3 research outputs found

    Parallelization of Littlewood-Richardson Coefficients Computation and its Integration into the BonjourGrid Meta-Desktop Grid Middleware

    No full text
    International audienceThe aim of this paper is to show how to parallelize a compute intensive application in mathematics (Group Theory) for an institutional Desktop Grid platform coordinated by a meta-grid middleware named BonjourGrid. The paper is twofold: first of all, it shows how to parallelize a sequential program for a multicore CPU which participates in the computation and second it demonstrates the effort for launching multiple instances of the solutions for the mathematical problem with the BonjourGrid middleware. BonjourGrid is a fully decentralized Desktop Grid middleware. The main results of the paper are: a) an efficient multi-threaded version of a sequential program to compute Littlewood- Richardson coefficients, namely the Multi-LR program and b) a proof of concept, centered around the user needs, for the BonjourGrid middleware dedicated to coordinate multiple instances of programsfor Desktop Grids and with the help of Multi-LR. In this paper, the scientific work consists in starting from a model for the solution of a compute intensive problem in mathematics, to incorporate the concrete model into a middleware and running it on commodity PCs platform managed by an innovative meta Desktop Grid middleware

    Contributions to Desktop Grid Computing : From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures

    Get PDF
    Since the mid 90’s, Desktop Grid Computing - i.e the idea of using a large number of remote PCs distributed on the Internet to execute large parallel applications - has proved to be an efficient paradigm to provide a large computational power at the fraction of the cost of a dedicated computing infrastructure.This document presents my contributions over the last decade to broaden the scope of Desktop Grid Computing. My research has followed three different directions. The first direction has established new methods to observe and characterize Desktop Grid resources and developed experimental platforms to test and validate our approach in conditions close to reality. The second line of research has focused on integrating Desk- top Grids in e-science Grid infrastructure (e.g. EGI), which requires to address many challenges such as security, scheduling, quality of service, and more. The third direction has investigated how to support large-scale data management and data intensive applica- tions on such infrastructures, including support for the new and emerging data-oriented programming models.This manuscript not only reports on the scientific achievements and the technologies developed to support our objectives, but also on the international collaborations and projects I have been involved in, as well as the scientific mentoring which motivates my candidature for the Habilitation `a Diriger les Recherches

    Middleware para coordenar tolerância a falhas e elasticidade em clusters de alto desempenho com produtores e consumidores baseados em filas de mensagens

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Departamento de Ciência da Computação, Programa de Pós-Graduação em Computação Aplicada, 2014.Este trabalho propôs e avaliou um middleware com suporte à tolerância a falhas e à elasticidade em um cluster de alto desempenho. Para isso, foi construída uma arquitetura elástica para se adaptar dinamicamente ao crescimento da fila de requisições, para que as mensagens não se acumulem, e tolerante a falhas para que eventuais paradas do sistema, por queda ou falha dos serviços, não impactem na operacionalidade do cluster. Assim sendo, o middleware desenvolvido foi capaz de diminuir o número de servidores necessários para processar as filas de mensagens, liberando recursos da infraestrutura do cluster para uso como failover do sistema distribuído ou em outras aplicações. Consequentemente, a qualidade dos serviços prestados melhorou, devido a diminuição dos tempos de atualização do sistema por conta de manutenções evolutivas e corretivas. ______________________________________________________________________________ ABSTRACTThis work proposed and evaluated a middleware with support for fault tolerance and elasticity in a high performance cluster. For this purpose, it was constructed an elastic architecture to dynamically adapt to growth in the request queue, so that messages do not accumulate. Also the architeture provides fault-tolerance to system outages, in the cases of failure of service, so these failures do not impact on the operation of the cluster. The middleware developed was able to decrease the number of servers needed to process the message queue, freeing infrastructure resources of the cluster for use as a failover of the distributed system or in other applications. Consequently, the quality of service has improved due to shortened time to update the system on behalf of progressive and corrective maintenance
    corecore