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Unions of Fat Convex Polytopes Have Short Skeletons
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Abstract The skeleton of a polyhedral set is the union of its edges and vertices.
Let P be a set of fat, convex polytopes in three dimensions with n vertices in total,
and let fmax be the maximum complexity of any face of a polytope in P . We prove
that the total length of the skeleton of the union of the polytopes in P is at most
O(α(n) · log∗ n · logfmax) times the sum of the skeleton lengths of the individual
polytopes.

Keywords Fat polytopes · Convex polytopes · Skeleton of union · Combinatorial
complexity

1 Introduction

Background and Motivation Many geometric algorithms require computing the
union of a collection of objects in the plane or some higher-dimensional space.
For this reason there are many papers studying the combinatorial complexity of the
union—that is, the total number of vertices, edges, and higher-dimensional faces of
the union; see the recent survey by Agarwal et al. [1] and references therein.

In the plane, the worst-case combinatorial complexity of the union of n constant-
complexity objects (triangles, rectangles, etc.) is easily seen to be Θ(n2). However,
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if the objects are fat—see below for a formal definition—then the union complexity
is near linear [1, 8, 10, 11, 13]. More precisely, the current best bound on the union
complexity of n β-fat triangles is O(nα(n) log∗ n) [13], with the constant of propor-
tionality depending on the fatness parameter β; here α(n) is the inverse Ackermann
function and log∗ n denotes the iterated logarithm. (Thus, log∗ n = 0 for n ≤ 1 and
log∗ n = 1 + log∗(logn), with logarithms taken base 2.) For fat planar objects with
curved boundaries a near-linear bound is known as well [1, 2, 5]. In R

3, the union
complexity of n constant-complexity objects is Θ(n3). The general belief is that, as
in the planar case, the union complexity of n fat objects in R

3 is roughly one or-
der of magnitude smaller than that of general objects, namely near quadratic. Until
recently this result was known only for rather restricted classes of objects such as
similarly sized cubes (of arbitrary orientation) and fat wedges [12]. Then Ezra and
Sharir [7] obtained a breakthrough in this area by showing that the union complexity
of n fat tetrahedra, not necessarily of similar size, is O(n2+ε); this implies an analo-
gous result for cubes. However, for fat polytopes near-quadratic bounds are still not
known—the main problem being that fat polytopes can have non-fat faces.

The combinatorial complexity of the union of objects in R
3 is proportional to the

number of vertices and edges of the union—in other words, the complexity of the
skeleton of the union. In order to further increase our understanding of the union of
fat objects in R

3, we study a different aspect, namely, the total length of the skeleton,
rather than the number of edges and vertices it is composed of. As with combinato-
rial complexity, the main question is whether the worst-case skeleton length of the
union of fat objects is smaller than that of general objects. Consider, for example, a
collection of thin “plates” in R

3, where each plate is a slightly inflated unit square. If
one arranges these plates in a grid-like manner, the skeleton length is Θ(n2), which
is significantly larger than the total length Θ(n) of the skeletons of the plates. Now
suppose that instead of thin plates we take a collection of n unit cubes. Can these
also be arranged in such a way that the skeleton length of their union is Θ(n2)? If
the cubes are axis-parallel then this cannot be done—this follows easily from the fact
that the union complexity of n axis-parallel unit cubes is O(n) [3]. But what about
arbitrarily oriented unit cubes? And what can be said about other types of fat objects?

Our Result We prove that the answer to the question posed above is negative: the
maximum length of the skeleton of the union of n (arbitrarily oriented) unit cubes is
only O(nα(n) log∗ n). Our main result is, in fact, much more general than this, as it
applies to arbitrary fat convex polytopes. Before we state our result more precisely,
we need to introduce some terminology and notation. From now on, whenever we
will speak of polytopes, we always mean convex polytopes.

