
Three Notes on Distributed Property Testing∗

Guy Even†1, Orr Fischer2, Pierre Fraigniaud‡3, Tzlil Gonen4,
Reut Levi5, Moti Medina6, Pedro Montealegre§7, Dennis Olivetti8,
Rotem Oshman¶9, Ivan Rapaport‖10, and Ioan Todinca11

1 Tel Aviv University, School of Electrical Engineering, Tel Aviv, Israel
guy@eng.tau.ac.il

2 Tel Aviv University, Computer Science Department, Tel Aviv, Israel
orrfischer@mail.tau.ac.il

3 CNRS and University Paris Diderot, Paris, France
pierre.fraigniaud@irif.fr

4 Tel Aviv University, Computer Science Department, Tel Aviv, Israel
tzlilgon@mail.tau.ac.il

5 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany
rlevi@mpi-inf.mpg.de

6 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany
mmedina@mpi-inf.mpg.de

7 Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago de
Chile, Chile
p.montealegre@uai.cl

8 Gran Sasso Science Institute, L’Aquila, Italy
dennis.olivetti@gssi.infn.it

9 Tel Aviv University, Computer Science Department, Tel Aviv, Israel
roshman@tau.ac.il

10 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago de Chile, Chile
rapaport@dim.uchile.cl

11 Université d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans,
France
ioan.todinca@univ-orleans.fr

Abstract
In this paper we present distributed property-testing algorithms for graph properties in the
congest model, with emphasis on testing subgraph-freeness. Testing a graph property P means
distinguishing graphs G = (V,E) having property P from graphs that are ε-far from having it,
meaning that ε|E| edges must be added or removed from G to obtain a graph satisfying P.

We present a series of results, including:
Testing H-freeness in O(1/ε) rounds, for any constant-sized graph H containing an edge (u, v)
such that any cycle in H contain either u or v (or both). This includes all connected graphs
over five vertices except K5. For triangles, we can do even better when ε is not too small.

∗ Full versions related to the paper are available at https://arxiv.org/abs/1705.04898 and http:
//arxiv.org/abs/1705.04033 [16, 17].

† Work done while visiting Max Planck Institute for Informatics.
‡ Additional support from ANR Project DESCARTES, and from INRIA Project GANG.
§ This work was partially supported by CONICYT via Basal in Applied Mathematics.
¶ Orr Fischer, Tzlil Gonen and Rotem Oshman are supported by the Israeli Centers of Research Excellence
(I-CORE) program, (Center No. 4/11) and by BSF Grant No. 2014256.

‖ This work was partially supported by Fondecyt 1170021, Núcleo Milenio Información y Coordinación en
Redes ICM/FIC RC130003.

© Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro Montealegre,
Dennis Olivetti, and Rotem Oshman;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 15; pp. 15:1–15:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arxiv.org/abs/1705.04898
http://arxiv.org/abs/1705. 04033
http://arxiv.org/abs/1705. 04033
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


15:2 Three Notes on Distributed Property Testing

A deterministic congest protocol determining whether a graph contains a given tree as a
subgraph in constant time.
For cliques Ks with s ≥ 5, we show that Ks-freeness can be tested in O(m

1
2−

1
s−2 · ε−

1
2−

1
s−2 )

rounds, where m is the number of edges in the network graph.
We describe a general procedure for converting ε-testers with f(D) rounds, where D denotes
the diameter of the graph, to work in O((logn)/ε) + f((logn)/ε) rounds, where n is the
number of processors of the network. We then apply this procedure to obtain an ε-tester for
testing whether a graph is bipartite and testing whether a graph is cycle-free. Moreover, for
cycle-freeness, we obtain a corrector of the graph that locally corrects the graph so that the
corrected graph is acyclic. Note that, unlike a tester, a corrector needs to mend the graph in
many places in the case that the graph is far from having the property.

These protocols extend and improve previous results of [Censor-Hillel et al. 2016] and [Fraigniaud
et al. 2016].

