
FAULT TOLERANCE IN REVERSIBLE LOGIC

SHAMRIA SABATINA LATIF
Bachelor of Science

Ahsanullah University of Science & Technology, Bangladesh, 2015

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Shamria Sabatina Latif, 2018



FAULT TOLERANCE IN REVERSIBLE LOGIC

SHAMRIA SABATINA LATIF

Date of Defence: May 23, 2018

Dr. J. E. Rice
Supervisor Professor Ph.D.

Dr. W. Osborn
Committee Member Associate Professor Ph.D.

Dr. J. Morris
Committee Member Professor Ph.D.

Dr. H. Cheng
Chair, Thesis Examination Com-
mittee

Associate Professor Ph.D.



Dedication

I dedicate this thesis to the researchers in reversible computing.

iii



Abstract

In recent years reversible logic has offered a promising alternative to traditional logic cir-

cuits. Reversible logic introduces a mechanism which allows theoretically zero energy

dissipation by eliminating the possibility of information loss. However, it is also desirable

that all computation should ideally be done in a fault tolerant manner. To address this we

propose techniques to achieve fault tolerance in reversible logic based on a passive hard-

ware redundancy technique. We propose two new designs for a reversible majority voter

circuit that can be used to implement fault masking. Comparisons to existing designs are

presented in terms of cost metrics such as gate count, garbage outputs, constant inputs,

and quantum cost. Comparative failure probability analysis of the proposed voter circuits

is also provided. Simulation results of the voter circuit failure probabilities over different

numbers of trials are also presented. Our approach can be used to determine the circuit

failure probability by using the gate failure probabilities. The proposed methodology can

provide useful information for future reversible gate fabrication and designing future fault

tolerant reversible circuits.
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Chapter 1

Introduction

Power dissipation and the overheating of traditional circuits are ongoing concerns in dig-

ital logic design. Digital electronic devices are now faster and more complex than their

predecessors. Such increases in speed and complexity often lead to heat dissipation during

logic computation [17]. The ever growing need for faster and more power efficient devices

requires a technology that can reduce power consumption during computation. Researchers

suspect that the current technology has reached the limit of transistor density [2] and are

willing to explore possibilities in reversible logic. In 1961, R. Landauer showed that for

every irreversible bit operation the amount of energy loss is kT ln2 (where k is Boltzmann’s

constant, 1.38×10−23JK−1 and T is the operating temperature in Kelvin) [30]. Although

this appears to be a small amount of energy, if we think about an entire processor where mil-

lions of transistors are operating then the dissipated energy can be significant. According to

Moore’s observation, in a densely integrated circuit, the number of transistors will double

approximately every two years. This will increase the heat dissipation exponentially with

time [51]. However, if a system is able to return to its initial state from its final state, no en-

ergy would be dissipated and theoretically the system would act as a lossless system [6]. In

1973, C. H. Bennett proved that for a circuit to not dissipate energy the circuit must be log-

ically reversible. Reversible logic computation can decrease or even eliminate the energy

dissipation specified by R. Landauer in [30]. Currently, reversible logic has applications in

quantum computing [22], adiabatic CMOS fabrication [5], optical information processing

[8], DNA computing [50], cryptography [56] and nanotechnology [20].
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1.1. OBJECTIVES

A fault is a physical or functional imperfection that may occur within the hardware or

software modules. Faults may result in incorrect functioning of circuits and introduce errors

to the system. Fault tolerance strategies can help to avoid or eliminate errors at the output

of a system. Also, fault tolerance features can help to offer more reliable performance

and mitigate the risk of system failure. Unfortunately, there are few studies that focus on

designing fault tolerant reversible circuits. Therefore, exploring techniques for designing

fault tolerant reversible circuits has become a topic of interest to reversible logic researchers

[25].

1.1 Objectives

• This thesis explores the existing work on designing fault tolerant reversible circuits

and presents a passive hardware redundancy technique for achieving fault tolerance in

reversible logic. Previous studies in [16, 18, 36, 57] have introduced several reversible

logic gates and proposed synthesis methods incorporating these gates. Fault detection

within reversible circuits is presented in [45, 55, 26]. The use of the parity preserving

property is a commonly used fault detection technique and is still an active area of

research [45, 55, 26]. However, the parity preserving property in reversible circuits

can only detect the presence of a fault. Most of the literature on fault tolerance e.g.

[19, 23, 39, 45] offers fault detection features which do not correct or mask the faulty

output. To be labeled as fault tolerant, a circuit should either correct or mask the fault

at the output.

• Our proposed hardware fault tolerance technique uses the concept of traditional triple

modular redundancy (TMR). The TMR technique requires a majority voter circuit

(MVC) for fault masking purposes. The basic function of a MVC is to mask the

faults and provide corrected output. Designing reversible fault tolerant circuits using

the concept of TMR is one of the main objectives of this thesis. We propose two new

designs for a reversible majority voter circuit for fault masking in reversible logic.
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1.2. CONTRIBUTIONS

• In reversible logic, a one-to-one mapping between the inputs and outputs must be

maintained. This requirement often introduces design complexity to a reversible cir-

cuit. Design complexity of a reversible circuit is measured by commonly used cost

metrics such as gate count, quantum cost, number of constant inputs and garbage

outputs. We analyze the design complexity of our proposed voter circuits and present

the macro gate level circuit implementation. We also present a comparative analysis

of our proposed designs and the existing works in the literature [7, 43, 61].

• One of the objectives of this thesis is to evaluate the performance of our designed

majority voter circuits (MVCs). We demonstrate that the proposed MVCs can correct

a single bit fault, a single gate fault, a crosspoint fault and the family of missing gate

faults.

• Fault tolerance improves reliability by keeping the circuit operational in the event of

a failure. Therefore, it is important to assess the reliability of a design and study a cir-

cuit’s failure probabilities. In a voting based fault masking technique, achieving fault

tolerance largely depends on the voter circuit operation. One of the objectives of this

thesis is to determine the voter circuit’s failure probabilities based on its components

(i.e. the comprising gate failure probabilities). The voter circuit failure probabilities

are then expanded over different numbers of trials using the binomial distribution.

Our proposed probability analysis and simulations can help to study the robustness

of future fault tolerant reversible logic designs.

1.2 Contributions

The contributions of this thesis are listed below:

• In this thesis, we propose an approach to achieve fault tolerance in reversible logic

circuits. We offer a majority voting based TMR approach for masking faults that

occur in the original circuit.

3



1.3. THESIS ORGANIZATION

• TMR in reversible circuits requires the design of a reversible majority voter circuit.

In our work, we propose two new designs for a reversible majority voter circuit.

• We present a fault tolerant design for a reversible full adder circuit and demonstrate

how our proposed voter circuits can be used to design any fault tolerant reversible

circuits.

• We demonstrate the proposed reversible majority voter circuit application for mask-

ing a single fault occurring in any of the voter circuit’s inputs, i.e. before the voter

circuit. A single fault assumption considers a situation where at most one fault is

present in a circuit. We present the fault masking capability of our proposed voter

circuits in the case of a single bit fault (SBF), a single gate fault (SGF), a crosspoint

fault and the family of missing gate faults.

• We also demonstrate that under specific conditions the second of our proposed voter

circuits offers better fault masking capability than existing designs in the case of a

single fault occurring inside the voter circuit.

• We propose a failure probability analysis of the proposed majority voter circuits. We

demonstrate that the methodology proposed in this thesis can be used to determine a

voter circuit’s failure probabilities based on the gate failure probabilities.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 provides a brief introduction to reversible logic and related background. The

basic concepts of fault, failures and errors are discussed. Cost metrics in reversible logic

are defined. An overview of fault tolerance techniques as well as the concept of hardware

redundancy is provided.

Chapter 3 introduces a fault masking technique to achieve hardware fault tolerance in

reversible logic. We propose two new designs of a reversible majority voter circuit (MVC).

4



1.3. THESIS ORGANIZATION

A comparison of our proposed designs and the existing approaches [7, 43, 61] is presented.

Chapter 4 provides mathematical analysis and simulations to estimate the failure prob-

ability of the proposed MVCs. Using the concepts of set theory and binomial distribution

we propose failure probability analysis of the proposed voters.

Chapter 5 concludes the thesis by summarizing the contributions of this research and

discussing possible future work.

5



Chapter 2

Background

This chapter introduces the background of reversible logic computation as well as the fun-

damental concepts of fault, failure and errors. Fault tolerance techniques are discussed as

background for our proposed method of desigining fault tolerant reversible circuits.

2.1 Logic Computation

In computing, logic operations are used to model the information flow through digital

circuits. A logic operation connects and verifies two or more units of information. Logic

that implements a Boolean function is also known as digital or traditional logic. Mod-

ern digital devices follow the principle of Boolean logic and define a problem in terms of

Boolean functions. A circuit element that performs a logic operation is called a logic gate.

Due to the limitations of existing physical components in traditional logic (e.g. heat dis-

sipation) researchers are showing more interest in reversible logic computation [5]. The

following subsections explain the concepts of traditional and reversible logic computation.

2.1.1 Traditional Logic Computation

In traditional logic, a function maps one or more inputs to one or more outputs in a

Boolean domain B, where B = {0,1}. The following mathematical expression represents a

traditional logic function with k inputs and n outputs in the Boolean domain:

f : Bk −→ Bn (2.1)

6



2.1. LOGIC COMPUTATION

where k and n are positive integers.

In most cases, the number of outputs is less than the number of inputs (i.e. n < k).

The input-output relation of a traditional logic gate can be described by the associated truth

table. A truth table shows the mapping from the k input columns to the n output columns

over 2k rows of any Boolean logic function.

Table 2.1: Truth tables of traditional logic functions.

