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Prognostics and systems health management technology is an enabling discipline of 

technologies and methods with the potential of solving reliability problems that have 

been manifested due to complexities in design, manufacturing, environmental and 

operational use conditions, and maintenance. Over the past decade, research has been 

conducted in PHM to provide benefits such as advance warning of failures, enable 

forecasted maintenance, improve system qualification, extend system life, and 

diagnose intermittent failures that can lead to field failure returns exhibiting no-fault-

found symptoms. While there are various methods to perform prognostics, including 

model-based and data-driven methods, these methods have some key disadvantages. 

This thesis presents a fusion prognostics approach, which combines or ―fuses 

together‖ the model based and data-driven approaches, to enable increasingly better 



  

estimates of remaining useful life. A case study using an electronics system to 

illustrate a step by step implementation of the fusion approach is also presented. The 

various benefits of the fusion approach and suggestions for future work are included. 
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Chapter 1: Prognostics and Health Management 

 

1.1. Introduction 

Prognostics and systems health management (PHM) permits the evaluation of 

a product’s reliability in its actual life cycle conditions to assess degradation or 

change in product health, determine the advent of failure, estimate the remaining 

useful life (RUL), and therefore make it possible to mitigate system risks [1]. 

Complex designs and manufacturing techniques in combination with the 

environmental and operational use conditions have led to increased reliability 

problems. While reliability measures are used to provide confidence that a product is 

going to serve its intended purpose for a certain period under specified operating 

limits, they do not take into account the unforeseen changes in operating environment 

conditions or operating loads. The field of PHM has emerged as the discipline that 

can provide the required methods and technology to solve these reliability issues and 

increase system safety. Implementation of a PHM system involves sensing, analyses 

and interpretation of environmental, operational and system parameter data that are 

indicative of system health [1], [4]. The benefits of incorporating PHM in systems 

include [4]-[6]: 

1. Increased safety by way of providing advance warning of failure,  

2. Improving system design and qualification,  

3. Increased maintainability by minimizing unscheduled maintenance, 

extending maintenance cycles, and allowing for timely repair actions,  

4. Assistance in logistical support systems, and   
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5. Reduced life cycle costs due to reduced down times, inspection costs, and 

inventory. 

Research has been conducted in PHM of mechanical systems as well as 

information and electronics-rich systems as a means to provide all of the benefits 

listed above. An important feature of implementing PHM is that it provides the ability 

to detect intermittent faults in systems. This feature is particularly important in 

electronics-rich systems as this ability helps in analyzing data monitored during the 

occurrence of intermittent faults. This helps reduce the occurrence of no-fault found 

scenarios that often are exhibited in field failure returns. Although PHM has been 

implemented in mechanical systems such as bridges, engines, compressors, gears and 

so on, the technology implementation for electronics systems is still nascent. For 

electronics, the implementation of PHM is in its infancy due to the complicated 

architecture, variety of components in current electronic systems, and the variety of 

environmental and load conditions that the systems experience.  

PHM has been traditionally implemented using either model-based or data-

driven approaches. The model-based approaches are based on an understanding of the 

physical processes and failure mechanisms that are occurring in the system while the 

data-driven approaches are based on using patterns or statistical relationships in 

system data to carry out prognostics. The model-based approaches include system 

modeling as well as the physics of failure (PoF) approach. Each of these approaches 

has certain advantages as well as limitations. The objective of this thesis is to develop 

and demonstrate a ―fusion‖ methodology that incorporates different aspects of PHM 

systems to  
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1. Enable detection of intermittent failures in order to reduce the 

occurrence of no-fault found type of failures in the field. 

2. Enable estimation of RUL using both model-based and data-driven 

approaches in both operating and non-operating states and provide 

increasingly reliable estimates of RUL.  

3. Isolate the fault and determine the possible root causes of failure using 

knowledge from the model-based approach and information from the 

data-driven analysis. 

The fusion prognostics methodology suggested in this work uses an 

integration of the model-based and data-driven approaches to provide the above 

stated objectives. This is accomplished by the fusion or mutual exchange of 

information between the techniques used by the model-based and data-driven 

approaches in the different stages of implementation and analysis. The fusion 

prognostics methodology thereby provides benefits of both the data-driven 

approaches and the model-based approaches while at the same time overcoming the 

challenges or limitations of using either approach by itself. 

1.2. Overview of Thesis 

Chapter 2 provides a description of the model-based approaches including 

explanations of the system modeling and the PoF approaches to PHM. An overview 

of the literature that shows the use of various model-based approaches to implement 

PHM is also presented in this chapter. The advantages and limitations of using the 

model-based approaches for PHM are then described.  



 

 4 

 

The data-driven approaches to PHM are explained in Chapter 3 along with a 

review of literature which provides details on studies that used these approaches for 

diagnostic and prognostic purposes. The last section in this chapter describes the 

advantages and limitations of the data-driven approaches.  

Chapter 4 presents the motivation for a fusion prognostics methodology along 

with a step-by-step explanation of the methodology. This is followed up with a case 

study that implements the fusion prognostics methodology for an electronics system.  

Contributions and suggestions for future work are presented in Chapter 5.  
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Chapter 2: Model-based Approaches to PHM 
 

The model-based approaches to PHM use mathematical representations to 

incorporate a physical understanding of the system in order to implement diagnostics 

and prognostics [7]. Prognosis of RUL is carried out based on knowledge of the 

processes that are taking place in the system as a part of its functioning as well as 

those processes which lead to system degradation and eventually failure. The model-

based approaches can be categorized into system modeling and physics-of-failure 

(PoF) approaches.   

2.1. System Modeling Approach 

An overview of the system modeling approach is shown in Fig. 1. In the 

system modeling approach, mathematical functions or mappings, such as differential 

equations (or difference equations), are developed that represent the system or the 

process of interest in the system [8]. These equations are then used with statistical 

estimation techniques such as Kalman filters, particle filters, and parity relations for 

the purpose of estimating the state of the system or process. Residuals which are the 

difference between the model predictions and observations from the system are then 

used to detect, isolate and predict degradation [7], [8]. The residuals show the 

discrepancy or disagreement between the system model and the actual observations. 

These techniques are based on the assumption that for a healthy system, the residuals 

will follow a Gaussian distribution with zero mean and variance due to the presence 

of noise and any deviations from this are caused by degradation in the system. 

Statistical analysis of the residuals is used for detection of degradation in the system 
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following which prediction is carried out using the estimation techniques into future 

time steps until the system state exceeds a predefined failure threshold.  Therefore, 

development of appropriate system models requires a thorough understanding of the 

processes taking place in the system [8]. 

Process

Process 

Model
Residual 

Processing

Prediction of 

RUL

Decision Logic 

based on 

Threshold

Input Output

Residual

Residual Generation

Residual Analysis

 

Fig.1: System Modeling Approach  

2.1.1. Literature Overview 

Various system modeling based diagnostic and prognostic methods have been 

implemented for mechanical systems such as automotive suspensions [12], engines 

[13], [14] and robotic systems [15]. The system-model based approach is well suited 

in situations where there is an understanding of the fast dynamics of the processes 

occurring in the system as well as of the slower degradation mechanisms that lead to 

system failure [7], [12].  

Unlike mechanical systems that are modeled using system dynamics from first 

principles, electronic systems are in general modeled based on failure mechanisms 

using physics of failure models which are explained in Section 2.2 of this thesis. 

Currently, research is being conducting to develop system modeling based 

approaches for PHM purposes for electronics systems such as applications such as for 

switched mode power supplies [10], and for diagnostics of software health [11]. 
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Luo et al. [12] demonstrated a system-modeling based prognostics approach 

to estimate RUL for suspension systems and could be used in a variety of applications 

such as automobiles or aerospace systems. In this paper, a system model was built 

using singular perturbation techniques of control theory for an automobile suspension 

system. The failure mode of interest was identified as a crack in the suspension spring 

caused by fatigue. Monte Carlo simulations were performed using the system-model 

for different loading conditions. The failure mode was linked to a suspension 

parameter (i.e., stiffness) which was estimated (tracked) over time to assess the 

remaining life of the suspension subsystem. The prognostic model for degradation 

was created using interacting multiple modeling (IMM), a parameter estimation 

method, based on simulated data. Finally, the RUL of the suspension system was 

estimated based on assumed future use conditions.  

