
1

Optimizing the Length of Checking Sequences
R. M. HieronsSenior Member, IEEEand H. Ural

Abstract

A checking sequence, generated from a finite state machine, is a test sequence that is guaranteed to lead to a
failure if the system under test is faulty and has no more states than the specification. The problem of generating a
checking sequence for a finite state machineM is simplified if M has a distinguishing sequence: an input sequence
D̄ with the property that the output sequence produced byM in response tōD is different for the different states of
M . Previous work has shown that, where a distinguishing sequence is known, an efficient checking sequence can be
produced from the elements of a setA of sequences that verify the distinguishing sequence used and the elements
of a setΥ of subsequences that test the individual transitions by following each transitiont by the distinguishing
sequence that verifies the final state oft. In this previous workA is a predefined set andΥ is defined in terms of
A. The checking sequence is produced by connecting the elements ofΥ andA, to form a single sequence, using
a predefined acyclic setEc of transitions. An optimization algorithm is used in order to produce the shortest such
checking sequence that can be generated on the basis of the givenA andEc. However, this previous work did not
state how the setsA andEc should be chosen. This paper investigates the problem of finding appropriateA andEc

to be used in checking sequence generation. We show how a setA may be chosen so that it minimizes the sum of
the lengths of the sequences to be combined. Further, we show that the optimization step, in the checking sequence
generation algorithm, may be adapted so that it generates the optimalEc. Experiments are used to evaluate the
proposed method.

Index Terms

Finite State Machine, Checking Sequence, Test Minimization, Distinguishing Sequence.

I. I NTRODUCTION

F Inite state machines (FSMs) can be used to model many types of systems including communication
protocols [24] and control circuits [22]. A number of specification languages such as SDL, Estelle,

X-machines and Statecharts are based on extensions of FSMs. FSM based test techniques can often be
applied to systems specified using such languages [13], [17], [21], [23], [25], [27].

Given a formal model or specification of the required behaviour of thesystem under test (SUT)I
it is normal to assume thatI behaves like an unknown model that can be described using a particular
formalism [14]. Given an FSMM , that models the required behaviour of SUTI, it is normal to assume
that I behaves like an (unknown) FSMMI with the same input and output alphabets asM . A common
further assumption is thatMI has no more states thanM .

SupposeM hasn states. Let the set of deterministic FSMs with the same input and output alphabets as
M and no more thann states be denotedΦ(M). A finite set of input sequences is achecking experiment
for M if, between them, they distinguishM from every element ofΦ(M) which is not equivalent toM .
Given FSMM , there is some checking experiment [20]. Achecking sequenceis an input sequence that
forms a checking experiment.

The problem of generating a checking sequence for an FSMM is simplified if M has a distinguishing
sequence: an input sequenceD̄ with the property that the output sequence produced byM in response
to D̄ is different for the different states ofM . There are two main alternative approaches for verifying a
state: using a unique input/output sequence (UIO) or a characterization set. An input/output sequencex̄/ȳ
is a unique input/output sequence for states if M produces̄y in response tōx when in states and does not
produceȳ in response tōx from any other state ofM . A setW of input sequences is a characterization

R.M. Hierons is with the School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, Middlesex, UB8
3PH, UK

H. Ural is with the School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

set if each pair of distinct states ofM is distinguished by a sequence fromW . Every minimal FSM has a
characterization set but need not have a UIO for every state or a distinguishing sequence. While checking
sequences can be produced on the basis of UIOs or a characterization set, restrictive assumptions are
made in the literature. One of these assumptions is that there is a reliable reset operation, i.e. a reset
operation that is known to have been correctly implemented. It is then possible to produce a polynomial
size checking experiment [3], [28]. However not all SUTs have such a reset and in some cases the use
of a reset can make testing more expensive and reduce the expected effectiveness of a test sequence or
checking sequence (see, for example, [2], [10], [29]).

There has been much interest in the generation of short checking sequences from an FSMM when a
distinguishing sequence is known [6], [7], [12], [26]. Naturally, the use of a short checking sequence makes
testing more efficient and this has is particularly beneficial if a checking sequence is to be reused, possibly
in regression testing or for different implementations of a standard. Recently Hierons and Ural [12] showed
that an efficient checking sequence may be produced by combining the elements in a predefined setA
of sequences calledα′-sequences1 with the transition tests in a setΥ (defined on the basis ofA andM)
using a predefined acyclic setEc of transitions fromM . An optimization algorithm is used to generate the
checking sequence fromA, Υ, andEc. However, they did not indicate howA andEc should be chosen
and these choices can have a significant impact on the overall checking sequence length.

This paper considers the problem of generating the setsA andEc with the aim of producing a minimum
length checking sequence amongst those that can result from the application of the algorithm from [12].
Such a checking sequence is said to beoptimal. We give an algorithm that produces a setA that minimizes
the sum of the lengths of the subsequences to be combined in generating the checking sequence. We also
show that the optimization phase of the checking sequence generation algorithm can be adapted so that it
also generates the setEc: it produces theoptimalEc for the givenA. Thus, the overall checking sequence
generation approach can be seen as having two stages:

1) minimizing the sum of the sizes of the subsequence to be combined; then
2) combining these subsequences optimally.
This paper is structured as follows. Section II introduces the basic concepts and notation used in this

paper. Section III states results due to Ural et al. [26] and Hierons and Ural [12] that will be used in
generating a checking sequence. It then gives a new checking sequence generation algorithm that takes
as input the FSMM and the setA of α′–sequences. This is followed, in Section IV, by an algorithm
for generating a set ofα′-sequences that minimizes the sum of the lengths of the subsequences to be
combined. In Section V a number of general results are proved while Section VI contains an experimental
evaluation which demonstrates that the choice ofA and Ec can have a significant impact on the length
of the resultant checking sequence. Finally, in Section VII conclusions are drawn.

II. PRELIMINARIES

A. Finite State Machines

A (deterministic and completely specified) FSMM is defined by a tuple(S, s1, X, Y, δ, λ) in which S
is a finite set ofstates, s1 ∈ S is the initial state, X is the finite input alphabet, Y is the finiteoutput
alphabet, δ is thenext state functionandλ is theoutput function. The functionsδ andλ can be extended
to take input sequences. See, for example, [16] for general information on FSMs.

Throughout this paperM = (S, s1, X, Y, δ, λ) denotes a deterministic completely specified FSM that
describes the required behaviour of the SUTI. The number of states ofM is denotedn and the states of
M are enumerated, givingS = {s1, . . . , sn}. Only deterministic completely specified FSMs are considered
in this paper. For information on testing from non–deterministic finite state machines see, for example, [8],
[9], [11], [18], [19], [30]. For information on testing from incompletely specified FSMs see, for example,
[18].

1These are defined in Section III.

