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Real-Time Implementation of an ISM Fault Tolerant
Control Scheme for LPV Plants

H. Alwi, C. Edwards, O. Stroosma, J. A. Mulder and M. T. Hamayun

Abstract

This paper proposes a fault tolerant control scheme for linear parameter varying systems based on integral
sliding modes and control allocation, and describes the implementation and evaluation of the controllers on a 6
degree-of-freedom research flight simulator called SIMONA. The fault tolerant control scheme is developed using
a linear parameter varying approach to extend ideas previously developed for linear time invariant systems, in order
to cover a wide range of operating conditions. The scheme benefits from the combination of the inherent robustness
properties of integral sliding modes (to ensure sliding occurs throughout the simulation) and control allocation,
which has the ability to redistribute control signals to all available actuators in the event of faults/failures.

Index Terms

Sliding mode control, Fault tolerance, Aerospace simulation.

I. INTRODUCTION

The most important facet of Fault Tolerant Control (FTC) systems is their ability to maintain closed-loop
stability, and ideally a measure of performance, in the face of faults or failures in actuators or sensors.
The majority of the FTC methods that have appeared in the literature are based on linear time invariant
(LTI) systems (see for example [1]). There are however notable exceptions: for example an observer based
scheme for a specific class of input-output stable nonlinear systems is proposed in [2]; a passive FTC
approach is proposed in [3] for a class of affine nonlinear systems considering actuator faults; and in
[4], a FTC scheme for a specific class of nonlinear systems is proposed based on a sliding mode control
allocation scheme incorporating a backstepping controller.

Linear parameter varying (LPV) systems are a special class of finite dimensional linear systems, in
which the entries of the state space matrices continuously depend on a time varying parameter vector which
belongs to a bounded compact set. Using LPV techniques, the control law can be automatically ‘scheduled’
with the operating conditions and guaranteed performance can be proved over a wide operating envelope.
FDI and FTC methods designed for LPV models have appeared in the literature. In [5], a synthesis method
using LMIs is presented in order to guarantee closed-loop stability in the case of multiple actuator faults. In
[6] an FDI scheme based on the extension of residual generation concepts for LTI systems was presented
and tested on a model of a B747-100/200.

Sliding mode control (SMC) is attractive from an FTC stand point, since actuator faults can be modelled
as matched uncertainty, which is precisely the class of uncertainty to which sliding modes are robust [7].
However SMC cannot directly deal with total actuator failures because the complete loss of effectiveness
in a channel destroys the regularity of the sliding mode, and an unique equivalent control signal can no
longer be determined. To obviate this short-coming, in over actuated systems, a combination of SMC and
control allocation (CA) has recently been explored [8]. In this context, CA can be viewed as a mechanism
for distributing a virtual control signal to specific actuator commands to effect fault tolerant control. In
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the earliest work [8] first order sliding mode concepts were considered. More recently, in [9], integral
sliding mode (ISM) ideas have been combined with CA. However all the SMC/CA and ISM/CA methods
cited above are based on LTI system descriptions of the plant to be controlled and are restricted to near
trim conditions.

One of the main contributions of this paper is to extend the previous work in [8] in order to create
an integral sliding mode control allocation scheme for LPV systems having affine parameter dependence.
There is very little literature on the use of sliding mode controllers for LPV systems with the notable
exception of [10] and more recently [11]. The work in [10] proposed SMC schemes for LPV systems
(although not in the context of fault tolerant control). In the proposed scheme, it is assumed that (fault-
free) full state information is available for controller design, together with estimates of the actuator health
levels. The proposed scheme takes into account imperfect estimation of the actuator health levels by using
an adaptive scalar modulation function in the nonlinear part of the (virtual) control law. This is different
to the adaptation scheme considered in [7] which considers a LTI based design problem. The virtual
control law designed by the ISM technique is then translated into actual actuator commands using the
CA scheme. The resulting FTC scheme guarantees closed-loop stability and performance in the presence
of a class of total actuator failures over a wide part of the flight envelope.

Another contribution of this paper is the implementation and evaluation of the proposed scheme on the
6 degree-of-freedom research simulator called SIMONA, (Simulation Motion and Navigation) [12]. This
has been carried out not only to demonstrate the efficacy of the proposed adaptive LPV FTC scheme, but
also to show the potential of the proposed scheme for industrial usage. There is work in the literature
describing the implementation of SMC FTC schemes on a flight simulator, however most involve designs
based on LTI systems which are theoretically only valid near the trim condition. The results in this paper
represent the only published implementations of an ISM FTC scheme on a flight simulator.