Let vol(o) denote the volume of an object o. An object o in R
d is called β-fat, for

some β > 0, if for any ball b whose center lies in o and that does not fully contain
o in its interior, we have vol(b ∩ o) ≥ β · vol(b) [15, 16]. The fatness of an object o

is the largest value β such that o is β-fat. For objects that are convex and bounded—
the case we consider in this paper—it can be shown that the fatness is determined
by a ball whose radius is the object’s diameter [15, 16]; thus the fatness of a convex
bounded object o is equal to vol(o)/(ωd diam(o)d), where vol(o) and diam(o) denote
the volume and diameter of o, respectively, and ωd denotes the volume of the d-
dimensional unit ball. From this it follows that the maximum value of the fatness is



Discrete Comput Geom (2012) 48:53–64 55

attained when o is a ball, in virtue of the isodiametric inequality [4]. This maximum
value is 1/2d , that is, 1/8 for d = 3.

The skeleton of a polyhedral object S, which we denote by skel(S), is the union of
all of its edges and vertices. Slightly abusing the notation, we sometimes also refer to
the set of the edges and vertices of S as the skeleton of S. We use ‖ skel(S)‖ to denote
the total length of the skeleton of S, i.e., the sum of the lengths of its constituent
edges. We also use the notation ‖ · ‖ to denote the length of an edge or an interval;
the notation | · | will be used to denote the cardinality of a set. Our main result can
now be stated as follows.

Theorem 1 Let 0 < β ≤ 1/8 be a fixed constant, and let P be a set of convex β-fat
polytopes in R

3 with n vertices in total. Let fmax be the maximum complexity of any
face of a polytope in P . Then

∥
∥
∥
∥

skel
(⋃

P
)
∥
∥
∥
∥

≤ Kβ ·
∑

P∈P

∥
∥ skel(P )

∥
∥ · α(n) log∗ n · logfmax,

where Kβ is a constant whose value depends only on the fatness constant β .
Furthermore, there exists a set P of n polytopes, each of fatness Θ(1), constant

complexity, and diameter 1, with ‖ skel(
⋃

P )‖ = Ω(nα(n)); here α(·) is the inverse
Ackermann function.

Remark The α(n) log∗ n factor in the bound is due to the fact that the best published
bound on the union complexity of n fat triangles in the plane is O(nα(n) log∗ n) [13].
Any improvement in this union bound will immediately imply an improvement in the
bound of Theorem 1. In a recent manuscript [2] a new bound of O(n log∗ n) has been
proved for the union complexity of fat triangles. This implies that the α(n) log∗ n

factor in Theorem 1 can be reduced to log∗ n.

2 The Proof

We first consider the special case where P consists of n convex fat polytopes of
constant complexity each, and then extend the result to convex fat polytopes whose
total complexity is n. We assume without loss of generality that the set of polytopes is
in general position; in particular, no polytope vertex lies on the boundary of another
polytope and no two edges of different polytopes intersect.

2.1 Constant-Complexity Polytopes

Let P = {P1, . . . ,Pn} be a set of n convex β-fat polytopes, each with at most C

faces. The main idea of the proof is as follows. Suppose we sweep a plane through
the collection of polytopes. A union vertex of the cross section then corresponds to
an edge of the skeleton skel(

⋃

i Pi) intersecting the sweep plane. Thus we can bound
the skeleton length by integrating the number of union vertices in the cross section
over the sweep, where each vertex is weighted suitably, depending on the angle its
corresponding skeleton edge makes with the sweep plane.
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To get a good bound using this approach, the complexity of the cross sections of
the union needs to be small. This would be the case if the polytope cross sections were
fat, since the union of fat objects in the plane has near-linear complexity. However,
the cross section of a fat polytope P with a plane need not always be fat. For example,
if the sweep plane is parallel to an edge e of P , and e is the first (or last) encountered
feature of P , then the cross section will be arbitrarily skinny just after (or just before)
hitting e. We start by showing that this is the only way a cross section of a fat polytope
can be non-fat. Namely, if the angle of the sweep direction with all polytope edges
is bounded away from π/2—so that the angle of the sweep plane with each edge is
bounded away from zero—then the cross sections are fat. We then use this fact to
bound the total skeleton length of the union by performing a number of sweeps, each
involving only polytopes whose cross sections are fat, and summing the contributions
of the sweeps to the skeleton length.