(a) NOT Operation

A NOT (A)

0 1
1 0

(b) OR Operation

P Q P+Q
0 0 0
0 1 1
1 0 1
1 1 1

(c) Full Adder Operation

Carryin A B Carryout Sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The truth table describes all possible logic values of the inputs along with the result-

ing outputs. Table 2.1a shows a NOT gate operation in traditional logic. The input-output

relationship of a traditional NOT gate operation is one-to-one and this is a reversible oper-

ation. A reversible operation is invertible and the input-output relationship of a reversible

operation is one-to-one and onto. However, Table 2.1b and Table 2.1c show functions for

which the relationship between inputs and outputs is not one to one. For example, a con-

ventional OR gate has two inputs and yields a single output. Thus, the OR gate is logically

irreversible, meaning it is not possible to determine unique inputs for all the outputs. For

example in Table 2.1b, the output value is 1 for inputs PQ = 01, 10, and 11. Thus the

operation is not reversible. A similar irreversible operation is observed for the truth table

shown in Table 2.1c and most other traditional logic functions.

7



2.1. LOGIC COMPUTATION

Table 2.2: Truth tables of reversible logic functions.

(a) NOT Operation.

A NOT (A)

0 1
1 0

(b) Controlled NOT Operation.

P Q X Y

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

(c) Full Adder Operation.

Constantin1 Carryin1 A B Carryout Sum Garbageout1 Garbageout2

0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 0 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 1 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1
1 0 0 0 1 0 0 0
1 0 0 1 1 1 1 1
1 0 1 0 1 1 1 0
1 0 1 1 0 0 0 1
1 1 0 0 1 1 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0
1 1 1 1 0 1 0 1

2.1.2 Reversible Logic Computation

In reversible logic a one to one mapping exists between the input and output assign-

ment. Therefore, reversible logic gates are bijective requiring an equal number of inputs

and outputs. Thus, reversible gates do not erase any information during computation and

the computation can be undone to recover the input information [44]. In the scope of this

thesis, our research addresses only Boolean reversible logic functions. The truth table for

a reversible function of k variables requires 2k rows and 2k columns. The bijective rela-

tionship between the inputs and outputs of a NOT, Controlled NOT, and full adder logic

8



2.2. LOGIC GATES

functions are shown in Table 2.2.

An irreversible logic circuit can be transformed into a reversible circuit by adding inputs

and/or outputs. These additional inputs are called constant inputs and the unused outputs

are called garbage outputs. For example, the truth table of a reversible full adder presented

in Table 2.2c shows additional constant input and garbage outputs as compared to the truth

table of the irreversible full adder presented in Table 2.1c. In a full adder, Carry and Sum

are the two output bits of interest. In Table 2.2c, two outputs, Carryout and Sum, represent

the carry and sum bits of a full adder. The garbage outputs do not contribute to the property

of the sum or carry output bits. The additional input Constantin1 and the two outputs,

Garbageout1 and Garbageout2 are used to maintain the bijective relation between the inputs

and the outputs of this reversible full adder operation. Constant inputs and garbage outputs

are often used as cost metrics of reversible circuits. The cost metrics in reversible logic are

discussed further in section 2.3.

2.2 Logic Gates

Logic gates are used to perform logic operations. Gates are combined (cascaded) to

implement the desired logic functions. Therefore, logic gates are the key components of a

circuit. This section introduces the reversible logic gates that are used to design the fault

tolerant reversible circuits of this thesis.

2.2.1 Reversible Gates

All reversible gates are bijective and maintain one-to-one and onto relationships be-

tween the inputs and outputs. The two most popular families of gates are the NCT (NOT-

CNOT-Toffoli) gate family and the SF (SWAP-Fredkin) gate family [59]. This thesis uses

Controlled NOT (CNOT) and Toffoli gates from the NCT family and Fredkin gates which

belong to the SF gate family. These gates are introduced in the following subsections. In

the following figures the • symbol represents the control points and the ⊕ symbol indicates

9



2.2. LOGIC GATES

the targets of the reversible gates. The targets (⊕) of the reversible gates perform the EXOR

operation. The first n−1 bits are known as control the control bits, and the last nth bit is the

target bit. The reversible gate passes the input values at controls directly to the correspond-

ing outputs without any change and inverts the target bit if and only if all input values at

controls are 1. The NOT gate is a special case of a Toffoli gate with no controls. Negative

control points are shown as ◦ and inverts the target bit if and only if all input values at

controls are 0.

(a) A reversible NOT gate. (b) A CNOT gate.

Figure 2.1: Reversible logic gates.

2.2.2 NOT Gates

One of the simplest reversible logic gates is a NOT gate. A reversible NOT gate oper-

ation shown in Table 2.2a is identical to the traditional NOT gate operation in Table 2.1a.

A NOT gate in traditional logic is the only logic gate that provides a one-to-one and onto

relationship between the inputs and outputs. Thus, the logical NOT operation is reversible.

The truth table for a logical NOT operation is presented in Table 2.2a.

2.2.3 CNOT Gates

The controlled-NOT (CNOT) gate belongs to the NCT gate family. A CNOT gate con-

sists of a control input and a target input. A specified value at the control input inverts

the target input value. If the control input value of 1 inverts the target input, the gate is

referred to as a positive-controlled gate. For a negative-controlled gate a control input value

of 0 inverts the target input. For example, when both the control and target inputs are 1 a

positive-controlled CNOT gate inverts the target input value to (1 ⊕ 1) which is equal to 0.

10



2.2. LOGIC GATES

Figure 2.1b shows a positive controlled CNOT gate along with the logic function. The as-

sociated truth table is presented in Table 2.2b. A CNOT gate is also known as the Feynman

gate [24].

2.2.4 Toffoli Gates

A Toffoli gate is a form of CNOT gate with multiple control points [57]. The reversible

NOT gate is a special case of a Toffoli gate with n = 1 and no control values. When n = 2,

the Toffoli gate is also known as the CNOT or Feynman gate. It is possible to implement

the three basic logic operations (i.e. the NOT, AND and OR operations) using only Toffoli

gates [57]. Thus, a Toffoli gate is considered to be a universal gate.

(a) A 3×3 positive-controlled Toffoli gate. (b) A 3×3 negative-controlled Toffoli gate.

(c) A n× n MCT gate with positive and negative control
points.

Figure 2.2: Toffoli gates.

Figure 2.2a shows a 3×3 positive-control Toffoli gate with two control points and one

target point. The two input lines a1 and a2 are connected to the two control points and

the input line a3 is connected to the target. If the values of the two control points are

1 then the target input is inverted. Otherwise, the target input remains unchanged. For

11
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Table 2.3: Truth table of a 3×3 positive-controlled Toffoli gate.

input output
a1 a2 a3 x1 x2 x3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

example in Figure 2.2a, for the inputs (a1,a2,a3) ≡ (1,1,1), the output of the Toffoli gate

is (x1,x2,x3)≡ (1,1,0). The truth table of a 3×3 positive-control Toffoli gate is shown in

Table 2.3.

Based on the value of the control points, a Toffoli gate can also be positive or negative

controlled (shown in Figure 2.2a and Figure 2.2b). The difference between a positive-

controlled and a negative-controlled Toffoli gate lies in the gate operation. A positive-

controlled Toffoli gate inverts the target when the control value is 1 while the negative-

controlled Toffoli gate inverts the target when the control value is 0. A negative-controlled

Toffoli gate may have one or more negative controls. In that case, this gate inverts the target

when all the negative control values are 0. A Toffoli gate can also have multiple control

points in which case it is referred to as an n-bit Toffoli gate (where n−1 is the number of

controls and the nth bit is the target) or a multiple-controlled Toffoli (MCT) gate. A MCT

gate with different control points inverts the value of the target point when all of the positive

controls are at 1 and the negative controls are at 0. An example of this is shown in Figure

2.2c, where the output function is xn = an⊕a1a2 a3.....an−1.

2.2.5 Fredkin Gates

A Fredkin gate is also a universal reversible gate that performs a logic operation con-

trolled by one or more control points [18]. Unlike the gates in the NCT family, the target
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lines of a Fredkin gate interchange their values depending on the value at the control points.

A positive-controlled Fredkin gate interchanges the target lines if the control point value is

1, otherwise the target lines remain unchanged. Similarly, a negative-controlled Fredkin

gate performs the logic operation when the control value is 0. Figure 2.3 shows different

Fredkin gates. The truth table for a 3× 3 positive-controlled Fredkin gate is presented in

Table 2.4.

(a) A SWAP gate.

(b) A 3×3 positive-controlled Fredkin gate. (c) A 3×3 negative-controlled Fredkin gate.

Figure 2.3: Reversible Fredkin gates.

Table 2.4: Behavior of a 3×3 positive-controlled Fredkin gate.

input output
a b c x y z

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

A 2-bit Fredkin gate is known as a SWAP gate and is shown in Figure 2.3(a). A SWAP

gate always interchanges the values of the target lines. Figure 2.3(b) and Figure 2.3(c) show

13
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a positive and a negative control Fredkin gate. If a Fredkin gate has multiple control points

then the gate is called an n-bit Fredkin gate or Multiple Control Fredkin (MCF) gate. In a

MCF, the gate passes the control bits to the outputs unchanged and interchanges the target

bit values if all the positive control point values are 1 and all the negative control points are

0.

2.3 Cost Metrics in Reversible Logic

A number of metrics are used to evaluate the efficiency of reversible circuits. Some of

the commonly used cost metrics of reversible circuits include gate count, garbage output,

constant input and quantum cost which are described below:

2.3.1 Gate Count (GC)

Gate count is one of the measures used to compare and evaluate different logic circuits.

Gate count refers to the number of logic gates used to implement a traditional or reversible

circuit. However, gate count does not evaluate the complexity [37] of logic circuits. For

example, let us consider two reversible circuits where the first circuit consists of three 3-bit

Toffoli gates and the second circuit consists of two 6-bit Toffoli gates. In this case, the

gate count measurement will indicate that the second circuit uses fewer gates and therefore,

is preferable compared to the first circuit. However, as discussed in Section 2.3.4 a 6-bit

Toffoli gate is more complex than a 2-bit Toffoli gate. Since the gates have a different

number of input bits, a simple gate count measure fails to fully evaluate the complexity of

the circuits. Gate count can be useful to compare different circuits consisting of similar

types of gates.