3

s

ss

s

s

1

2 3

4

5b/1 a/0

a/0

a/0

a/1

a/1

b/0

b/1

b/1

b/0

Fig. 1. The FSMM0

An FSM, that is denotedM0 throughout this paper, is described in Figure 1. Here,S = {s1, . . . , s5},
X = {a, b} and Y = {0, 1}. From the arcs1 → s2 with label a/0 it is possible to deduce that ifM0

receives inputa when in states1 it produces output0 and moves to states2. Thus, inM0, δ(s1, a) = s2

andλ(s1, a) = 0.
A transition τ is defined by a tuple(si, sj, x/y) in which si is the starting state, x is the input,

sj = δ(si, x) is the ending state, and y = λ(si, x) is the output. Thus, for example,M0 contains the
transition (s1, s2, a/0). Input r is a reset operationof M if, irrespective of the current state ofM , it
always takesM to its initial state. IfM has a reset operation then it hasreset capacity.

Two statessi and sj of M are equivalent if, for every input sequencēx, λ(si, x̄) = λ(sj, x̄). If
λ(si, x̄) 6= λ(sj, x̄) then x̄ distinguishesbetweensi and sj. Thus, for example, the input sequencea
distinguishes statess1 ands3 of M0. Two FSMsM1 andM2 areequivalentif and only if for every state
of M1 there is an equivalent state ofM2 and vice versa. An input sequence distinguishes between two
FSMs if its application leads to different output sequences for these FSMs. An input sequencex̄ is a
checking sequencefor M if and only if x̄ distinguishes betweenM and all elements ofΦ(M) that are
not equivalent toM .

FSM M is minimal if no FSM with fewer states thanM is equivalent toM . A sufficient condition for
M to be minimal is that every state can be reached from the initial state ofM and no two states ofM
are equivalent. There are algorithms that take an FSM and return an equivalent minimal FSM [20]. Thus
only minimal FSMs are considered in this paper.

Given FSMM , a distinguishing sequenceis an input sequencēD whose output distinguishes all the
states ofM . More formally, for all s, s′ ∈ S if s 6= s′ then λ(s, D̄) 6= λ(s′, D̄). Thus, for example,M0

has distinguishing sequenceaba. To see thataba is a distinguishing sequence forM0 observe that the
response toaba from the different states ofM0 are all different: froms1 we get010, from s2 we get
011, from s3 we get 101, from s4 we get 001, and froms5 we get 110. While not every FSM has a
distinguishing sequence, there has been interest in the problem of generating a checking sequence in the
presence of a distinguishing sequence [7], [12], [15], [26]. This paper considers the problem of generating
an efficient checking sequence from a deterministic, minimal, and completely specified FSMM with a
known distinguishing sequencēD.

B. Directed Graphs and Networks

A directed graph (digraph)G is defined by a tuple(V, E) in which V is a set of vertices andE is
a set of directed edges between the vertices. Each edge may have a label. An edgee from vertexvi to

4

vertexvj with label l will be represented by(vi, vj, l). Edgee leavesvi andentersvj. For a vertexv ∈ V ,
indegreeE(v) denotes the number of edges fromE that enterv andoutdegreeE(v) denotes the number
of edges fromE that leavev.

Given an FSM, it is possible to produce a corresponding digraph in which each state is represented by a
vertex and each transition is represented by an edge. Throughout this paperG = (V, E) (V = {v1, . . . , vn})
is a digraph, that representsM , in which statesi is represented by vertexvi. A transition from statesi

to statesj with input x and outputy is represented by edgee = (vi, vj, x/y) from E. For example,
(v2, v5, a/0) is an edge of the digraph forM0 that represents the transition(s2, s5, a/0).

A sequenceP̄ = (n1, n2, x1/y1), . . . , (nr−1, nr, xr−1/yr−1) of pairwise adjacent edges fromG forms
a walk in which eachnode ni represents a vertex fromV and thus, ultimately, a state fromS. Here
initial(P̄) denotesn1, which is theinitial node of P̄ , andfinal(P̄) denotesnr, which is thefinal node
of P̄ . The sequencēT = (x1/y1), . . . , (xr−1/yr−1) is the label of P̄ and is denotedlabel(P̄). T̄ is said to
be atransfer sequencefrom n1 to nr. The walk P̄ can be represented by the tuple(n1, nr, T̄) or by the
tuple (n1, nr, Ī/Ō) in which Ī = x1, . . . , xr is the input portion of T̄ and Ō = y1, . . . , yr is the output
portion of T̄ . The cost of a sequencēρ is the number of elements in the sequence and is denoted|ρ̄|.

A tour is a walk whose initial and final nodes are the same. Given a tourΓ = e1, . . . , ek, ei =
(ni, ni+1, li), (1 ≤ i < k) then ej, . . . , ek, e1, . . . , ej−1 is a walk formed bystarting Γ with edgeej. An
Euler Tour is a tour that contains each edge exactly once. If the vertices represented by the nodes of walk
P̄ are distinct,P̄ is said to be apath. A sequence of edgese1, . . . , ek, ei = (ni, ni+1, li), (1 ≤ i < k)
forms acycle if e1, . . . , ek−1 is a path andn1 andnk+1 represent the same vertex. A setE ′ of edges from
G is acyclic if no subset ofE ′ forms a cycle.

A digraph isstrongly connectedif for any ordered pair of vertices(vi, vj) there is a walk fromvi to vj.
A digraphG is weakly connectedif the underlying undirected graph is connected: for each ordered pair
(vi, vj) of vertices there is a sequence(n1, n2, l1), . . . , (nk, nk+1, lk) in which each nodenr represents a
vertex fromV , n1 representsvi, nk+1 representsvj, and for each(nr, nr+1, lr) (1 ≤ r ≤ k) at least one of
(nr, nr+1, lr) and (nr+1, nr, lr) is in E. Naturally, every strongly connected digraph is weakly connected
but the converse is not the case. An FSM isstrongly connectedif the digraph that represents it is strongly
connected. Only strongly connected FSMs are considered in this paper.

A network is a digraph in which there are two special vertices, thesources andsink t, and each edge
is given acapacityand acost. A flow F for a networkN is an assignment of non–negative integer values
to each edge such that the flow through an edge (the value assigned to this edge) does not exceed the
capacity of the edge and the flow is conserved: for each vertex, excepts and t, the total flow entering
the vertex is equal to the total flow leaving it. Given a flowF of a networkN , the size of the flow,|F |,
is the net flow leaving the sources of N . The cost of F is the sum, over the edges, of the flow through
the edge multiplied by the cost of the edge. For more on digraphs and networks see, for example, [5].

C. Recognizing states and verifying edges

The algorithms of Ural et al. [26] and Hierons and Ural [12] use the notion of recognizing a node,
corresponding to the state reached by a given input/output sequence, and verifying an edge ofE. These
notions, which are defined in terms of a given distinguishing sequenceD̄, are defined below. The key
point is that, since the SUTI has no more states thanM , if we observe then possible responses of
M to D̄ when applied toI, then D̄ must also be a distinguishing sequence forI. Once this has been
demonstrated, we can usēD to investigate the structure ofI and thus to determine whether it is equivalent
to M .

Consider a walkP̄ and the nodes within it. Let̄Q = label(P̄).

Definition 1 1) A nodeni of P̄ is d–recognizedin Q̄ as states of M if ni is the initial node of a
subpath ofP̄ whose label is input/output sequenceD̄/λ(s, D̄).

