27,592 research outputs found

    Evaluating purifying selection in the mitochondrial DNA of various mammalian species

    Get PDF
    Mitochondrial DNA (mtDNA), the circular DNA molecule inside the mitochondria of all eukaryotic cells, has been shown to be under the effect of purifying selection in several species. Traditional testing of purifying selection has been based simply on ratios of nonsynonymous to synonymous mutations, without considering the relative age of each mutation, which can be determined by phylogenetic analysis of this non-recombining molecule. The incorporation of a mutation time-ordering from phylogeny and of predicted pathogenicity scores for nonsynonymous mutations allow a quantitative evaluation of the effects of purifying selection in human mtDNA. Here, by using this additional information, we show that purifying selection undoubtedly acts upon the mtDNA of other mammalian species/genera, namely Bos sp., Canis lupus, Mus musculus, Orcinus orca, Pan sp. and Sus scrofa. The effects of purifying selection were comparable in all species, leading to a significant major proportion of nonsynonymous variants with higher pathogenicity scores in the younger branches of the tree. We also derive recalibrated mutation rates for age estimates of ancestors of these various species and proposed a correction curve in order to take into account the effects of selection. Understanding this selection is fundamental to evolutionary studies and to the identification of deleterious mutations

    DNA sequence evidence for speciation, paraphyly and a Mesozoic dispersal of cancellothyridid articulate brachiopods

    Get PDF
    Because the classification of extant and fossil articulate brachiopods is based largely upon shell characters observable in fossils, it identifies morphotaxa whose biological status can, in practice, best be inferred from estimates of genetic divergence. Allozyme polymorphism and restriction fragment length polymorphism of mitochondrial DNA (mtDNA RFLP) have been used to show that nuclear and mitochondrial genetic divergence between samples of the cancellothyridid brachiopods Terebratulina septentrionalis from Canada and T. retusa from Europe is compatible with biological speciation, but the genetic distances obtained were biased by methodological limitations. Here, we report estimates of divergence in 12S rDNA mitochondrial sequences within and between samples of these brachiopods. The sequence-based genetic distance between these samples (5.98-0.07% SE) is at least 10 times greater than within them and, since they also differ in a complex life-history trait, their species status is considered to be securely established. Divergence levels between 12S rDNA genes of three other cancellothyridids, T. unguicula from Alaska, T. crossei from near Japan, and Cancellothyris hedleyi from near Australia are higher than between the two North Atlantic species, and the mean nucleotide distance between all these cancellothyrids is similar to the mean distance between species of Littorina (Mollusca: Gastropoda). Sequences of both 12S and 16S genes from cancellothyridids and other short-looped brachiopod species show neither saturation nor lineage-specific rate differences and, when analysed with different outgroups, either separately or together, yield one unexpected, but well-supported, tree with Alaskan T. unguicula basal and C. hedleyi nested within Terebratulina, i.e. these genera are paraphyletic. A geologically dated divergence between Antarctic and New Zealand species of the short-looped brachiopod Liothyrella is used to calibrate the rate of 12S divergence at ca. 0.1% per million years (MY), and this rate is used to infer that T. septentrionalis and T. retusa have been diverging for ca. 60 MY and that they and T. unguicula have been diverging from their last common ancestor for ca. 100 MY. This indicates a Mesozoic origin for the present-day distribution of cancellothyridids and the basal position of T. unguicula suggests a possible North Pacific centre of origin, with separate Atlantic and Pacific radiations. The inclusion of Cancellothyris within Terebratulina also shows that adult shell characters such as umbo, foramen and symphytium shape, whilst probably indispensible for the practical classification of fossils, are not reliable guides to genealogy

    Coalescent-based genome analyses resolve the early branches of the euarchontoglires

    Get PDF
    Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods

    Crinoid phylogeny: a preliminary analysis (Echinodermata: Crinoidea)