The notation used in this paper is standard: IR represents the real numbers whilst IRn×m denotes an
n by m matrix with elements in IR. For a vector, ∥ · ∥ represents the Euclidean norm, and the induced
spectral norm for matrices. The important variables are given in Table I.

TABLE I
IMPORTANT VARIABLES

Variables Descriptions
ρ LPV scheduling parameter

S, σ(t) sliding surface, switching function
γ0, γ1 variables used in the closed loop stability analysis

c worst case condition number of E(ρ)
ε,Wε tolerance in the permissable fault set Wε

κ(t) adaptive modulation function
η, β, γ, ε0 gains for the adaptive modulation function

x(t), u(t), ν(t) system states and actual and virtual input signals
A(ρ), B(ρ), E(ρ) LPV system matrices

Bw(ρ) fault weighted pseudo-input distribution matrix
Ai, Bi components of the affine LPV representations
B1, B2 components of factorized input distribution matrix

F nominal linear state feedback control gain
G switching surface gain parameter

W, Ŵ actual and estimated actuator effectiveness levels
∆ error in the estimated effectiveness level

Q,R controller design weighting matrix
X,Y, Z decision variable in the LMI synthesis

II. PROBLEM FORMULATION

Consider a LPV plant subject to actuator faults/failures

ẋ(t) = A(ρ)x(t) +B(ρ)W (t)u(t) (1)
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where the system and input matrices A(ρ) ∈ IRn×n, B(ρ) ∈ IRn×m and vary with respect to a scheduling
parameter ρ(t) ∈ IRr. In this paper all the states are assumed to be available for control purposes. The
diagonal semi-positive definite matrix W (t) ∈ IRm×m with diagonal entries w1(t), . . . wm(t) model the
effectiveness levels of the actuators. If wi(t) = 1 then the ith actuator is working perfectly (i.e. fault-free),
whereas if 1 > wi(t) > 0 a partial fault is present and the actuator works at reduced efficiency. If wi(t) = 0
then the ith actuator has completely failed and the control signal component ui(t) has no effect on the
system. The time varying parameter vector ρ(t) ∈ IRr is also assumed to be available and furthermore is
assumed to lie in a bounded compact set Ω ⊂ IRr. Also it is assumed that matrix A(ρ) depends affinely
on ρ(t) so that

A(ρ) = A0 +
∑r

i=1Aiρi

for some Ai ∈ IRn×n and that B(ρ) can be factorized as

B(ρ) = BfE(ρ) (2)

where Bf ∈ IRn×m is a fixed matrix and E(ρ) ∈ IRm×m is a matrix depending explicitly on the scheduling
variable ρ(t). Furthermore assume E(ρ) is invertible for all ρ(t) ∈ Ω.
Assume that, by permuting the states (if necessary), the matrix Bf in (2) can be expressed as

Bf =

[
B1

B2

]
(3)

with B1 ∈ IR(n−l)×m and B2 ∈ IRl×m where B2 is of rank l < m. In this paper it is assumed that
∥B2∥ ≫ ∥B1∥ so that the B2 represents the dominant contribution of the distribution of the control action
within the channels of the system [8].
Finally without loss of generality, scale the last l states of the system to ensure that B2B

T
2 = Il. This

simplifies some of the subsequent algebra and will be exploited in several places in the ensuing analysis.
Consider a ‘virtual control’ signal

ν(t) := B2E(ρ)u(t) (4)

The signal ν(t) ∈ IRl can be viewed as the total control effort produced by the actuators. Exploiting the
fact B2B

T
2 = Il, one choice for the physical control law u(t) ∈ IRm is

u(t) := (E(ρ))−1BT
2 ν(t) (5)

Note the expression for u(t) in equation (5) above satisfies (4) since (E(ρ))−1BT
2 is a right pseudo inverse

of B2E(ρ).
Remark: The control structure proposed in (5) is different from [9], [8], since it involves the varying
matrix E(ρ) and the control allocation scheme does not require any knowledge of the actuator effectiveness
level W (t).
Using (1),(3) and substituting for u(t) from (5) yields the state space representation

ẋ(t) = A(ρ)x(t) +

[
B1E(ρ)W (t)(E(ρ))−1BT

2

B2E(ρ)W (t)(E(ρ))−1BT
2

]
︸ ︷︷ ︸

Bw(ρ)

ν(t) (6)

in terms of the virtual control ν(t). Note that, when the system is fault-free, i.e. when W (t) = I , exploiting
the fact that B2B

T
2 = Il, equation (6) simplifies to

ẋ(t) = A(ρ)x(t) +

[
B1B

T
2

Il

]
︸ ︷︷ ︸

Bν

ν(t) (7)
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Assume there exists a symmetric positive definite matrix P ∈ IRn×n and a matrix F ∈ IRm×n, depending
on the scheduling variable, such that

(A(ρ)−BνF )TP + P (A(ρ)−BνF ) < 0 (8)

for all admissible ρ(t) ∈ Ω. In other words, there exists a state feedback virtual control law ν(t) = −Fx(t)
such that

ẋ(t) = (A(ρ)−BνF )x(t) (9)

is quadratically stable for all ρ(t) ∈ Ω and achieves the desired closed-loop performance.