5

2) Suppose that(nq, ni, T̄) and (nj, nk, T̄) are subpaths ofP̄ and D̄/λ(s, D̄) is a prefix toT̄ (and
thusnq and nj are d–recognized in̄Q as states of M). Suppose also that nodenk is d–recognized
in Q̄ as states′ of M . Thenni is t–recognizedin Q̄ as s′.

3) Suppose that(nq, ni, T̄) and(nj, nk, T̄) are subpaths of̄P such thatnq andnj are either d-recognized
or t–recognized inQ̄ as states of M and nk is either d–recognized or t–recognized in̄Q as state
s′ of M . Thenni is t–recognizedin Q̄ as s′.

4) If nodeni of P̄ is either d–recognized or t–recognized in̄Q as states thenni is recognizedin Q̄
as states.

5) Edgee = (va, vb, x/y) is verified in Q̄ if there is a subpath(ni, ni+1, xi/yi) of P̄ such thatni is
recognized assa in Q̄, ni+1 is recognized assb in Q̄, xi = x and yi = y.

The first rule says that a node is d–recognized as a states if it is followed by the input/output sequence
D̄/λ(s, D̄). This is essentially saying that̄D defines a one–to–one correspondence between the states of
the SUT and the states ofM : this must be the case if then different responses tōD are observed in
the SUT. The second and third rules say that if an input/output sequence is observed from two different
nodesn andn′ that are both recognized (d–recognized or t–recognized) as the same state then their final
nodes should correspond to the same state ofM .

The fifth rule is related to a transition test that is defined as follows: Thetransition testfor a transition
τ = (si, sj, x/y) is label(τ)D̄/λ(sj, D̄)T̄j for some transfer sequencēTj. The following result, that
provides a sufficient condition for an input/output sequence to be a checking sequence, may now be
stated.

Theorem 1 (Theorem 1, [26]) LetP̄ be a walk fromG that starts atv1 and Q̄ = label(P̄). If every edge
(vi, vj, x/y) of G is verified inQ̄, thenQ̄ is a checking sequence ofM .

In this paper checking sequence generation is based on Theorem 1.

III. G ENERATING CHECKING SEQUENCES

This section gives an algorithm for generating a checking sequence fromM on the basis of a dis-
tinguishing sequencēD for M . It starts by definingα′–sequences [12]. We then adapt the algorithm of
Hierons and Ural [12]. The change introduced in this paper allows the setEc of transitions used, to connect
the required subsequences, to be chosen during optimization. The problem of choosingα′–sequences is
considered in Section IV.

A. Definingα′–sequences

In previous work [12]α′–sequences were used as the basis for generating a checking sequence. First
we defineα′–sequences and we then explain their role in the construction of a checking sequence.

The α′–sequences are defined in the following way [12]. The first step is to chooseVk ⊆ V (1 ≤
k ≤ q) whose union isV and to order the elements within eachVk, giving Vk = {vk

1 , . . . , v
k
mk
}. Let

sk
i denote the state represented byvk

i . For eachvk
i , produce a sequencēD/λ(sk

i , D̄)T̄ k
i ; the result of

applying D̄ in statesk
i followed by a transfer sequencēT k

i whose final state corresponds tovk
i+1 (vk

mk+1

can be anyvj
w, 1 ≤ j ≤ q, 1 ≤ w ≤ mj). For eachVk, form a walk P̄k from sk

1 with label ᾱk =
D̄/λ(sk

1, D̄)T̄ k
1 D̄/λ(sk

2, D̄)T̄ k
2 . . . D̄/λ(sk

mk
, D̄)T̄ k

mk
D̄/λ(sj

w, D̄)T̄ j
w (1 ≤ j ≤ q,1 ≤ w ≤ mj). The set

{ᾱ1, . . . , ᾱq} is called anα′–set. Given anα′–setA, each sequencēαi ∈ A is called anα′–sequence from
A. Where theα′–setA is clear, its members are simply calledα′–sequences.

The transfer sequence, that follows the execution ofD̄ from statesi, is denotedT̄i.
The α′–sequences play the following roles in checking sequence generation.
1) They verify that the distinguishing sequenceD̄ used is also a distinguishing sequence for the SUT.

This is achieved by applyinḡD in every state ofM : if the n different responses are observed then,
since the SUT has at mostn states,D̄ must distinguish the states of the SUT.

6

v v v

v v1

2

3

45

Fig. 2. The digraphGD̄

2) For each statesi they d–recognize the final state (saysj) reached by the walk fromsi with label
D̄/λ(si, D̄)T̄i. This is achieved by the subsequenceD̄/λ(si, D̄)T̄i followed by the input ofD̄. Note
that if the subsequencēD/λ(si, D̄)T̄i is seen elsewhere in the label of a walk, then the final node
of this is t–recognized as the statesj reached fromsi by a walk with labelD̄/λ(si, D̄)T̄i since the
initial node ofD̄/λ(si, D̄)T̄i is d–recognized assi and the node reached bȳD/λ(si, D̄)T̄i has been
d–recognized assj in an α′–sequence.

3) An α′–sequencēαk from A starts with input sequencēD and thus its initial node is recognized.
Thus, anα′–sequence can be used to check the ending state of a transition [12].

The execution ofD̄, followed by a given transfer sequence, from each state, may be represented by a
digraphGD̄ induced by the set of edges of the form(vi, vj) such that there is a walk fromsi to sj with
labelD̄/λ(si, D̄)T̄i. The digraphGD̄ generated fromM0 with empty transfer sequences and distinguishing
sequenceaba is given in Figure 2. Recall that anα′–sequence must end in somēD/λ(si, D̄)T̄i that is
contained in the body of possibly anotherα′–sequence. Thus, anα′–set is represented by a set{p̄1, . . . , p̄q}
of walks in GD̄ such that each̄pi ends with an edgee with the property that there exists a walk̄pj that
containse before its final edge.

From this it is possible to see that the following provide anα′–set forM0:
• The sequencēα1 corresponding to the execution of̄DD̄D̄D̄D̄ from s5: this contains the edges of

GD̄ that leave verticesv5, v2, v4, v1, andv2. Note that here the walk ends with an edge (fromv2 to
v4) that was included earlier in the walk.

• The sequencēα2 corresponding to the execution of̄DD̄ from s3 : this contains the edges ofGD̄ that
leave verticesv3 andv1. Here the walk ends with an edge (fromv1 to v2) that was included in the
walk in GD̄ representinḡα1 and before the final edge of this walk.

We use theseα′–sequences in checking sequence generation.
If a walk P̄ contains everȳPk, (1 ≤ k ≤ q), and thus its label contains everyα′–sequence fromα′–setA,

the final node of somēPk with labelᾱk = D̄/λ(sk
1, D̄)T̄ k

1 D̄/λ(sk
2, D̄)T̄ k

2 . . . D̄/λ(sk
mk

, D̄)T̄ k
mk

D̄/λ(sj
w, D̄)T̄ j

w

is preceded by a subsequence,D̄/λ(sj
w, D̄)T̄ j

w, contained within somēαj ∈ A and thus followed byD̄
in ᾱj. Thus, by the definition of recognition, if̄P contains everyP̄k (1 ≤ k ≤ q), then the final node of
eachP̄k is recognized.

We useEα′ to denote the set of edges of the form̄Pk = (vi, vj, ᾱk), (1 ≤ k ≤ q).