Gertler et al. [13] employed structured parity equations for fault diagnosis in 

engines. The faults considered include two actuator faults (fuel injectors and exhaust 

gas recirculation) and four sensor faults (throttle position, manifold pressure, engine 

speed, and exhaust oxygen).  

Luo et al. [14] introduced a look-up table based online diagnostic model for 

the engine control units of automotive systems. In this approach a diagnostic matrix 

was created using simulation models and graphical cause and effect models also 

known as directed graph based models in the failure space. An understanding of the 

failure modes and their effects, physical and behavioral models, and statistical 

techniques based on actual failure progression data were used to develop the 

diagnostic models for the engine control units. A disadvantage of this approach was 
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that with the use of directed graph based models, it would not be possible to detect 

intermittent faults. Further, if the diagnostic matrix changed with different operating 

conditions, the look-up table would have to be prepared with residual thresholds 

defined for every operating condition.  

Saha et al. [16] implemented this approach to prognostics for lithium ion 

batteries. A lumped parameter model was used to represent the batteries and the 

parameters of the model were calculated using relevance vector machine (RVM) 

regression on experimental data to find the representative ageing curves. The 

differential equations were then developed from the model and used along with the 

extended Kalman filter (EKF) and particle filter algorithms to estimate RUL. Using 

the particle filter algorithm, prognosis of RUL was provided in the form of 

probability distribution functions thereby including the related uncertainty values 

with the estimates of RUL.   

2.2. Physics-of-failure (PoF) Approach 

The PoF approach utilizes knowledge of a system's life cycle loading 

conditions, geometry, and material properties to identify potential failure mechanisms 

and estimate RUL [1], [17]. This approach is based on the understanding that failures 

occur due to fundamental mechanical, chemical, electrical, thermal, and radiation 

processes [17]. The extent and rate of degradation of a system is considered to be 

dependent upon the magnitude and duration of exposure to environmental and 

operational loads which are characterized using features such as usage rate, 

frequency, and severity of loading [3], [18]. 
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The PoF approach involves a number of steps, which generally include some 

form of failure modes, mechanisms and effects analysis (FMMEA), feature 

extraction, and RUL estimation [17], [18]. The flowchart illustrating the steps 

involved in implementing the PoF approach to prognostics is shown in Fig. 2. To 

implement this approach, the potential failure modes, mechanisms, and sites of the 

system based on the expected life-cycle loading conditions must be identified. The 

loading conditions include mechanical, thermal, chemical or electrical loads. Various 

loads leading to failure mechanisms and their respective models are presented in [4]. 

Information regarding the materials that make up the system and its dimensions 

(geometry) are required in order to use or generate a PoF model [19]. In this step the 

system is characterized at all levels, i.e., components, subsystems, as well as their 

physical interfaces [18]. The stress at the critical failure site is obtained as a function 

of loading conditions, geometry and material properties of the system. Relevant PoF 

models are then used to determine fault progression and RUL. The failure models 

require input such as material properties, geometry, and features of the environmental 

and operational loads. The environmental and operational loads are monitored in-situ, 

and features such as cyclic range, mean, and ramp rates of the data are extracted and 

used in the PoF models to provide estimates of damage and RUL for the system.  

Another implementation of the PoF approach is the use of ―canary‖ devices.  

Expendable devices such as fuses and canaries are examples of devices that have 

been used as a means for providing protection in electrical power systems to sense 

excessive current and disconnect power from the concerned part [4], [20]. In the case 

of PHM, canary devices, also known as prognostic cells, are designed so as to fail at a 
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statistically significant time before the failure of the device of interest for a particular 

failure mechanism [1], [4], [20]. Typically, canary devices are integrated into the 

specific system or component of interest during the design stage and are designed to 

capture the failure mechanisms that occur first in the embedded device [17]. The 

time-to-failure of the canary is precalibrated with respect to the time-to-failure of the 

actual system by means of increased stresses on the canary by scaling. Failure of the 

canary device therefore provides a warning along with a predetermined RUL [1], [4], 

[20].  

Fig. 2: Steps in Implementation of PoF Approach. [1], [17] 

2.1.2. Literature Overview 

PoF-based prognostic methodologies have been applied to estimate RUL in a 

variety of electronic assemblies and components. Pecht and Gu [17] outlined a 

procedure for the implementation of a PoF-based approach to PHM. The various 

steps in the methodology include FMMEA, data reduction and feature extraction from 
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life cycle loads as inputs used with PoF models to estimate damage accumulation, 

followed by assessment of uncertainty. Application of PoF-based prognostics for new 

and legacy systems was suggested. 

Gu et al. [21] developed a prognostics methodology based on the PoF 

approach to analyze and estimate the RUL of printed circuit boards (PCBs) subjected 

to life cycle vibration loads. Strain gauges were used to monitor the bending 

curvature of PCBs as a response to loading in the form of vibration. Finite element 

analysis (FEA) was used to calibrate an analytical model developed to calculate the 

strain at interconnects using the measured response (bending curvature). The 

interconnect strain values were used in a vibration failure fatigue model for damage 

assessment. Finally, Miner’s rule was used to estimate the accumulated damage 

which was then used to estimate the RUL of the PCBs. The failure times based on 

resistance readings from the experiments were used to verify the results from the PoF 

prognostics methodology.  

Gu et al. [22] further carried out uncertainty analysis of prognostics for 

electronics under vibration loading conditions. The various sources of uncertainty 

were identified and categorized as measurement uncertainty, parameter uncertainty, 

failure criteria uncertainty and future usage uncertainty. Sensitivity analysis was used 

to determine the dominant variables that influence PoF model outputs. Using 

distributions for input parameters instead of single values, a Monte-Carlo simulation 

was performed to provide a distribution of accumulated damage. Based on the 

damage distributions thus obtained RUL was predicted along with confidence 

intervals. A case study demonstrated the uncertainty analysis for an electronic board 
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under vibration loading which showed that the experimentally measured failure time 

was within the bounds of the prediction from the uncertainty analysis. 

Simons and Shockey [23] presented a PoF-based methodology to 

prognosticate the cycles to failure for a power supply chip on a DC/DC voltage 

converter. The component considered for the study was a gull-wing lead chip on the 

converter PWB assembly. The study suggested a two step process which included a 

three-dimensional finite element analyses to determine the strains in the solder joints 

of the gull-wing leads due to thermal or mechanical cycling of the component as a 

first step. The strains were a result of lead bending due to the mismatch in the co-

efficients of thermal expansion (CTEs) of the board and chip, the local mismatch in 

the CTEs between the lead and the solder and the mismatch in CTEs between the 

board and the solder. It was suggested that in the second step, using a probabilistic 

model to simulate initiation and growth of cracks in the microstructure of the solder 

joint and the strains calculated in the FEA for boundary conditions, the growth rate of 

the cracks in the solder joint could be estimated. Using the crack growth rate, 

prognosis of the cycles to failure for the electronic component could therefore be 

carried out.  

Studies conducted by Ramakrishnan and Pecht [19], and Mishra et al. [24] 

evaluated the remaining life using a life consumption monitoring approach. The test 

vehicle consisted of a PCB placed under the hood of an automobile which was 

subjected to driving conditions in the Washington, D.C., area. Sensors were used to 

monitor the temperature and vibrations on the board in the application environment 

during the drives. Solder joint fatigue was identified as the dominant failure 
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mechanism for the test board under these conditions. Features from the monitored 

environmental data were extracted using the ordered overall range and rainflow cycle 

counting algorithms. Appropriate stress and damage models were used along with the 

Miner’s rule to estimate accumulated damage and the amount of life consumed.  

Mathew et al. [25] used the PoF-based approach to conduct a prognostic 

assessment of circuit cards placed within a space shuttle solid rocket booster (SRB). 

A virtual RUL assessment of the circuit card was conducted to estimate the number of 

future missions that the circuit card could be used for without failure. Vibration time 

history for the SRB from the pre-launch stage to splashdown was recorded in order to 

assess the damage caused due to the vibration and shock loads using PoF models. 

Using the entire life-cycle loading profile of the SRBs, the RUL of the components 

on the circuit cards was predicted. The study determined that an electrical failure was 

not expected within another forty missions.  