2.3.2 Garbage Output (GO)

Garbage output is another measure for comparing and evaluating reversible circuits. As

demonstrated in Section 2.1, it is sometimes necessary to add extra outputs in order to main-

tain reversibility. The values of these extra outputs are not important to realize the function

14
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of a circuit and are known as garbage outputs. For example, in Table 2.1c Garbageout1 and

Garbageout2 are the garbage outputs. However, adding garbage outputs adds extra lines

and, therefore increases the circuit width. According to Maslov [37], reducing the garbage

outputs is more important than reducing the gate count.

2.3.3 Constant Input (CI)

The number of constant inputs is another metric used to evaluate and compare imple-

mentations. Constant inputs are also known as ancilla inputs [37]. Constant inputs are the

input lines that are added to a function to make it reversible. The relationship between

garbage outputs and constant inputs is given by the following equation:

inputs + ancilla inputs = out puts+garbage

2.3.4 Quantum Cost (QC)

Quantum cost is an important measure to evaluate and compare the cost of reversible

circuits. Quantum cost refers to the number of 1×1 or 2×2 (1 input−1 output, 2 input−2

output) quantum gates required to design a circuit. Quantum gates are the reversible equiv-

alent of traditional transistors and resistors. They are the micro-level building blocks of

reversible gates. It is assumed that all reversible gates will be implemented at the quantum

level by basic 1×1 or 2×2 quantum gates [37]. The quantum costs of the reversible gates

used for the examples and in designing the fault tolerant reversible circuits in this thesis are

shown in Table 2.5.

As the number of control inputs increases the quantum cost for the reversible gates

also increases. For example, a 3-bit positive control Toffoli gate has a quantum cost of 5,

whereas a 6-bit Toffoli gate has a cost of 61 [35]. The quantum cost calculation of an n-bit

Toffoli gate is presented in [4]. According to Arabzadeh et al. [4]:

• A multiple control Toffoli gate with n− 1 controls and the nth bit as the target can

be written as Cn−1NOT (c; t), where c = {x1, ...,xn−1} ⊂ X is the set of control lines
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Table 2.5: Quantum cost of some reversible gates.

Size (n) Garbage Name Quantum Cost

1 0 NOT 1
2 0 positive-controlled CNOT 1
2 0 negative-controlled CNOT 3
3 0 Toffoli, C2NOT 5
4 0 Toffoli, C3NOT 13
5 0 Toffoli, C4NOT 29
5 2 Toffoli, C4NOT 26
6 0 Toffoli, C5NOT 61
3 0 positive-controlled Fredkin 5
3 0 negative-controlled Fredkin 5

and t = xn is the target line. For n = 1, n = 2, and n = 3 the gates are called NOT ,

CNOT , and C2NOT or Toffoli, respectively. A Cn−1NOT gate has an exponential

cost of 2n−3 only if the gate has zero garbage lines with all positive controls.

• The quantum cost of an n−1 negative-control Toffoli gate with at least one positive-

control is the same as the cost of an n−1 positive-control Toffoli gate.

• If all the controls of a Toffoli gate are negative an extra cost of 2 is added if zero or

(n−3) garbage lines are used.

According to [35], a size n Fredkin gate can be simulated efficiently by a size n Toffoli

gate and 2 CNOT gates. Thus, the cost of a size n Fredkin gate is calculated by the QC of

a size n Toffoli gate + 2. The quantum cost for different sizes of Toffoli and Fredkin gates

is determined from the gate implementation technique. In our calculations, the quantum

cost of the generalized Toffoli and Fredkin gates is taken from [35]. However, the quantum

cost for any of the gates, as given in [35], may change in the future as new technologies are

developed.
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2.4 Fault, Failures and Errors

Every system or module is designed for a specific output behaviour. When the system is

in service its behaviour can be observed and compared with a reference system. A system

failure denotes that the system is unable to perform its intended function because of an er-

ror. According to Laprie [31], “a system failure occurs when the delivered service no longer

complies with the specifications”. A fault can be defined as a physical or functional flaw

that occurs within some hardware or software components. A fault may occur due to the

design errors, mistakes in system specification or implementation, manufacturing problems

or other external disturbances. In general, faults can be classified as a) hard (permanent) or

b) soft (transient). Hard faults result from the physical changes of components. A determi-

nate fault (‘stuck at zero’or ‘stuck at one’) within a digital logic circuit can be considered to

be a hard fault. Soft faults can occur due to temporary changes in the properties of logic cir-

cuits. External influences such as electromagnetic interference, noise in the power supply,

or improper functioning of a circuit may result in soft faults within a system.

An error is a manifestation of a fault. In a digital system, if the logical state of an

element differs from the intended value this indicates an error. It can be stated that a failure

is the result of an error, caused by a fault. This could be illustrated as:

Fault→ Error→ Failure

2.5 Fault Tolerance in Reversible Logic

In traditional logic, fault tolerance has become increasingly important due to the wide-

spread use of computers. Fault tolerance is a design attribute that enables a system to per-

form the intended operation even in the presence of a fault. The incorporation of fault tol-

erance into a design is an important approach to achieve reliable performance. Approaches

to fault tolerance techniques in traditional logic are described in [25]. This thesis focuses

on fault tolerance in reversible logic.
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One approach for achieving fault tolerance both in traditional and reversible logic is to

introduce redundancy. For designing fault tolerant reversible circuits this thesis work uses

the concept of redundancy. Readers are referred to section 2.6 for details on redundancy

and the basic concept of our approach. The concepts of fault detection, fault location, fault

recovery, and fault masking are important in the design of a fault tolerant system. These

concepts are described in the following subsections.

2.5.1 Fault Detection

A fault detection process identifies the occurrences of faults within a circuit. To ensure

proper functioning of the circuit, faults must be detected as early as possible [25].

2.5.2 Fault Location

The process of fault location or fault diagnosis occurs after fault detection. Fault loca-

tion is the process of determining where a fault has occured (i.e. the physical location of

the fault within the circuit) [25].

2.5.3 Fault Recovery

Fault recovery is the process of keeping the circuit operational or restoring circuit oper-

ation after a fault has occured. A fault recovery process may require some reconfiguration

of the circuit [25].

2.5.4 Fault Masking

Fault masking is the process of preventing faults from introducing errors into the system.

Common approaches to fault masking include majority voting techniques for structural

redundancy or error correcting memories for correcting memory before a circuit uses the

data [25].
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2.6 Redundancy to Achieve Fault Tolerance

Redundancy is the duplication of information, resources, or time to increase the relia-

bility of a system [25]. Figure 2.4 shows different forms of redundancies used in traditional

logic design. The introduction of any type of redundancy in reversible circuits must main-

tain the one-to-one and onto relationship between the inputs and outputs. In order for

a system to be fault tolerant an active hardware redundancy technique requires detection

and correction of faults within the system. Alternatively, a passive hardware redundancy

technique achieves fault tolerance by masking the faults at the output [25]. For details on

hardware redundancy readers are referred to section 2.7.

Figure 2.4: Different approaches to fault tolerance and how they are categorized [25].

Software redundancy requires the addition of extra code, which could be small routines

or complete programs beyond the module requirement. Techniques used in software redun-

dancy check correctness or the consistency of the results produced by a specific program.

Sometimes the use of redundant programs eliminates the need for redundant hardware com-

ponents which can also reduce the overall cost of a system [25].
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The use of additional error detecting or correcting codes can be categorized as infor-

mation redundancy. Error detecting codes are formed by introducing some structured code

words. If the bit combinations are defined in such a way that only some of the bit com-

binations represent useful information then the errors can be detected. Codes can also be

generated for error correction. One possible way to achieve real-time correction is to en-

code data using error-correcting codes (ECC) [25].

Time redundancy requires several hardware or software modules performing the same

operation in parallel. In this technique the same computation is performed several times to

compare the results. If the module results disagree with each other this indicates an error.

Fault indication requires the error computations to be performed again. Time redundancy

implementations for fault tolerance reduce hardware cost at the expense of additional time

[25].

2.7 Hardware Redundancy

Hardware redundancy has become more practical due to the decreasing cost of hardware

components. The most common approaches used in hardware redundancy techniques are:

module replication, use of extra circuits, and majority voting mechanisms [25]. According

to Johnson [25], there are three basic forms of hardware redundancy: passive, active and

hybrid. Active hardware redundancy is also referred to as dynamic redundancy. An active

approach attempts to detect faults and requires additional features to remove the faulty hard-

ware components. In this technique fault tolerance is achieved using fault detection, fault

location, and fault recovery. An active hardware redundancy technique often requires that

the entire system be reconfigured. Reconfiguring a system may require the faulty modules

to be removed and taken out of operation [25]. Thus active hardware redundancy techniques

are offline fault tolerance approaches.
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Passive hardware redundancy techniques use the concept of fault masking. Fault mask-

ing approaches prevent the faults from resulting in errors. The most commonly used form

of fault masking is majority voting [25]. Passive hardware redundancy techniques bypass

the fault and do not require any extra function for fault detection. This thesis focuses on

a majority voting based triple modular redundancy (TMR) arrangement to achieve fault

tolerance in reversible logic. The basic concept of TMR is described in subsection 2.7.1.

Hybrid forms of fault tolerance combine the attributes of both passive and active ap-

proaches. In hybrid fault tolerance techniques fault masking is used to prevent the errors

and improved performance is achieved by incorporating fault detection, fault location, and

fault recovery features.

2.7.1 Triple Modular Redundancy

Most passive hardware redundancy techniques rely on voting mechanisms for fault

masking purposes. TMR is easy to realize both in traditional and reversible logic design.

The basic concept of TMR is illustrated in Figure 2.5.

Figure 2.5: Illustration of TMR

In TMR a hardware module is triplicated and a majority vote is performed to determine

the correct output. In the case of a fault within one module, it is assumed that the remaining

two fault free modules provide a correct output and thus mask the fault. The concept of

TMR can also be applied to mask software failures where different versions of programs

execute the same function. A generalization of the TMR approach is known as N modular
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redundancy (NMR). NMR uses the same basic approach as TMR but uses N versions of

a given module. To use the majority voting arrangement N is selected to be an odd inte-

ger [25]. One major difficulty with a TMR approach is the dependence on the majority

voter circuit. If the voter circuit fails to execute its operation correctly, there is the risk of

complete system failure.

