63 research outputs found

    Faster and Simpler Distributed Algorithms for Testing and Correcting Graph Properties in the CONGEST-Model

    Full text link
    In this paper we present distributed testing algorithms of graph properties in the CONGEST-model [Censor-Hillel et al. 2016]. We present one-sided error testing algorithms in the general graph model. We first describe a general procedure for converting ϵ\epsilon-testers with a number of rounds f(D)f(D), where DD denotes the diameter of the graph, to O((logn)/ϵ)+f((logn)/ϵ)O((\log n)/\epsilon)+f((\log n)/\epsilon) rounds, where nn is the number of processors of the network. We then apply this procedure to obtain an optimal tester, in terms of nn, for testing bipartiteness, whose round complexity is O(ϵ1logn)O(\epsilon^{-1}\log n), which improves over the poly(ϵ1logn)poly(\epsilon^{-1} \log n)-round algorithm by Censor-Hillel et al. (DISC 2016). Moreover, for cycle-freeness, we obtain a \emph{corrector} of the graph that locally corrects the graph so that the corrected graph is acyclic. Note that, unlike a tester, a corrector needs to mend the graph in many places in the case that the graph is far from having the property. In the second part of the paper we design algorithms for testing whether the network is HH-free for any connected HH of size up to four with round complexity of O(ϵ1)O(\epsilon^{-1}). This improves over the O(ϵ2)O(\epsilon^{-2})-round algorithms for testing triangle freeness by Censor-Hillel et al. (DISC 2016) and for testing excluded graphs of size 44 by Fraigniaud et al. (DISC 2016). In the last part we generalize the global tester by Iwama and Yoshida (ITCS 2014) of testing kk-path freeness to testing the exclusion of any tree of order kk. We then show how to simulate this algorithm in the CONGEST-model in O(kk2+1ϵk)O(k^{k^2+1}\cdot\epsilon^{-k}) rounds

    Three Notes on Distributed Property Testing

    Get PDF
    In this paper we present distributed property-testing algorithms for graph properties in the CONGEST model, with emphasis on testing subgraph-freeness. Testing a graph property P means distinguishing graphs G = (V,E) having property P from graphs that are epsilon-far from having it, meaning that epsilon|E| edges must be added or removed from G to obtain a graph satisfying P. We present a series of results, including: - Testing H-freeness in O(1/epsilon) rounds, for any constant-sized graph H containing an edge (u,v) such that any cycle in H contain either u or v (or both). This includes all connected graphs over five vertices except K_5. For triangles, we can do even better when epsilon is not too small. - A deterministic CONGEST protocol determining whether a graph contains a given tree as a subgraph in constant time. - For cliques K_s with s >= 5, we show that K_s-freeness can be tested in O(m^(1/2-1/(s-2)) epsilon^(-1/2-1/(s-2))) rounds, where m is the number of edges in the network graph. - We describe a general procedure for converting epsilon-testers with f(D) rounds, where D denotes the diameter of the graph, to work in O((log n)/epsilon)+f((log n)/epsilon) rounds, where n is the number of processors of the network. We then apply this procedure to obtain an epsilon-tester for testing whether a graph is bipartite and testing whether a graph is cycle-free. Moreover, for cycle-freeness, we obtain a corrector of the graph that locally corrects the graph so that the corrected graph is acyclic. Note that, unlike a tester, a corrector needs to mend the graph in many places in the case that the graph is far from having the property. These protocols extend and improve previous results of [Censor-Hillel et al. 2016] and [Fraigniaud et al. 2016]

    Deterministic Subgraph Detection in Broadcast CONGEST

    Get PDF
    We present simple deterministic algorithms for subgraph finding and enumeration in the broadcast CONGEST model of distributed computation: - For any constant k, detecting k-paths and trees on k nodes can be done in O(1) rounds. - For any constant k, detecting k-cycles and pseudotrees on k nodes can be done in O(n) rounds. - On d-degenerate graphs, cliques and 4-cycles can be enumerated in O(d + log n) rounds, and 5-cycles in O(d2 + log n) rounds. In many cases, these bounds are tight up to logarithmic factors. Moreover, we show that the algorithms for d-degenerate graphs can be improved to O(d/logn) and O(d2/logn), respect- ively, in the supported CONGEST model, which can be seen as an intermediate model between CONGEST and the congested clique

    Deterministic subgraph detection in broadcast CONGEST

    Get PDF
    We present simple deterministic algorithms for subgraph finding and enumeration in the broadcast CONGEST model of distributed computation: For any constant k, detecting k-paths and trees on k nodes can be done in O(1) rounds. For any constant k, detecting k-cycles and pseudotrees on k nodes can be done in O(n) rounds. On d-degenerate graphs, cliques and 4-cycles can be enumerated in O(d+log n) rounds, and 5-cycles in O(d2 + log n) rounds. In many cases, these bounds are tight up to logarithmic factors. Moreover, we show that the algorithms for d-degenerate graphs can be improved to O(d/ log n) and O(d2/log n), respectively, in the supported CONGEST model, which can be seen as an intermediate model between CONGEST and the congested clique. © 2017 Janne H. Korhonen and Joel Rybicki.Peer reviewe

