407 research outputs found

    A COMPARISON BETWEEN DATA-DRIVEN AND PHYSICS OF FAILURE PHM APPROACHES FOR SOLDER JOINT FATIGUE

    Get PDF
    Prognostics and systems health management technology is an enabling discipline of technologies and methods with the potential of solving reliability problems that have been manifested due to complexities in design, manufacturing, environmental and operational use conditions, and maintenance. Over the past decade, research has been conducted in PHM to provide benefits such as advance warning of failures, enable forecasted maintenance, improve system qualification, extend system life, and diagnose intermittent failures that can lead to field failure returns exhibiting no-fault-found symptoms. While there are various methods to perform prognostics, including model-based and data-driven methods, these methods have some key disadvantages. This thesis presents a fusion prognostics approach, which combines or ―fuses together‖ the model based and data-driven approaches, to enable increasingly better estimates of remaining useful life. A case study using an electronics system to illustrate a step by step implementation of the fusion approach is also presented. The various benefits of the fusion approach and suggestions for future work are included

    A Framework for Prognostics Reasoning

    Get PDF
    The use of system data to make predictions about the future system state commonly known as prognostics is a rapidly developing field. Prognostics seeks to build on current diagnostic equipment capabilities for its predictive capability. Many military systems including the Joint Strike Fighter (JSF) are planning to include on-board prognostics systems to enhance system supportability and affordability. Current research efforts supporting these developments tend to focus on developing a prognostic tool for one specific system component. This dissertation research presents a comprehensive literature review of these developing research efforts. It also develops presents a mathematical model for the optimum allocation of prognostics sensors and their associated classifiers on a given system and all of its components. The model assumptions about system criticality are consistent with current industrial philosophies. This research also develops methodologies for combine sensor classifiers to allow for the selection of the best sensor ensemble

    An investigation into the prognosis of electromagnetic relays.

    Get PDF
    Electrical contacts provide a well-proven solution to switching various loads in a wide variety of applications, such as power distribution, control applications, automotive and telecommunications. However, electrical contacts are known for limited reliability due to degradation effects upon the switching contacts due to arcing and fretting. Essentially, the life of the device may be determined by the limited life of the contacts. Failure to trip, spurious tripping and contact welding can, in critical applications such as control systems for avionics and nuclear power application, cause significant costs due to downtime, as well as safety implications. Prognostics provides a way to assess the remaining useful life (RUL) of a component based on its current state of health and its anticipated future usage and operating conditions. In this thesis, the effects of contact wear on a set of electromagnetic relays used in an avionic power controller is examined, and how contact resistance combined with a prognostic approach, can be used to ascertain the RUL of the device. Two methodologies are presented, firstly a Physics based Model (PbM) of the degradation using the predicted material loss due to arc damage. Secondly a computationally efficient technique using posterior degradation data to form a state space model in real time via a Sliding Window Recursive Least Squares (SWRLS) algorithm. Health monitoring using the presented techniques can provide knowledge of impending failure in high reliability applications where the risks associated with loss-of-functionality are too high to endure. The future states of the systems has been estimated based on a Particle and Kalman-filter projection of the models via a Bayesian framework. Performance of the prognostication health management algorithm during the contacts life has been quantified using performance evaluation metrics. Model predictions have been correlated with experimental data. Prognostic metrics including Prognostic Horizon (PH), alpha-Lamda (α-λ), and Relative Accuracy have been used to assess the performance of the damage proxies and a comparison of the two models made

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Artificial Intelligence Supported EV Electric Powertrain for Safety Improvement

    Get PDF
    As an environmentally friendly transport option, electric vehicles (EVs) are endowed with the characteristics of low fossil energy consumption and low pollutant emissions. In today's growing market share of EVs, the safety and reliability of the powertrain system will be directly related to the safety of human life. Reliability problems of EV powertrains may occur in any power electronic (PE) component and mechanical part, both sudden and cumulative. These faults in different locations and degrees will continuously threaten the life of drivers and pedestrians, bringing irreparable consequences. Therefore, monitoring and predicting the real-time health status of EV powertrain is a high-priority, arduous and challenging task. The purposes of this study are to develop AI-supported effective safety improvement techniques for EV powertrains. In the first place, a literature review is carried out to illustrate the up-to-date AI applications for solving condition monitoring and fault detection issues of EV powertrains, where recent case studies between conventional methods and AI-based methods in EV applications are compared and analysed. On this ground this study, then, focuses on the theories and techniques concerning this topic so as to tackle different challenges encountered in the actual applications. In detail, first, as for diagnosing the bearing system in the earlier fault period, a novel inferable deep distilled attention network is designed to detect multiple bearing faults. Second, a deep learning and simulation driven approach that combines the domain-adversarial neural network and the lumped-parameter thermal network (LPTN) is proposed for achieve IPMSM permanent magnet temperature estimation work. Finally, to ensure the use safety of the IGBT module, deep learning -based IGBT modules’ double pulse test (DPT) efficiency enhancement is proposed and achieved via multimodal fusion networks and graph convolution networks

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 183

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Damage Precursor Based Structural Health Monitoring and Prognostic Framework Using Dynamic Bayesian Network

    Get PDF
    Structural health monitoring (SHM), as an essential tool to ensure the health integrity of aging structures, mostly focus on monitoring conventional observable damage markers such as fatigue crack size. However, degradation starts and progressively evolves at microstructural levels much earlier than detection of such indicators. This dissertation goes beyond classical approaches and presents a new SHM framework based on evolution of Damage Precursors, when conventional direct damage indicator, such as crack, is unobservable, inaccessible or difficult to measure. Damage precursor is defined in this research as “any detectable variation in material/ physical properties of the component that can be used to infer the evolution of the hidden/ inaccessible/ unmeasurable damage during the degradation”. Accordingly, the degradation process is to be expressed based on progression of damage precursor through time and the damage state assessment would be updated by incorporating multiple different evidences. Therefore, this research proposes a systematic integration approach through Dynamic Bayesian Network (DBN) to include all the evidences and their relationships. The implementation of augmented particle filtering as a stochastic inference method inside DBN enables estimating both model parameters and damage states simultaneously in light of various evidences. Incorporating different sources of information in DBN entails advance techniques to identify and formulate the possible interaction between potentially non-homogenous variables. This research uses the Support Vector Regression (SVR) in order to define generally unknown nonparametric and nonlinear correlation between some of the variables in the DBN structure. Additionally, the particle filtering algorithm is studied more fundamentally in this research and a modified approach called “fully adaptive particle filtering” is proposed with the idea of online updating not only the state process model but also the measurement model. This new approach improves the ability of SHM in real-time diagnostics and prognostics. The framework is successfully applied to damage estimation and prediction in two real-world case studies of 1) crack initiation in a metallic alloy under fatigue and, 2) damage estimation and prognostics in composite materials under fatigue. The proposed framework is intended to be general and comprehensive such that it can be implemented in different applications
    • …
    corecore