III. INTEGRAL SLIDING MODE CONTROLLER DESIGN

A. Design of Integral switching function:
In this section Integral sliding mode ideas [13], [9] will be used to create a fault tolerant control

scheme. One advantage of ISM schemes over traditional sliding modes is they eliminate the ‘reaching
phase’ associated with traditional sliding mode control. Consider the (integral) sliding surface

S = {x ∈ IRn : σ(t) = 0}

where
σ(t) := Gx(t)−Gx(0)−G

∫ t

0
(A(ρ)−BνF )x(τ)dτ (10)

The design freedom in (10) is represented by the fixed matrix G ∈ IRl×n. In this paper, the particular
choice of

G := B2(B
T
fBf )

−1BT
f (11)

is made, where B2 and Bf are defined in (2) and (3). Based on the choice of G in (11), and exploiting
the fact that B2B

T
2 = Il, it can be verified that

GBν = B2(B
T
fBf )

−1BT
fBfB

T
2 = Il (12)

Furthermore

GBw(ρ) = B2(B
T
fBf )

−1BT
fBfE(ρ)W (t)(E(ρ))−1BT

2

= B2E(ρ)W (t)(E(ρ))−1BT
2 (13)

Taking the derivative of σ along the trajectories of (6) yields

σ̇(t) = GBw(ρ)ν(t) +GBνFx(t) = GBw(ρ)ν(t) + Fx(t) (14)

after substituting from (6) and (12). Arguing as in [9] the sliding motion is governed by

ẋ(t) =
(
A(ρ)−Bw(ρ)(B2E(ρ)W (E(ρ))−1BT

2 )
−1F

)
x(t) (15)

Note that from equation (15), for an unique equivalent control to exist and an unambiguous sliding motion
to occur, det(B2E(ρ)W (t)(E(ρ))−1BT

2 ) ̸= 0. This imposes a constraint on the allowable faults/failures
W (t). Adding and subtracting BνFx(t) to the right hand side of (15), after some manipulation, the
dynamics in (15) can be written as

ẋ(t) = (A(ρ)−BνF )x(t) + B̃Γ(t)Fx(t) (16)

where

Γ(t) := B1B
T
2 − B1E(ρ)W (t)(E(ρ))−1BT

2 × (B2E(ρ)W (t)(E(ρ))−1BT
2 )

−1 (17)

and
B̃T :=

[
In−l 0

]
(18)
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Consider as the class of permissable faults/failures, those which belong to the set

Wε = {(w1, ..., wm) ∈ I : (GBw(ρ))
T(GBw(ρ)) > εI} (19)

where I = [0 1]×...×[0 1] and ε is a small scalar satisfying 0 < ε ≪ 1. Note that (GBw(ρ))
T(GBw(ρ))|W (t)=I =

I > εI and therefore the set Wε is not empty. Furthermore, for all W = diag(w1, ..., wm) ∈ Wε, it is
straightforward to show

∥(GBw(ρ))
−1∥ = ∥(B2E(ρ)W (E(ρ))−1BT

2 )
−1∥ <

1√
ε

From (17), for W ∈ Wε, using simple bounding arguments,

∥Γ(t)∥ ≤ γ1(1 +
c√
ε
) (20)

where by definition c = maxρ∈Ω ∥E(ρ)∥∥(E(ρ))−1∥ and γ1 = ∥B1∥ (which by assumption is small). The
quantity c represents the worst case condition number of E(ρ).
Remark: Notice that the conditions (19)-(20) in this paper are subtly different to those for LTI systems
discussed in [8], [9]. In this paper, the norm of (GBw(ρ))

−1 must be guaranteed to be bounded. Here,
this is achieved by limiting W (t) ∈ Wε thus introducing an explicit ε > 0 to bound ∥GBw(ρ)∥ away
from zero1. This assumption is not necessary for the LTI systems considered in [8], [9] and therefore the
conditions in (19) and (20) are slightly more restrictive compared to [8], [9], in the sense that the set of
the faults that can be tolerated by the controller is reduced. However the LPV models considered here
will represent the underlying real plant over a wider operating regime.