B. Checking sequences: a sufficient condition

This section gives a sufficient condition, from [12], for a sequence to be a checking sequence. This
result is a consequence of Theorem 1.

Theorem 2 Let A denote anα′–set andGΥ = (V, E ∪ EΥ) for someEΥ that satisfies the following
properties:

1) For each transitionτ , with ending statesj, EΥ contains one edge representingτ followed by either
D̄/λ(sj, D̄)T̄j or someα′–sequence fromA.

7

s

s

s

s

t

t

t

t

capacity indegree (in E)

capacity outdegree (in E)

edges from E1

2

n

1

2

n’

’

’ ’

’

’

Fig. 3. The networkN

2) For every α′–sequencēαk from A, EΥ contains one edge that representsᾱk or a transition τ
followed byᾱk.

3) Every edge fromEΥ represents anα′–sequence or a transitionτ , with ending statesj, followed by
either a sequence fromA or D̄/λ(sj, D̄)T̄j.

SupposeΓ is a tour ofGΥ that contains every edge fromEΥ. Let e be an edge fromEΥ that represents
the test for a transitionτ whose ending state iss1. Let Γ′ denoteΓ with e replaced by the corresponding
sequencee1, . . . , ek of edges fromG (and soe1 representsτ) and letP̄ denote the walk formed by starting
Γ′ with the edgee2. Also letG[EC] denote the digraph induced by the set of edges inP̄ that are not in
EΥ and suppose thatG[EC] is acyclic. ThenQ̄ = label(P̄)D̄/λ(s1, D̄) is a checking sequence forM .

C. Producing the checking sequence

This subsection explains how, given anα′–setA, we can produce a checking sequence. The algorithm
developed in this section utilizes the optimization algorithm, for the RCPP, used in [1]. By Theorem 2, it
is sufficient to generate a checking sequence on the basis of a tour produced from the following:

1) For each transitionτ , with ending statesj, one instance ofτ following by D̄/λ(sj, D̄)T̄j or an
α′–sequence.

2) For everyα′–sequencēαi, either ᾱi or some transitionτ followed by ᾱi.
3) Some acyclic set of connecting transitions.
If an α′–sequencēαi is used to check the ending state of some transitionτ we get overlap between a

transition test and anα′–sequence. Thus, since we aim to produce an optimal checking sequence, each
α′–sequence is used to check the ending state of some transition, except possibly one if the checking
sequence starts with anα′–sequence.

The problem of producing a minimal length tour that satisfies these conditions can now be considered.
The first step is to produce a networkN from G = (V,E), described below and outlined in Figure 3, and
derive the minimum cost/maximum flow (min cost/max flow)F of N .

The networkN has vertex set{s, t} ∪ {s′1, . . . , s′n} ∪ {t′1, . . . , t′n}, in which s is the source andt is the
sink. Thes′i represent nodes after the execution of a transition being tested and before the execution of
an α′–sequence or̄D/λ(si, D̄)T̄i and thet′i represent nodes before the start of a transition test.

The edges are defined by the following rules:
1) For eachi, there is an edge froms to s′i with capacityindegreeE(vi) and cost0. This is because

there areindegreeE(vi) edges ofG that end atvi, each representing a transition that needs to be
followed by anα′–sequence or̄D/λ(si, D̄)T̄i.

8

s

s

s

s

t

t

t

t

1

2

5

1

2

5’

’

’ ’

’

’

s3’

s4’

t3’

t4’

3

1

1

2

3

2

2

2

2

2

2

2

2

1

1

1

0

3

4

Fig. 4. The network and flowF0 for M0

2) For eachi, there is an edge fromt′i to t with capacityoutdegreeE(vi) and cost0. This is because
there areoutdegreeE(vi) edges ofG that leavevi, each representing a transition that needs to be
tested.

3) For eachα′–sequencēαk from vi to vj there is an edge froms′i to t′j with capacity1 and cost|ᾱk|.
This represents the execution ofᾱk as part of a transition test.

4) For each statesi, with sj reached by the walk with label̄D/λ(si, D̄)T̄i from si, there is an edge from
s′i to t′j with capacityindegreeE(vi) − outdegreeEα′ (vi) and cost|D̄/λ(si, D̄)T̄i|. This represents
the use ofD̄/λ(si, D̄)T̄i as part of a transition test. The capacity is the number of transitions that
will be followed by D̄/λ(si, D̄)T̄i but not anα′–sequence in the tour: each transition with ending
statesi must be followed byD̄/λ(si, D̄)T̄i but outdegreeEα′ (vi) of these will be followed by anα′–
sequence. The capacity of an edge leaving somes′i and representing the execution ofD̄/λ(si, D̄)T̄i

is thus reduced by1 if there is someα′–sequence leavingsi, as thisα′–sequence will be used to
recognize the final state of one transition enteringsi. Eachα′–sequence can always be executed
in this manner as for everyi, 1 ≤ i ≤ n, indegreeE(vi) > 0 (as M is strongly connected) and
outdegreeEα′ (vi) ≤ 1.

5) For each transition fromsi to sj there is a corresponding edge fromt′i to t′j with infinite capacity
and cost1. This represents an edge used to connect transition tests.

Consider transitionτ = (si, sj, x/y) and transition testlabel(τ)D̄/λ(sj, D̄)T̄j in which D̄/λ(sj, D̄)T̄j

labels a walk fromsj to sk. The execution ofτ as part of this transition test is represented by flow from
t′i to t and flow froms to s′j. The execution ofD̄/λ(sj, D̄)T̄j as part of this transition test is represented
by flow from s′j to t′k.

The min cost/max flowF is then found. This flow can be derived in low order polynomial time (see, for
example, [1]). The network, and corresponding min cost/max flow, produced forM0 is shown in Figure
4. Here, the only edges between thet′i that are shown are those used in the flow. The actual flow through
an edge is represented by an integer label and a dotted line represents anα′–sequence.

From F the digraphG′ = (V ′, E ′), in which V ′ = {a1, . . . , an} ∪ {b1, . . . bn}, is produced. The edge
setE ′ is defined by the following:

1) For each transitionτ from si to sj in M there is a corresponding edge frombi to aj. This represents
the execution ofτ as part of a transition test.

2) Given an edge froms′i to t′j in N with flow f in F there aref corresponding edges fromai to bj.
These represents the use of someᾱk or D̄/λ(si, D̄)T̄i as part of a transition test.

3) Given an edge fromt′i to t′j in N with flow f in F , there aref corresponding edges frombi to bj.
These represent the execution of transitions used to connect transition tests.

As flow is conserved at vertices, the digraphG′ is symmetric(every vertex has an equal number of
edges entering and leaving it). Thus, ifG′ is connected, it has an Euler TourΓ (see, for example, [5])

9

and the corresponding checking sequence containscost(F) + |S||X| + |D̄| transitions, wherecost(F)
denotes the cost of the flowF . Conditions under whichG′ is guaranteed to be connected are considered
in Section V. If G′ is not connected then a set of tours can be produced. These tours can be connected
by adding further transitions [12], [26].