Nasser and Curtin [26] developed a prognosis software framework for 

prediction of failure for electronic power supply systems based on material fatigue 

due to thermal and vibration loads. The power supply was subdivided into its 

components and analyzed in a hierarchical fashion. Predicted degradation within any 

single or combination of component elements could be rolled up into an overall 

reliability prediction for the entire power supply system. Their prognostics technique 

consisted of five steps: (1) acquiring the temperature profile using sensors; (2) 

conducting FEA to perform stress analysis; (3) conducting fatigue prediction of each 

solder joint; (4) predicting the probability of failure of the power supply system.  
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Vichare et al. [3], [27] provided guidelines for monitoring and modeling of 

environmental and usage loads in order to implement PHM for electronics systems. 

Various techniques to analyze and extract features from in-situ data were discussed. 

In-situ health monitoring of notebook computers was conducted and the temperatures 

inside the notebook computer experienced during usage, storage, and transportation 

were analyzed. The statistical analysis proved that the temperatures in the electronics 

such as the hard drive were higher than the recommended values. This proved the 

need to collect such data in order to improve the thermal design of the product and to 

monitor prognostic health. The possibility of using the data in PoF models for 

estimation of accumulated damage and RUL was also suggested.  

Rouet et al., [28] developed a PoF-based tool has been developed for real-time 

prediction of RUL of PCBs exposed to thermal cycling environments. The on-board 

methodology for RUL prediction was adapted from an off-board validated 

methodology. The tool integrates information from sensors and uses data reduction 

techniques such as the rainflow counting algorithms. Results from experiments and 

simulation using PoF models were integrated as parameters in the monitoring tool to 

allow computation of life consumption for an electronic assembly in real time. The 

methodology was used to monitor an electronic test board and assess its RUL based 

on component solder joints degradation.  

Mishra and Pecht [29] used a precalibrated semiconductor circuit as part of 

the actual circuit as a prognostic cell. The prognostic cell or canary experiences the 

same environmental conditions as the actual circuit but the loading conditions are 

varied in a controlled manner (for example, by increasing the current density).  
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The idea of using prognostic cells to provide advance warning of failure has 

been commercialized by Ridgetop Group Inc., at the chip, package and module levels. 

Prognostic cells for various failure mechanisms such as time dependent dielectric 

breakdown [30], hot carrier injection [31], radiation effects such as increase in 

leakage current [32] and threshold voltage [33] in transistors at the chip level are 

available. At the package level, cells are available to provide early warning of fatigue 

failure in solder joints of ball grid array components used in field programmable gate 

arrays [34], [35]. At the module level, for power electronics, the cells are used to 

detect failure of power supply modules using a ―ringing‖ characteristic [36]. The time 

to failure of these prognostic cells could be pre-calibrated with respect to the time to 

failure of the actual product.  

An extension of the prognostic cells to board-level failures was proposed by 

Anderson et al. [37]. The canary components were to be located on the same printed 

circuit board as the actual components. Two prospective failure mechanisms 

identified were low cycle thermal fatigue of solder joints and corrosion. Low cycle 

fatigue was to be assessed by monitoring solder joints of the canary package. 

Corrosion monitoring was to be carried out using circuits that would be more 

susceptible to corrosion than the actual product. The environmental degradation of 

these canaries was assessed using accelerated testing, and degradation levels were 

calibrated and correlated to the failure levels of the actual system.  

Lall et al. [38] proposed a damage precursor–based health management and 

prognostication methodology to electronic systems in harsh environments, which is 

similar to the canary approach mentioned above. The framework has been developed 
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based on a development of correlation between damage precursors and underlying 

degradation mechanisms in lead-free packaging architectures. Test vehicle includes 

various area-array packaging architectures subjected to single thermo-mechanical 

stresses including thermal cycling in the range of -40°C to 125°C and isothermal 

aging at 125°C. Experimental data on damage precursors has been presented for 

packaging architectures encompassing flex-substrate ball grid arrays, chip-array ball 

grid arrays, and plastic ball grid arrays. Examples of damage proxies include phase- 

growth parameter, intermetallic thickness and interfacial stress variations. Damage 

proxies have correlated with residual life. 

2.3. Advantages of the Model-based Approaches 

The model-based approaches described in the literature provide a variety of 

advantages when implemented in PHM systems. These advantages are described in 

this section.  

The first advantage is that using the system or PoF models developed, it is 

possible to calculate the damage accumulation and RUL for known failure 

mechanisms using the monitored environmental and operational data from the system 

under consideration. Therefore, the model-based approaches do not require historical 

data for the purpose of RUL estimation once models are available.  

For systems that are placed in storage conditions (uncontrolled or controlled) 

or transported, it is possible that the humidity, thermal loads due to diurnal and 

seasonal temperature cycles, vibrations and shock loads during transportation can 

cause degradation in the system even as the system is not in operation. The model-

based approaches take into account degradation caused by environmental conditions 
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such as thermal loads, humidity, vibrations, and shock. Therefore, they can be used to 

estimate damage in situations where systems are in a non-operating state such as 

during storage and transportation.  

Model-based approaches are built on the knowledge of the processes and 

failure mechanisms occurring in the system of concern. This information along with 

the monitored environmental loads and system parameter data allow for identification 

of the nature and extent of the fault. For example, power cycling of insulated gate 

bipolar transistor (IGBT) modules leads to wire-bond and die attach fatigue that 

causes a change in the collector-emitter voltage. The magnitude of change in the 

voltage is an indicator of the extent of the degradation in the component [39], [40]. 

Identification of the nature and extent of the fault occurring can provide valuable 

information for root cause analysis and maintenance decisions to be taken. 

2.4. Limitations of the Model-based Approaches 

One of the limitations of the model-based approaches is that development of 

the system or PoF models requires detailed knowledge of the underlying physical 

processes that lead to system failure [8]. For example, in complex systems, it is 

difficult to create dynamic models representing the multiple physical processes 

occurring in the system [7]. Further, in order to implement a PoF model-based 

approach, system-specific knowledge, such as geometry and material composition, is 

necessary. Such detailed information may not always be available.  

Intermittent faults are characterized by sudden changes in system parameters 

that are temporary leading to no-fault found or re-test ok situations in field returned 

systems. Model-based approaches that use PoF models or graph-based models are not 
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suitable for detection of intermittent system behavior [14] as these approaches are 

modeled for specific degradation mechanisms or for the diagnosis of specific fault 

modes respectively. The changes in system parameters are not accounted for in these 

models and therefore the intermittent faults go undetected. 
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Chapter 3: Data-driven Approaches to PHM 
 

Data-driven techniques are used to learn statistical relationships and patterns 

from sensor data and intelligently provide valuable decision-making information [1]. 

They are based on the assumption that the statistical characteristics of the system data 

remain relatively unchanged until a fault occurs in the system. A flowchart that 

summarizes the steps in implementing the data-driven approach is shown in Fig. 3. In 

this approach, in-situ monitoring of environmental and operational loads and system 

parameters is carried out. The data collected is analyzed using a variety of techniques 

depending on the type of data available for anomaly detection followed by prediction 

of RUL. Anomalies and trends or patterns are detected in data collected by in-situ 

monitoring to determine the state of health of a system. Anomaly detection 

techniques are used for diagnostics in order to detect changes in the system that may 

lead to system malfunction or failure. For prognostic purposes, trends in parameter 

values, features or changes in probabilities of the system state are then used to 

estimate the time to failure of the system using prediction algorithms. An important 

aspect of the data-driven approaches is that they provide capabilities to analyze 

complex systems which require the use of multiple sensors and multivariate 

algorithms.  

Anomaly detection techniques can be broadly categorized as supervised, semi-

supervised and unsupervised learning techniques based on their requirements of 

labeled historical data for training [41]. Supervised learning involves the use of 

labeled healthy and faulty data to train the algorithms for detection purposes. These 

methods therefore can be used only if data representing both, the healthy and faulty 



 

 20 

 

states, of the system are available. One of the disadvantages of the supervised 

learning technique is that obtaining accurate labels for both the classes of data is 

usually challenging [41]. When data for only one class, such as the healthy state of 

the system, are available, then the semi-supervised approach is used. The semi-

supervised techniques are more widely applicable as data from only one class, either 

the healthy or the faulty class is required. In general, due to the availability of healthy 

data, semi-supervised techniques are more commonly used. A third approach is the 

unsupervised learning approach, which is used when no labeled data are available. 