Because TMR relies so heavily on the reversible majority voter circuit, part of this thesis

focuses on the design of these circuits. We have proposed two new designs of a reversible

majority voter circuit. Chapter 3 presents the existing reversible majority voters [7, 43, 61]

as well as our designs to achieve fault tolerance in reversible logic.
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Chapter 3

Reversible Majority Voter Circuits

This chapter proposes a passive hardware fault tolerance technique and two new designs

for a majority voter circuit (MVC). A comparison of the proposed and existing designs is

presented. In addition, the performance of the proposed designs is presented as well as the

overall costs in terms of the cost metrics used in reversible logic.

3.1 Fault Tolerant Reversible Circuits

Most of the literature that propose fault tolerant reversible circuits provide only fault

detection mechanisms [19, 23, 45, 52]. However, for a circuit to be fault tolerant the de-

tected faults must also be corrected or masked. In this thesis we use a passive hardware

redundancy technique to achieve fault tolerance in reversible circuits. Passive hardware

redundancy techniques tolerate faults without the need of fault detection or system recon-

figuration. Unlike active hardware redundancy, passive hardware redundancy techniques do

not need to locate and correct a fault. Passive hardware redundancy techniques generally

use the concept of fault masking. Fault masking in a passive hardware fault tolerant system

saves the additional cost of fault location and correction, while still resulting in an online

fault tolerant approach. Details on passive hardware redundancy techniques are provided in

Chapter 2 of this thesis. All of the passive fault masking techniques proposed for reversible

logic [7, 43, 61] require replication of modules. The most commonly used form of passive

hardware redundancy is a triple modular redundancy (TMR) technique [25]. Readers are

referred to Chapter 2 for details on TMR. The basic concept of TMR is to use three identical
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hardware modules and a voter circuit. The voter circuit provides an output with the value

of the majority of the input bits. Therefore, in the case of a fault resulting in an error in the

value of one of the inputs to the voter, the majority voter masks the fault and produces an

output based on the remaining fault free modules. Since fault masking is done by voting

rather than comparison or fault correction the entire functionality of a TMR-based design

depends on the majority voter circuit (MVC) [25].

3.1.1 Reversible Majority Voter Circuits in the Literature

There are only three works in the literature that propose reversible majority voter cir-

cuits. Boykin and Roychowdhury [7] describe a reversible fault tolerant design using the

concept of a traditional 3-bit repetition code. Their technique introduces a multiplexing

scheme and a voting mechanism. A reversible MVC is used to generate the majority value

of the input bits. The proposed voter consists of two CNOT gates and one Toffoli gate as

shown in Figure 3.1. This voter provides the majority bit at the output line x. For example,

if the input bits abc have the values 100 then the value at line x is 0, which is the value of

the majority of the input bits.

Figure 3.1: Reversible majority voter circuit [7].

The reversible multiplexing scheme proposed in [7] introduces an error recovery circuit

as shown in Figure 3.2. The error recovery circuit uses six blocks of the majority voter

circuit of Figure 3.1 for a total of eight operations. Functionality of the error recovery circuit

is described using two phases: encoding and decoding. The first three MVC−1 blocks are

used to encode the input bits, while the last three MVC blocks are used to decode the bits.
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Figure 3.2: Reversible fault tolerant multiplexing scheme [7].

If an input bit has a logical value of 0 or 1, the encoding blocks map the bit to an expanded

value of 000 or 111. In other words, the MVC−1 blocks triplicate each input bit. The MVC

blocks in Figure 3.2 perform decoding and generate the majority value at each of the three

designated output lines. If there are no errors, the outputs of Figure 3.2 should match the

inputs. In case of a fault, at most one bit in each of the MVC outputs is altered and indicates

an error. Since the MVCs in Figure 3.2 return the majority bit values of the encoded bits,

a single error will not affect the majority bit values at the outputs. In practical use, this

error recovery cycle would be placed strategically throughout the circuit interspersed with

computations.

The MVC in Figure 3.1 uses three reversible gates and therefore, the gate count for

this circuit is 3. Since the design does not require any additional inputs the number of

constant inputs for this voter is zero. The design of this MVC produces 2 garbage outputs.

The MVC consists of two positive-controlled CNOT gates and one positive-controlled 3-bit

Toffoli gate. Thus, the total QC of this design is (1+1+5) = 7.

A 3-bit reversible majority voter circuit is proposed in [43]. Researchers in this study

designate a specific output line to carry the majority value. The proposed design is shown
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Figure 3.3: Reversible majority voter circuit [43].

in Figure 3.3. For example, let us consider an input bit combination abc = 011. For this

combination the control bit value of the first gate is 0. This passes the bits to the second

gate without any changes. The second gate has its control bit at 1 and swaps the first and

second input bits. This provides the majority value of 1 at the output (on line p). The MVC

presented in Figure 3.3 consists of a 2-CNOT and a 3- bit Fredkin gate and does not require

any constant input. The gate count of this MVC is 2 with a QC of (1+5) = 6.

Figure 3.4: Majority voter with triplicated voter outputs proposed in [61].

Another MVC proposed in [61] takes three input bits from three identical modules

and provides the majority line on all three outputs. In other words, the majority value is

replicated on three output lines. In order to maintain reversibility, two control lines (C1 = 1,

C2 = 0) are added at the voter input and two garbage lines (G1, G2) are added with the voter

outputs. Voting is done on the data inputs (a, b and c), and the goal is to produce all 0s

or all 1s at the data outputs (x, y and z). For example, if the input bits abc have the values
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101 and the control lines are set to C1 = 1, C2 = 0, this generates the value 111 at the data

outputs xyz as shown in Figure 3.5. The number of constant input and garbage output for

Figure 3.5: Example of input assignments and subsequent fault masking for the circuit
shown previously in Figure 3.4.

the voter presented in Figure 3.4 is 2 and 2, respectively. The circuit in Figure 3.4 uses 4

reversible gates which results in a gate count of 4. The QC of the circuit in Figure 3.4 is

(5+5+5+1) = 16.

3.2 Proposed Reversible Majority Voter Circuits

In this section we propose two designs for a 3-bit reversible majority voter. For a n×n

reversible circuit we can designate any of the output lines as an output line of interest

[43, 7] and consider the rest of the outputs to be garbage. The voter circuit behaviour is

characterized by the truth table shown in Table 3.1.

Figure 3.6: MVC with two reversible gates.
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Table 3.1: Truth table of the majority voter with two reversible gates.

after 1st gate after 2nd gate
abc a1b1c1 a2b2c2

000 010 010
001 001 001
010 000 000
011 011 110
100 110 011
101 101 101
110 101 101
111 111 111

The reversible MVC shown in Figure 3.6 consists of a negative control CNOT and a

positive control Fredkin gate. The output of interest is a2 which gives the majority of input

bits (shown in Table 3.1). The other two output lines are not used and are considered to

be garbage lines. To demonstrate the behaviour of this circuit, let us consider an input

combination of abc = 100. As we can see from Figure 3.6, the control of the Fredkin gate

is (c⊕b). When c = b, (c⊕b) = 0 and the Fredkin gate does not swap the values of a and

c at the output. However, when c 6= b then (c⊕ b) = 1, and the Fredkin gate operates and

swaps the values of a and c at the output. Thus, the gate count for this circuit is 2 and the

design does not require any constant input. The QC of a negative-controlled CNOT gate

and a positive-controlled Fredkin gate is 3 and 5 respectively [35]. Thus, the QC of the

circuit in Figure 3.6 is (3+5) = 8.

Figure 3.7: MVC with three reversible gates
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Table 3.2: Truth table of the majority voter with three reversible gates.

after 1st gate after 2nd gate after 3rd gate
abc a1b1c1 a2b2c2 a3b3c3

000 000 010 010
001 001 001 001
010 010 000 000
011 111 111 111
100 100 110 011
101 101 101 101
110 110 100 101
111 011 011 110

The second MVC we propose consists of three reversible gates: a positive control Tof-

foli, a negative control CNOT and a positive control Fredkin gate. For this circuit the output

of interest is a3 and the rest are garbage outputs. The truth table shown in Table 3.2 demon-

strates the bit combinations at each gate output. This 3×3 reversible majority voter circuit

provides the same output as our design proposed in Figure 3.6. However, the MVCs pre-

sented in Figure 3.6 and Figure 3.7 differ in their fault tolerance mechanism. The functional

difference of the proposed voters is described in Section 3.5.

The gate count for this circuit is 3 and the design does not require any constant in-

put. The QC of a positive-controlled Toffoli gate, a negative-controlled CNOT gate and a

positive-controlled Fredkin gate is 3, 5, and 5 respectively [35]. Thus, the QC of the circuit

in Figure 3.7 is (5+3+5) = 13.

3.2.1 Fault Tolerant Reversible Circuit Design

Our proposed voter circuits can be used with TMR to achieve fault tolerance for any

reversible circuit. For example, let us consider a 3×3 reversible logic circuit consisting

of a 2-bit Toffoli and a CNOT gate. This circuit is shown in Figure 3.8a where x is the

output of interest and y and z are garbage outputs. In accordance with the basic principles

of TMR we need three versions of the circuit in Figure 3.8a for designing a fault tolerant

reversible circuit. The three output lines of the three copied circuits are then connected to
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(a) A reversible circuit. (b) Fault tolerant design of the circuit using TMR.