We choose some edgee in Γ that represents a transition test for a transitionτ that ends ats1 and replace
e by the corresponding sequencee1, . . . , ek of edges fromG to form tourΓ′. We then startΓ′ with e2 to
form a walk P̄ with label Q̄ and Q̄D̄/λ(s1, D̄) then forms a checking sequence. The (polynomial time)
checking sequence generation algorithm can be summarised in the following way.

Algorithm 1
1) InputM , distinguishing sequencēD andα′–setA (and thus the transfer sequencesT̄1, . . . , T̄n).
2) Produce networkN and min cost/max flowF for N .
3) GenerateG′ from F .
4) If G′ is strongly connected, produce an Euler TourΓ of G′; else produce a set of tours and connect

these [12], [26] to form a tourΓ.
5) Choose some edgee in Γ that represents a transition test for a transitionτ that ends ats1 and replace

e by the corresponding sequencee1, . . . , ek of edges fromG to form tourΓ′.
6) Let P̄ denote a walk produced by startingΓ′ with e2 and letQ̄ = label(P̄).
7) Return the input/output sequenceQ̄D̄/λ(s1, D̄).

We now prove that the algorithm produces a checking sequence.

Lemma 3 The set of edges between thet′i, with non–zero flow inF , defines an acyclic subgraph ofG.

Proof: Proof by contradiction: suppose there is some setEC of edges between thet′i in N such that
these edges define a cycle and they have non–zero flow inF . Produce an assignmentF ′ of integers to
edges ofN by taking F and reducing the flow through each edge inEC by 1. Since each edge inEC

has positive (integer) flow inF , no edge is given negative flow inF ′. Further, sinceEC defines a cycle,
given a vertext′i, in forming F ′ we remove the same number of units of flow enteringt′i as we remove
units of flow leavingt′i. Thus, flow is conserved inF ′ and soF ′ is a flow. Finally, we have the same net
flow leaving s in F andF ′ and the same net flow enteringt in F andF ′. Thus,F ′ is also a max flow
but it is a max flow with lower cost thanF ′. This contradictsF being a min cost/max flow, as required.

Theorem 4 The sequence produced by Algorithm 1 is a checking sequence.

Proof: First observe that by Lemma 3 the set of edges between thet′i, that have non–zero flow in
F , define an acyclic digraph. Further, each edge fromEΥ is included in the resultant sequence. The result
thus follows from Theorem 2.

The digraphG′
0 produced from flowF0, for M0, is shown in Figure 5. Here,m > 1 occurrences of an

edge are represented by labelm. Solid lines are used for edges that representα′–sequences or instances
of D̄; individual transition (as part of transition tests or used to connect transition tests) are represented
using dotted lines. An Euler tour of this leads to the following checking sequence in which the label of
a transition fromsi to sj is denoted byτij.

D̄/λ(s1, D̄)τ21D̄/λ(s1, D̄)a/0b/1τ34D̄/λ(s4, D̄)τ12D̄/λ(s2, D̄)τ45D̄/λ(s5, D̄)τ25D̄/λ(s5, D̄)

a/0t51D̄/λ(s1, D̄)a/0τ53ᾱ2a/0b/1τ35ᾱ1τ44D̄/λ(s4, D̄)τ11D̄/λ(s1, D̄)

It is possible to check that all of the nodes are recognized and thus that all of the edges ofG0 are
verified. This sequence thus defines a checking sequence.

Note that the set of connecting transitions is generated during optimization. In [12], [26] a set of
connecting transitions is found prior to the optimization: this prior choice may be suboptimal.

10

a b1 1

a b2 2

a b3 3

a b4 4

a b5 5

2

2

3

4

2

Fig. 5. The digraphG′0 produced fromF0

IV. F INDING AN α′–SET

The process of generating a checking sequence, in the presence of anα′–set, was described in Section
III. This section discusses the problem of generating anα′–set A that minimizes the total length of
the sequences inEΥ, length(EΥ) =

∑
x∈EΥ

|x|. For each statesi, someα′–sequence will contain a
corresponding subsequencēD/λ(si, D̄)T̄i for some transfer sequencēTi. In Section IV-A, an algorithm
for generating anα′–set, once thēTi have been chosen, is described. Section IV-B contains a proof that
if empty transfer sequences are used (i.e.T̄i is the empty sequence for all1 ≤ i ≤ n) then anyα′–set
produced in this way minimizeslength(EΥ) and thus that empty transfer sequences should be used.

As noted earlier, the application of thēD/λ(si, D̄)T̄i can be represented by a digraphGD̄ = (V,ED̄)
in which an edge fromvi represents a walk with label̄D/λ(si, D̄)T̄i from si. In GD̄, each vertex has one
edge leaving it andGD̄ is composed of components in the form of circuits, possibly with trees attached.
The digraph produced forM0, using empty transfer sequences, is given in Figure 2.

A. Finding α′–sequences given thēTi

Eachα′–setA = {ᾱ1, . . . , ᾱq} is defined by a setπ = {P̄1, . . . , P̄q} of walks such thatlabel(P̄k) = ᾱk,
(1 ≤ k ≤ q). To construct each̄Pk ∈ π, first construct a setP = {ρ̄1, . . . , ρ̄q} of paths such that every edge
of GD̄ is covered exactly once. For eachρ̄k ∈ P , we produce the sequencelabel(ρ̄k)D̄/λ(si, D̄)T̄i, wheresi

is the ending state of̄ρk. This givesα′–setA = {label(ρ̄k)D̄/λ(si, D̄)T̄i|ρ̄k ∈ P, si is the ending state of̄ρk}.
The problem of generating anα′–set may thus be reduced to that of producing such a set of paths given
GD̄ (and thus from the transfer sequencesT̄1, . . . , T̄n).

The digraphGD̄ is composed of a number of (weakly connected) componentsC1, . . . , Cr, 1 ≤ r ≤ n.
The following algorithm produces paths that cover each component that is not in the form of a cycle.
Cyclic components are then considered.

Algorithm 2
1) Initially all edges ofGD̄ are unmarked andπ = ∅.
2) While there exists somevi with an unmarked edge leaving it and no unmarked edge entering it, do

a) Choose somevi with an unmarked edge leaving it and no unmarked edge entering it.
b) Find the longest path̄ρ in GD̄ that starts atvi and does not use any marked edge. Asρ̄ is a path

it has no repeated edges.
c) Follow ρ̄ by the edge leaving its ending vertex inGD̄ to get the walkP̄ .

11

d) Add P̄ to π and mark the edges of̄ρ.
endwhile

3) Outputπ.

The general problem of finding the longest path in a digraph is NP–complete (see, for example, [4]).
However, since inGD̄ each vertex has only one edge leaving it, here the longest path problem can be
solved in linear time.

In the example, there are two possible starting points:v3 and v5. If vertex v5 is chosen initially the
longest path isv5 → v2 → v4 → v1 → v2 and thus theα′–sequencēα1, corresponding tov5 → v2 → v4 →
v1 → v2 → v4, is produced. The only remaining unmarked edge isv3 → v1 and thus theα′–sequencēα2,
corresponding tov3 → v1 → v2, is then chosen.

At the end of Algorithm 2 there may still be unmarked edges in which case the setπ output does not
define anα′–set. However, we know that any vertex that has an unmarked edge leaving it also has an
unmarked edge entering it. We thus get the following result.

