1,953 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults

    Get PDF
    The goal of this paper is to describe a novel fault tolerant tracking control (FTTC) strategy based on robust fault estimation and compensation of simultaneous actuator and sensor faults. Within the framework of fault tolerant control (FTC) the challenge is to develop an FTTC design strategy for nonlinear systems to tolerate simultaneous actuator and sensor faults that have bounded first time derivatives. The main contribution of this paper is the proposal of a new architecture based on a combination of actuator and sensor Takagi-Sugeno (T-S) proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators together with a T-S dynamic output feedback control (TSDOFC) capable of time-varying reference tracking. Within this architecture the design freedom for each of the T-S estimators and the control system are available separately with an important consequence on robust Lâ‚‚ norm fault estimation and robust Lâ‚‚ norm closed-loop tracking performance. The FTTC strategy is illustrated using a nonlinear inverted pendulum example with time-varying tracking of a moving linear position reference. Keyword

    A fault tolerant direct control allocation scheme with integral sliding modes

    Get PDF
    PublishedJournal Article© by Mirza Tariq Hamayun 2015. In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be retained. This paper considers the possibility of introducing fault tolerance even if fault or failure information is not provided to the control strategy. To demonstrate the efficacy of the proposed scheme, a high fidelity nonlinear model of a large civil aircraft is considered in the simulations in the presence of wind, gusts and sensor noise.This paper was partially funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under the grant no. Gr/33/5. The first and the last author, therefore, acknowledge with thanks the DSR financial support

    Real-time implementation of an ISM Fault Tolerant Control scheme for LPV plants

    Get PDF
    Copyright © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes a fault tolerant control scheme for linear parameter varying systems based on integral sliding modes and control allocation, and describes the implementation and evaluation of the controllers on a 6 degree-of-freedom research flight simulator called SIMONA. The fault tolerant control scheme is developed using a linear parameter varying approach to extend ideas previously developed for linear time invariant systems, in order to cover a wide range of operating conditions. The scheme benefits from the combination of the inherent robustness properties of integral sliding modes (to ensure sliding occurs throughout the simulation) and control allocation, which has the ability to redistribute control signals to all available actuators in the event of faults/failures

    Non-linear estimation is easy

    Get PDF
    Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint

    Development and Evaluation of an Integral Sliding Mode Fault Tolerant Control Scheme on the RECONFIGURE Benchmark

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.This paper describes the development, application and evaluation of a linear parameter-varying integral sliding mode control allocation scheme to the RECONFIGURE benchmark model to deal with an actuator failure/fault scenario. The proposed scheme has the capability to maintain close to nominal (fault free) load factor control performance in the face of elevator failures/faults, by including a retro-fitted integral sliding mode term and then re-routing (via control allocation) the augmented control signal to healthy elevators without reconfiguring the baseline controller. In order to mitigate any chattering appearing in the elevator demands, the retro-fitted signal is based on a super-twisting sliding mode structure. This produces a control signal which is continuous and does not have the discontinuous switching nature of traditional sliding mode schemes. The scheme is evaluated using an industrial Functional Engineering Simulator developed as part of the RECONFIGURE project. Monte-Carlo campaign results are shown to demonstrate the performance of the proposed scheme.The work in this paper is supported by EU-FP7 Grant (FP7-AAT-2012-314544): RECONFIGUR

    Sensor Fault Detection and Compensation with Performance Prescription for Robotic Manipulators

    Full text link
    This paper focuses on sensor fault detection and compensation for robotic manipulators. The proposed method features a new adaptive observer and a new terminal sliding mode control law established on a second-order integral sliding surface. The method enables sensor fault detection without the need to impose known bounds on fault value and/or its derivative. It also enables fast and fixed-time fault-tolerant control whose performance can be prescribed beforehand by defining funnel bounds on the tracking error. The ultimate boundedness of the estimation errors for the proposed observer and the fixed-time stability of the control system are shown using Lyapunov stability analysis. The effectiveness of the proposed method is verified using numerical simulations on two different robotic manipulators, and the results are compared with existing methods. Our results demonstrate performance gains obtained by the proposed method compared to the existing results

    Fault tolerant control of multi-rotor unmanned aerial vehicles using sliding mode based schemes