B. Closed-loop stability analysis:
In a fault-free scenario when W (t) = I , it is easy to check that Γ(t) = 0 and (16) simplifies to (9) which
is quadratically stable by design. However closed-loop stability of (16) needs to be proven in the case
where W (t) ̸= I but belongs to Wε in (19). For analysis, equation (16) can be represented by

ẋ(t) = (A(ρ)−BνF )︸ ︷︷ ︸
Ã(ρ)

x(t) + B̃

ũ(t)︷ ︸︸ ︷
Γ(t)Fx(t)︸ ︷︷ ︸

ỹ(t)

(21)

Define the positive scalar γ0 to be the L2 gain associated with the operator

G̃(s) := F (sI − Ã(ρ))−1B̃ (22)

Proposition 1: For any fault or failure scenarios belonging to the set Wε given in (19), the sliding motion
in (21) will be stable if

γ0γ1(1 +
c√
ε
) < 1 (23)

Proof: The system in (21) can be regarded as the feedback interconnection of the LPV plant in (22) and
the varying feedback gain ũ(t) = Γ(t)ỹ(t). If inequality (23) is satisfied, then from the small gain theorem
[14], the system in (21) will be stable.

1In fact, later in the paper, ε will be used as a design parameter.
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C. ISM Control Laws:
The proposed integral sliding mode control law is

ν(t) = (GBŵ(ρ))
−1(νl(t) + νn(t)) (24)

where
GBŵ(ρ) = B2E(ρ)Ŵ (t)(E(ρ))−1BT

2 (25)

and Ŵ (t) is an estimate of W (t). The linear part of the control law νl(t) in (24) is defined as

νl(t) := −Fx(t) (26)

and the nonlinear discontinuous part, which induces sliding and provides robustness is given by

νn(t) := −κ(t)
σ(t)

∥σ(t)∥
for σ(t) ̸= 0 (27)

where κ(t) > 0 is an adaptive modulation function given by

κ(t) = ∥F∥∥x(t)∥κ̄(t) + η (28)

and η is a positive scalar. The positive adaptation gain κ̄(t) evolves according to

˙̄κ(t) = −βκ̄(t) + γε0∥F∥∥x(t)∥∥σ(t)∥ (29)

where β, γ and ε0 are positive (design) scalar gains.
In the analysis which follows, it is assumed the actuator efficiency level W (t) is not perfectly known

but that the estimate Ŵ (t) satisfies
W (t) = Ŵ (t)(I +∆(t)) (30)

where the diagonal matrix ∆(t) represents imperfections in the estimation of W (t). Substituting (30) into
(13) yields

GBw(ρ) = B2E(ρ)Ŵ (t)(E(ρ))−1BT
2 +B2E(ρ)Ŵ (t)∆(t)(E(ρ))−1BT

2 (31)

Using (24), equation (14) becomes

σ̇(t) = GBw(ρ)(GBŵ(ρ))
−1(νl(t) + νn(t)) + Fx(t)

Substituting for (31) and for νl from (26) yields

σ̇(t) = (I + ∆̂(t))(νl(t) + νn(t)) + Fx(t)

= (I + ∆̂(t))νn(t)− ∆̂(t)Fx(t) (32)

where

∆̂(t) :=
(
B2E(ρ)Ŵ

1
2 (t)∆(t)Ŵ

1
2 (t)(E(ρ))−1BT

2

)
×
(
B2E(ρ)Ŵ (t)(E(ρ))−1BT

2

)−1
(33)

Define
Dε0 =

{
∆(t) from (30) : ∥∆̂(t)∥ <

√
1− 2ε0

}
(34)

for some scalar 0 < ε0 ≪ 1/2. Clearly the set Dε0 is not empty since ∆(t) = 0 ∈ Dε0 . It is easy to
show that if ∥∆̂(t)∥ <

√
1− 2ε0 then 2Il+∆̂(t)+∆̂T(t) > 2ε0Il. Consider the positive definite candidate

Lyapunov function V (t) = σT(t)σ(t) + 1
γ
e2(t) where

e(t) = κ̄(t)− 1

ε0
(35)
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Since ∥∆̂(t)∥ <
√
1− 2ε0, taking the derivative of σT(t)σ(t) and then substituting from (32), yields

d

dt
(σTσ) = −κ(t)

σT

∥σ∥
(
2Il + ∆̂(t) + ∆̂T(t)

)
σ − 2σT∆̂(t)Fx(t)