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Property testing, Property correcting, Distributed algorithms, CON-
GEST model

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.15

1 General Introduction

Distributed decision refers to tasks in which the computing elements of a distributed system
have to collectively decide whether the system satisfies some given boolean predicate on
system states. If the system state is legal, i.e., it satisfies the given predicate, then all
computing elements must accept; if the system state is illegal, then at least one computing
element must reject. Distributed property testing is a relaxed variant of distributed decision,
which only requires distinguishing legal states from states that are “far from” being legal.
(The notion of “farness” depends on the context.)

In the context of distributed network computing, one is interested in deciding or testing
whether the actual network, modeled as a simple connected graph, satisfies some given
predicate on graphs; e.g., bipartiteness, cycle-freeness, subgraph-freeness, etc. For a positive
distance parameter ε ≤ 1, a graph G with m edges is said to be ε-far from satisfying a given
property P if removing and/or adding up to εm edges from/to G cannot result in a graph
satisfying P .

In this paper we study distributed decision in general, and distributed property testing in
particular, in the framework of distributed network computing, under the standard congest
model. This paper is the result of merging the three papers [16], [17], and [18] that were
concurrently submitted to the 31st International Symposium on Distributed Computing
(DISC 2017), which independently showed overlapping results, using different methods and
ideas. To highlight the different approaches to the problem, we chose to present a short
version of each of the three papers in the form of three notes.

The Subgraph-Freeness Problem. Each of the three notes presented here gives results on
subgraph-freeness: we are given a constant-size graph H, and we wish to determine whether
the network graph contains H as a subgraph or not. In the property testing relaxation of
the problem, we only need to distinguish the case where the network graph is H-free from

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.15


G. Even et al. 15:3

the case where it is ε-far from H-free, in the sense that at least an ε-fraction of the graph’s
edges must be removed to eliminate all copies of H.

Hereafter, we provide a summary of the results and methods in each paper.

1.1 Summary of the Results and Techniques
Note #1: Color-Coding Based Algorithms for Testing Subgraph-Freeness

This note uses a technique called color-coding [4] to design randomized algorithms for
property-testing subgraph-freeness in O(1/ε) rounds, for any subgraph H that contains an
edge (u, v) such that any cycle in H contains at least one of u and v. In the case of trees,
the color-coding technique yields an O(1)-round algorithm for testing exactly whether the
graph contains the given tree or not. In addition, for cliques Ks with s ≥ 3, we show that
Ks-freeness can be tested in O(m

1
2−

1
s−2 · ε−

1
2−

1
s−2 ) rounds, where m is the number of edges

in the network graph. In the special case of triangles, K3-freeness can actually be solved in
O(1) rounds in n-node networks, i.e., in a number of rounds independent from ε, assuming
ε ≥ min{m− 1

3 , n
m}.

Note #2: Deterministic Tree Detection and Applications in Distributed Property
Testing

In this note, we propose a generic construction for designing deterministic distributed al-
gorithms detecting the presence of any given tree T as a subgraph of the input network,
performing in a constant number of rounds in the congest model. Our construction also
provides randomized algorithms for testing H-freeness for every graph pattern H that can be
decomposed into an edge and a tree, with arbitrary connections between them, also running
in O(1) rounds in the congest model. This generalizes the results in [9, 19, 20], where
algorithms for testing K3, K4, and Ck-freeness for every k ≥ 3 were provided.

Note #3: Algorithms for Testing and Correcting Graph Properties in the
CONGEST Model

In Section 4, we design and analyze distributed testers in the distributed congest model
all of which work in the general model. Stating that our testers work in the general model
means that our measure of distance between two graphs is measured by adding or removing
ε ·m edges.

Diameter dependency reduction and its Applications. In Section 4.2 we describe a general
procedure for converting ε-testers with f(D) rounds, where D denotes the diameter of the
graph, to work in O((logn)/ε) + f((logn)/ε) rounds, where n is the number of processors
of the network. We then apply this procedure to obtain an ε-tester for testing whether a
graph is bipartite. The improvement of this tester over state of the art is twofold: (a) the
round complexity is O(ε−1 logn), which improves over the Poly(ε−1 logn)-round algorithm
by Censor-Hillel et al. [9, Thm. 5.2], and (b) our tester works in the general model while [9]
works in the more restrictive bounded degree model. Moreover, the number of rounds of
our bipartiteness tester meets the Ω(logn) lower bound by [9, Thm. 7.3], hence our tester is
asymptotically optimal in terms of n. We then apply this “compiler” to obtain a cycle-free
tester with number of rounds of O(ε−1 · logn), thus revisiting the result by [9, Thm. 6.3].
The last application that we consider is “how to obtain a corrector of the graph by using