Decisions about the system health are typically made using assumptions regarding the 

system data. In general the assumption made in the unsupervised techniques is that 

healthy data instances occur more frequently than anomalies in the monitored data 

[41], [42]. It should be noted that employing both the supervised and semi-supervised 

learning techniques requires reliable training data. This is important, as the 

classification of incoming data is dependent on models built on the training data, and 

unreliable training data can lead to errors in detection leading to increased false and 

missed alarms.  

In addition to detection, an important aspect of data-driven approaches for 

PHM is prognostics. Although not as fully developed as diagnostics, prediction of 

failure has been accomplished using a variety of techniques. The most important 

techniques amongst these are Markov chains, neural networks, stochastic processes, 

time series analysis (for example, using autoregressive moving averages and 

symbolic time series analysis) and fuzzy logic. These techniques use past or historical 

information of the system to infer its future state and continually update the 
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prediction of RUL. Some of these techniques such as Markov chains can also be used 

to provide an estimate of the uncertainty associated with the process of predicting the 

system’s RUL.  

 

Fig 3. Implementation of Data-Driven Approach to PHM 

3.1. Literature Review 

Data-driven approaches have been used for diagnosis and prognosis of a 

variety of systems. Brief explanations of various anomaly detection techniques that 

can be used for diagnostics can be found in [41], [43], [44]. Although the techniques 

described have been applied in a variety of fields such as intrusion detection and 

credit card fraud, they can be adapted for use in a PHM framework to accomplish 

diagnostics. This section first summarizes studies on diagnostic techniques followed 
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A technique for health monitoring and diagnostics of computer servers was 

demonstrated in a study by Lopez [45]. The various server signals were continuous 
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of estimating the values of the server signals using past and current observations. The 

residuals (difference between the MSET estimates and the observations) were then 

input to the sequential probability ratio test (SPRT), a statistical hypothesis testing 

technique. Deviations of the system operational data from estimated values implied 

changes in system health or degradation in system performance and were detected as 

anomalies. Using SPRT, any anomalous behavior in the residuals that represented 

faults or anomalies in the server was detected.  

Kwon et al. [46] demonstrated a technique for early detection of interconnect 

degradation by in-situ monitoring of RF impedance using SPRT. Mechanical fatigue 

tests were conducted on a surface mount component and DC resistance and the time 

domain reflection coefficient as a measure of RF impedance were measured in-situ. 

SPRT was used to detect changes in the RF impedance and the DC resistance 

measurements. The RF impedance provided detectable failure precursors, while the 

DC resistance remained constant with no precursors. A second test was performed in 

which testing was stopped at the instant that SPRT detected a change in the RF 

impedance.  Failure analysis was then performed to reveal that the change in RF 

impedance resulted from a crack in the solder joint. The results indicated that this 

approach involving the use of failure precursors (RF impedance) coupled with data 

trending techniques (SPRT) therefore provides a means to detect early degradation 

before component failure.  

Namuburu et al. [47] demonstrated the use of a data-driven technique to detect 

faults and estimate their severity levels in automotive engines. A Simulink model of a 

Toyota Camry engine with its engine control unit is simulated under several operating 
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conditions. Data is collected before and after the occurrence of the fault for eight 

engine faults with different severity levels. Analysis of the data was carried out using 

hypothesis testing techniques for fault detection. Wavelet-based preprocessing and 

pattern recognition techniques were used to classify the faults and estimate their 

severity. The results demonstrated that diagnostic accuracy and fault severity 

estimation were possible with pattern recognition based techniques such as support 

vector machines.  

Kumar et al. [48] presented a Mahalanobis distance (MD) based diagnostic 

approach for electronic systems. The approach employed a probabilistic technique to 

establish diagnostic thresholds in order to classify the state of health of a system. 

Detection of trends in system health was carried out by constructing control charts 

using diagnostic thresholds for the MD values. Faulty parameters were isolated using 

a residual MD value based approach. The entire approach was demonstrated using a 

case study on notebook computers. 

Wang and Vachtsevanos [49] proposed an architecture for prognosis using 

dynamic wavelet neural networks (DWNN). The proposed methodology was tested 

using vibration data from a fault seeded experiment that used a cracked bearing. An 

initial crack was seeded in the bearing and vibration data recorded during that period. 

The set-up was then stopped and the crack size was increased followed by a second 

run. This procedure was repeated until the bearing failed. The crack sizes were 

organized in an ascending order while time information was assumed uniformly 

distributed among the crack sizes. A training data set relating to the crack growth was 

thus obtained.  
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Dong and He [50] provided a diagnostic and prognostic methodology for 

multi-sensor equipment diagnosis and prognosis which was tested for hydraulic 

pumps. In this paper, the health states of components were modeled using state 

transition probability, state duration probability and observation probability using a 

hidden semi-Markov chain (HSMM). A modified forward–backward algorithm for 

HSMMs was used to estimate the parameters of HSMMs. Information from multiple 

sensors was fused using discriminant function analysis to determine the weight of 

each sensor. For prognosis of remaining life, a state duration model-based prediction 

calculation procedure was provided. 

Kumar and Pecht [51] developed a methodology for prognostics of notebook 

computers using Mahalanobis Distance (MD) and Markov state models. MD was 

used to reduce the various monitored parameters from the notebooks into a univariate 

time series and to capture correlations between monitored performance parameters. 

Symbolic time series analysis was then used to discretize the MD time series and 

create a symbolic representation of system dynamics to distinguish healthy and 

unhealthy system states. The state transition probabilities and transition times were 

then predicted using a non-linear dynamic Markov state model. Using this 

methodology and historical fault data, the times and probability of the fault occurring 

in the notebook could be determined. 

Saha et al. [52] applied a data-driven technique using the particle filter 

algorithm for prognostics of insulated gate bipolar transistors (IGBT). The IGBTs 

were subjected to accelerated ageing tests wherein thermal-electrical stress was 

applied on the devices. In-situ monitoring of various parameters such as the steady 
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state voltages and currents, electrical transients, and thermal transients was carried 

out during accelerated aging tests on the IGBTs. The state and measurement 

equations that described the collector-emitter current during semiconductor aging 

were determined using regression analysis from the monitored experimental data. The 

model was input into the particle filtering algorithm which then provides estimates of 

RUL based on comparing predictions of the system state over time against an 

assumed end-of-life threshold. 

Other applications in electronics where data-driven approaches have been 

used for RUL estimation include global positioning systems [53], avionics [54], and 

aircraft electrical power systems [55], [56].   

3.2. Advantages of the Data-driven Approach 

Implementation of data-driven approaches provides a variety of advantages in 

comparison with the model-based approaches. This section summarizes the 

advantages of the data-driven approaches for PHM purposes.  

Data-driven approaches learn the behavior of the system purely from features 

of the monitored system data and do not require system-specific knowledge for 

modeling purposes. As a result, the data-driven approaches can be used as black-box 

models to enable diagnostics and prognostics even in the absence of system-specific 

knowledge.  

Further, data-driven approaches can be applied to complex systems, such as 

computer servers and notebooks where a large number of parameters are monitored 

using multivariate techniques. This is because data-driven approaches can be used to 

model the correlation between parameters and interactions between subsystems as 
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well as effects of environmental parameters using in-situ data from the system. It is 

also possible to reduce the dimensionality of the problem by restricting the analyses 

to parameters that are contributing to anomalous behavior in the system. These 

parameters can be detected using methods such as principal components analysis. 

Pattern recognition and statistical techniques employed in detecting changes in 

system behavior have shown data-driven approaches to be suitable for diagnostic 

purposes. This attribute makes it possible to detect sudden changes in system 

parameters allowing for detection and analysis of intermittent faults.   

3.3. Limitations of the Data-driven Approach 

Data-driven approaches depend on historical (e.g., training) system data to 

determine correlations, establish patterns, and evaluate data trends leading to failure. 

In many cases, there will be insufficient historical or operational data to obtain health 

estimates and determine trend thresholds for failure prognostics. This is true for 

example in stored, standby, and non-operating systems, which are nevertheless 

subject to environmental stress conditions, and in systems where failures are 

infrequent.  The requirement of training data to make decisions therefore is one of the 

limitations of data-driven approaches. Further, techniques such as Markov models 

and time series analysis require historical data until system failure while regression 

(trending) based techniques and particle filter algorithms require a pre-defined failure 

threshold for the system in order to estimate RUL.  