    Get PDF
    This thesis investigates fault-tolerant control (FTC) for the specific application of small multirotor unmanned aerial vehicles (Unmanned Aerial Vehicle (UAV)s). The fault-tolerant controllers in this thesis are based on the combination of sliding mode control with control allocation where the control signals are distributed based on motors' health level. This alleviates the need to reconfigure the overall structure of the controllers. The thesis considered both the over actuated (sufficient redundancy) and under-actuated UAVs. Three multirotor UAVs have been considered in this thesis which includes a quadrotor (4 rotors), an Octocopter (8 rotors) and a spherical UAV. The non-linear mathematical models for each of the UAVs are presented. One of the main contributions of this thesis is the hardware implementation of the sliding mode Fault Tolerant Control (FTC) scheme on an open-source autopilot microcontroller called Pixhawk for a quadrotor UAV. The controller was developed in Simulink and implemented on the microcontroller using the Matlab/Simulink support packages. A gimbal- based test rig was developed and built to offer a safe test bed for testing control designs. Actual flight tests were done which showed sound responses during fault-free and faulty scenarios. This work represents one of successful implementation work of sliding mode FTC in the literature. Another key contribution of this thesis is the development of the mathematical model of a unique spherical UAV with highly redundant control inputs. The use of novel 8 flaps and 2 rotors configuration of the spherical UAV considered in this thesis provides a unique fault tolerant capability, especially when combined with the sliding mode-based FTC scheme. A key development in the later chapters of the thesis considers fault-tolerant control strategy when no redundancy is available. Unlike many works which consider FTC on quadrotors in the literature (which can only handle faults), the proposed schemes in the later chapters also include cases when failures also occur converting the system to an under actuated system. In one chapter, a bespoke Linear Parameter Varying (LPV) based controller is developed for a reduced attitude dynamics system by exploiting non-standard equation of motions which relates to position acceleration and load factor dynamics. This is unique as compared to the typical Euler angle control (roll, pitch and yaw angle control). In the last chapter, a fault-tolerant control scheme which can handle both the over and under actuated system is presented. The scheme considers an octocopter and can be used in fault-free, faulty and failure conditions up to two remaining motors. The scheme exploits the differential flatness property, another unique property of multirotor UAVs. This allows both inner loop and outer loop controller to be designed using sliding mode (as opposed to many sliding mode FTC in the literature, which only considers sliding mode for the inner loop control)

    On the synthesis of an integrated active LPV FTC scheme using sliding modes

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordThis paper proposes an integrated fault tolerant control scheme for a class of systems, modelled in a linear parameter-varying (LPV) framework and subject to sensor faults. The gain in the LPV sliding mode observer (SMO) and the gain in the LPV static feedback controller are synthesized simultaneously to optimize the performance of the closed-loop system in an L2 sense. In the proposed scheme, the sensor faults are reconstructed by the SMO and these estimates are subsequently used to compensate the corrupted sensor measurements before they are used by the feedback controller. To address the synthesis problem, an iterative algorithm is proposed based on a diagonalization of the closed-loop Lyapunov matrix at each iteration. As a result the NP-hard, non-convex linear parameter-varying bilinear matrix inequality (LPV/BMI) associated with the Bounded Real Lemma formulation, is simplified into a tractable convex LPV/LMI problem. A benchmark scenario, involving the loss of the angle of attack sensor in a civil aircraft, is used as a case study to demonstrate the effectiveness of the scheme.European Commissio

    Flight evaluation of an LPV sliding mode controller with online control allocation

    Get PDF
    Thiis is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThis paper presents the results of flight tests of a fault tolerant sliding mode controller implemented on the Japan Aerospace Exploration Agency's Multi-Purpose Aviation Laboratory aircraft. These represent the first validation tests of a sliding mode control allocation scheme on a piloted flight test. In this scheme, information about the actuator faults is assumed to be estimated online from a fault detection unit and the available actuators are fully utilized in the presence of actuator faults, in an effort to retain nominal fault free performance. Specifically the flight tests results demonstrate good lateral-directional state tracking performance in the fault free case with no visible performance degradation in the presence of rudder and aileron faults. In fact, during the flight test, the evaluation pilot did not detect any degradation in manoeuvrability when the actuator faults occurred.European Union Horizon 2020Japan New Energy and Industrial Technology Development Organizatio
    • …
    corecore