We use �(h, e) to denote the measure of the angle between a plane h and a
segment e, and �(φ, e) to denote the measure of the angle between a direction φ

and a segment e. Here segments are not oriented; opposite orientations are consid-
ered the same direction. Note that the values �(h, e) and �(φ, e) are always in the
range [0,π/2].

Definition A direction φ is β-fattening for a convex polytope P if every intersection
of P with a plane orthogonal to φ and meeting the interior of P is a β-fat polygon.

Lemma 2 Let P be a β-fat convex polytope in R
3, let ε > 0 be a constant, and let φ

be a direction with �(φ, e) ≤ π/2 − ε for every edge e of P . Then φ is β ′-fattening

for P , for β ′ := β tan2 ε
3 .

Proof Let h be a plane orthogonal to φ and meeting the interior of P . Put d :=
diam(P ∩h) and A := area(h∩P). Since the fatness of a convex object is determined
by a ball whose radius is the object’s diameter [15, 16] it is sufficient to show that
A ≥ β ′ · πd2.

Assume without loss of generality that h is horizontal. Consider the area of inter-
section with P as we sweep a horizontal plane h(z) from z = −∞ to z = +∞. Then
area(h(z) ∩ P)1/2 is a concave function of z, by Brunn’s theorem [4]. Thus either
area(h(z) ∩ P) ≤ A for any plane h(z) below h, or area(h(z) ∩ P) ≤ A for any plane
h(z) above h; we assume without loss of generality that the latter is the case. Let v be
the vertex of p that is above h and furthest away from h—see Fig. 1. Since P does
not have edges parallel to h, the vertex v is unique.

Let dv be the distance between h and v, let P + be the part of P lying above h,
and let Bv be the ball with center v and radius dv . Since P is β-fat, we have

β · 4

3
πd3

v ≤ vol(Bv ∩ P) = vol
(

Bv ∩ P +) ≤ vol
(

P +) ≤ A · dv.

It follows that

A ≥ β · 4

3
πd2

v . (1)
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Fig. 1 Sweeping the polytope with a plane h

Define v∗ to be the vertical projection of v onto the plane h. Then P ∩ h has a vertex
w with ‖wv∗‖ ≥ d/2. We claim that this implies that P has an edge e such that
tan�(h, e) ≤ 2dv/d . To see this, walk from w to v along the edges of P in such a
way that the height along the path increases monotonically. This is always possible
since P is convex and does not have edges parallel to h. The length of the projection
of this path onto h is at least ‖wv∗‖ and the height increase along the path is dv .
Hence, there is an edge e with slope at most dv/‖wv∗‖ ≤ 2dv/d , as claimed, and we
have

2dv/d ≥ tan�(h, e) ≥ tan ε.

Combining with (1), we obtain

A ≥ β · 4

3
πd2

v ≥ β · 4

3
π

(
1

2
d tan ε

)2

= β tan2 ε

3
· πd2,

which proves the lemma. �

The following result was proved by Pettie [13] for fat triangles; by the arguments
of De Berg and Gray [6], it can be extended to fat polygons.

Fact 3 Given a collection of convex, β-fat polygons in the plane with a total of n

edges, the number of vertices of their union is at most fβ(n) := O(nα(n) log∗ n +
(n/β) log2(1/β))).

We consider β to be a fixed constant, and will not analyze the exact dependency
in our bounds on β . Hence, we simply use O(nα(n) log∗ n) as an upper bound on the
union complexity.