DISC 2017



15:4 Three Notes on Distributed Property Testing

this machinery?” Namely, how to design an algorithm that locally corrects the graph so that
the corrected graph satisfies the property. For cycle-freeness, we are able to obtain also an
ε-corrector. Note that, unlike a tester, a corrector needs to mend the graph in many places
in the case that the graph is far from having the property.

Testers for H-freeness for |V (H)| ≤ 4. In Section 4.3 we design algorithms for testing
(in the general model) whether the network is H-free for any connected H of size up to four
with round complexity of O(ε−1).

Testers for tree-freeness. In Section 4.4, we first generalize the global tester by Iwama
and Yoshida [25] of testing k-path freeness to testing the exclusion of any tree, T , of order k.
Our tester has a one sided error and it works in the general graph model with random edge
queries. This algorithm can be simulated in the CONGEST model in O(kk2+1 · ε−k) rounds.

2 Note #1: Color-Coding Based Algorithms for Testing
Subgraph-Freeness

2.1 Introduction
The aim of this part of the paper is to improve our understanding of the question: “which
types of excluded subgraphs can be tested in constant time?”. We also explore several
related questions, such as whether limiting the maximum degree in the graphs helps (by
analogy to the bounded-degree model in sequential property testing), whether we can test
H-freeness in sublinear time for some subgraphs H for which no constant-time algorithm is
known, and whether there are cases where we can test H-freeness with no dependence on the
distance parameter ε, even when ε is sub-constant (e.g., ε = O(1/

√
n)). Using new ideas and

combining them with previous techniques, we are able to simplify and extend prior work,
and point out some surprising answers to the questions above, which point to several aspects
where distributed property testing for subgraph-freeness differs from the sequential analogue.

Our Results. First we give simple randomized algorithms for testing subgraph-freeness,
using the color-coding technique from [4], originally used to find cycles of fixed constant size
sequentially.

We begin by giving a color-coding based algorithm which tests k-cycle freeness in O(1/ε)
rounds (for constant k). Next we show that for any tree T , we can test T -freeness exactly
(without the property-testing relaxation) in constant time. Both of the results extend to
directed graphs in the directed version of the congestmodel. Combining the two algorithms,
we give a class of graphs H such that for any constant-sized H ∈ H, we can test H-freeness
in O(1/ε) rounds. The class H consists of all graphs H containing an edge {u, v} such that
each cycle in H includes either u or v (or both). This includes all graphs of size 5 except for
the 5-clique, K5.

We then turn our attention to the special case of cliques. We present a different approach
for detecting triangles, which allows us to eliminate the dependence of the running time
on ε when ε is not too small: if n is the number of nodes and m is the number of edges,
and we are promised that ε ≥ min

{
m−1/3, n/m

}
, then we can test triangle-freeness in O(1)

rounds (independent of the actual value of ε). We extend this approach to cliques of any size
s ≥ 3, and show that Ks-freeness can be tested in O

(
ε−1/2−1/(s−2)m1/2−1/(s−2)) rounds. In

particular, for constant ε and s = 5, we can test K5-freeness in O(m1/6) rounds. We also



G. Even et al. 15:5

modify the algorithm to work in constant time in graphs whose maximum degree ∆ is not
too large with respect to the total number of edges, ∆ = O((εm)1/(s−2)).

2.2 Preliminaries
We generally work with undirected graphs, unless indicated otherwise. We let N(v) denote
the neighbors of v, and d(v) the degree of v. Note that throughout the paper, when we use
the term subgraph, we do not mean induced subgraph; we say that G′ = (V ′, E′) is a subgraph
of G = (V,E) if V ′ ⊆ V,E′ ⊆ E.

We say that a graph G = (V,E) is ε-far from property P if at least ε|E| edges need to be
added to or removed from E to obtain a graph satisfying P.