It is not only important to prognosticate failure but also provide the 

information required to troubleshoot the system in order for an effective PHM 

implementation. This requires information that can help in the identification of failure 
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mechanisms causing system failure. Data-driven approaches for PHM do not take into 

account any system-specific information and hence cannot provide such information 

regarding failure mechanisms.  
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Chapter 4: Fusion Prognostics 

Fusion prognostic methodologies combine the strengths of the model-based 

and data-driven approaches, in order to provide better estimates of RUL. The various 

advantages and limitations of implementing the model-based and data-driven 

approaches were described in Chapters 2 and 3. A solution that can overcome these 

limitations is to incorporate (or fuse) information from the model-based approaches 

with the data-driven techniques.  

Previous studies have suggested the incorporation of information from various 

sources. While a number of studies have been carried out on fusion approaches in 

PHM, the emphasis in the work has been on fusing RUL estimates from different 

algorithms or models [57], [58], fusing data from different sensors [59], fusing 

information from various system parameters or features of data using algorithms [60], 

[61]. The papers reviewed in this section deal with the fusion approach as a 

framework for combining model-based or PoF based approaches and the data-driven 

approaches from the beginning of the PHM implementation to the estimation of RUL 

step.  

Kumar et al. [62] provided a hybrid framework for prognostics of electronics 

products that uses data-driven techniques for anomaly detection and PoF models for 

the estimation of RUL based on isolation of component degradation. They also 

suggested the use of data-driven feature trending techniques for RUL prediction for 

cases where PoF models were not available. A case study using notebook computers 

was used to demonstrate the anomaly detection using Mahalanobis distance and 
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parameter isolation using projection pursuit analysis. Prediction of RUL was 

suggested as future work.  

Jaai and Pecht [63], [64] presented the fusion prognostics approach as a 

current research area that can help with the challenges faced in implementing PHM 

for electronics. The study in [63] provided a preliminary explanation of the approach 

along with a demonstration of prognosis of RUL for PCBs. The approach and the 

demonstration were further explained in detail in [64] as a part of the roadmap for 

PHM of information rich systems. The fusion prognostics approach was proposed as 

an approach to cope with the challenges in implementing PHM for information rich 

systems. The approach is explained in detail in Section 4.1 and the case study using 

printed circuit board assemblies is presented in Section 4.2 of this thesis. 

Cheng and Pecht [65] implemented the fusion approach to prognostics for 

determining the RUL of multilayer ceramic capacitors subjected to temperature-

humidity bias tests. In the paper, an FMMEA showed that the potential failure 

mechanisms were silver migration and degradation of the dielectric leading to the 

choice of capacitance, dissipation factor and insulation resistance were monitored. 

MSET and SPRT were used for anomaly detection. Lack of PoF models for the 

identified failure mechanisms led to defining a failure model using the Euclidean 

norm of the MSET residuals. A failure threshold was obtained from the failed 

capacitors in order to carry out prognostics. 

The fusion prognostics approach provides a framework for information 

exchange between the two approaches in order to provide the capability to detect 

intermittent faults using data-driven techniques, use system-specific information from 
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the model-based approaches for defining failure thresholds to enable RUL estimation 

using data-driven techniques and also to help in identification of failure modes and 

mechanisms.  

Fusion prognostic methodologies therefore combine the strengths of the 

model-based and data-driven approaches, in order to estimate RUL under both 

operating and non-operating life cycle conditions, detect anomalous behavior or 

intermittent faults, identify precursors to failure for effective maintenance planning, 

enable RUL estimation using data-driven techniques and identify the potential 

processes causing system failure along with an estimation of the extent or severity of 

the fault for effective maintenance strategies. A fusion approach to PHM is illustrated 

in Fig. 4. 

 

Fig. 4: Fusion Prognostics Approach 

Healthy

Baseline

In-situ 

Monitoring

Parameter 

Isolation

Alarm

Remaining Useful 

Life

Estimation

Physics-based Models 

Anomaly?Identify 

Parameters

Data-Driven 

Models

Failure

Definition

Yes

No

Historical 
Database, 

Standards, Expert 
Knowledge

Continue 

monitoring



 

 31 

 

4.1. Implementation of Fusion Prognostics Approach  

The first step in the process is to identify parameters that can be monitored in-

situ to aid in determining the real-time state of health of the system. These parameters 

may include operational and environmental loads, system parameters such as voltages 

and currents as well as performance parameters. Both, environmental and system 

parameter data are required to be monitored to enable diagnosis and prognosis of a 

system’s health in real time. A systematic analysis of the processes that lead to 

system failure using physics based tools such as FMMEA can aid in the process of 

identifying the parameters to be monitored.  Along with FMMEA, virtual simulations, 

information from maintenance records, qualification tests, and expert knowledge can 

be used for such systematic analysis. These techniques help identify the parameters 

that are required in order to assess the state of health of a system and identify 

parameters that can be used as potential indicators of system failure.  Understanding 

the physical processes occurring in the system helps in identifying critical 

components, possible failure sites, failure mechanisms, and their effects on the 

system. These techniques also help in determining the relevant physics based models 

for estimation of RUL for the system and its components.  

Appropriate sensing technology is then selected for the monitoring of the 

chosen parameters. The sensor data are analyzed in real time in order to assess the 

current state of the system and determine its RUL using information from data-driven 

techniques and physics-based models.  

Assessment of a system’s health is carried out in real time using the in-situ 

monitored data in anomaly detection techniques. Knowledge of the processes taking 
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place in the system and the relationships between the various parameters can help in 

choosing the appropriate data-driven techniques for diagnosis and prognosis. For 

example, for a linear system one can choose to use the Kalman filter algorithm which 

cannot be used for non-linear transitions. Knowledge of the system dynamics can 

further be used to create system models that can be used with the Kalman filter for 

diagnosis.  

One of the ways to implement anomaly detection is the application of a 

machine-learning approach, in which the monitored data are compared in real time 

against a healthy baseline to check for anomalies. In this semi-supervised learning 

approach, it is assumed that data representing all the possible healthy states of the 

system are available a priori. The collection of parameter data that represents all the 

possible variations of the healthy operating states of the system is known as the 

healthy baseline. The baseline data is collected during various combinations of 

operating states and loading conditions when the system is known to be functioning 

normally. It is also possible for the baseline to consist of representative threshold 

values based on features extracted from the healthy data, specifications and standards. 

For example, Mahalanobis Distance can be used to reduce multivariate data and 

create control charts that can serve as a baseline for comparison with test data [48]. It 

is important that the baseline data should not contain any operational anomalies. The 

presence of anomalies in the baseline affects the definition of healthy system behavior 

and hence causes the misclassification of data. Misclassification leads to problems 

such as false indications of anomalies (false alarms) or failure to detect anomalous 

behavior of the system (missed alarms).  
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Although healthy baseline data sets are important for machine-learning 

approaches to detection, other statistical and probabilistic approaches that rely on 

parametric and distributional assumptions can also be used. In the machine-learning 

context, for example, distance-based similarity measures and other features can be 

extracted from multidimensional data. In addition projections and filtering of the data 

can also be used to extract features from the data. Distinctions between normal and 

anomalous data instances are made using assumptions such as the normal instances 

are more similar (using a certain similarity measure) to a majority of the data 

sequences, than anomalous data. Detection can also be carried out using assumptions 

regarding the frequency of occurrence of normal versus anomalous data or assuming 

that the normal instances follow a particular distribution, deviations from which are 

declared anomalous. These techniques are particularly useful when no a priori data is 

available to create a baseline of healthy states. 

After the anomaly detection step, the parameters that contribute significantly 

to the anomaly are isolated. It is important to pinpoint which parameters reflect or 

cause changes in system performance as they are critical in identifying and detecting 

system failure. Parameter isolation can be carried out using a variety of techniques, 

such as principal components analysis (PCA), partial least squares, independent 

component analysis, and fisher discriminant analysis. Based on the information from 

the parameter isolation step, the critical parameters are used to select appropriate 

models from the database. Isolating of parameters also helps to identify the root 

causes of the failure. The parameter isolation step helps determine the models most 

relevant to the type of failure or degradation the system is undergoing. Physics-based 
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models, which use the isolated parameters as the primary inputs, are selected in this 

step. Features such as cyclic range, cyclic mean, ramp rate and dwell time of 

parameters such as temperature and vibration are used as the primary inputs of the 

physics-based models to calculate the damage of the product [17]. 