≤ −2κ(t)ε0∥σ∥+ 2∥σ∥∥∆̂(t)∥∥Fx(t)∥
≤ −2κ(t)ε0∥σ∥+ 2∥σ∥

√
1− 2ε0 ∥F∥ ∥x(t)∥ (36)

From (35) it follows that κ̄(t) = e(t) + 1
ε0

. Then using the fact that
√
1− 2ε0 < 1 and substituting (28)

into (36), it follows

d

dt
(σT(t)σ(t)) = −2ε0∥F∥∥x(t)∥∥σ(t)∥e(t)− 2ηε0∥σ(t)∥ (37)

Taking the derivative of 1
γ
e2(t), and then using the fact that ė(t) = ˙̄κ(t), from (35)

d

dt

(
1

γ
e2(t)

)
= −2β

γ
e(t)κ̄+ 2ε0e(t)∥F∥∥x(t)∥∥σ(t)∥ (38)

Therefore, from (37)-(38) and substituting for κ̄(t) from (35)

V̇ (t) ≤ −2β

γ
e(t)κ̄− 2ηε0∥σ(t)∥

= − 2β

γε0
e(t)− 2β

γ
e2(t)− 2ηε0∥σ(t)∥ (39)

It is easy to show that

− 2β

γε0
e(t)− 2β

γ
e2(t) ≤ β

2γε20

for all values of e(t) and therefore from (39) it follows that

V̇ (t) ≤ β

2γε20
− 2ηε0∥σ(t)∥ (40)

which implies that σ(t) moves into a boundary layer about σ(t) = 0 of size β
4γε30η

.
Remark: The adaptation scheme in (28)-(29) makes the approach in this paper quite different from [9].
Adaptation is required here because of the complex relationship between ∆(t) and ∆̂(t) in (33) and the
limitations associated with (34).
Remark: The fact that a traditional sliding mode scheme involving a unit vector structure has been selected
as the basis for the control law, has facilitated the inclusion of an adaptive scheme. An adaptive gain is
highly desirable in FTC schemes to compensate for sudden significant changes to the plant. Although the
use of a higher order sliding mode controller would be advantageous in terms of ensuring a smoother
control signal (e.g. [15], [16], [17]), work describing the coupling of such schemes with adaptive gains
is less mature.
Finally the physical control law which is used to distribute the control effort among the available actuators
is obtained by substituting (24)-(27) into (5) which yields

u(t) = −(E(ρ))−1BT
2 (B2E(ρ)Ŵ (t)(E(ρ))−1BT

2 )
−1 ×

(
Fx(t) + κ(t)

σ(t)

∥σ(t)∥

)
for σ(t) ̸= 0 (41)

Note the physical control law in (41) requires an estimate of the effectiveness level of the actuators Ŵ (t)
(see Figure 1 for details). In this paper it is assumed that this estimate is provided by an FDI scheme.
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Fig. 1. Overall FTC scheme

D. Design of the state feedback gain
In designing F two objectives must be met: the first equates to achieving the required nominal

performance (when W = I) for all the admissible values of ρ; and the second is associated with the
closed-loop stability i.e. ensuring the small gain condition in (23) is satisfied. Nominal performance will
be achieved by the use of a LQR type cost function

J =
∫ ∞

0
(xTQx+ uTRu)dt (42)

where Q and R are s.p.d matrices specified by the designer. The LPV system matrices (Ã(ρ), B̃, F ) in (22)
can be represented by the polytopic system (Ã(ωi), B̃, F ), where the vertices ω1, ω2, ...ωnω for nω = 2r

correspond to the extremes of the allowable range of ρ ∈ Ω [18], [19]. Specifically

Ã(ρ) =
∑2r

i=1Ãiδi,
∑2r

i=1 δi = 1, δi ≥ 0

The minimization of J can be posed as an optimization problem: Minimize trace(X−1) subject to[
Ǎ(ωi) (Q̃X − R̃Y )T

Q̃X − R̃Y −I

]
< 0 (43)

X > 0 (44)

where Ǎ(ωi) = A(ωi)X +XAT (ωi)−BνY − Y TBT
ν , Q̃ = [(Q1/2)T 0T

l×n], R̃ = [0T
l×n (R1/2)T], Y := FX

and X ∈ IRn×n is the Lyapunov matrix. To satisfy the stability condition in (23), it is sufficient to apply
the Bounded Real Lemma at each vertex of the polytope: specifically A(ωi)X +XAT (ωi)−BνY − Y TBT

ν B̃ Y T

B̃T −γ2I 0
Y 0 −I

 < 0 (45)

These conditions can be converted into an LMI problem: Minimize trace(Z) subject to[
−Z In
In −X

]
< 0 (46)
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together with (43), (44) and (45). The decision variables are Z,X and Y , and the matrix Z satisfies
trace(Z) ≥ trace(X−1). The LMIs in (43)-(46) can be solved for all the vertices of the polytopic system
[18], [19]. Finally the gains F can be recovered using the relationship F = Y X−1.

