13 research outputs found

    Decomposition of multiple packings with subquadratic union complexity

    Get PDF
    Suppose kk is a positive integer and X\mathcal{X} is a kk-fold packing of the plane by infinitely many arc-connected compact sets, which means that every point of the plane belongs to at most kk sets. Suppose there is a function f(n)=o(n2)f(n)=o(n^2) with the property that any nn members of X\mathcal{X} determine at most f(n)f(n) holes, which means that the complement of their union has at most f(n)f(n) bounded connected components. We use tools from extremal graph theory and the topological Helly theorem to prove that X\mathcal{X} can be decomposed into at most pp (11-fold) packings, where pp is a constant depending only on kk and ff.Comment: Small generalization of the main result, improvements in the proofs, minor correction

    Unions of Fat Convex Polytopes Have Short Skeletons

    Get PDF
    The skeleton of a polyhedral set is the union of its edges and vertices. Let be a set of fat, convex polytopes in three dimensions with n vertices in total, and let f max be the maximum complexity of any face of a polytope in . We prove that the total length of the skeleton of the union of the polytopes in is at most O(a(n)·log* n·logf max) times the sum of the skeleton lengths of the individual polytopes

    Tangencies between families of disjoint regions in the plane

    Get PDF
    AbstractLet C be a family of n convex bodies in the plane, which can be decomposed into k subfamilies of pairwise disjoint sets. It is shown that the number of tangencies between the members of C is at most O(kn), and that this bound cannot be improved. If we only assume that our sets are connected and vertically convex, that is, their intersection with any vertical line is either a segment or the empty set, then the number of tangencies can be superlinear in n, but it cannot exceed O(nlog2n). Our results imply a new upper bound on the number of regular intersection points on the boundary of ⋃C

    Sharp Bounds on Davenport-Schinzel Sequences of Every Order

    Full text link
    One of the longest-standing open problems in computational geometry is to bound the lower envelope of nn univariate functions, each pair of which crosses at most ss times, for some fixed ss. This problem is known to be equivalent to bounding the length of an order-ss Davenport-Schinzel sequence, namely a sequence over an nn-letter alphabet that avoids alternating subsequences of the form a⋯b⋯a⋯b⋯a \cdots b \cdots a \cdots b \cdots with length s+2s+2. These sequences were introduced by Davenport and Schinzel in 1965 to model a certain problem in differential equations and have since been applied to bounding the running times of geometric algorithms, data structures, and the combinatorial complexity of geometric arrangements. Let λs(n)\lambda_s(n) be the maximum length of an order-ss DS sequence over nn letters. What is λs\lambda_s asymptotically? This question has been answered satisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, Klazar, and Nivasch) when ss is even or s≤3s\le 3. However, since the work of Agarwal, Sharir, and Shor in the mid-1980s there has been a persistent gap in our understanding of the odd orders. In this work we effectively close the problem by establishing sharp bounds on Davenport-Schinzel sequences of every order ss. Our results reveal that, contrary to one's intuition, λs(n)\lambda_s(n) behaves essentially like λs−1(n)\lambda_{s-1}(n) when ss is odd. This refutes conjectures due to Alon et al. (2008) and Nivasch (2010).Comment: A 10-page extended abstract will appear in the Proceedings of the Symposium on Computational Geometry, 201
    corecore