Physics-based models are used to calculate the RUL of the system based on 

the environmental and parameter data along with information such as material 

properties and system specifications. Knowledge from failure mechanisms and 

models is also used to extract information such as failure thresholds for the measured 

system parameters, failure modes, stages of degradation, and labels for healthy and 

unhealthy conditions. Failure definitions can also be obtained by referring to other 

sources, such as standards and established failure criteria for the system. This input of 

failure definitions and labeling of healthy and unhealthy states from the model-based 

approach is critical in the selection of appropriate data-driven prediction 

methodologies for estimation of RUL. For example, a Markov model of the failure or 

degradation process of a system depends on modeling the transition of the system in 

and out of various ―states.‖ These states can be used to model the various failure 

mechanisms or violations of failure thresholds as defined by the model-based 

approach. In other words, the model-based approach can identify precursors to failure 

that can be used for early annunciation and prediction of system failure.  

Using the failure thresholds, methods such as time series analysis or particle 

filtering techniques can be applied to predict the critical parameter values over time. 

The time until the parameter crosses the failure threshold is estimated as the time to 

failure of the system. Therefore, an estimate of the RUL for the system based on the 
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combination of information from anomaly detection, parameter isolation, physics-

based models, and data-driven techniques can be calculated.  

Alarms can be set off to warn the system operator of impending failure based 

on the value of the RUL reported. This can provide adequate time for repair or 

replacement of the system depending on the criticality of the application. The fusion 

approach therefore provides a framework for information exchange between physics 

based analysis and the data-driven approaches from the first step of parameter 

identification to establishing failure thresholds to enable estimation of RUL.  

4.2. Application of a Fusion Approach to an Electronics System  

The fusion prognostics approach was implemented on an electronics system 

consisting of a printed circuit card assembly. The assembly consisted of 

representative components such as ball grid array (BGA) packages, quad flat 

packages and surface mount resistors that are commonly found in circuit cards 

(shown in Fig. 5). The fusion approach implemented involved the selection of 

parameters required for diagnosis and prognosis using FMMEA analysis. These 

parameters were then used with a regression based residual analysis technique for 

detection of anomalous behavior. The technique also involved the use of sequential 

probability ratio test (SPRT) algorithm for diagnostics. After the anomaly detection, 

features of the isolated parameter were used in the relevant PoF model for failure 

prognosis. A failure threshold was obtained from standards in order to enable a 

trending based RUL estimation for each component. The case study is described in 

detail in this section. 
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The circuit cards containing eight BGA components with 256 I/Os, eight 

BGAs with 144 I/Os, 4 QFPs and 40 surface mount resistors were subjected to 

accelerated temperature cycling tests in order to evaluate the effect of thermal cycling 

on the reliability of the components. During the thermal cycling, the printed circuit 

boards were subjected to a maximum temperature of 185˚C and minimum 

temperature of -40˚C. The ramp rate was 3.5 ˚C/ minute and the cycle time was 159 

minutes with a dwell time of 15 minutes at both extremes. 

Fig. 5: Components of Printed Circuit Assembly used in Case Study 

An FMMEA analysis was carried out on the circuit cards in order to 

determine the critical modes and mechanisms affecting the assembly due to thermal 

cycling. The critical failure mechanism was found to be interconnect fatigue and the 

failure mode was an open circuit which would result in an increase in resistance of 

the components. The BGAs were identified as the weakest components in the system. 

Temperature and resistance parameters therefore were critical to detect system failure 
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for the given loading conditions and hence were chosen to be monitored. As the 

BGAs were identified as the weakest components, in-situ monitoring of the BGAs’ 

resistances was carried out along with measurement of the board temperatures. Each 

BGA was provided with one daisy chain in order to carry out resistance 

measurements. Thermocouples were placed on the board to measure the temperatures 

during the experiment. The measurements were recorded once every minute. The 

resolution of the resistance monitoring equipment was in the 10
-3

 range. 

The resistance, temperature data was then used in the anomaly detection step. 

Anomaly detection was carried out using a data-driven residual analysis technique 

described below (see Fig. 6 for illustration of the approach).  

Fig. 6: Flowchart Summarizing Residual Based Anomaly Detection Technique 
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components. Using five out of the ten cycles from the training data, a regression 

model was created to capture the variation of resistance with temperature. Figure 7 

shows 5 cycles of the BGA resistance versus temperature that was used as training 

data.  

Fig. 7: BGA Resistance vs Temperature Data 

The regression model used for the estimation of the resistance is shown in 

equations 1 and 2. Two equations were used as a result of the distinct resistances 

shown in Figure 7 during the temperature cycling. 

Rinc = 0.002*T + 0.567          (1) 

Rdec = 0.002*T + 0.724           (2) 

where Rinc, Rdec are the resistances during the increasing and decreasing parts 

of the temperature cycling respectively, and T is the temperature.  

The regression model was used to estimate component resistance for every 

observed board temperatures using the thermocouple readings. The differences 
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between the regression model estimates and the observations of resistance were used 

to obtain a residual signal. The residuals were statistically tested using the sequential 

probability ratio test (SPRT) algorithm to detect anomalies.  

SPRT, a statistical likelihood ratio test for anomaly detection signals alarms 

when it detects that the system is statistically deviating from its normal state by 

choosing between two or more statistical hypotheses [45], [46], [66], [67]. SPRT is 

based on the assumption that the data follow a Gaussian distribution. The null 

hypothesis, H0, represents the healthy state of the system with the data following the 

Gaussian distribution with mean equal to 0 and standard deviation equal to σ. Four 

alternate hypotheses are formulated that represent the degraded state of the system. 

The hypothesis H1 is when the mean of the data has shifted to +M with standard 

deviation σ. H2 is when the mean of the data has shifted to –M with the standard 

deviation σ. H3 and H4 are hypotheses in which the mean remains zero but the 

standard deviation has increased to Vσ and decreased to σ/V, respectively. The 

parameters M and V are predetermined disturbance magnitudes. These are system-

specific and are determined based on system behavior. Figure 8 shows a pictorial 

representation of mean changes and standard deviation changes that SPRT can be 

used to detect (Figure at the top shows the mean shift hypotheses and figure at the 

bottom shows the hypotheses for change in standard deviation). 
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Fig. 8: Hypothesis Testing using SPRT 

SPRT analyzes observations sequentially to determine whether or not the test 

data is abnormal. Then the SPRT index, which is the natural logarithm of the 

likelihood ratio, is calculated for each of the alternate hypotheses using equation (3). 
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and A and B are the reject and accept thresholds defined using the false and 

missed alarm probabilities,  and  as sown below. 

 

If the SPRT index is less than or equal to B, then the null hypothesis is 

accepted and the system is considered to be healthy. The SPRT index is reset and the 

next test residual is input. If the index is between A and B, no decision is made as 

there is not enough information. In this case the next test residual is input without 

resetting the SPRT index. If the SPRT index is greater than or equal to A, then the 

alternate hypothesis is accepted. SPRT sets off an alarm and the system is said to be 

degraded. The SPRT index is again reset and the next test residual is input. Figure 9 

illustrates the steps in implementing SPRT for diagnostics.  
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Fig. 9: Procedure to Implement SPRT for Anomaly Detection 

The remaining five cycles of training data were used in the regression model 

to calculate healthy residuals. The healthy residuals were then used to train SPRT for 

anomaly detection (see Figure 10 for histogram of healthy residuals calculated from 

the remaining training data).  
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SPRTj is called SPRT index

fj(r) is the pdf of the distribution of Hj

f0(r) is the pdf of the distribution of H0

A and B are the threshold values.

