1,054 research outputs found

    Testable Design for Positive Control Flipping Faults in Reversible Circuits

    Get PDF
    Fast computational power is a major concern in every computing system. The advancement of the fabrication process in the present semiconductor technologies provides to accommodate millions of gates per chip and is also capable of reducing the size of the chips. Concurrently, the complex circuit design always leads to high power dissipation and increases the fault rates. Due to these difficulties, researchers explore the reversible logic circuit as an alternative way to implement the low-power circuit design. It is also widely applied in recent technology trends like quantum computing. Analyzing the correct functional behavior of these circuits is an essential requirement in the testing of the circuit. This paper presents a testable design for the k-CNOT based circuit capable of diagnosing the Positive Control Flipping Faults (PCFFs) in reversible circuits. The proposed work shows that generating a single test vector that applies to the constructed design circuit is sufficient for covering the PCFFs in the reversible circuit. Further, the parity-bit operations are augmented to the constructed testable circuit that produces the parity-test pattern to extract the faulty gate location of PCFFs. Various reversible benchmark circuits are used for evaluating the experimental results to establish the correctness of the proposed fault diagnosis technique. Also a comparative analysis is performed with the existing work

    Fault tolerance in reversible logic

    Get PDF
    In recent years reversible logic has offered a promising alternative to traditional logic circuits. Reversible logic introduces a mechanism which allows theoretically zero energy dissipation by eliminating the possibility of information loss. However, it is also desirable that all computation should ideally be done in a fault tolerant manner. To address this we propose techniques to achieve fault tolerance in reversible logic based on a passive hardware redundancy technique. We propose two new designs for a reversible majority voter circuit that can be used to implement fault masking. Comparisons to existing designs are presented in terms of cost metrics such as gate count, garbage outputs, constant inputs, and quantum cost. Comparative failure probability analysis of the proposed voter circuits is also provided. Simulation results of the voter circuit failure probabilities over different numbers of trials are also presented. Our approach can be used to determine the circuit failure probability by using the gate failure probabilities. The proposed methodology can provide useful information for future reversible gate fabrication and designing future fault tolerant reversible circuits

    Automatic Test Pattern Generation for Robust Quantum Circuit Testing

    Full text link
    Quantum circuit testing is essential for detecting potential faults in realistic quantum devices, while the testing process itself also suffers from the inexactness and unreliability of quantum operations. This paper alleviates the issue by proposing a novel framework of automatic test pattern generation (ATPG) for the robust quantum circuit testing. We introduce the stabilizer projector decomposition (SPD) for representing the quantum test pattern, and construct the test application using Clifford-only circuits, which are rather robust and efficient as evidenced in the fault-tolerant quantum computation. However, it is generally hard to generate SPDs due to the exponentially growing number of the stabilizer projectors. To circumvent this difficulty, we develop an SPD generation algorithm, as well as several acceleration techniques which can exploit both locality and sparsity in generating SPDs. The effectiveness of our algorithms are validated by 1) theoretical guarantees under reasonable conditions, 2) experimental results on commonly used benchmark circuits, such as Quantum Fourier Transform (QFT), Quantum Volume (QV) and Bernstein-Vazirani (BV) in IBM Qiskit. For example, test patterns are automatically generated by our algorithm for a 10-qubit QFT circuit, and then a fault is detected by simulating the test application with detection accuracy higher than 91%.Comment: 18 pages, 6 figures, 3 table

    Synthesis, testing and tolerance in reversible logic

    Get PDF
    In recent years, reversible computing has established itself as a promising research area and emerging technology. This thesis focuses on three important areas of reversible logic, which is an area of reversible computing. Firstly, this thesis proposes a transformation based synthesis approach for realizing conservative reversible functions using SWAP and Fredkin gates. This thesis also proposes ten templates for optimizing SWAP and Fredkin gates-based reversible circuits. Secondly, this thesis proposes an approach for the design of online testable reversible circuits. A reversible circuit composed of NOT, CNOT and Toffoli gates can be made online testable by adding two sets of CNOT gates and a single parity line. Finally, we have proposed an approach to achieve fault tolerance in reversible circuits. A design of a 3-bit reversible majority voter circuit is presented. This voter circuit can be used to design fault tolerant reversible circuits

