nivel de transacción. Debido a los estrictos requisitos de robustez que imperan en el desarrollo de software espacial, es necesario llevar a cabo tareas de verificación en etapas muy tempranas del desarrollo para asegurar que los mecanismos de tolerancia a fallos, avanzados en la especificación del sistema, funcionan adecuadamente. De forma general, es deseable que estas tareas se realicen en paralelo con el desarrollo hardware, anticipando problemas o errores existentes en la especificación del sistema. Además, la verificación completa de los mecanismos de excepción implementados en el software, puede ser imposible de realizar en hardware real ya que los escenarios de fallo deben ser artificial y sistemáticamente generados mediante técnicas de inyección de fallos que permitan realizar campañas de inyección controlables, observables y reproducibles. En esta tesis se describe la investigación, desarrollo y uso de una plataforma virtual denominada "Leon2ViP", con capacidad de inyección de fallos y basada en interfaces SystemC/TLM2 para el desarrollo temprano y verificación de software embebido en el marco del proyecto Solar Orbiter. De esta forma ha sido posible ejecutar y probar exactamente el mismo código binario a ejecutar en el hardware real, pero en un entorno más controlable y determinista. Ello permite la realización de campañas de inyección de fallos muy focalizadas que no serían posible de otra manera. El uso de "\Leon2ViP" ha significado una mejora significante, en términos de coste y tiempo, en el desarrollo y verificación del software de arranque de la unidad de control del instrumento (ICU) del detector de partículas energéticas (EPD) embarcado en Solar Orbiter

    Investigation of radiation-hardened design of electronic systems with applications to post-accident monitoring for nuclear power plants

    Get PDF
    This research aims at improving the robustness of electronic systems used-in high level radiation environments by combining with radiation-hardened (rad-hardened) design and fault-tolerant techniques based on commercial off-the-shelf (COTS) components. A specific of the research is to use such systems for wireless post-accident monitoring in nuclear power plants (NPPs). More specifically, the following methods and systems are developed and investigated to accomplish expected research objectives: analysis of radiation responses, design of a radiation-tolerant system, implementation of a wireless post-accident monitoring system for NPPs, performance evaluation without repeat physical tests, and experimental validation in a radiation environment. A method is developed to analyze ionizing radiation responses of COTS-based devices and circuits in various radiation conditions, which can be applied to design circuits robust to ionizing radiation effects without repeated destructive tests in a physical radiation environment. Some mathematical models of semiconductor devices for post-irradiation conditions are investigated, and their radiation responses are analyzed using Technology Computer Aided Design (TCAD) simulator. Those models are then used in the analysis of circuits and systems under radiation condition. Based on the simulation results, method of rapid power off may be effectively to protect electronic systems under ionizing radiation. It can be a potential solution to mitigate damages of electronic components caused by radiation. With simulation studies of photocurrent responses of semiconductor devices, two methods are presented to mitigate the damages of total ionizing dose: component selection and radiation shielding protection. According to the investigation of radiation-tolerance of regular COTS components, most COTS-based semiconductor components may experience performance degradation and radiation damages when the total dose is greater than 20 K Rad (Si). A principle of component selection is given to obtain the suitable components, as well as a method is proposed to assess the component reliability under radiation environments, which uses radiation degradation factors, instead of the usual failure rate data in the reliability model. Radiation degradation factor is as the input to describe the radiation response of a component under a total radiation dose. In addition, a number of typical semiconductor components are also selected as the candidate components for the application of wireless monitoring in nuclear power plants. On the other hand, a multi-layer shielding protection is used to reduce the total dose to be less than 20 K Rad (Si) for a given radiation condition; the selected semiconductor devices can then survive in the radiation condition with the reduced total dose. The calculation method of required shielding thickness is also proposed to achieve the design objectives. Several shielding solutions are also developed and compared for applications in wireless monitoring system in nuclear power plants. A radiation-tolerant architecture is proposed to allow COTS-based electronic systems to be used in high-level radiation environments without using rad-hardened components. Regular COTS components are used with some fault-tolerant techniques to mitigate damages of the system through redundancy, online fault detection, real-time preventive remedial actions, and rapid power off. The functions of measurement, processing, communication, and fault-tolerance are integrated locally within all channels without additional detection units. A hardware emulation bench with redundant channels is constructed to verify the effectiveness of the developed radiation-tolerant architecture. Experimental results have shown that the developed architecture works effectively and redundant channels can switch smoothly in 500 milliseconds or less when a single fault or multiple faults occur. An online mechanism is also investigated to timely detect and diagnose radiation damages in the developed redundant architecture for its radiation tolerance enhancement. This is implemented by the built-in-test technique. A number of tests by using fault injection techniques have been carried out in the developed hardware emulation bench to validate the proposed detection mechanism. The test results have shown that faults and errors can be effectively detected and diagnosed. For the developed redundant wireless devices under given radiation dose (20 K Rad (Si)), the fault detection coverage is about 62.11%. This level of protection could be improved further by putting more resources (CPU consumption, etc.) into the function of fault detection, but the cost will increase. To apply the above investigated techniques and systems, under a severe accident condition in a nuclear power plant, a prototype of wireless post-accident monitoring system (WPAMS) is designed and constructed. Specifically, the radiation-tolerant wireless device is implemented with redundant and diversified channels. The developed system operates effectively to measure up-to-date information from a specific area/process and to transmit that information to remote monitoring station wirelessly. Hence, the correctness of the proposed architecture and approaches in this research has been successfully validated. In the design phase, an assessment method without performing repeated destructive physical tests is investigated to evaluate the radiation-tolerance of electronic systems by combining the evaluation of radiation protection and the analysis of the system reliability under the given radiation conditions. The results of the assessment studies have shown that, under given radiation conditions, the reliability of the developed radiation-tolerant wireless system can be much higher than those of non-redundant channels; and it can work in high-level radiation environments with total dose up to 1 M Rad (Si). Finally, a number of total dose tests are performed to investigate radiation effects induced by gamma radiation on distinct modern wireless monitoring devices. An experimental setup is developed to monitor the performance of signal measurement online and transmission of the developed distinct wireless electronic devices directly under gamma radiator at The Ohio State University Nuclear Reactor Lab (OSU-NRL). The gamma irradiator generates dose rates of 20 K Rad/h and 200 Rad/h on the samples, respectively. It was found that both measurement and transmission functions of distinct wireless measurement and transmission devices work well under gamma radiation conditions before the devices permanently damage. The experimental results have also shown that the developed radiation-tolerant design can be applied to effectively extend the lifespan of COTS-based electronic systems in the high-level radiation environment, as well as to improve the performance of wireless communication systems. According to testing results, the developed radiation-tolerant wireless device with a shielding protection can work at least 21 hours under the highest dose rate (20 K Rad/h). In summary, this research has addressed important issues on the design of radiation-tolerant systems without using rad-hardened electronic components. The proposed methods and systems provide an effective and economical solution to implement monitoring systems for obtaining up-to-date information in high-level radiation environments. The reported contributions are of significance both academically and in practice