The main ingredient for the proof of the version of Theorem 1 for constant-
complexity polytopes is the following lemma.

Lemma 4 Let 0 < β ≤ 1/8 and C ≥ 4 be constants. There exists a set Φ of O(C4)

directions with the following property: for any finite set P of convex β-fat polytopes
in R

3 in general position, each with at most C faces, there exists, for every edge e of
skel(

⋃
P ), a direction φe ∈ Φ such that
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Fig. 2 The cap Cξ (lightly
shaded) being crossed by bands
of half-width ε

(P1) �(φ, e) ≤ π/3, and
(P2) φ is β ′-fattening for the at most two polytopes of P whose boundary contains e,

where β ′ := β

3(48C)2 .

Proof We will concentrate on proving the existence of the set Φ of directions with
the required properties and not focus on minimizing its size as a function of the
various parameters. We will identify the set of all orientations with the unit sphere S;
technically, opposite points on S represent the same direction, but this will not affect
the argument below.

Define

ρ := π

16
(6C

2

) + 16

and take Φ to be a set of points on S such that any spherical cap of radius ρ contains at
least one point from Φ . It is well known that there exists such a set of size O(1/ρ2) =
O(C4). Next we prove that Φ has the desired properties.

Consider an edge e of skel(
⋃

P ). Assume e is defined by two polytopes P1

and P2, that is, e is contained in the intersection of faces f1 of P1 and f2 of P2;
the argument for the case where e is contained in an edge of a single polytope is eas-
ier. Let ξ ∈ S be the direction of e. Any direction φ in the spherical cap Cξ of area π

and radius π/3 centered at ξ satisfies property (P1).
Now consider property (P2). Let ε be such that 0 < ε < π/2 and sin ε = 1

48C
. Since

tan2 ε > sin2 ε = 1
(48C)2 , any direction φ that makes an angle at most π/2 − ε with

every edge s of some β-fat polytope P is β ′-fattening for P , by Lemma 2. This means
a direction φ ∈ S is β ′-fattening for P if it stays out of a band of half-width ε centered
at the great circle of directions perpendicular to that of s, for every edge s of P . Since
P1 and P2 have at most C faces, each has fewer than 3C edges. Hence there are fewer
than 6C forbidden bands. The area of each band is 4π sin ε. The complement of the
bands inside Cξ consists of several of spherically convex regions—see Fig. 2. The
number of such regions is at most 2

(6C
2

) + 2, since an arrangement of m ≥ 2 great
circles on a sphere induces at most 2

(
m
2

) + 2 faces.
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Therefore the largest region has area at least

A := area(Cξ ) − 6C · 4π sin ε

2
(6C

2

) + 2
.

A convex region of area A < 2π on the unit sphere always contains a spherical cap
of radius at least A/4. Plugging in sin ε = 1

48C
, we conclude that there is a spherical

cap of radius

1

4
· area(Cξ ) − 6C · 4π sin ε

2
(6C

2

) + 2
= 1

4
· π − 6C · 4π sin ε

2
(6C

2

) + 2

= 1

4
· π/2

2
(6C

2

) + 2
= π

16
(6C

2

) + 16
= ρ,

such that all directions in the cap satisfy conditions (P1) and (P2). By construction,
Φ contains a direction in this cap. �

Now we are ready to prove Theorem 1 for the special case of constant-complexity
polytopes.

Lemma 5 Let 0 < β ≤ 1/8 and C ≥ 4 be constants. Let P be a set of n convex, β-fat
polytopes in R

3, each with at most C faces. Then
∥
∥
∥
∥

skel
(⋃

P
)
∥
∥
∥
∥

≤ K ′
β,C ·

∑

P∈P

∥
∥ skel(P )

∥
∥ · α(n) log∗ n,

with K ′
β,C a constant depending only on β and C.