Proposition 5 When Algorithm 2 terminates the remaining unmarked edges ofGD̄ form a set of cycles.

Proof: Let GR = (V, ER) denote the digraph defined by the vertex set ofGD̄ and the set of edges of
GD̄ that are unmarked at the end of Algorithm 2. By the termination criterion of Algorithm 2 we know
that every vertex ofGR that has an edge that leaves it also has an edge that enters it.

First we prove that no vertex ofGR has an edge entering it but no edge leaving it. Proof by contradiction:
suppose there is such a vertexv. Let p̄ denote a maximal path fromGR that ends atv and letv′ denote
the starting vertex of̄p. By the maximality ofp̄ and the fact that every vertex ofGR that has an edge that
leaves it also has an edge that enters it, we know thatv′ has an edge from̄p entering it. Thus,̄p defines
a subdigraph ofGR that is of the form of a cycle with a path leaving it. This contradicts each vertex
having at most one edge leaving it as required.

Since no vertex ofGR has more than one edge leaving it, it is now sufficient to prove that no vertex of
GR has more than one edge entering it. Observe that the total number of edges entering vertices is equal
to the total number of edges leaving vertices. The result thus follows from the facts that: no vertex has
an edge entering it and no edge leaving it; no vertex has an edge leaving it and no edge entering it; and
no vertex has more than one edge leaving it.

If the edges of a componentCi form a cycle then it is possible to start a walk whose label is an
α′–sequence at any point within this. The walk produced has initial and final vertices corresponding to
those of some edge inCi. Suppose an edge fromva to vb is chosen and the correspondingα′–sequence is
ᾱk. Then ᾱk contains everyD̄/λ(sz, D̄)T̄z that corresponds to an edge fromCi. While D̄/λ(sa, D̄)T̄a is
included twice (once at the beginning, once at the end) the sequenceᾱk is used to recognizesa once in
testing and thus, inEΥ, replaces one execution of̄D/λ(sa, D̄)T̄a from sa. Thus the choice of edge from
Ci does not affectlength(EΥ).

The final algorithm can now be given.

Algorithm 3
1) Generate a set of walksπ using Algorithm 2.
2) In GD̄ mark the edges contained in walks fromπ.
3) While there are unmarked edges inGD̄ do

a) Choose a vertexvi that has an unmarked edge leaving it.
b) Find the longest walk̄ρ in GD̄ that starts atvi and does not use any marked edge. This walk

returns tovi since only edges forming cyclic components remain unmarked after Algorithm 2.
c) Follow ρ̄ by the edge leaving its ending vertex to getP̄ .
d) Add P̄ to π and mark the edges of̄ρ.

endwhile
4) Outputπ.

12

Theorem 6 Algorithm 3 returns a set of walks that define anα′–set.

Proof: By Proposition 5 we know that the set of unmarked edges after Algorithm 2 is of the form of
a set of cyclic components. The result now follows from observing that each iteration of the loop creates
a walk P̄ that defines anα′–sequence and Algorithm 3 terminates when no edges are unmarked.

B. Finding the optimalT̄i

The previous section gave an algorithm that generates anα′–set given the set{T̄1, . . . , T̄n} of transfer
sequences. This section contains results that prove that emptyT̄i lead to the minimal value oflength(EΥ)
and that, given emptȳTi, any two α′–sets produce the same value oflength(EΥ). The first step is to
place a lower bound onlength(EΥ).

Lemma 7 SupposeM has distinguishing sequencēD, n states and input alphabetX. Thenlength(EΥ) ≥
n|X|+ n|D̄|(|X|+ 1).

Proof: Suppose also thatEΥ has been formed usingα′–setA = {ᾱ1, . . . , ᾱq}, whereᾱi is D̄/λ(si
1, D̄)T̄ i

1

D̄/λ(si
2, D̄)T̄ i

2 . . . D̄/λ(si
mi

, D̄)T̄ i
mi

D̄/λ(sj
w, D̄)T̄ j

w (1 ≤ j ≤ q,1 ≤ w ≤ mj). EachD̄/λ(si, D̄)T̄i appears
at least once within the body of somēαj. Repetition occurs through the final section of eachᾱi appearing
within the body of somēαi. Thus

q∑
z=1

|ᾱz| ≥ n|D̄|+ q|D̄|.

The transitions may be enumerated to give{τ1, . . . τn|X|} such that, inEΥ, τ1, . . . , τq are followed by
ᾱ1, . . . , ᾱq respectively. Given transitionτz let σ(z) satisfy the property that the ending state ofτz is sσ(z).
ThereforeEΥ = {τ1ᾱ1, . . . , τqᾱq} ∪

⋃n|X|
z=q+1{τzD̄/λ(sσ(z), D̄)T̄σ(z)}. Thus

∑
x̄∈EΥ

|x̄| =
q∑

z=1

|τzᾱz|+
n|X|∑

z=q+1

|τzD̄/λ(sσ(z), D̄)T̄σ(z)|

= q +

q∑
z=1

|ᾱz|+ (n|X| − q)(|D̄|+ 1) +

n|X|∑
z=q+1

|T̄σ(z)|

≥ q + n|D̄|+ q|D̄|+ (n|X| − q)(|D̄|+ 1)

= n|X|+ n|D̄|+ n|X||D̄| = n|X|+ n|D̄|(1 + |X|).
The result thus follows.
It is now sufficient to prove that anyα′–set, produced by Algorithm 3, with emptȳTi achieves this

lower bound and thus is optimal.

Lemma 8 SupposeM has distinguishing sequencēD, n states and input alphabetX. Suppose also
that EΥ contains the sequences produced using anα′–setA generated by Algorithm 3 in which, for all
1 ≤ i ≤ n, |T̄i| = 0. Thenlength(EΥ) = n|X|+ n|D̄|(|X|+ 1).

Proof: SupposeA = {ᾱ1, . . . , ᾱq}. As, for all 1 ≤ j ≤ n, T̄j = ε, ᾱi has input portionD̄kiD̄ for
someki,

∑r
i=1 ki = n. Thus

q∑
z=1

|ᾱz| = (n + q)|D̄|.

13

The transitions may be enumerated so thatEΥ = {τ1ᾱ1, . . . , τqᾱq} ∪
⋃n|X|

z=q+1{τzD̄/λ(sσ(z), D̄)}. Thus

∑
x̄∈EΥ

|x̄| =
q∑

z=1

|τzᾱz|+
n|X|∑

z=q+1

|τzD̄/λ(sσ(z), D̄)|

= q +

q∑
z=1

|ᾱz|+ (n|X| − q) +

n|X|∑
z=q+1

|D̄|

= n|X|+
q∑

z=1

|ᾱz|+
n|X|∑

z=q+1

|D̄|

= n|X|+ (n + q)|D̄|+ (n|X| − q)|D̄|

= n|X|+ |D̄|(n + q + n|X| − q)

= n|X|+ n|D̄|(1 + |X|)
The result thus follows.

Theorem 9 Suppose thatEΥ contains the subsequences generated usingα′–setA produced by Algorithm
3 in which, for all 1 ≤ i ≤ n, |T̄i| = 0. Then thisα′–set minimizes the value oflength(EΥ).