    Caracterización de la tolerancia a fallos de circuitos implementados en FPGAs

    Get PDF
    213 p.Las FPGAs (Field-Programmable Gate Array) y los SoC (System-on-chip) basados en FPGA son dispositivos electrónicos configurables en campo (in field), que ofrecen la posibilidad de desarrollar un circuito a medida con un tiempo de salida al mercado y unos costes de diseño reducidos en comparación con los ASICs. Debido a la reducción continua del tamaño de los transistores, las prestaciones de estos dispositivos se están incrementando de manera vertiginosa en las últimas décadas, lo que ha generado interés en sectores muy específicos como automoción, ferroviario, industrial, aviónico o aeroespacial. En estos sectores se exige que los diseños estén orientados a confiabilidad y que cumplan con diversas normativas de seguridad, lo que requiere de métodos para la estimación y justificación de la tasa de fallos del sistema. El problema radica en que las FPGAs son especialmente susceptibles al SEU (Single Event Upset) generado por radiación en la memoria de configuración, un tipo de error que provoca la modificación aleatoria de uno o más bits de dicha memoria, afectando al circuito implementado. Por lo tanto, los diseños orientados a confiabilidad que utilicen FPGAs comerciales han de considerar la inclusión de una serie de medidas y mecanismos para mitigar sus efectos. No solo eso, sino que también es necesaria la aplicación de mecanismos de evaluación para corroborar que las estrategias aplicadas permiten alcanzar los objetivos de confiabilidad. De entre los diferentes procedimientos de evaluación aplicables se destaca la emulación de SEUs, que consiste en programar el dispositivo con un archivo intencionadamente corrompido para que se almacene contenido erróneo en la memoria de configuración, lo que genera un efecto análogo al SEU. Se han estudiado diferentes metodologías de emulación en la literatura y se han observado una serie de deficiencias. Por un lado, los métodos de emulación internos (los errores se inyectan desde la propia FPGA) tienen el problema de ser autobloqueantes, ya que el error inyectado puede afectar al propio sistema de emulación. Por otro lado, los sistemas de emulación externos pueden requerir cambios importantes a nivel de hardware.El objetivo principal de este trabajo es el desarrollo de un mecanismo de emulación de SEUs que pueda implementarse de manera sencilla en sistemas ya construidos, cuyo único requisito es que dicho sistema tenga un SoC FPGA del tipo Zynq o similar. Además, se pretenden solventar las deficiencias observadas en la literatura aprovechando las diferentes capacidades que ofrecen los SoCs que combinan FPGA y sistema procesador (PS). Para ello se ha planteado la implementación del sistema de inyección de errores en el PS, ya que de esta manera se previenen las inyecciones de errores bloqueantes. De igual modo, aunque las inyecciones de realicen desde fuera de la FPGA, las inyecciones se llevan a cabo desde el interior del propio chip, evitando la necesidad de añadir modificaciones en el hardware. Se ha propuesto un esquema de verificación universal independiente de la aplicación, de modo que el esquema de test pueda ser adaptado a diferentes sistemas de forma sencilla, independientemente de su complejidad.Una vez planteada la metodología de emulación, se han realizado otras dos aportaciones. En primer lugar se ha comprobado cómo afectan las diferentes decisiones que puedan tomarse en las diferentes etapas de la fase de diseño. Aquí se ha comprobado que un mismo diseño puede tener fluctuaciones de hasta el 50\% si se modifican algunos parámetros. Por otro lado, habiendo observado que los emuladores de SEU existentes en la literatura se centran en el estudio del SBU (Single Bit Upset), se ha propuesto un procedimiento para la estimación de la tasa de fallo en presencia de MCUs (Multiple Cell Upsets)
    corecore