Proof Let Φ be the set of directions from Lemma 4. Put S := skel(
⋃

P ). Fix a direc-
tion φ ∈ Φ , and assume without loss of generality that φ is vertical. Let Pφ ⊆ P be
the set of all polytopes for which φ is β ′-fattening, where β ′ is defined as in Lemma 4.
Let h(z) be the horizontal plane at height z. Let cφ(z) be the number of vertices of
the two-dimensional union h(z) ∩ (

⋃
Pφ). Put Iφ := ∫

cφ(z)dz and I := ∑

φ∈Φ Iφ .
We show below that

(i) ‖S‖ ≤ 2I , and
(ii) I ≤ K ′′

β,C · ∑P∈P diam(P ) · α(n) log∗ n,

for an appropriate constant K ′′
β,C . These will imply the lemma.

We begin with (i). Note that each edge e of S appears on skel(
⋃

Pφ) for some
φ ∈ Φ (possibly as part of a longer edge) where e makes an angle at most π/3 with
φ—see properties (P1) and (P2). In particular, it contributes are least ‖e‖ cos(π/3) =
‖e‖/2 to Iφ and thus to I . Therefore, ‖S‖ ≤ 2I , completing the proof of (i).

To argue (ii) we will show there is a constant K ′′′
β ′,C such that

Iφ = O
(

K ′′′
β ′,C · α(n) log∗ n

) ·
∑

P∈Pφ

diam(P ).
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The desired statement then follows by summing over all φ ∈ Φ , and using |Φ| =
O(C4) and β ′ = Ω(β).

As we sweep the plane h(z) over Pφ , it enters and leaves polytopes. We subdivide
the range of values of z into maximal intervals Z1,Z2, . . . so that over each interval
Zj the plane h(z) intersects the same subset Pj ⊂ Pφ of polytopes. We decompose Iφ

into subintegrals Ij , each taken over one interval Zj . For a fixed Zj , the intersection
of h(z) with Pj yields a collection of β ′-fat polygons with at most C|Pj | edges
in total. Thus the union complexity is at most fβ ′(C|Pj |) by Fact 3. In particular,
cφ(z) ≤ fβ ′(C|Pj |) for these values of z and thus

Ij ≤ fβ ′(C|Pj |) · ‖Zj‖

= fβ ′(C|Pj |)
|Pj | · |Pj | · ‖Zj‖

≤ fβ ′(Cn)

n
· |Pj | · ‖Zj‖

= O
(

K ′′′
β ′,C · α(n) log∗ n

) · |Pj | · ‖Zj‖,

where K ′′′
β ′,C is an appropriate constant. Hence,

Iφ =
∑

j

Ij = O
(

K ′′′
β ′,C · α(n) log∗ n

) ·
∑

j

|Pj | · ‖Zj‖.

Notice that each polytope P ∈ Pφ contributes its z-span to the sum
∑

j |Pj | · ‖Zj‖.
Hence, this sum is simply equal to the sum of the z-spans of all polytopes in Pφ . This
sum is, in turn, at most

∑

P∈Pφ
diam(P ), as claimed.

Summing over all φ ∈ Φ , we obtain

I =
∑

φ∈Φ

Iφ

=
∑

φ∈Φ

(

O(K ′′′
β ′,C · α(n) log∗ n) ·

∑

P∈Pφ

diam(P )

)

= O

(

C4K ′′′
β ′,C · α(n) log∗ n ·

∑

P∈P
diam(P )

)

,

which completes the proof of the lemma. �

The next lemma shows that the bound in Lemma 5 is close to the best possible in
terms of its dependence on n.

Lemma 6 There exists a set Q of n convex, Θ(1)-fat polytopes in R
3, each of con-

stant complexity and unit diameter, with ‖ skel(
⋃

Q)‖ = Ω(nα(n)).
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Fig. 3 (i) Flattening the construction. (ii) Making Ks out of s. (Not to scale.)

