423 research outputs found

    Generating a checking sequence with a minimum number of reset transitions

    Get PDF
    Given a finite state machine M, a checking sequence is an input sequence that is guaranteed to lead to a failure if the implementation under test is faulty and has no more states than M. There has been much interest in the automated generation of a short checking sequence from a finite state machine. However, such sequences can contain reset transitions whose use can adversely affect both the cost of applying the checking sequence and the effectiveness of the checking sequence. Thus, we sometimes want a checking sequence with a minimum number of reset transitions rather than a shortest checking sequence. This paper describes a new algorithm for generating a checking sequence, based on a distinguishing sequence, that minimises the number of reset transitions used.This work was supported in part by Leverhulme Trust grant number F/00275/D, Testing State Based Systems, Natural Sciences and Engineering Research Council (NSERC) of Canada grant number RGPIN 976, and Engineering and Physical Sciences Research Council grant number GR/R43150, Formal Methods and Testing (FORTEST)

    Testing in context: Efficiency and executability

    Get PDF
    Testing each software component in isolation is not always feasible. We consider testing a deterministic Implementation Under Test (IUT) together with some other correctly implemented components as its context. One of the essential issues of testing in context is test executability problem, i.e., tests generated solely from the specification of the IUT may not be executable due to the uncontrollable interaction between the IUT and its context. On the other hand, generating a test sequence from the abstract specifications of a stateful IUT and its context often suffers from the well-known state explosion problem. In this dissertation, we solve the problem of generating a minimal-length test sequence from a given specification of a stateful IUT and its embedded context. By adopting model checking techniques, we avoid the state explosion problem during test generation and avoid the test executability problem during testing in context

    CompleX-Machine: An automated testing tool using X-Machine theory

    Get PDF
    This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing. Thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business Schoolā€™s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs

    Model-Based Testing for Composite Web Services in Cloud Brokerage Scenarios

    Get PDF
    Cloud brokerage is an enabling technology allowing various services to be merged together for providing optimum quality of service for the end-users. Within this collection of composed services, testing is a challenging task which brokers have to take on to ensure quality of service. Most Software-as-a-Service (SaaS) testing has focused on high-level test generation from the functional specification of individual services, with little research into how to achieve sufficient test coverage of composite services. This paper explores the use of model-based testing to achieve testing of composite services, when two individual web services are tested and combined. Two example web services ā€“ a login service and a simple shopping service ā€“ are combined to give a more realistic shopping cart service. This paper focuses on the test coverage required for testing the component services individually and their composition. The paper highlights the problems of service composition testing, requiring a reworking of the combined specification and regeneration of the tests, rather than a simple composition of the test suites; and concludes by arguing that more work needs to be done in this area
    • ā€¦
    corecore