Proof: This follows directly from Lemmas 7 and 8.

V. GENERAL PROPERTIES OF THE ALGORITHMS

The proposed algorithm produces a symmetric digraphG′ and if G′ is strongly connected, an Euler
Tour of G′ is used to define a minimum length checking sequence, for the givenA. This section gives
two sufficient conditions forG′ to be strongly connected. These conditions are equivalent to those given
in [1] for an algorithm that connects a set of subsequences but need not generate a checking sequence.

Lemma 10 If M has reset capacity thenG′ is strongly connected.

Proof: As M has reset capacity, everybi is connected toa1. Thus the set ofbi is weakly connected.
As M is strongly connected, everyai is reached by some edge from somebj. Thus, as the set ofbi is
weakly connected,G′ is weakly connected. It is known, however, that a weakly connected symmetric
digraph is strongly connected (see, for example, [5]). ThusG′ is strongly connected, as required.

Lemma 11 If M has a loop (a transition whose initial and final states are the same) for every state then
G′ is strongly connected.

Proof: As M has a loop for every state, eachbi is connected to the correspondingai. As it is
sufficient to prove thatG′ is weakly connected, and eachbi is connected to someaj, it is sufficient to
prove that for anyai there an undirected walk froma1 to ai. A walk p̄ from G can be simulated by, for
each edgee from vi to vj in p̄, replacinge by a pair of edges(bi, ai) (bi, aj) in G′. Thus, asG is strongly
connected, there is an undirected walk froma1 to ai for all 1 ≤ i ≤ n. ThusG′ is weakly connected and,
asG′ is symmetric,G′ is strongly connected.

The proposed checking sequence generation algorithm has the same time complexity as those given
in [26] and [12] and we now explore this complexity. For an FSM withn states Algorithms 2 and 3
both take time ofO(n). Thus the complexity of the algorithm is dominated by the time taken to find the
min cost/max flow which is ofO(ev log v) for a digraph withv vertices ande edges [1]. Thus, since the
digraph representingM hasn vertices andn|X| edges, the worst case time complexity isO(n2|X| log n).

14

VI. EXPERIMENTAL EVALUATION

This section describes an experimental evaluation that investigated the effect of using non–empty
transfer sequences (T̄i) in the construction of theα′–sequences. There were two motivations for this
study. First, while the proposed use of empty transfer sequences guarantees that the sum of the lengths
of the subsequences to be combined is minimized, there is no guarantee that this leads to the shortest
checking sequence. Second, while we might expect the use of empty transfer sequences to normally be
desirable, experimental evaluation can provide some indication as to how significant an impact this has
on the length of the resultant checking sequence.

We used a set of randomly generated FSMs with distinguishing sequences. We produced these FSMs
in the following way. For a given integern, for each statesi (1 ≤ i ≤ n) and inputx we randomly chose
the next statesj and outputy. This led to an FSM withn states but this FSM might not have the desired
properties. The FSM was rejected if it was not minimal, was not strongly connected, or we failed to find
a distinguishing sequence.

For each FSMM we applied the following experiments:
1) We used Algorithm 3 to produce anα′–set with empty transfer sequences as proposed in Section

IV. We then generated a checking sequence using Algorithm 1.
2) We applied the following procedure1000 times: For each statesi of M randomly choose some state

si from M to be reached by the transfer sequence fromδ(si, D̄). For eachsi, we generated a transfer
sequencēTi that labelled a shortest walk fromδ(si, D̄) to si and used Algorithm 3 to produce the
correspondingα′–setA. We then applied Algorithm 1, withA and the transfer sequences, to produce
a checking sequence. This was done for a randomly generated selection since for an FSM withn
states there arenn ways of choosing the transfer sequences.

For each FSMM we recorded the checking sequence length produced using the proposed algorithm
and thus empty transfer sequences. The checking sequence algorithm is deterministic once the transfer
sequences have been chosen and thus we produced only one such checking sequence for each FSM.

For the1000 other experiments with a given FSMM we recorded the mean checking sequence length,
the maximum checking sequence length, and the minimum checking sequence length. We used five FSMs
with 5 states, five FSMs with 10 states, five FSMs with 15 states, and five FSMs with 20 states. The
FSMs with 5 states had input and output alphabets of size 3, the FSMs with 10 and 15 states had input
and output alphabets of size 4, and the FSMs with 20 states had input and output alphabets of size 5.
The results are given in Table I.

In all cases the checking sequence with empty transfer sequences was the smallest found. It is interesting
to look at how much of a saving is provided by using empty transfer sequences and to consider both the
saving relative to the mean checking sequence length found and the maximum checking sequence length
found: the former gives an indication of theexpectedsaving while the latter gives an indication of the
maximumsaving that can be expected. Table II summarizes this information. For each FSM size it gives
the following information:

1) The first column contains the number of states of the FSMs.
2) The second column contains the mean checking sequence length when we have empty transfer

sequences. This is averaged across the five FSMs with the given number of states.
3) The third column contains the mean, over the five FSMs, of the mean checking sequence length

when we do not use empty transfer sequences. In the fourth column we give the percentage saving:
the difference between the values in the second and third columns divided by the value in the third
column (the larger of the two values). This estimates the expected saving from using empty transfer
sequences.

4) The fifth column gives the mean, over the five FSMs, of the length of the longest checking sequence
found. The sixth column contains the percentage saving: the difference between the values in the
fifth and second columns divided by the value in the fifth column (again, the larger of the two
values). This estimates the maximum saving from using empty transfer sequences.

15

TABLE I

EXPERIMENTAL RESULTS

FSM Number of states Empty transfer Maximum Minimum Mean
5 0 5 68 134 68 97
5 1 5 94 134 94 118
5 2 5 63 107 63 88
5 3 5 60 111 60 90
5 4 5 71 112 71 91
10 0 10 209 347 251 299
10 1 10 229 383 241 324
10 2 10 259 473 282 340
10 3 10 171 301 196 248
10 4 10 226 375 254 313
15 0 15 327 593 400 494
15 1 15 352 603 394 504
15 2 15 337 563 394 479
15 3 15 351 583 400 499
15 4 15 352 601 404 496
20 0 20 625 990 639 854
20 1 20 530 859 695 769
20 2 20 561 935 670 789
20 3 20 560 923 669 817
20 4 20 568 940 668 813

TABLE II

SUMMARY : MEAN SAVINGS

Number of states mean empty transfer mean saving mean maximum saving
5 71.2 96.8 26.45% 119.6 40.47%
10 218.8 304.8 28.22% 375.8 41.78%
15 343.8 494.4 30.46% 588.6 41.59%
20 568.8 808.4 29.64% 929.4 38.80%

In the experiments, for each FSM size, the use of empty transfer sequences gave a saving of over 25%
when compared to the mean checking sequence length and a maximum saving of in the order of 40%.

VII. C ONCLUSIONS

When testing from a finite state machine (FSM)M it is often desirable to use a checking sequence:
a test sequence that is guaranteed to lead to failures if the system under test (SUT) is faulty and has no
more states thanM . There has thus been much interest in the automated generation of efficient checking
sequences [6], [7], [12], [26].