Proof Let I be a set of n segments in the plane whose lower envelope has com-
plexity Θ(nα(n)) [14, 17]. We scale the plane vertically—that is, we “flatten” the
construction—so that the envelope remains combinatorially the same in all direc-
tions within π/4 of vertical; see Fig. 3(i). Note that this also ensures that any seg-
ment makes an angle less than π/4 with the x-axis. By further scaling, we reduce
the length of any segment in I to be smaller than some constant 0 < ε < 1 − √

2/2.
For every segment s ∈ I , we construct a quadrilateral Ks as the convex hull of s and
a unit-length horizontal segment centered at a point lying half a unit above the mid-
point of s—see Fig. 3(ii). The fact that s makes an angle of less than π/4 with the
x-axis ensures that Ks is a quadrilateral. Clearly Ks is fat, and the condition that
ε < 1 − √

2/2 implies that its diameter is determined by the unit-length horizontal
segment. Observe that the two edges incident to s make an angle of less than π/4
with the vertical direction. Together with the property that the lower envelope of I is
combinatorially the same in all directions within π/4 from vertical, this implies that
the lower envelope of I appears on the union of the sets Ks . Now extruding each set
Ks into a unit-height prism Qs produces a set of n Θ(1)-fat polytopes of constant
complexity whose union contains Ω(nα(n)) unit-length edges, one for every vertex
of the lower envelope of I . All polytopes have diameter exactly

√
2; a further scaling

by a factor 1/
√

2 gives the desired result. �

2.2 Non-constant-Complexity Polytopes

To extend the result of Lemma 5 to non-constant-complexity polytopes, we show that
the boundary of a non-constant-complexity fat polytope can be covered using a linear
number of constant-complexity fat polytopes. We start with a simple, well-known
geometric fact.

Fact 7 For any compact convex set Γ in R
3, there exists a simplex �(Γ ) ⊆ Γ with

vol(�(Γ )) ≥ λ · vol(Γ ), where λ = 2
3
√

3π
.

Proof Macbeath [9] has shown that the largest ratio between the volume of an object
and the maximum volume of an inscribed simplex is achieved by a Euclidean ball.
The result now follows from the fact that the ratio of the volume of a ball in R

3 and
its largest inscribed simplex (which is a regular tetrahedron) is 2

3
√

3π
. �

Lemma 8 Let P be a convex β-fat polytope with nP vertices, and let fmax be the
maximum number of vertices of any of its faces. Then there is a set T (P ) of constant-
complexity convex polytopes such that
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(i) each polytope Q ∈ T (P ) is Ω(β)-fat and contained in P ,
(ii) the polytopes together cover the boundary of P ,

(iii) ‖ skel(P )‖ ≤ ∑

Q∈T (P ) ‖ skel(Q)‖ = O(‖ skel(P )‖ · logfmax), and
(iv) |T (P )| = O(nP ).

Proof First we triangulate each face f of P , as follows. Let f have k vertices, num-
bered in clockwise order as v0, . . . , vk−1; the indices are treated modulo k. Now put
in the diagonals vivi+2 for 0 ≤ i ≤ k − 2 and i even (the total length of these diago-
nals is at most the perimeter of f ) and recursively triangulate the part of P that still
needs to be triangulated. The algorithm finishes after log2 k� rounds, and so the total
edge length of all triangles in the triangulation is O(logk) = O(logfmax) times the
perimeter of f . The total number of triangles over all faces is obviously O(nP ).

Let t be one such triangle. Put d := diam(t). Let σ be a cube centered at a point
of t and having a point of t on its boundary, such that t ⊂ σ . The edge length of σ is
at most 2d . Put Pt := P ∩ σ . Let B denote a largest inscribed ball of σ . Because P

is β-fat, we have

vol(Pt ) ≥ vol(B ∩ Pt ) = vol(B ∩ P) ≥ β · vol(B) = β · π

6
· vol(σ ).