    Lower Bounds for Subgraph Detection in the CONGEST Model

    Get PDF
    In the subgraph-freeness problem, we are given a constant-sized graph H, and wish to de- termine whether the network graph contains H as a subgraph or not. Until now, the only lower bounds on subgraph-freeness known for the CONGEST model were for cycles of length greater than 3; here we extend and generalize the cycle lower bound, and obtain polynomial lower bounds for subgraph-freeness in the CONGEST model for two classes of subgraphs. The first class contains any graph obtained by starting from a 2-connected graph H for which we already know a lower bound, and replacing the vertices of H by arbitrary connected graphs. We show that the lower bound on H carries over to the new graph. The second class is constructed by starting from a cycle Ck of length k ? 4, and constructing a graph H ? from Ck by replacing each edge {i, (i + 1) mod k} of the cycle with a connected graph Hi, subject to some constraints on the graphs H_{0}, . . .H_{k?1}. In this case we obtain a polynomial lower bound for the new graph H ?, depending on the size of the shortest cycle in H ? passing through the vertices of the original k-cycle

    Distributed Testing of Graph Isomorphism in the CONGEST Model

    Get PDF
    In this paper we study the problem of testing graph isomorphism (GI) in the CONGEST distributed model. In this setting we test whether the distributive network, GUG_U, is isomorphic to GKG_K which is given as an input to all the nodes in the network, or alternatively, only to a single node. We first consider the decision variant of the problem in which the algorithm distinguishes GUG_U and GKG_K which are isomorphic from GUG_U and GKG_K which are not isomorphic. We provide a randomized algorithm with O(n)O(n) rounds for the setting in which GKG_K is given only to a single node. We prove that for this setting the number of rounds of any deterministic algorithm is Ω~(n2)\tilde{\Omega}(n^2) rounds, where nn denotes the number of nodes, which implies a separation between the randomized and the deterministic complexities of deciding GI. We then consider the \emph{property testing} variant of the problem, where the algorithm is only required to distinguish the case that GUG_U and GKG_K are isomorphic from the case that GUG_U and GKG_K are \emph{far} from being isomorphic (according to some predetermined distance measure). We show that every algorithm requires Ω(D)\Omega(D) rounds, where DD denotes the diameter of the network. This lower bound holds even if all the nodes are given GKG_K as an input, and even if the message size is unbounded. We provide a randomized algorithm with an almost matching round complexity of O(D+(ϵ1logn)2)O(D+(\epsilon^{-1}\log n)^2) rounds that is suitable for dense graphs. We also show that with the same number of rounds it is possible that each node outputs its mapping according to a bijection which is an \emph{approximated} isomorphism. We conclude with simple simulation arguments that allow us to obtain essentially tight algorithms with round complexity O~(D)\tilde{O}(D) for special families of sparse graphs

    Distributed Detection of Cliques in Dynamic Networks

    Get PDF
    This paper provides an in-depth study of the fundamental problems of finding small subgraphs in distributed dynamic networks. While some problems are trivially easy to handle, such as detecting a triangle that emerges after an edge insertion, we show that, perhaps somewhat surprisingly, other problems exhibit a wide range of complexities in terms of the trade-offs between their round and bandwidth complexities. In the case of triangles, which are only affected by the topology of the immediate neighborhood, some end results are: - The bandwidth complexity of 1-round dynamic triangle detection or listing is Theta(1). - The bandwidth complexity of 1-round dynamic triangle membership listing is Theta(1) for node/edge deletions, Theta(n^{1/2}) for edge insertions, and Theta(n) for node insertions. - The bandwidth complexity of 1-round dynamic triangle membership detection is Theta(1) for node/edge deletions, O(log n) for edge insertions, and Theta(n) for node insertions. Most of our upper and lower bounds are tight. Additionally, we provide almost always tight upper and lower bounds for larger cliques

    Comparison Graphs: A Unified Method for Uniformity Testing

    Get PDF
    Distribution testing can be described as follows: qq samples are being drawn from some unknown distribution PP over a known domain [n][n]. After the sampling process, a decision must be made about whether PP holds some property, or is far from it. The most studied problem in the field is arguably uniformity testing, where one needs to distinguish the case that PP is uniform over [n][n] from the case that PP is ϵ\epsilon-far from being uniform (in 1\ell_1). In the classic model, it is known that Θ(n/ϵ2)\Theta\left(\sqrt{n}/\epsilon^2\right) samples are necessary and sufficient for this task. This problem was recently considered in various restricted models that pose, for example, communication or memory constraints. In more than one occasion, the known optimal solution boils down to counting collisions among the drawn samples (each two samples that have the same value add one to the count), an idea that dates back to the first uniformity tester, and was coined the name "collision-based tester". In this paper, we introduce the notion of comparison graphs and use it to formally define a generalized collision-based tester. Roughly speaking, the edges of the graph indicate the tester which pairs of samples should be compared (that is, the original tester is induced by a clique, where all pairs are being compared). We prove a structural theorem that gives a sufficient condition for a comparison graph to induce a good uniformity tester. As an application, we develop a generic method to test uniformity, and devise nearly-optimal uniformity testers under various computational constraints. We improve and simplify a few known results, and introduce a new constrained model in which the method also produces an efficient tester. The idea behind our method is to translate computational constraints of a certain model to ones on the comparison graph, which paves the way to finding a good graph
    corecore