    Design Methods for Reliable Quantum Circuits

    Get PDF
    Quantum computing is an emerging technology that has the potential to change the perspectives and applications of computing in general. A wide range of applications are enabled: from faster algorithmic solutions of classically still difficult problems to theoretically more secure communication protocols. A quantum computer uses the quantum mechanical effects of particles or particle-like systems, and a major similarity between quantum and classical computers consists of both being abstracted as information processing machines. Whereas a classical computer operates on classical digital information, the quantum computer processes quantum information, which shares similarities with analog signals. One of the central differences between the two types of information is that classical information is more fault-tolerant when compared to its quantum counterpart. Faults are the result of the quantum systems being interfered by external noise, but during the last decades quantum error correction codes (QECC) were proposed as methods to reduce the effect of noise. Reliable quantum circuits are the result of designing circuits that operate directly on encoded quantum information, but the circuit’s reliability is also increased by supplemental redundancies, such as sub-circuit repetitions. Reliable quantum circuits have not been widely used, and one of the major obstacles is their vast associated resource overhead, but recent quantum computing architectures show promising scalabilities. Consequently the number of particles used for computing can be more easily increased, and that the classical control hardware (inherent for quantum computation) is also more reliable. Reliable quantum circuits haev been investigated for almost as long as general quantum computing, but their limited adoption (until recently) has not generated enough interest into their systematic design. The continuously increasing practical relevance of reliability motivates the present thesis to investigate some of the first answers to questions related to the background and the methods forming a reliable quantum circuit design stack. The specifics of quantum circuits are analysed from two perspectives: their probabilistic behaviour and their topological properties when a particular class of QECCs are used. The quantum phenomena, such as entanglement and superposition, are the computational resources used for designing quantum circuits. The discrete nature of classical information is missing for quantum information. An arbitrary quantum system can be in an infinite number of states, which are linear combinations of an exponential number of basis states. Any nontrivial linear combination of more than one basis states is called a state superposition. The effect of superpositions becomes evident when the state of the system is inferred (measured), as measurements are probabilistic with respect to their output: a nontrivial state superposition will collapse to one of the component basis states, and the measurement result is known exactly only after the measurement. A quantum system is, in general, composed from identical subsystems, meaning that a quantum computer (the complete system) operates on multiple similar particles (subsystems). Entanglement expresses the impossibility of separating the state of the subsystems from the state of the complete system: the nontrivial interactions between the subsystems result into a single indivisible state. Entanglement is an additional source of probabilistic behaviour: by measuring the state of a subsystem, the states of the unmeasured subsystems will probabilistically collapse to states from a well defined set of possible states. Superposition and entanglement are the building blocks of quantum information teleportation protocols, which in turn are used in state-of-the-art fault-tolerant quantum computing architectures. Information teleportation implies that the state of a subsystem is moved to a second subsystem without copying any information during the process. The probabilistic approach towards the design of quantum circuits is initiated by the extension of classical test and diagnosis methods. Quantum circuits are modelled similarly to classical circuits by defining gate-lists, and missing quantum gates are modelled by the single missing gate fault. The probabilistic approaches towards quantum circuits are facilitated by comparing these to stochastic circuits, which are a particular type of classical digital circuits. Stochastic circuits can be considered an emulation of analogue computing using digital components. A first proposed design method, based on the direct comparison, is the simulation of quantum circuits using stochastic circuits by mapping each quantum gate to a stochastic computing sub-circuit. The resulting stochastic circuit is compiled and simulated on FPGAs. The obtained results are encouraging and illustrate the capabilities of the proposed simulation technique. However, the exponential number of possible quantum basis states was translated into an exponential number of stochastic computing elements. A second contribution of the thesis is the proposal of test and diagnosis methods for both stochastic and quantum circuits. Existing verification (tomographic) methods of quantum circuits were targeting the reconstruction of the gate-lists. The repeated execution of the quantum circuit was followed by different but specific measurement at the circuit outputs. The similarities between stochastic and quantum circuits motivated the proposal of test and diagnosis methods that use a restricted set of measurement types, which minimise the number of circuit executions. The obtained simulation results show that the proposed validation methods improve the feasibility of quantum circuit tomography for small and medium size circuits. A third contribution of the thesis is the algorithmic formalisation of a problem encountered in teleportation-based quantum computing architectures. The teleportation results are probabilistic and require corrections represented as quantum gates from a particular set. However, there are known commutation properties of these gates with the gates used in the circuit. The corrections are not applied as dynamic gate insertions (during the circuit’s execution) into the gate-lists, but their effect is tracked through the circuit, and the corrections are applied only at circuit outputs. The simulation results show that the algorithmic solution is applicable for very large quantum circuits. Topological quantum computing (TQC) is based on a class of fault-tolerant quantum circuits that use the surface code as the underlying QECC. Quantum information is encoded in lattice-like structures and error protection is enabled by the topological properties of the lattice. The 3D structure of the lattice allows TQC computations to be visualised similarly to knot diagrams. Logical information is abstracted as strands and strand interactions (braids) represent logical quantum gates. Therefore, TQC circuits are abstracted using a geometrical description, which allows circuit input-output transformations (correlations) to be represented as geometric sub-structures. TQC design methods were not investigated prior to this work, and the thesis introduces the topological computational model by first analysing the necessary concepts. The proposed TQC design stack follows a top-down approach: an arbitrary quantum circuit is decomposed into the TQC supported gate set; the resulting circuit is mapped to a lattice of appropriate dimensions; relevant resulting topological properties are extracted and expressed using graphs and Boolean formulas. Both circuit representations are novel and applicable to TQC circuit synthesis and validation. Moreover, the Boolean formalism is broadened into a formal mechanism for proving circuit correctness. The thesis introduces TQC circuit synthesis, which is based on a novel logical gate geometric description, whose formal correctness is demonstrated. Two synthesis methods are designed, and both use a general planar representation of the circuit. Initial simulation results demonstrate the practicality and performance of the methods. An additional group of proposed design methods solves the problem of automatic correlation construction. The methods use validity criteria which were introduced and analysed beforehand in the thesis. Input-output correlations existing in the circuit are inferred using both the graph and the Boolean representation. The thesis extends the TQC state-of-the-art by recognising the importance of correlations in the validation process: correlation construction is used as a sub-routine for TQC circuit validation. The presented cross-layer validation procedure is useful when investigating both the QECC and the circuit, while a second proposed method is QECC-independent. Both methods are scalable and applicable even to very large circuits. The thesis completes with the analysis of TQC circuit identities, where the developed Boolean formalism is used. The proofs of former known circuit identities were either missing or complex, and the presented approach reduces the length of the proofs and represents a first step towards standardising them. A new identity is developed and detailed during the process of illustrating the known circuit identities. Reliable quantum circuits are a necessity for quantum computing to become reality, and specialised design methods are required to support the quest for scalable quantum computers. This thesis used a twofold approach towards this target: firstly by focusing on the probabilistic behaviour of quantum circuits, and secondly by considering the requirements of a promising quantum computing architecture, namely TQC. Both approaches resulted in a set of design methods enabling the investigation of reliable quantum circuits. The thesis contributes with the proposal of a new quantum simulation technique, novel and practical test and diagnosis methods for general quantum circuits, the proposal of the TQC design stack and the set of design methods that form the stack. The mapping, synthesis and validation of TQC circuits were developed and evaluated based on a novel and promising formalism that enabled checking circuit correctness. Future work will focus on improving the understanding of TQC circuit identities as it is hoped that these are the key for circuit compaction and optimisation. Improvements to the stochastic circuit simulation technique have the potential of spawning new insights about quantum circuits in general