IV. RECOVER AND THE SIMONA SIMULATOR

The SIMONA research simulator (SRS) (Figure 2) is a 6 degree-of-freedom motion simulator located
at Delft University of Technology. The SRS can accommodate two pilots in the cockpit in a side by
side arrangement. The pilot controls include a typical wheel, column and rudder pedal and side-stick
configuration. There is also a thrust lever, the digital instrument panel and a mode control panel (MCP)
(which has the capability to provide command signals to the ‘auto-pilot’). The visual system of the SRS
coupled with the motion system, provided by six large hydraulic cylinders, provides a realistic sense of
motion inside the cockpit.

(b) Cockpit view
Fig. 2. SIMONA research simulator

In this paper, the SRS has been configured to represent a B747-100/200 large transport aircraft, based
on the high fidelity nonlinear aircraft model used in the FTC benchmark RECOVER (REconfigurable
COntrol for Vehicle Emergency Return) [12]. The RECOVER model consists of 77 states and includes,
four engines and 25 other control surfaces (4 elevators, one stabilizer, 4 ailerons, 12 spoilers and flaps).
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V. DESIGN AND SRS IMPLEMENTATION

In this paper, only longitudinal control design will be considered. The LPV model used for design is
obtained from [20]. The aerodynamic coefficients are polynomial functions of velocity Vtas and angle of
attack α in the range of [150, 250]m/sec and [−2, 8] deg respectively and at the altitude of 7000m [20].
The states of the LPV plant in [20] are [ᾱ, q̄, V̄tas, θ̄, h̄e]

T which represent deviation of the angle of attack,
pitch rate, true air speed, pitch angle and altitude from their trim values. The inputs of the LPV plant
are [δ̄e, δ̄s, T̄n]

T, which represent deviation of elevator deflection, horizontal stabilizer deflection and total
engine thrust from their trim values respectively [20]. For the controller design the state h̄e has been
removed and the states of the LPV plant reordered as [θ̄, ᾱ, V̄tas, q̄]

T. The LPV system matrices are given
by

A(ρ) = A0 +
∑7

i=1 Aiρi and B(ρ) = B0 +
∑7

i=1 Biρi

where [ρ1, ..., ρ7] := [ᾱ, V̄tas, V̄tasᾱ, V̄
2
tas, V̄

2
tasᾱ, V̄

3
tas, V̄

4
tas], ᾱ = α − αtrim and V̄tas = Vtas − Vtastrim . The

input distribution matrix B(ρ) has been factorized as

B(ρ) =


0 0 0

0.01 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

Bf

 100b31(ρ) 100b32(ρ) 100b33(ρ)
0 0 b23(ρ)

b41(ρ) b42(ρ) b43(ρ)


︸ ︷︷ ︸

E(ρ)

Note the weighting of the first row of E(ρ) is employed to reduce the bound of the condition number c
in (20). In order to introduce a tracking facility, the plant states have been augmented with the integral
action states [7] given by

ẋr(t) = r(t)− Ccx̄(t) (47)

where r(t) is the command and Cc is the controlled output distribution matrix. The controlled outputs
have been chosen as [γ̄, V̄tas]

T, where γ̄ = θ̄ − ᾱ, is the flight path angle. By defining new states as
xa(t) = [xT

r (t) x̄
T(t)]T the augmented system from (7) becomes

ẋa(t) = Aa(ρ)xa(t) +Bνaν(t) +Brr(t) (48)

where

Aa(ρ) :=

[
0 −Cc

0 A(ρ)

]
, Bνa :=

[
0
Bν

]
, Br =

[
Il
0

]
which is used as the basis for the control law design.