    Get PDF
    We describe the first molecular and morphological analysis of extant crinoid high-level inter-relationships. Nuclear and mitochondrial gene sequences and a cladistically coded matrix of 30 morphological characters are presented, and analysed by phylogenetic methods. The molecular data were compiled from concatenated nuclear-encoded 18S rDNA, internal transcribed spacer 1, 5.8S rDNA, and internal transcribed spacer 2, together with part of mitochondrial 16S rDNA, and comprised 3,593 sites, of which 313 were parsimony-informative. The molecular and morphological analyses include data from the bourgueticrinid Bathycrinus; the antedonid comatulids Dorometra and Florometra; the cyrtocrinids Cyathidium, Gymnocrinus, and Holopus; the isocrinids Endoxocrinus, and two species of Metacrinus; as well as from Guillecrinus and Caledonicrinus, whose ordinal relationships are uncertain, together with morphological data from Proisocrinus. Because the molecular data include indel-rich regions, special attention was given to alignment procedure, and it was found that relatively low, gene-specific, gap penalties gave alignments from which congruent phylogenetic information was obtained from both well-aligned, indel-poor and potentially misaligned, indel-rich regions. The different sequence data partitions also gave essentially congruent results. The overall direction of evolution in the gene trees remains uncertain: an asteroid outgroup places the root on the branch adjacent to the slowly evolving isocrinids (consistent with palaeontological order of first appearances), but maximum likelihood analysis with a molecular clock places it elsewhere. Despite lineage-specific rate differences, the clock model was not excluded by a likelihood ratio test. Morphological analyses were unrooted. All analyses identified three clades, two of them generally well-supported. One well-supported clade (BCG) unites Bathycrinus and Guillecrinus with the representative (chimaeric) comatulid in a derived position, suggesting that comatulids originated from a sessile, stalked ancestor. In this connection it is noted that because the comatulid centrodorsal ossicle originates ontogenetically from the column, it is not strictly correct to describe comatulids as unstalked crinoids. A second, uniformly well-supported clade contains members of the Isocrinida, while the third clade contains Gymnocrinus, a well-established member of the Cyrtocrinida, together with the problematic taxon Caledonicrinus, currently classified as a bourgueticrinid. Another cyrtocrinid, Holopus, joins this clade with only weak molecular, but strong morphological support. In one morphological analysis Proisocrinus is weakly attached to the isocrinid clade. Only an unusual, divergent 18S rDNA sequence was obtained from the morphologically strange cyrtocrinid Cyathidium. Although not analysed in detail, features of this sequence suggested that it may be a PCR artefact, so that the apparently basal position of this taxon requires confirmation. If not an artefact, Cyathidium either diverged from the crinoid stem much earlier than has been recognised hitherto (i.e., it may be a Palaeozoic relic), or it has an atypically high rate of molecular evolution

    Louse (Insecta : Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable

    Get PDF
    Lice are ectoparasitic insects hosted by birds and mammals. Mitochondrial 12S rRNA sequences obtained from lice show considerable length variation and are very difficult to align. We show that the louse 12S rRNA domain III secondary structure displays considerable variation compared to other insects, in both the shape and number of stems and loops. Phylogenetic trees constructed from tree edit distances between louse 12S rRNA structures do not closely resemble trees constructed from sequence data, suggesting that at least some of this structural variation has arisen independently in different louse lineages. Taken together with previous work on mitochondrial gene order and elevated rates of substitution in louse mitochondrial sequences, the structural variation in louse 12S rRNA confirms the highly distinctive nature of molecular evolution in these insects

    In search of lost introns

    Full text link
    Many fundamental questions concerning the emergence and subsequent evolution of eukaryotic exon-intron organization are still unsettled. Genome-scale comparative studies, which can shed light on crucial aspects of eukaryotic evolution, require adequate computational tools. We describe novel computational methods for studying spliceosomal intron evolution. Our goal is to give a reliable characterization of the dynamics of intron evolution. Our algorithmic innovations address the identification of orthologous introns, and the likelihood-based analysis of intron data. We discuss a compression method for the evaluation of the likelihood function, which is noteworthy for phylogenetic likelihood problems in general. We prove that after O(nL)O(nL) preprocessing time, subsequent evaluations take O(nL/logL)O(nL/\log L) time almost surely in the Yule-Harding random model of nn-taxon phylogenies, where LL is the input sequence length. We illustrate the practicality of our methods by compiling and analyzing a data set involving 18 eukaryotes, more than in any other study to date. The study yields the surprising result that ancestral eukaryotes were fairly intron-rich. For example, the bilaterian ancestor is estimated to have had more than 90% as many introns as vertebrates do now
    corecore