α is the false-alarm probability 

β is the missed-alarm probability
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Fig. 10: Histogram of the residuals of the remaining training data  

Following this, every test observation was input into the model for estimation 

and then analyzed statistically for anomalies using SPRT. The SPRT alarms were set 

off when the mean of the residuals of the resistance shifts to a value equal to or 

greater than the threshold value of 0.3. The false and missed alarm probabilities were 

chosen to be 0.005 (0.5%) each to calculate the SPRT thresholds. Figure 11 shows the 

residuals of resistance from the regression and the onset of alarms from SPRT from 

the 580th cycle as the mean of the residuals increased. Figure 12 shows a blow-up of 

the residuals around the 582nd to 585th cycle along with the SPRT alarms. It can be 

seen that the SPRT alarms are set off when the value of the residuals increase thereby 

increasing the mean of the dataset. The results for this component (No.1) and the 

remaining 7 BGA components (256 I/Os) that were part of the tested assembly are 

shown below in Table 1. 
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Fig. 11: SPRT Alarms at 580th Cycle Due to Increase in the Mean of the Residuals of 

Resistance (The red crosses indicate that SPRT has detected anomalies at the 580th 

cycle). 
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Fig. 12. Zoomed in View of Fig. 8 from cycle 581 to 585 to Show Residuals 

of Resistance and SPRT Alarms. 
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Component First Alarm 

from SPRT 
Cycles to 

Failure 

 1 580  693 

 2 623 725 

3 738 1139 

4 650 1095 

5 632 741 

6 716 1274 

7 698 1036 

8 703 927 

Table 1: Detection Time based on Alarms from SPRT 

Next, the parameters causing or contributing to the anomaly need to be 

identified for assessment by the appropriate physics-based model from the database. 

In this case study, the anomalous behavior due to an increase in resistance was 

detected. Knowledge from the physics of failure analysis determines that the change 

in resistance was a result of cyclic temperature loads on the system leading to thermal 

fatigue. Therefore, the modified Coffin Manson model for leadless components to 

determine the fatigue life relationship for temperature loading [68] was selected to 

calculate the RUL. A model of the PCB was created with information regarding the 

BGA and the various parameters such as the package dimensions 

(17mm*17mm*1.56mm), package interconnect pitch (1mm), substrate material (BT-

epoxy), BGA span (15mm*15mm) with a full array, die dimensions 

(9.5mm*9.5mm*0.4mm), BGA ball diameter (0.5mm), solder material (SAC 305), 

solder joint height (0.25mm), stand-off height (0.65mm) and solder joint bond area 

(0.5mm
2
) from the datasheet. The solder material used in the assembly was 

Sn96.5Ag3.0Cu0.5. The damage to the components and time to failure due to the thermal 
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cycling on the components were calculated. The mean cycles to failure for the 256 

I/O BGAs was calculated to be 1038 cycles (2750.7 hours). The estimate for 10% 

cycles to failure was obtained as 817 cycles and for 1% cycles to failure was obtained 

as 760 cycles using Monte-Carlo analysis. The Monte-Carlo analysis was carried out 

by adding a triangular distribution with 10% variation for the solder joint height, 

stand-off height and the solder joint bond area. 10,000 iterations were performed in 

order to calculate the 10% and 1% cycles to failure for the BGAs. The RUL can be 

calculated dynamically using the PoF model by updating the temperature cycle 

profile as it is monitored in-situ. This was not necessary in this case study, as the 

temperature profile was constant. Further, the result from the PoF model reflects the 

average failure cycles to failure for all the BGA components (256 I/Os) as they have 

similar geometry and material properties.   

To calculate an estimate of RUL dynamically using data-driven techniques, a 

failure threshold of 300Ω for the resistance parameter was obtained from the IPC-

9701A standard [69]. The resistance from the time of anomaly detection was trended 

to calculate the cycles to failure based on the failure criterion for the resistance. The 

value was updated with every observation of resistance collected from the system. 

The cycles to failure was calculated at the 601st cycle to be 620 cycles for component 

1 (shown in Figure 13). The RUL was calculated based on the trend from the anomaly 

to the defined failure threshold. The estimates of RUL from the PoF model and the 

data-driven technique were then used to obtain a revised conservative RUL estimate 

for the component. The actual failure of the component (No. 1) was observed after 

693 cycles.  
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Fig. 13: Trending of Peak Resistance for Data-driven RUL Estimation 

This case study showed a step-by-step implementation of the fusion approach 

to PHM. For component 1, the cycles-to-failure estimate of 620 cycles (at the 601st 

cycle) showed an error of 10% from the actual time-to-failure of the component. 

Results for the remaining 7 components are shown in the appendix of this thesis. 

Table 2 provides the results of the data-driven prediction for all of the eight 

components.  

Component 
Predicted TTF 

(cycles) 

Actual TTF 

(cycles) 

%Time between 

Prediction and Failure 

1 620  693 10% 

2 642  725 11% 

3 830  1139 27% 

4 707  1095 35% 

5 657  741 11% 

6 766  1274 39% 

7 980 1036 0.5% 

8 923 927 0.004% 
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In the case study presented, SPRT which is a statistical tool to determine mean 

shifts and changes in other statistical parameters such as the variance, kurtosis and so 

on was used for anomaly detection. The fusion approach in this case study helped in 

the exchange of information between the techniques to establish which parameters to 

monitor and to determine thresholds for the data-driven RUL step from the PoF based 

standards. While the case study presented involves the analysis of a system wherein 2 

parameters (i.e, temperature and resistance) were monitored, analysis of more 

complex systems that are multivariate would involve the use of techniques such as 

principle components analysis to determine the parameters that are contributing to the 

anomalous behavior of the system. The isolation of such parameters would then lead 

to determining which PoF models should be used for the estimation of RUL. The 

information from the PoF models and standards could then be used for RUL 

estimation using data-driven techniques.  

The fusion approach provided a number of advantages such as 1) 

determination of the parameters (resistance and temperature) for in-situ monitoring 

using FMMEA analysis, 2) determination of threshold value for component failure 

(resistance value of 300 Ω) from the PoF approach to enable estimation of RUL using 

the data-trending technique, and 3) determination of the failure mechanism and 

possible failure site information that can be useful in understanding the root cause of 

failure. Therefore, the fusion approach enabled the determination of RUL using data-

driven techniques and provided essential information that can be used in the root 

cause analysis. 
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Chapter 5:  Contributions and Future Work 

This thesis developed a fusion approach to prognostics that integrates the 

data-driven and model-based approaches in order to overcome the current limitations 

in PHM implementation. The fusion approach provides a framework to enable 

information fusion within the PHM system that uses the different tools of the model-

based and the data-driven approaches to provide a variety of benefits such as  

1) Providing a systematic method to identify the parameters for in-situ 

monitoring using FMMEA and virtual simulation tools,  

2) Enabling detection of intermittent faults using anomaly detection 

techniques which helps in reducing the no-fault found errors, 

3) Isolating the parameters contributing to system failure leading to 

information regarding the potential component that is failing within the 

system and information that can be used to identify the failure mechanism 

that is causing system failure, and 

4) Providing method for determination of failure threshold or failure 

description from the model-based approaches (using models or from 

standards) to enable estimation of RUL using data-driven techniques.  

Suggestions for future work include  

1) Analysis of uncertainty in prognostic estimates: It is important to 

understand and quantify uncertainty in predictions from PHM systems for 

realistic decision making. Predictions in the form of probability density 

functions (PDFs) will be more informative in making maintenance and 

logistics decisions rather than using point estimates. Challenges in 



 

 50 

 

uncertainty analysis lie in determining and quantifying all the sources that 

contribute to prediction uncertainties such as measurement noise, model 

uncertainties, and missing or unavailable training data. It is also necessary 

to investigate and develop models and data-driven approaches that take 

into account uncertainty in making predictions thereby providing estimates 

in the form of PDFs. 