When designing the fixed state feedback gain F , an LQR design formulation has been used to give nom-
inal performance in the fault-free case [9]. The fixed state feedback gain resulting from the optimization
is

F =

[
−1.1161 −2.3532 −10.3807 3.8107 3.7409 −1.3623
−0.9891 0.0177 9.6902 −4.9097 −0.0222 3.3779

]
(49)

In the nominal case, the engines are considered to be fault-free. The positive scalar from (19) has been
chosen as ε = 0.28. It can then be shown (using numerical search) that the maximum value of ∥Γ(t)∥ from
equation (20) is 0.0673. To satisfy the closed-loop stability condition in (23), the value of γ0 associated
with the operator in (22) should satisfy γ0 <

√
ε

γ1(
√
ε+c)

= 14.8588. The value associated with F in (49) is
γ0 = 11.0000, and hence the stability condition in (23) is satisfied. During the simulations, the discontinuity
associated with the nonlinear control term in (27) has been smoothed by using a sigmoidal approximation
[7] σa

∥σa∥+δ
where δ is a small positive scalar. This ensures a smooth and realistic control signal is sent

to the actuators and allows extra design freedom especially when faults/failures occur. Here δ has been
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chosen as δ = 0.01. The gain parameters (28)-(29) used in the simulation are: η = 1, β = 1, γ = 0.01 and
ε0 = 0.01.

The control law in (41) requires an estimate of the actuator effectiveness level Ŵ . As in the GARTEUR
FM-AG16 project [12], in this paper, it is assumed that a measurement of the actual actuator deflections
are available. As argued in [21], this information is available in modern fly-by-wire aircraft2. Furthermore,
the monitoring channels are separate from the control channels, and so faults in the actuators do not affect
the fidelity of the control surface monitoring signals [25], [26]. In these experiments the diagonal elements
ŵi of Ŵ have been estimated based on a least squares approach using information provided by the actual
actuator deflections and the command signals from the controller. For details see page 265 of [7].

Note that the LPV design discussed above is only associated with the longitudinal axis, although a
lateral axis controller (here taken from [27]) must also be incorporated for the purpose of testing and
evaluation in this paper. However the description of the SRS implementation described below will only
focus on the proposed longitudinal controller. (See [27] for details on the lateral controller). In this paper,
the controller has been initially developed and tuned using Matlab R2006b (the original version supported
by the RECOVER model). The proposed ISM controller has been converted into C code using the Matlab
Real-Time Workshop(R) utility. The C coded controller is then implemented on a PC with an Intel(R)
Xeon(R) 3.07GHz processor which has been used as the flight control computer. As discussed in Section
V, the inner-loop longitudinal controller provides flight path and speed tracking which the pilot can
command directly using the MCP dials at the centre of the cockpit. The outer-loop longitudinal controller
provides altitude control using a simple PID to provide a flight path angle command to the inner-loop
ISM controller. In the results which follow Kp = 0.1, Ki = 0.07 and Kd = 0.1.

VI. SRS PILOTED EVALUATION RESULTS

The results in this section represent evaluation tests by an experienced commercial pilot. Figure 3
shows the overall manoeuvres for three different tests: fault-free, elevator jam and stabilizer runaway. The
following describes the sequence of manoeuvres conducted during the pilot evaluation:

1) Straight and level flight at 250 kts (128.6m/s), 2000 ft (609.6m) heading North.
2) Insert failure (for failure cases).
3) Right turn 90 deg (East).
4) Left turn back to 0 deg (North).
5) Altitude change to 4000 ft (1219.2m).
6) Altitude change back to 2000 ft (609.6m).
7) Acceleration to 300 kts (154.3m/s) (indicated air speed).
8) Deceleration to 250 kts (128.6m/s) (indicated air speed).
9) Deceleration to 228 kts (117.3m/s) (indicated air speed).

Note that each manoeuvre is allowed to reach steady state before the next sequence is tested.
Remark: Note, although the controller is designed based on the LPV model from [20], the SRS evaluation
is based on the high fidelity nonlinear aircraft model [12].
Remark: The controller has been tested at the trim condition

[5.53deg, 0.0017deg/s, 133.8m/s, 5.53deg, 600m]

with an input trim [2deg,−1.59deg, 45568N] with an initial mass of 317000kg and with the flaps fully
retracted. This represents one of the trim conditions used for the GARTEUR FM-AG16 benchmark problem
and it is different to the trim conditions of the LPV model in [20]. Using different flight conditions for
the evaluation, highlights the capability of the proposed controller to operate in regions away from the
design point.

2If this information is not available, observer based schemes could be employed to estimate the parameters: see for example [22], [23],
[24].
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Fig. 3. Pilot evaluation: Trajectory

Remark: Note that the aircraft trajectories for the three different tests in Figure 3 are not identical. This
is due to the fact that the manoeuvres were ‘manually’ flown by the pilot using the mode control panel.
Although the magnitudes of the heading, altitude and speed commands are the same, the times at which
each manoeuvre is executed are different.