Figure 3.8: Fault tolerant reversible circuit design

any of our proposed MVCs. In this case, let us consider the two-gate voter circuit shown

in Figure 3.6. If any one of the modules is faulty, the majority voter masks the fault and

sends the corrected output on line u. A fault tolerant design of the circuit in Figure 3.8a is

shown in Figure 3.8b. A full adder circuit is considered to be a fundamental building block

of many computational logic units. Figure 3.9 shows a fault tolerant full adder design using

two majority voter circuits. For a full adder circuit we have two functional outputs: Sum

and Carry. Output lines carrying the Sum from the triplicated modules are connected to

the majority voter 1 and the Carry output lines are connected to the majority voter 2. To

assure fault tolerance, the circuit needs to mask the fault at both of these two output lines.

Corrected Sum and Carry bits are generated at Corrected Sum and Corrected Carry output

lines as shown in Figure 3.9. Figure 3.9 also demonstrates the use of both of our proposed

voter circuits in this example, although we note that any voter circuit could be used in either

place.
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Figure 3.9: Reversible fault tolerant full adder circuit design.

3.3 Voter Circuit Comparisons

Reversible logic design evaluation is based on parameters such as the number of con-

stant inputs (CI), the number of garbage outputs (GO), quantum cost (QC), and gate count

(GC) [24]. These are often referred to as cost metrics. Readers are referred to Chapter 2

for details on cost metrics for reversible circuits. In this section, we compare our proposed

majority voter circuits to the existing designs presented in [7, 43, 61] respectively. Our

comparisons are shown in Table 3.3.

Table 3.3: Comparative results of different majority voter circuits.

GC GO CI QC
Proposed design in Figure 3.1 [7] 3 2 0 7

Proposed design in Figure 3.3 [43] 2 2 0 6
Proposed design in Figure 3.4 [61] 4 4 2 16

Proposed design in Figure 3.6 2 2 0 8
Proposed design in Figure 3.7 3 2 0 13

One of the goals in reversible logic design is to minimize the number of reversible

gates used in a circuit. Our first design proposes a majority voter circuit requiring two
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reversible gates while the second design requires three reversible gates. This is comparable

with the existing approaches, all of which require equal or more gates for designing a

reversible majority voter circuit. Although the majority voter circuit in [7] is more cost

efficient, achieving fault tolerance using the approach in [7] is expensive, as detailed in

subsection 3.1.1. However, it would also be feasible to use the voter circuit in [7] in a

TMR-based arrangement to achieve a fault tolerant design.

The comparative results presented in Table 3.3 show that the design in Figure 3.4 [61]

has higher cost metrics (i.e. GC, GO, CI, and QC) compared to our proposed designs and

the other existing approaches. The MVC in Figure 3.3 [43] is similar to our first design

which is presented in Figure 3.6. Both of the designs have gate counts and garbage outputs

equal to 2 and require 0 constant inputs. However, the quantum costs of our proposed

design in Figure 3.6 is higher than the design in Figure 3.3 [43].

Our second approach for designing a reversible MVC is presented in Figure 3.7. The

number of garbage outputs and constant inputs of this circuit is equal to our first design

presented in Figure 3.6 and the designs proposed in Figure 3.1 [7] and Figure 3.3 [43]. The

gate count for the circuit in Figure 3.7 is 3 with a quantum cost of 13, which is higher than

our first design and the designs in [7, 43]. However, as we describe in Section 3.4, under

certain circumstances the voter circuit presented in 3.7 offers better fault masking capability

than the lower cost designs.

3.4 Voter Circuit Application in Reversible Fault Models

Faults can lead circuits’ to a system failure and therefore, must be detected and corrected

at an early stage. A fault can be categorized under one of the following assumptions:

a single fault assumption or a multiple fault assumption. A single fault assumption is a

situation where at most one fault is present in a circuit. If there are two or more faults at the

same time then the multiple fault assumption is used.
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When using TMR, the proposed voters in Figure 3.6 and Figure 3.7 can mask any single

fault that may occur within the triplicated circuits. Moreover, we demonstrate that the

design proposed in Figure 3.7 can mask any single fault if the fault occurs in particular

locations inside the voter circuit. For details of these fault masking mechanisms readers are

referred to Section 3.5. The following subsections define different single faults available

in reversible logic. We demonstrate that our proposed circuits can generate the corrected

output in the event of a single bit fault, a single gate fault, a cross point fault and the family

of missing gate faults.

3.4.1 Fault Masking of a Single Bit Fault

In a single bit fault (SBF) exactly one output value of a circuit is altered from the fault-

free value [49]. A SBF assumes that the fault is anywhere in any circuit line and alters

the value of that line from 0 to 1 or vice versa. Figure 3.10 shows a TMR arrangement of

a reversible circuit where the outputs of the triplicated circuits are connected to the MVC

from Figure 3.6. The schematic of this design and example values on each line are shown

in Figure 3.10. To demonstrate the fault masking mechanism, let us consider 110 as inputs

to the triplicated reversible circuits. As shown in Figure 3.10, 110 as the inputs should

result in a value of 0 at the output. If a SBF occurs at any of the circuits’ outputs the fault

alters the value and produces an error. The SBF is then masked by the voter circuit and the

majority value from the other two fault-free circuits is sent as the voter’s output.

3.4.2 Fault Masking of a Single Gate Fault

A single gate fault (SGF) occurs when an entire gate fails completely or becomes inac-

tive [49]. As a result, the input value of the affected gate remains unchanged at the output.

Figure 3.11 shows another example of TMR similar to that in Figure 3.10. In this example

we use the proposed MVC from Figure 3.7. We again assume that the values 110 are the

inputs to the triplicated circuits, which should produce a 0 at the circuits’ output lines. If

the second gate of Circuit 1 in Figure 3.11 fails then the values 111 are passed to the voter
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Figure 3.10: Fault masking of a SBF.

circuit. This results in a value of 1 at the output line of Circuit 1 where the error-free ver-

sions of the same reversible circuits produce a value of 0. However the MVC masks the

error, and the correct value is given on the output of interest.

3.4.3 Fault Masking of Crosspoint Faults

A crosspoint fault occurs if the existing control points of a reversible gate are missing

or any extra control point is added to the gate [49]. Crosspoint faults are classified as

appearance faults and disappearance faults. An appearance fault occurs when extra control

points are added and a disappearance fault occurs when one or more control points of a gate

become inactive. Figure 3.12 shows an example of appearance and disappearance faults in a

reversible circuit. Control points of a reversible gate determine whether a gate performs its

intended operation on the target inputs. For example, a 3-bit positive control Fredkin gate

interchanges the values of the target inputs when the control value is 1. If the control value is

missing then the interchange of the target values will take place even when it should not (i.e.

interchange in the target values when the value of the control line is 0, assuming a positive

control Fredkin gate). Thus, a missing control point results in a disappearance (crosspoint)
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Figure 3.11: Fault masking of a SGF.

fault and provides an incorrect output. Figure 3.13 illustrates a TMR arrangement where the

Fredkin gate of Circuit 1 is affected by the crosspoint (disappearance) fault. In this example,

the input values of 101 should produce an output of 100. However, the disappearance fault

in Circuit 1 causes it to produce 001. The faulty bit is then carried over to the MVC where

the faulty value is masked.

Figure 3.12: Crosspoint faults in a reversible circuit.
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Figure 3.13: Fault masking of a disappearance fault.

3.4.4 Fault Masking of the Family of Missing Gate Faults

The family of missing gate faults includes four different faults [49]:

• the single missing gate fault (SMGF): a fault that is caused by the disappearance of

an entire gate;

• the repeated gate fault (RGF): a fault resulting from the unwanted repetition of a gate

within a circuit;

• the multiple missing gate fault (MMGF): a fault that occurs when a number of gates

are missing from a circuit and

• the partial missing gate fault (PMGF): a fault caused by missing control points of a

gate.

As described in Sections 3.4.1-3.4.4 the proposed design will mask any type of fault in-

cluding a single bit fault, a single gate fault, a crosspoint fault and the family of missing

gate faults, as long as it is a single fault resulting in only one of the input lines to the voter
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having an incorrect value. Either of our proposed voters may be used. We discuss faults

within the voter itself in Section 3.5.

3.5 Fault Masking within the Voter Circuits

This section presents the design and functional differences of our proposed majority

voter circuits presented in Figures 3.6 and 3.7. In Section 3.4 we have demonstrated that

when using TMR, our proposed voters can correct/mask a single fault. We assume that the

single fault occurs in one of the triplicated circuits and affects a single input to the voter

circuit. However, a fault may also occur inside the MVCs. We can demonstrate that for a

specific input bit combination of 011 and two particular locations inside the voter circuits,

the design presented in Figure 3.7 offers better fault masking capability than the existing

designs. In Figures 3.14−3.19 voter circuits are partitioned into two parts labeled Stage A

and Stage B. We introduce these stages for design comparison and demonstrate how a fault

between the stages impacts the functional behaviour of the different MVC designs.

First, let us consider the examples shown in Figures 3.14 and 3.15. In these examples

we assume that the inputs to the MVCs are 011. If any single fault occurs between the

stages, the design presented in Figure 3.6 produces a faulty output. However, the design in

Figure 3.7 includes an additional Toffoli gate before Stage A. This results in the fault being

masked at the voter’s output. Although the circuit presented in Figure 3.7 has higher cost

metrics than the design in Figure 3.6, the additional cost could be viewed as being offset by

the better fault masking capability. This can be noted for the designs shown in Figure 3.1

[7] and Figure 3.3 [43], as illustrated in Figures 3.16 - 3.19.
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Figure 3.14: Voter circuit operations in the presence of a single fault on line b.

Figure 3.15: Voter circuit operations in the presence of a single fault on line c.
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Figure 3.16: Voter circuit operations in the presence of a single fault on line b.

Figure 3.17: Voter circuit operations in the presence of a single fault on line c.
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Figure 3.18: Voter circuit operations in the presence of a single fault on line b.

Figure 3.19: Voter circuit operations in the presence of a single fault on line c.
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Chapter 4

Failure Probability Analysis

This chapter describes the mathematical analysis for determining failure probabilities of

the majority voter circuits proposed in Chapter 3. We review the literature on traditional

circuit reliability and failure probability. We also determine the failure probabilities of our

designs over different numbers of trials using the basic concepts of set theory and binomial

distribution.