Define Qt to be the convex hull of the union of t and �(Pt ), with �(·) as
in Fact 7. The polytope Qt is contained in P and has constant complexity, being
the convex hull of at most seven points; also, t is contained in bdQt . Moreover,
‖ skel(Qt )‖ = O(perimeter of t ), since d ≤ diam(Qt ) ≤ 2d

√
3. We claim that Qt is

Ω(β)-fat. Indeed, we have

fatness(Qt ) = vol(Qt )

4
3π · diam3(Qt )

≥ vol(�(Pt ))

4
3π · diam3(σ )

≥
2

3
√

3π
· β · π

6 · vol(σ )

4
3π · diam3(σ )

= Ω(β).

Here the first equality follows from the fatness of a convex object o being determined
by a ball whose radius is diam(o) [15, 16].

The lemma now follows by taking T (P ) := ⋃

t {Qt }, where the union is taken
over all triangles t in the triangulations of the faces of P . �

We can now prove our main theorem.

Proof of Theorem 1 The lower bound follows from Lemma 6. To prove the up-
per bound, we first apply Lemma 8 to each of the polytopes P ∈ P . Define Q :=
⋃

P∈P T (P ). Then

• each element Q ∈ Q is a β ′-fat polytope with at most C faces, for suitable constants
C ≥ 4 and β ′ = Ω(β);

• |Q| = O(
∑

P∈P nP ) = O(n); and
• ⋃

Q ⊂ ⋃
P and bd(

⋃
P ) ⊂ bd(

⋃
Q), which implies that ‖ skel(

⋃
P )‖ ≤

‖ skel(
⋃

Q)‖.

Now we can apply Lemma 5 to the set Q to see that
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∥
∥
∥
∥

skel
(⋃

P
)
∥
∥
∥
∥

≤
∥
∥
∥
∥

skel
(⋃

Q
)
∥
∥
∥
∥

≤ K ′
β ′,C ·

∑

Q∈Q

∥
∥skel(Q)

∥
∥ · α(n) log∗ n (by Lemma 5)

≤ K ′
β ′,C ·

∑

P∈P

∑

Q∈T (P )

∥
∥skel(Q)

∥
∥ · α(n) log∗ n (definition of Q)

≤ K ′
β ′,C ·

∑

P∈P
O

(∥
∥skel(P )

∥
∥ · logfmax

) · α(n) log∗ n (by Lemma 8(iii))

Since C is an absolute constant, we have
∥
∥
∥
∥

skel
(⋃

P
)
∥
∥
∥
∥

≤ Kβ ·
∑

P∈P

∥
∥skel(P )

∥
∥ · logfmax · α(n) log∗ n,

for some suitable Kβ depending only on β . This finishes the proof of Theorem 1. �

3 Conclusion

We have shown that the total length of the skeleton of the union of fat 3-dimensional
polytopes is roughly linear in the sum of the skeleton lengths of the individual poly-
topes. More precisely, the skeleton length is O(α(n) log∗ n · logfmax) times the sum
of the skeleton lengths of the individual polytopes, where fmax is the maximum com-
plexity of any polytope facet. We also gave an example of n constant-complexity fat
polytopes where the skeleton length is O(α(n)) times the sum of the skeleton lengths
of the individual polytopes. Hence, our bound is not far from the best possible. It
would be interesting to know if the logfmax factor in the upper bound of Theorem 1
is necessary.

Another question is what happens when the objects are curved. As an example,
consider the skeleton of a set B = {b1, . . . , bn} of balls in R

3. Since the cross sec-
tion of a ball with a plane is a disk, and the union complexity of m disks is O(m),
our technique can be used to show that ‖ skel(

⋃
B)‖ = O(

∑

i diam(bi)). (Indeed, if
we sweep three times in mutually orthogonal directions, then for any point q on a
skeleton edge there will be a sweep such that the direction of the edge at q makes a
sufficiently large angle with the sweep plane.) It would be interesting to generalize
this result to other classes of fat curved objects.
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