A. Pilot Evaluation: fault-free
Figure 4 shows longitudinal fault-free performance. The longitudinal states and the tracking performance

is shown in Figure 4(a). Figure 4(b) shows the control surface deflections during nominal fault-free
conditions. Figure 4(c) shows that no fault/failure is present in the elevator or stabilizer (the actuator
effectiveness is W = 1 for both surfaces). Finally Figure 4(d) shows the nominal variation in the switching
function and the adaptive gain due to changes in the operating conditions.

B. Pilot Evaluation: elevator jam
Figure 5 shows the pilot evaluation for the case of an elevator jam. Figure 5(c) shows the elevator

failure occurred at approximately 63sec when the effectiveness level drops to zero. The effect of the
elevator jam can be seen in Figure 5(b). After this point in time, the stabilizer becomes more active in
order to compensate for the jammed elevator. Despite the presence of a failure, Figure 5(a) shows similar
state tracking performance as the fault-free case. Finally Figure 5(e) shows the switching function is still
close to zero indicating sliding is still maintained. Figure 5(d) shows a magnified portion of the estimate
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Fig. 4. Pilot evaluation - fault-free longitudinal performance
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of the elevator effectiveness levels in the case of the elevator fault in Figure 5(c). Figure 5(d) shows that
the estimation provided by the FDI scheme considered in this paper (from page 265 of [7]) is not perfect
and includes detection delays (arising from the moving window of information and the filters employed
to ensure a usable estimate of the actuator effectiveness levels).

C. Pilot Evaluation: stabilizer runaway
Figure 6 shows the evaluation results for the more challenging case of a stabilizer runaway at approxi-

mately 74sec (see Figure 6(c)). The effect of the stabilizer runaway can be seen in Figure 6(b), where the
stabilizer runs-away at its maximum rate to the maximum physical limits of 3deg. Figure 6(b) also shows
the deflection of the elevator to approximately -10deg immediately after the stabilizer saturates in order
to compensate for the stabilizer runaway. Despite the presence of this critical failure, Figure 6(a) shows
hardly any noticeable difference in terms of state tracking performance as compared to the fault-free case.
Figure 6(d) shows that sliding is still being maintained, and the adaptive gain remains low.

D. Piloted Evaluation: pilot feedback
The following observations and discussions represent feedback from the pilot and the SRS researcher

conducting the evaluation for all the three scenarios. Generally, the feedback from the pilot and the SRS
researcher indicates that all three tests (nominal, the elevator jam and the stabilizer runaway) showed very
similar performance and the pilot was unable to discern a meaningful difference, without looking at the
surface deflections. The pilot reported that no transients were observed at the time of the failures. (In fact
the SRS researcher had to double check that failures did actually occur).

Some specific comments from the pilot and SRS researcher on the performance of the longitudinal
controller are:

• Speed capturing was satisfactory, with some creep towards the set speed at the end (which is
acceptable).

• Altitude change capturing resulted in a rather careful 1400 feet per minute rate for a 2000 ft change.
A rule of thumb is 2000 ft/min for a 2000 ft change. A small overshoot of 60 ft was observed on both
climb and descent, which though not excessive, would not be acceptable in practice. The altitude
set point was passed at around 600 ft/min. The subsequent undershoot of 20 ft is also not desirable.
A first-order response with no overshoot or undershoot is desirable, rather than the current damped
second order response.

• Speed tracking was acceptable during the manoeuvres (1 or 2 kts deviations were observed, which
is acceptable).

• Altitude tracking was generally good, apart from the small 40ft (12.2m) drop during heading capture.

VII. CONCLUSION

This paper has presented an LPV based FTC scheme using integral sliding modes and control allocation.
The scheme proposed in the paper extends the ideas of existing work for LTI systems via an LPV
methodology in order to cover a wide range of operating conditions. The integral sliding mode approach
was considered to ensure ideal sliding throughout the closed-loop system response, and to maintain
nominal performance and robustness in the face of possible actuator faults/failures. Control allocation
is used to distribute the ‘virtual’ control signal from the controller to the available redundant actuators
especially in the event of faults/failures. The paper also provides a closed-loop stability analysis for a wide
range of operating conditions even in the event of certain classes of faults/failures in the actuators. The
scheme also takes into account imperfect estimation of the actuator effectiveness levels and considers an
adaptive gain for the nonlinear discontinuous part of the control law. The proposed FTC scheme has been
implemented and evaluated on the 6-DOF SIMONA research flight simulator in a realistic operational
environment to highlight the potential of the scheme for industrial implementation and to highlight the
efficacy of the proposed scheme. Evaluation results from the SIMONA research simulator show good
tracking performance even in the event of faults/failures.
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