4.1 Approaches to the Reliability and Failure Probability Analysis

Reliability and failure probability analysis are not new concepts in traditional logic

design. Reliability is defined as the probability that a component or system experiences no

failures during a specific time interval. Conversely, the failure probability of a component

or system is defined as the probability that the component or system experiences failure

one or more times during a specific time interval. Failure probability is often referred to as

unreliability. Once the reliability is defined, the failure probability or unreliability can be

determined using the following equation:

Reliability+Unreliability = 1 (4.1)

Reliability and failure probability analysis in traditional logic is carried out to assure

reliable performance of the logic circuits. However, reliability and failure probability anal-

ysis has not yet been considered for reversible logic circuits. In this thesis, we propose

a macro gate level circuit failure probability analysis for reversible logic circuits. To our
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best knowledge, this is the first work for a circuit failure probability analysis based on the

comprising gate failure probabilities in reversible logic designs.

4.1.1 Reliability Analysis in Traditional Logic

As device dimensions are shrinking, component failure probabilities are increasing. Is-

sues affecting digital circuit reliability include manufacturing imprecision, environmental

factors and process variations (e.g. power supply variations, device mismatch) [10]. In

CMOS technology, designers face challenges in designing nano-scaled devices due to quan-

tum effects and power dissipation. Other non-conventional circuit technologies include sin-

gle electron tunneling technology, carbon nanotubes and quantum dot automata. Electronic

devices based on these non-conventional technologies are more sensitive to external noises

and require different operating conditions (e.g. low temperature). This has led researchers

to focus on improving circuit reliabilities and determining the failure probability of these

circuits [9].

Traditional approaches to improve circuit reliability include triple modular redundancy

(TMR) [32] and concurrent error detection (CED) [53] techniques. However, recent ad-

vancements in the field of reliability studies use probabilistic transfer matrices (PTM) [29]

and Bayesian networks [48]. In [13], Choudhury and Mohanram propose probabilistic the-

orems for reliability analysis of traditional logic circuits. The theorems are based on logic

synthesis and testing approaches. Proof of correctness and applications of the proposed

reliability analysis are verified by simulation results for several benchmark circuits.

Reliability analysis of unreliable devices is reported by Chen and Xiao [10]. Their

analysis is based on the input probabilities and gate reliabilities of traditional logic circuits.

The statistical approach in [10] determines a circuit’s output reliability by adding together

the reliability of each unreliable logic gate that makes up the circuit. The output reliability

of each gate is expressed as a function of input lines and the gate’s reliability. The accuracy

of this approach is estimated through a simulation study based on traditional benchmark
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circuits.

4.1.2 Failure Probability Analysis for Traditional Logic Circuits

Probability distribution of the time-to-failure data of a device can be defined in terms

of a failure rate function. Reliability studies for traditional logic circuits define the failure

rate function of mechanical and electrical components by using the ‘bathtub shaped curve’

[58]. A bathtub shaped curve is used to describe different failure modes of a component

as described in [42]. To explain the bathtub shaped failure rate several models have been

proposed such as [58, 60]. In [58], Wang showed that by using a simple probability plot

technique we can estimate different parameters to determine mean time to failure (MTTF),

burn-in time, and the replacement time of a component. Studies on a few practical models

for the bathtub shaped failure rate function are presented in [60].

It is recognized that for most circuits, failure distribution can be determined based on

the component’s degradation data [11]. For example, degradation data for 100 CG3A tran-

sistor units are studied in [11]. Researchers in [11] assume that the degradation process

is a continuous function which describes the degradation mechanism over time. When a

component’s degradation level increases to a fixed critical threshold, the elapsed time is

considered to be the lifetime of the component. During the test, degradation for the 100

transistor units was observed to increase over the increasing operational hours. Similar

observations in lifetime distribution based (LDB) analysis are noted in [33], where the re-

searchers have used a least-squares-based two stage method for the analysis. However,

researchers in [11, 21, 60, 42] concluded that the Weibull distribution is appropriate for the

lifetime distribution analysis of the CG3A transistor series.

The Weibull distribution analysis for predicting transistor reliability as a function of

nuclear radiation exposure is reported in [46]. In the presence of integrated neutron ex-

posure, ac gain degradation of seven different types of transistors is plotted on a Weibull

graph. The Weibull graph shows that the probability of transistor failure rates ranges from
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0.1 to 0.01%. During the radiation exposure experimentations most of the transistor failure

probabilities increased to more than 50%. The purpose of this experimentation was to jus-

tify the suitability of using different series of transistors in electronic devices for particular

application areas. This study concluded that due to the changes in a transistor’s material

property (e.g. resistivity) radiation exposure can increase the failure probability and wear

out the operating transistors.

Researchers in [1, 41, 42] have modelled and analysed the failure probability of tra-

ditional nanoscale SRAM cells by varying different parameters such as the access time

failure, read/write stability failure and hold stability failure. Their analysis shows that a

SRAM cell can fail due to any of the failure mechanisms (e.g. access time, read, and write

failures) described above [1].

Failure probability analysis of traditional logic circuits is carried out based on the semi-

conductor degradation data, or the failure rate data over time [11, 21, 60, 42]. Depending

on different parameters, [34, 12, 13] show that the traditional gate fault probabilities range

from 0.001 to 0.1%. Due to the unavailability of the failure probability data of reversible

logic gates, we had to review the data available for traditional logic gates. In this thesis,

we propose approaches to calculate the voter circuit failure probabilities based on the re-

versible gate fault probabilities. In our analysis, we assume that the reversible gate fault

probability data varies within the range of 0.001 to 0.005%, which is comparable to the

gate fault probabilities in traditional logic.

4.2 Background and Definitions

The following subsections describe the basic concepts required for the failure probabil-

ity analysis of our proposed MVC designs.
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4.2.1 Set Theory

Set theory is a branch of mathematical logic that studies collections of objects. A col-

lection of distinct objects or events is defined as a set. Set theory introduces a fundamental

binary relation between an object and a set. The binary relation identifies whether the ob-

ject belongs to or does not belong to a specified set. If an object a is a member or element

of set U, this is expressed as a ∈ U. The laws of set theory define the operations of union

and intersection and relations of set equality and set inclusion. The set operations provide a

systematic approach for evaluating mathematical expressions and performing calculations.

For details on the fundamental rules of set theory readers are referred to [28]. A common

approach to visualize the occurrences of multiple events is to use a Venn diagram. A Venn

diagram shows all possible relations among a collection of sets [3].

4.2.2 Mutually Exclusive and Collectively Exhaustive Events

Probability is a measure of how likely an event is to occur under a given set of con-

ditions. In probability theory, two events are said to be mutually exclusive if and only if

the events cannot occur at the same time. Two mutually exclusive events have no shared

outcomes. The most common example of two mutually exclusive events can be illustrated

through the outcome of a single coin toss, which results in the occurrence of either heads or

tails. The events are called mutually exclusive since the two potential outcomes of heads or

tails cannot occur at the same time (i.e. from the same coin toss). If we consider the events

to be the members of a set, then the intersection of the events will result in an empty set

[47]. For example, two mutually exclusive events, A and B can be denoted by the formula

A ∩ B = ∅.

A set of events is collectively exhaustive if the conditions require at least one of the

events to occur. In the case of collectively exhaustive events, the union (∪) of the events

must cover all possible occurrences within the entire sample space [47]. In the coin toss

example for mutually exclusive events, both outcomes are collectively exhaustive in theory.
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This is because at least one of the events must occur (head or tail).

4.2.3 Probabilities of Event Occurrences

In a sample space, the probability that an event occurs can be determined by the follow-

ing equation:

P(event) =
A
T

(4.2)

where

• P(event) is the probability of a favourable outcome,

• A is the number of favourable outcomes, and

• T is the total number of events.

In probability, a favorable outcome is the outcome of interest. In a coin toss event, the

possible outcomes are either heads or tails. Suppose the coin is flipped twice and we want

to determine the probability of getting heads both times. In this case, getting heads both

times is the favorable outcome. This can be illustrated as:

• favorable outcomes: HH, and

• possible outcomes: HH, HT, TH, TT

Thus, the probability that tossing the coin twice will result in heads both times is 1
4 = 0.25.

4.2.4 Probability of Occurrence of At Least One Event

If two events are not mutually exclusive, then simply adding the probability of individ-

ual events does not accurately calculate the probability that either event occurs. For events

that are not mutually exclusive, we must add the probabilities of the events together and

subtract the probability of the intersection of the events [14]. The intersection of the events

is subtracted to avoid double counting of some elements. For example, if event A and event

B are not mutually exclusive, then the probability that at least one event occurs can be de-

termined by the equation P(A or B) = P(A) + P(B) − P(A and B). This can also be written
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as:

P(A ∪ B) = P(A)+P(B)−P(A ∩ B) = P(A)+P(B)−P(A) ·P(B) (4.3)

where the union of the sets is denoted by ∪ and the intersection of two sets is denoted

by ∩. The Venn diagram showing the probability of occurrence of at least one event is

presented in Figure 4.1.

Figure 4.1: Probability of occurrence of at least one event.

In Case III of Section 4.3, we have used this concept where at least one gate being

mising or inactive causes the entire voter circuit to fail. In this case, the voter circuit failure

probability is calculated using equation 4.3.

4.2.5 Binomial Distribution

In probability theory and statistics, the binomial distribution is used when there are ex-

actly two independent outcomes of each experimental trial. The outcomes of such a trial

are generally labelled as success and failure. The occurrence of a single success (or failure)

event is called a Bernoulli trial, and for a single trial (i.e. N = 1), the binomial distribution

is the probability distribution for a single Bernoulli trial. In general, the binomial distri-

bution gives the discrete probability distribution for obtaining exactly k successes out of

N Bernoulli trials [14]. Equation 4.4 is the formula used to find the binomial distribution.

Thus, the probability of obtaining k successes in N trials is:
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Pp(k|N) =

(
N
k

)
pk(1− p)N−k (4.4)

where

• k is the number of successes,

• N is the number of independent experiments,

• p is the probability that the result of a Bernoulli trial is true, and

• (1-p) is the probability that the result of a Bernoulli trial is false.