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours

    Converter fault diagnosis and post-fault operation of a doubly-fed induction generator for a wind turbine

    Get PDF
    Wind energy has become one of the most important alternative energy resources because of the global warming crisis. Wind turbines are often erected off-shore because of favourable wind conditions, requiring lower towers than on-shore. The doubly-fed induction generator is one of the most widely used generators with wind turbines. In such a wind turbine the power converters are less robust than the generator and other mechanical parts. If any switch failure occurs in the converters, the wind turbine may be seriously damaged and have to stop. Therefore, converter health monitoring and fault diagnosis are important to improve system reliability. Moreover, to avoid shutting down the wind turbine, converter fault diagnosis may permit a change in control strategy and/or reconfigure the power converters to permit post-fault operation. This research focuses on switch fault diagnosis and post-fault operation for the converters of the doubly-fed induction generator. The effects of an open-switch fault and a short-circuit switch fault are analysed. Several existing open-switch fault diagnosis methods are examined but are found to be unsuitable for the doubly-fed induction generator. The causes of false alarms with these methods are investigated. A proposed diagnosis method, with false alarm suppression, has the fault detection capability equivalent to the best of the existing methods, but improves system reliability. After any open-switch fault is detected, reconfiguration to a four-switch topology is activated to avoid shutting down the system. Short-circuit switch faults are also investigated. Possible methods to deal with this fault are discussed and demonstrated in simulation. Operating the doubly-fed induction generator as a squirrel cage generator with aerodynamic power control of turbine blades is suggested if this fault occurs in the machine-side converter, while constant dc voltage control is suitable for a short-circuit switch fault in the grid-side converter.Wind energy has become one of the most important alternative energy resources because of the global warming crisis. Wind turbines are often erected off-shore because of favourable wind conditions, requiring lower towers than on-shore. The doubly-fed induction generator is one of the most widely used generators with wind turbines. In such a wind turbine the power converters are less robust than the generator and other mechanical parts. If any switch failure occurs in the converters, the wind turbine may be seriously damaged and have to stop. Therefore, converter health monitoring and fault diagnosis are important to improve system reliability. Moreover, to avoid shutting down the wind turbine, converter fault diagnosis may permit a change in control strategy and/or reconfigure the power converters to permit post-fault operation. This research focuses on switch fault diagnosis and post-fault operation for the converters of the doubly-fed induction generator. The effects of an open-switch fault and a short-circuit switch fault are analysed. Several existing open-switch fault diagnosis methods are examined but are found to be unsuitable for the doubly-fed induction generator. The causes of false alarms with these methods are investigated. A proposed diagnosis method, with false alarm suppression, has the fault detection capability equivalent to the best of the existing methods, but improves system reliability. After any open-switch fault is detected, reconfiguration to a four-switch topology is activated to avoid shutting down the system. Short-circuit switch faults are also investigated. Possible methods to deal with this fault are discussed and demonstrated in simulation. Operating the doubly-fed induction generator as a squirrel cage generator with aerodynamic power control of turbine blades is suggested if this fault occurs in the machine-side converter, while constant dc voltage control is suitable for a short-circuit switch fault in the grid-side converter

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF
    corecore