The method recently given in [12], to generate a checking sequence, produces a checking sequence
by connecting a set of subsequences. However, it relies on two elements, theα′–setA and a setEc of
connecting transitions, to have already been defined. The choice ofA andEc can have a significant impact
on the length of the resultant checking sequence. This paper has focussed on the problem of choosingA
and Ec. The overall checking sequence generation approach, used in this paper, can be seen as having
two stages:

1) minimize the sum of the lengths of the subsequences to be combined; then
2) combine these sequences optimally.
This paper has given an algorithm that finds anα′–setA that minimizes the sum of the lengths of

the subsequences to be combined in checking sequence generation. The checking sequence generation
algorithm given in this paper produces the setEc of connecting transitionsduring the optimization phase
of test generation. The algorithm thus produces the optimalEc for the givenA.

The choice ofEc is guaranteed to be optimal. Thus, experimental evaluation was used to investigate
the other variable: the choice of transfer sequences (which define the setA). The experiments were over

16

twenty randomly generated FSMs with between 5 and 20 states. In all experiments, the checking sequence
generated using the proposed approach was the shortest found. In the experiments, for each FSM size,
the proposed approach gave a mean saving of over 25% and a maximum saving of in the order 40%.

For ease of presentation, we formulated the problem as that of forming a tour from which a checking
sequence is extracted as given in Theorem 2. A succinct formulation of the minimum length checking
sequence construction follows directly from our work: after formingG′, find a rural Chinese postman
path over the subset of edgesEγ starting with the application of̄D (or someα′–sequence) ats1.

ACKNOWLEDGEMENTS

This work was supported in part by Leverhulme Trust grant number F/00275/D, Testing State Based
Systems, Natural Sciences and Engineering Research Council (NSERC) of Canada grant number RGPIN
976, and Engineering and Physical Sciences Research Council grant number GR/R43150, Formal Methods
and Testing (FORTEST). We would like to thank Karnig Derderian and Tuong Nguyen for their assistance
in the experiments.

REFERENCES

[1] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. An optimization technique for protocol conformance test generation based on
UIO sequences and Rural Chinese Postman Tours. InProtocol Specification, Testing, and Verification VIII, pages 75–86, Atlantic City,
1988. Elsevier (North–Holland).

[2] B. Broekman and E. Notenboom.Testing Embedded Software. Addison–Wesley, London, 2003.
[3] T. S. Chow. Testing software design modelled by finite state machines.IEEE Transactions on Software Engineering, 4:178–187, 1978.
[4] M. R. Garey and D. S. Johnson.Computers and Intractability. W. H. Freeman and Company, New York, 1979.
[5] A. Gibbons.Algorithmic Graph Theory. Cambridge University Press, 1985.
[6] G. Gonenc. A method for the design of fault detection experiments.IEEE Transactions on Computers, 19:551–558, 1970.
[7] F. C. Hennie. Fault–detecting experiments for sequential circuits. InProceedings of Fifth Annual Symposium on Switching Circuit

Theory and Logical Design, pages 95–110, Princeton, New Jersey, November 1964.
[8] R. M. Hierons. Adaptive testing of a deterministic implementation against a nondetermistic finite state machine.The Computer Journal,

41(5):349–355, 1998.
[9] R. M. Hierons. Generating candidates when testing a deterministic implementation against a non–deterministic finite state machine.

The Computer Journal, 46(3):307–318, 2003.
[10] R. M. Hierons. Minimizing the number of resets when testing from a finite state machine.Information Processing Letters, 90(6):287–

292, 2004.
[11] R. M. Hierons. Testing from a non–deterministic finite state machine using adaptive state counting.IEEE Transactions on Computers,

53(10):1330–1342, 2004.
[12] R. M. Hierons and H. Ural. Reduced length checking sequences.IEEE Transactions on Computers, 51(9):1111–1117, 2002.
[13] M. Holcombe and F. Ipate.Correct Systems: Building a Business Process Solution. Springer–Verlag, 1998.
[14] ITU-T. Recommendation Z.500 Framework on formal methods in conformance testing. International Telecommunications Union,

Geneva, Switzerland, 1997.
[15] I. Kohavi and Z. Kohavi. Variable-length distinguishing sequences and their application to the design of fault–detection experiments.

IEEE Transactions on Computers, pages 792–795, August 1968.
[16] Z. Kohavi. Switching and Finite State Automata Theory. McGraw–Hill, New York, 1978.
[17] G. Luo, A. Das, and G. v. Bochmann. Generating tests for control portion of SDL specifications. InProtocol Test Systems VI, pages

51–66. Elsevier (North-Holland), 1994.
[18] G. Luo, A. Petrenko, and G. v. Bochmann. Selecting test sequences for partially–specified nondeterministic finite state machines. In

The 7th IFIP Workshop on Protocol Test Systems, pages 95–110, Tokyo, Japan, November 8–10 1994. Chapman and Hall.
[19] G. L. Luo, G. v. Bochmann, and A. Petrenko. Test selection based on communicating nondeterministic finite–state machines using a

generalized Wp–method.IEEE Transactions on Software Engineering, 20(2):149–161, 1994.
[20] E. P. Moore. Gedanken-experiments. In C. Shannon and J. McCarthy, editors,Automata Studies. Princeton University Press, 1956.
[21] A. Petrenko, S. Boroday, and R. Groz. Confirming configurations in EFSM testing.IEEE Transactions on Software Engineering,

30(1):29–42, 2004.
[22] I. Pomeranz and S. M. Reddy. Test generation for multiple state–table faults in finite–state machines.IEEE Transactions on Computers,

46(7):783–794, 1997.
[23] Q. M. Tan, A. Petrenko, and G. v. Bochmann. Modeling basic LOTOS by FSMs for conformance testing. InIFIP Protocol Specification,

Testing, and Verification XV, pages 137–152, 1995.
[24] A. S. Tanenbaum.Computer Networks. Prentice Hall International Editions, Prentice Hall, 3rd edition, 1996.
[25] H. Ural, K. Saleh, and A. Williams. Test generation based on control and data dependencies within system specifications in SDL.

Computer Communications, 23:609–627, 2000.
[26] H. Ural, X. Wu, and F. Zhang. On minimizing the lengths of checking sequences.IEEE Transactions on Computers, 46(1):93–99,

1997.

17

[27] G. v. Bochmann, A. Petrenko, O. Bellal, and S. Maguiraga. Automating the process of test derivation from SDL specifications. In
SDL Forum’97, Paris, France, 1997.

[28] S. T. Vuong, W. W. L. Chan, and M. R. Ito. The UIOv–method for protocol test sequence generation. InThe 2nd International
Workshop on Protocol Test Systems, Berlin, 1989.

[29] M. Yao, A. Petrenko, and G. v. Bochmann. Conformance testing of protocol machines without reset. InProtocol Specification, Testing
and Verification, XIII (C–16), pages 241–256. Elsevier (North–Holland), 1993.

[30] N. V. Yevtushenko, A. V. Lebedev, and A. F. Petrenko. On checking experiments with nondeterministic automata.Automatic Control
and Computer Sciences, 6:81–85, 1991.