In equation 4.4,
(N

k

)
is a binomial coefficient. The binomial coefficient

(N
k

)
is the num-

ber of ways of selecting k outcomes from N possibilities. Using the concept of binomial

distribution, we have analysed the voter circuit failure probabilities over varying numbers

of trials in Section 4.4.

4.3 Proposed MVC Failure Probability Analysis Techniques

This section analyzes the voter circuit failure probability for all possible voter inputs.

Figure 4.2 shows our proposed MVC designs divided into sections labeled Stage A and

Stage B. The stages are introduced for design comparison purposes. Readers will notice

similar gate orientation at Stage B for both of the designs presented in Figure 4.2. In

Chapter 3, we have demonstrated that the Toffoli gate in our second design offers fault

masking capability for input 011. If the Toffoli gate in Stage A is missing then the circuit

is identical to our first MVC design and continues to perform the intended operation.

However, if any of the gates in Stage B are missing or inactive the voter fails to perform

the intended operation for different input combinations. For all possible inputs, the voter

circuit behaviour for missing or inactive gates is shown in Appendix A. For both of our

proposed designs (presented in Figure 3.6 and Figure 3.7) only the missing or inactive

occurrences of the two gates at Stage B determine the circuit failure probability for all

possible inputs. This allows us to use the same mathematical analysis for both of our

proposed MVCs.
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Figure 4.2: Design comparison of the proposed MVCs.

Researchers in [34, 12, 13] show that the overall circuit failure probability directly de-

pends on the gate failure probabilities in a digital circuit. We extend this concept to re-

versible circuits and determine our proposed MVC failure probability from the probabilities

of missing or inactive gate occurrences. For the purpose of analysis, we assume that the

probabilities of missing or inactive gate occurrences are independent (i.e. the occurrences

do not depend on each other). Our investigation identifies that there are exactly three ways

in which the outcome can become incorrect: if the input is 110 and the CNOT gate fails but

the Fredkin gate does not fail; if the input is 011 and the Fredkin gate fails (regardless of

whether or not the CNOT gate fails); or if the input is 100 and at least one of the two gates

fails. Cases I, II, and III below show the voter circuit failure probability analysis under

these three conditions.
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Case I: Missing or inactive negative-controlled CNOT gate

The MVCs shown in Figure 4.2 are 3-bit reversible circuits. Inputs to any of the circuits can

be combined in 23 = 8 possible ways. The 8 possible inputs can be shown as the elements

of set I, where I = (000, 001, 010, 011, 100, 101, 110, 111). If we select each of the

inputs at random (by simple random sampling), then each input has the same probability

(equal chance) of being an input to the voter circuit [15]. Under this assumption of equal

probability, the probability of a particular input being selected is 1
N , where N = the number

of all possible inputs. For example, out of the 8 possible inputs from I, the probability of

occurrence of a particular input abc is P(abc) = 1
8 = 0.125.

We observe that for an input of abc = 110 to the MVCs shown in Figure 4.2, the MVCs

will fail if exactly one CNOT gate is missing or inactive. Thus, for an input of abc = 110,

the failure probabilities of the proposed MVCs are equal to the probability of occurrence of

exactly one gate being missing or inactive. Resulting outputs for each different input to the

circuits in Figure 4.2 are shown in Figure A.1.

To demonstrate, let us assume that:

• P(CNOTexact) is the probability of occurrence of exactly one CNOT gate being missing

or inactive,

• P(CNOT ) is the probability of the negative-controlled CNOT gate being missing or inac-

tive, and

• P(Fredkin) is the probability of the positive-controlled Fredkin gate being missing or

inactive.

Thus, the probability of occurrence of exactly one CNOT gate being missing or inactive

can be determined by:

P(CNOTexact) = [P(CNOT )× (1−P(Fredkin))] (4.5)
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If the probability of the negative-controlled CNOT gate being missing or inactive is

0.001% and the probability of the positive-controlled Fredkin gate being missing or inactive

is 0.002% then the voter failure probability can be calculated as:

P(CNOTexact) or, P(MVC f ailure) = [0.001× (1−0.002)]% = 0.000998%

However, under the assumption of equal probability for the inputs, the probability of MVC

failure occurrence for an input abc = 110, can be determined by:

P(abc) × P(MVC f ailure) = (1
8 ×0.000998)% = 0.000124%.

Case II: Missing or inactive positive-controlled Fredkin gate

In case II, for an input of abc = 011 an inactive or missing Fredkin gate causes the MVCs

to fail. Resulting outputs for each different input to the circuits in Figure 4.2 are shown

in Figure A.2. The probability that the Fredkin gate fails (regardless of the other gate),

will just be P(Fredkin) since it doesn’t matter what happens to the other gate. Thus, for

input abc = 011 the probability of exactly one Fredkin gate being missing or inactive is

equal to the failure probability of the proposed MVC and can be calculated by P(abc) ×

P(MVC f ailure).

Case III: At least one missing or inactive gate

In case III we see that for input abc = 100 the MVCs fail where at least one of the gates

at Stage B in Figure 4.2 is missing or inactive. Figures A.1-A.3 in Appendix A show

the outputs of the circuit where at least one of the gates being missing or inactive causes

the circuit to fail. If the gate fault occurrences are not mutually exclusive then the circuit

failure probability can be determined using the probability that at least one event occurs, as

described in Section 4.2.4. Figure 4.3 shows a Venn diagram for determining voter circuit

failure probability under the following assumptions:

• P(CNOT) is the probability that the CNOT gate is missing,

• P(Fredkin) is the probability that the Fredkin gate is missing,

• P(CNOT ∪ Fredkin) is the probability that at least one gate is missing, and
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Figure 4.3: Probability of the occurrence where at least one gate is missing or inactive.

• P(CNOT ∩ Fredkin) is the probability that both of the gates are missing.

Thus, the MVC failure probability can be determined by the following equation:

P(CNOT ∪Fredkin) = P(CNOT)+P(Fredkin)−P(CNOT ∩ Fredkin) (4.6)

This can also be written as: P(CNOT ∪ Fredkin) = P(CNOT) + P(Fredkin) - P(CNOT

∩ Fredkin)

or,

P(CNOT ∪Fredkin) = P(CNOT)+P(Fredkin)−P(CNOT) · P(Fredkin) (4.7)

Equation 4.7 can be used to determine the MVC failure probability where at least one

inactive or missing gate fault occurs at Stage B in Figure 4.2 causing the MVCs to fail.

However, for input abc = 100 the failure probability of the MVC is equal to the probability

of at least one gate being missing or inactive, and therefore can be calculated by P(abc)

× P(MVC f ailure). Readers are reminded that this analysis is just for an input of 100 and

P(abc = 100) = 1
8 .
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4.4 MVC Failure Probability for Gate Faults

This section introduces a technique for analysing inactive gate fault occurrences over

varying numbers of trials. In the case of inactive gate faults, one or more gates become

inactive and therefore, cause the entire circuit to fail. Studies on traditional circuit failure

probabilities show that depending on different parameters, probabilities of gate fault oc-

currences may vary within the range of 0.001 to 0.1% [46, 42, 40, 1, 41, 11, 21, 60]. For

analysis purposes, let us consider that we want to determine the circuit failure probabilities

in the case where at least one gate becomes inactive. For an input of 100 our proposed

MVCs fail when at least one of the reversible gates at Stage B in Figure 4.2 becomes inac-

tive. This particular instance can be analysed using our proposed technique in Case III. Due

to the unavailability of reversible gate failure data, we have assumed that the probabilities

of gate fault occurrences vary from 0.001 to 0.005%. We consider that for each operation

the reversible gates at Stage B in Figure 4.2 have the same gate fault probabilities. Simu-

lated results are analysed to determine circuit failure probabilities over varying numbers of

trials using binomial distribution.

In the first step of our analysis, we have determined the voter circuit failure probability

for a single trial. We then expand the voter circuit failure probabilities over 100, 1000 and

10,000 trials. The results of our analysis are presented in Table 4.1.

In Table 4.1,

• x is the probability of the gate being inactive in one trial, where x ∈ [0,1]

• Pvoter1 is the voter circuit failure probability in one trial, where Pvoter1 ∈ [0,1]

• Pvoter2 is the voter circuit failure probability in N trials, where Pvoter2 ∈ [0,1]

As shown in Table 4.1, if the probability of the CNOT or the Fredkin gate becoming

inactive is 0.001% then the probability that the voter circuit will fail at least once in one trial

is 1.99999× 10−3%. The voter circuit failure probability is calculated using the equation

(4.7). We expand the voter circuit failure probability over varying numbers of trials using

a binomial distribution. The binomial distribution is calculated and plotted against the
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Table 4.1: Failure probabilities of the proposed MVCs for an input of 100.

x Pvoter1 N Pvoter2

0.00001 1.99999E-05
100 0.002
1000 0.018
10000 0.18

0.00002 3.99996E-05
100 0.004
1000 0.038
10000 0.34

0.00003 5.99991E-05
100 0.006
1000 0.058
10000 0.45

0.00004 7.99984E-05
100 0.008
1000 0.078
10000 0.55

0.00005 9.99975E-05
100 0.010
1000 0.09
10000 0.62

number of trials using the numpy.random.binomial function in Python. The computation

was performed using a computer with a 2.6 GHz processor, 4 GB of RAM and the 64 bit

Windows operating system. The pseudo code for running the MVC simulations is shown

in Figure 4.4.

Studies in [40, 42, 46, 41, 11, 21, 60] show that the best way to represent probability dis-

tribution data of circuit failure distribution is probability plotting. The probability plotting

technique enables us to determine whether the proposed mathematical model is suitable for

detailed analysis and can provide directions for future studies. Figures 4.5-4.9 show the

proposed voter circuit failure probability plots over varying numbers of trials. These plots

demonstrate that the failure probabilities increase with the numbers of trials and with the

increasing gate fault probabilities. Our analysis demonstrates how the probabilities of gate

fault occurrences can affect the voter circuit failure probabilities. The probability distribu-

tion data shows that if at least one gate at Stage B of Figure 4.2 fails then the voter circuit

failure probability exceeds 50% with increasing gate fault probabilities and circuit trials.