1) Fusion of RUL estimates: A second area of research is investigating 

techniques to fuse or combine estimates of RUL from the various sources 

such as the data-driven and model-based estimates to provide single fused 

RUL value. In order to address the challenge in combining estimates of 

RUL from model-based and data-driven approaches, it is necessary to 

investigate techniques that can help in information fusion. These 

techniques while providing a single output of RUL using weighted 

predictions from the model-based and data-driven should also take into 

account uncertainty estimates from each approach. Some techniques that 

have been suggested for fusing information based on Dempster-Shafer 

regression, fuzzy set operations, and model based information fusion 

techniques.  
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Appendix 
 

This section documents the results of the analysis for the remaining 7 BGA 

components that were used in the case study. The analysis was carried out in the same 

way as for component 1. The required training data (baseline) to model the healthy 

states of the system was created using ten cycles of in-situ data from the beginning of 

the test for each component. Five cycles were used to create the regression model and 

the remaining five cycles were used to create residuals for training SPRT. A mean 

shift of 0.3 was used as the alternate hypothesis with false and missed alarm 

probabilities of 0.005. After the anomaly detection step, the peak resistance from each 

cycle was trended to get an estimate of the RUL. The results for each component are 

provided below: 

Results for component 2: 

The regression equations were found to be: 

Rinc = 0.002*T + 0.576          (A1) 

Rdec = 0.003*T + 0.710          (A2) 

Figure A1 shows the histogram of the residuals of the healthy data that was 

used to train SPRT followed by Figure A2 which shows the residuals of the resistance 

for component 2 when anomalies were detected by SPRT. 
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Fig. A1: Histogram of the Residuals of the Remaining Training Data  

 

 

Fig. A2: SPRT Alarms at 623rd Cycle Due to Increase in the Mean of the 

Residuals of Resistance (The red arrow indicates the cycle from which alarms were 

seen from SPRT). 
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The peak resistance from the time of the anomaly was trended to get an 

estimate of the RUL (shown in Figure A3). The regression equation is also shown in 

the figure. The cycles to failure was calculated at the 633rd cycle to be 642 cycles for 

component 2. The actual cycles to failure for component 2 according IPC-9701A 

standard was found to be 725 cycles. The RUL prediction was 83 cycles (~11% of the 

total life) before the actual cycles to failure 
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Fig. A3: Trending of Peak Resistance for Data-driven RUL Estimation 

  



 

 54 

 

Results for component 3: 

The regression equations were found to be: 

Rinc = 0.002*T + 0.642          (A3) 

Rdec = 0.003*T + 0.750          (A4) 

Figure A4 shows the histogram of the residuals of the healthy data that was used to 

train SPRT followed by Figure A5 which shows the residuals of the resistance for 

component 3 when anomalies were detected by SPRT. 

Figure A4: Histogram of the Residuals of the Remaining Training Data 
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Fig. A5: SPRT Alarms at 738th Cycle Due to Increase in the Mean of the 

Residuals of Resistance (The red arrow indicates the cycle from which alarms were 

seen from SPRT). 

The peak resistance from the time of the anomaly was trended to get an 

estimate of the RUL (shown in Figure A6). The regression equation is also shown in 

the figure. The cycles to failure was calculated at the 778th cycle to be 830 cycles for 

component 3. The actual cycles to failure for component 3 according IPC-9701A 

standard was found to be 1139 cycles. The RUL prediction was 309 cycles (~27% of 

the total life) before the actual cycles to failure 
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Fig. A6: Trending of Peak Resistance for Data-driven RUL Estimation 
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Results for component 4: 

The regression equations were found to be: 

Rinc = 0.002*T + 0.641          (A5) 

Rdec = 0.003*T + 0.796          (A6) 

Figure A7 shows the histogram of the residuals of the healthy data that was 

used to train SPRT followed by Figure A8 which shows the residuals of the resistance 

for component 4 when anomalies were detected by SPRT. 

Figure A7: Histogram of the Residuals of the Remaining Training Data 
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Fig. A8: SPRT Alarms at 650th Cycle Due to Increase in the Mean of the 

Residuals of Resistance (The red arrow indicates the cycle from which alarms were 

seen from SPRT). 

The peak resistance from the time of the anomaly was trended to get an 

estimate of the RUL (shown in Figure A9). The regression equation is also shown in 

the figure. The cycles to failure was calculated at the 670th cycle to be 707 cycles for 

component 4. The actual cycles to failure for component 4 according IPC-9701A 

standard was found to be 1095 cycles. The RUL prediction was 388 cycles (~35% of 

the total life) before the actual cycles to failure. 
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Fig. A6: Trending of Peak Resistance for Data-driven RUL Estimation 
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Results for component 5: 

The regression equations were found to be: 

Rinc = 0.001*T + 0.495          (A7) 

Rdec = 0.002*T + 0.597          (A8) 

Figure A10 shows the histogram of the residuals of the healthy data that was 

used to train SPRT followed by Figure A11 which shows the residuals of the 

resistance for component 5 when anomalies were detected by SPRT. 
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Fig. A10: Histogram of the Residuals of the Remaining Training Data 



 

 61 

 

#632

 

Fig. A11: SPRT Alarms at 632nd Cycle Due to Increase in the Mean of the 

Residuals of Resistance (The red arrow indicates the cycle from which alarms were 

seen from SPRT). 

The peak resistance from the time of the anomaly was trended to get an 

estimate of the RUL (shown in Figure A12). The regression equation is also shown in 

the figure. The cycles to failure was calculated at the 648th cycle to be 657 cycles for 

component 5. The actual cycles to failure for component 5 according IPC-9701A 

standard was found to be 741 cycles. The RUL prediction was 84 cycles (~11% of the 

total life) before the actual cycles to failure. 
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Fig. A12: Trending of Peak Resistance for Data-driven RUL Estimation 
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Results for component 6: 

The regression equations were found to be: 

Rinc = 0.001*T + 0. 503                   (A9) 

Rdec = 0.002*T + 0.630                          (A10) 

Figure A13 shows the histogram of the residuals of the healthy data that was used to 

train SPRT followed by Figure A14 which shows the residuals of the resistance for 

component 6 when anomalies were detected by SPRT. 

Fig. A13: Histogram of the Residuals of the Remaining Training Data 
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Fig. A14: SPRT Alarms at 716th Cycle Due to Increase in the Mean of the 

Residuals of Resistance (The red arrow indicates the cycle from which alarms were 

seen from SPRT). 

The peak resistance from the time of the anomaly was trended to get an 

estimate of the RUL (shown in Figure A15). The regression equation is also shown in 

the figure. The cycles to failure was calculated at the 735th cycle to be 766 cycles for 

component 6. The actual cycles to failure for component 6 according IPC-9701A 

standard was found to be 1274 cycles. The RUL prediction was 508 cycles (~39% of 

the total life) before the actual cycles to failure. 
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Fig. A15: Trending of Peak Resistance for Data-driven RUL Estimation 
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Results for component 7: 

The regression equations were found to be: 

Rinc = 0.002*T + 0. 527                   (A11) 

Rdec = 0.003*T + 0.665                                          (A12) 

Figure A16 shows the histogram of the residuals of the healthy data that was 

used to train SPRT followed by Figure A17 which shows the residuals of the 

resistance for component 7 when anomalies were detected by SPRT. 
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Fig. A16: Histogram of the Residuals of the Remaining Training Data 
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Fig. A17: SPRT Alarms at 698th Cycle Due to Increase in the Mean of the 

Residuals of Resistance (The red arrow indicates the cycle from which alarms were 

seen from SPRT). 

The peak resistance from the time of the anomaly was trended to get an 

estimate of the RUL (shown in Figure A18). The regression equation is also shown in 

the figure. The cycles to failure was calculated at the 813th cycle to be 980 cycles for 

component 7. The actual cycles to failure for component 7 according IPC-9701A 

standard was found to be 1036 cycles. The RUL prediction was 56 cycles (0.5% of 

the total life) before the actual cycles to failure. 
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Fig. A18: Trending of Peak Resistance for Data-driven RUL Estimation 
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Results for component 8: 

The regression equations were found to be: 

Rinc = 0.002*T + 0. 568                   (A13) 

Rdec = 0.003*T + 0.771                                          (A14) 

Figure A19 shows the histogram of the residuals of the healthy data that was 

used to train SPRT followed by Figure A20 which shows the residuals of the 

resistance for component 8 when anomalies were detected by SPRT. 
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Fig. A19: Histogram of the Residuals of the Remaining Training Data 
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Fig. A20: SPRT Alarms at 703rd Cycle Due to Increase in the Mean of the 

Residuals of Resistance (The red arrow indicates the cycle from which alarms were 

seen from SPRT). 

The peak resistance from the time of the anomaly was trended to get an 

estimate of the RUL (shown in Figure A21). The regression equation is also shown in 

the figure. The cycles to failure was calculated at the 780th cycle to be 923 cycles for 

component 8. The actual cycles to failure for component 8 according IPC-9701A 

standard was found to be 927 cycles. The RUL prediction was 4 cycles before the 

actual cycles to failure. 
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Fig. A21: Trending of Peak Resistance for Data-driven RUL Estimation 
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