For example, if the probability of a gate of becoming inactive is 0.003% then the probabil-

54



4.4. MVC FAILURE PROBABILITY FOR GATE FAULTS

State Input: gate fault probabilities
State Output: circuit failure probability

State function {Main}
a = gate failure probabilities

for {each values in a}
COMPUTE the circuit failure probabilities

P_{voter1} = circuit failure probabilities
return P_{voter1}
end {Main}

State function {binomial distribution}
IDENTIFY P_{voter1}
SPECIFY the no. of circuit operations (N)

for {k = 1, k++, while k < N}
COMPUTE P_{voter2} (k,N)
LIST values

end {binomial distribution}

plot (P_{voter2}, N)
Return

Figure 4.4: Pseudo code for MVC failure analysis for an input of 100.

ity of the voter circuit failure is 5.99999×10−3% in one trial. With an increasing number

of trials, e.g. for N = 100, 1000 and 10000 the voter circuit failure probability increases

to 0.6%, 5.8% and 45%, respectively. If the gate fault probability increases to 0.004%,

then over 10000 trials the voter failure probability increases to 55%. In other words, the

voter circuit failure probability will exceed 50% over the numbers of trials assuming equal

gate fault probabilities of 0.004%. Thus, the simulation studies proposed in this thesis can

be used to analyse both the gate fault probabilities and the resulting voter circuit failure

probabilities over varying numbers of trials.
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4.5 Implications of the Analysis

A review of the literature on reliability and failure probability analysis indicates that

the traditional analysis approaches can be computationally expensive due to the increasing

size of digital logic circuits [10]. Circuit failure probability analysis or determining the

logic gate failure rate are common forms of reliability analysis [10, 34]. In reversible logic,

technologies are still being developed and are still mostly theoretical in nature. The data on

failure rate information for reversible logic gates is unavailable because the technologies

to implement reversible gates are still being studied and developed. Also, the technologies

have not been used in the quantities and over the time required to generate accurate sta-

tistical data on their failure rates. This motivated us to conduct our research on finding a

potential approach for failure probability analysis of the proposed reversible majority voter

circuits. Instead of determining the failure probabilities as a function of time, our proposed

approach considers failure probabilities of the circuit components for determining the over-

all circuit failure probability. Analysis and the probability plots shown in this thesis can be

used to assess the theoretical distribution of real sets of data. Future research on designing

reliable reversible logic circuits may depend highly on predicting the failure probabilities of

the circuit components. Predictions on circuit failure probability can also be used to eval-

uate design feasibility of any reversible logic circuit. However, in this thesis we provide a

methodology and structure, set of equations and process that can be used when researchers

have more information about the probabilities of failures under different circumstances for

reversible logic gates and circuits.
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(a) MVC failure probabilities over 100 trials (b) MVC failure probabilities over 1000 trials

(c) MVC failure probabilities over 10000 trials

Figure 4.5: MVC failure probabilities for gate fault probabilities, x = 0.001%.

57



4.5. IMPLICATIONS OF THE ANALYSIS

(a) MVC failure probabilities over 100 trials (b) MVC failure probabilities over 1000 trials

(c) MVC failure probabilities over 10000 trials

Figure 4.6: MVC failure probabilities for gate fault probabilities, x = 0.002%.
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(a) MVC failure probabilities over 100 trials (b) MVC failure probabilities over 1000 trials

(c) MVC failure probabilities over 10000 trials

Figure 4.7: MVC failure probabilities for gate fault probabilities, x = 0.003%.
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(a) MVC failure probabilities over 100 trials (b) MVC failure probabilities over 1000 trials

(c) MVC failure probabilities over 10000 trials

Figure 4.8: MVC failure probabilities for gate fault probabilities, x = 0.004%.
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(a) MVC failure probabilities over 100 trials (b) MVC failure probabilities over 1000 trials

(c) MVC failure probabilities over 10000 trials

Figure 4.9: MVC failure probabilities for gate fault probabilities, x = 0.005%.
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Chapter 5

Conclusions

5.1 Contributions

The contributions of this thesis span the field of fault tolerance in reversible circuit

designs. The majority of the existing work in reversible fault tolerance only focuses on

fault testing. In this thesis we have described the requirements and techniques to achieve

fault tolerance in reversible logic. We offer a passive hardware redundancy technique to

achieve fault masking by majority voting. Our first contribution, described in Chapter 3,

is the design of two reversible majority voter circuits for fault masking purposes. The

majority voter circuit generates the majority of the input bits on a specified output line. We

have demonstrated the use of this circuit in a full adder circuit design. The proposed voter

circuits can be used to make any reversible circuit fault tolerant, which is also demonstrated.

We have shown that the proposed reversible majority voter circuits can correct any

single fault (i.e. a single bit fault, a single gate fault, a crosspoint fault and the family of

missing gate faults) occuring in any of the triplicated modules. We have also compared our

proposed voter circuit design with the designs available in the literature [7, 43, 61]. Our

analysis shows that the proposed designs are simpler and have lower costs in terms of the

gate count, quantum cost, and the number of constant inputs and garbage outputs.

This thesis also evaluates the performance of the proposed designs for a majority voter

circuit. We have presented a comparison of the proposed and available reversible voter

circuit designs. We have also analyzed our voter circuit’s fault masking capability assuming

faults at different locations inside the voter. We have demonstrated that one of our proposed
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voter circuits has fault masking capability unlike any of the existing designs in the literature.

Another major contribution of this thesis, described in Chapter 4, determines failure

probabilities of our proposed voter circuits over varying numbers of trials under specific

conditions. The voter circuit failure probability is determined based on the probabilities of

missing or inactive gate faults. We have developed a set of equations that can be used to

calculate the circuit failure probability based on the probabilities of gate fault occurrences.

We have demonstrated that if the gate fault probabilities increase to 0.003% or more then for

a certain number of trials the voter circuit failure probability exceeds 50%. The simulation

results can be useful to reversible logic designers during the fabrication process of future

reversible logic gates. We expect that this thesis will have a significant impact on designing

fault tolerant reversible circuits as well as determining failure probabilities of the designs.

5.2 Future Work

This thesis opens up a number of possible research areas for fault tolerance in reversible

logic. Further research may pursue several avenues related to this work, such as:

1. In this thesis, we propose a passive hardware redundancy technique for fault masking

purposes. The proposed voter circuits can mask a single fault using triple modular

redundancy (TMR) technique, however they cannot detect or locate the fault. It may

be feasible and useful to detect a fault within the voter or any of the TMR modules.

A commonly used technique for fault detection is to add a parity line within the

reversible circuits. A parity line for the voters or any of the triplicated modules could

be used to detect faults within the circuits.

2. Our proposed majority voter circuits cannot correct all possible single faults (e.g. a

single gate fault or, a single bit fault) that may occur inside a voter circuit. Although

one of our proposed voter circuits is able to mask a single fault in specific locations

inside the voter circuit lines, the voter circuit fails to perform the intended operation in

case the fault occurs anywhere else inside the circuit. Extension of our proposed voter
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circuits should focus on masking any single fault occuring inside the voter circuits

and ensure robustness of the designs.

3. The concept of triple modular redundancy (TMR) can be generalized as the N-modular

redundancy (NMR). NMR technique applies the same approach as TMR but uses N-

versions of a given module. Our proposed designs can also be used for an extension

to a n-bit majority voter circuit proposed in [43].

4. In order to increase reliability, our proposed TMR technique can be duplicated in the

logic design. In this case, we further triplicate the TMR circuit and obtain a circuit

with nine copies of the basic module. A duplicated TMR technique will use two

layers of the majority voter circuits. This process can be repeated to obtain a cascaded

triple modular redundancy (CTMR) or recursive triple modular redundancy (RTMR).

For traditional logic, it is shown that recursive voting offers a double exponential

decrease in a circuit’s failure probability [54]. It would be interesting to analyse our

proposed designs with recursive voting and determine the circuit failure probabilities

over different numbers of trials.

5. One of the main design issues of a TMR based system is to design a reliable majority

voter circuit. The system fails to provide a correct output if the voter circuit itself

is faulty. Therefore, reliability of the fault tolerant design depends largely on the

robustness of the voter circuit. In this thesis, we analyse the failure probabilities of

the proposed voters based on the gate fault occurrences. However, further scope exists

for exploring the reliability of future reversible gates and circuits. Observability based

reliability analysis can be used to determine the reliability of the reversible gates and

fault tolerant circuit designs proposed in this thesis.
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6. The voter circuit failure probability analysis proposed in this thesis only applies when

the gates used in the circuit are missing or become inactive. The extension of this

thesis work should explore possibilities for circuit failure analysis for other possible

gate faults, or bit faults that may cause the voter circuit to fail.

7. In the scope of this thesis, we have only considered the area of Boolean reversible

logic which is a binary or two-valued logic. Our proposed majority voter circuits will

mask the faults within the logic circuits designed in Boolean domain. However, our

work can be extended for designing multiple-valued logic circuits within the scope of

TMR. A multiple-valued logic (MVL) is a d-valued logic with d > 2. If d = 3, it is

known as ternary logic. For a detailed description about MVL readers are referred to

[38]. As a completely new research area, multiple-valued logic and ternary reversible

gates are yet to be explored. Designing a majority voter circuit in MVL will involve

ternary reversible gates [27] such as ternary Toffoli gates and Muthukrishnan-Stroud

(M-S) gates. However, further investigation is required to design a feasible majority

voter circuit in MVL logic design.
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Appendix A

Voter Circuit Behavior

Figure A.1: Circuit outputs for missing or inactive negative-controlled CNOT gate.
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Figure A.2: Circuit outputs for missing or inactive positive-controlled Fredkin gate.
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Figure A.3: Circuit outputs for missing or inactive gates.
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