The goal in distributed property testing for H-freeness is to solve the following problem:
if the network graph G is H-free, then with probability 2/3, all nodes should accept. On the
other hand, if G is ε-far from being H-free, then with probability 2/3, some node should
reject.

We rely on the following fundamental property, which serves as the basis for most
sequential property testers for H-freeness:

I Property 1. Let G be ε-far from being H-free, then G has εm/|E(H)| edge-disjoint copies
of H.

Our algorithms assign random colors to vertices of the graph, and then look for a copy of
the forbidden subgraph H which received the “correct colors”. Formally we define:

I Definition 2 (Properly-colored subgraphs). Let G = (V,E) and H = ([k], F ) be graphs,
and let G′ = (V ′, E′) be a subgraph of G that is isomorphic to H. We say that G′ is properly
colored with respect to a mapping colorV : V → [k] if there is an isomorphism ϕ : V ′ → [k]
from G′ to H such that for each u ∈ V ′ we have colorV (v) = ϕ(v).

2.3 Detecting Constant-Size Cycles
In this section we show that Ck-freeness can be tested in O(1/ε) rounds in the congest
model for any constant integer k > 2.

I Theorem 3. For any constant k > 2, there is a 1-sided error distributed algorithm for
testing Ck-freeness which uses O(1/ε) rounds.

The key idea of the algorithm is to assign each node u of the graph a random color
color(u) ∈ [k]. The node colors induce a coloring of both orientations of each edge, where
color(u, v) = (color(u), color(v)). We discard all edges that are not colored (i, (i+ 1) mod k)
for some i ∈ [k]; this eliminates all cycles of size less than k, while preserving a constant
fraction of k-cycles with high probability.

Next, we look for a properly-colored k-cycle by choosing a random directed edge (u0, u1)1
and carrying out a k-round color-coded BFS from node u0: in each round r = 0, . . . , k − 1,
the BFS only explores edges colored (r, (r + 1) mod k). After k rounds, if the BFS reaches
node u0 again, then we have found a k-cycle.

Next we describe the implementation of the algorithm in more detail. We do not attempt
to optimize the constants. To simplify the analysis, fix a set C of εm/k edge-disjoint k-cycles

1 What we really want to do is choose a random node with probability proportional to its degree; choosing
random edge is a simple way to do that.

DISC 2017



15:6 Three Notes on Distributed Property Testing

(which we know exist if the graph is ε-far from being Ck-free). We abuse notation by also
treating C as the set of edges participating in the cycles in C.

For the analysis, it is helpful to think of the algorithm as first choosing a random edge
and then choosing random colors, and this is the way we describe it below.

Choosing a Random Edge. It is not possible to get all nodes of the graph to explicitly
agree on a uniformly random directed edge in constant time (unless the graph has constant
diameter), but we can emulate the effect as follows: each node u ∈ V chooses a uniformly
random weight w(e) ∈ [n4] for each of its edges e. (Note that each edge has two weights, one
for each of its orientations.) Implicitly, the directed edge we selected is the edge with the
smallest weight in the graph, assuming that no two directed edges have the same weight.

I Observation 4. With probability at least 1− 1/n2, all weights in the graph are unique.

Let EU be the event that all edge weights are unique. Conditioned on EU , the directed
edge with the smallest weight is uniformly random. Let e0 be this edge; implicitly, e0 is the
edge we select. (However, nodes do not initially know which edge was selected, or even if a
single edge was selected.)

Since the set C contains εm/k edge-disjoint k-cycles, and the graph has a total of m
edges, we have:

I Observation 5. We have Pr [e0 ∈ C | EU ] = ε.

Let ECyc be the event that e0 ∈ C, and let C0 = {u0, u1, . . . , uk−1} be the cycle to which e0
belongs given EC , where e0 = (u0, u1).

Color Coding. In order to eliminate cycles of length less than k, we assign to each node u
a uniformly random color color(u) ∈ [k]. Node u then broadcasts color(u) to its neighbors.

Since the colors are independent of the edge weights, we have:

I Observation 6. Pr [∀i ∈ [k] : color(ui) = i | EC , EU ] = 1
kk .

Let ECol be the event that each ui received color i. Combining our observations above yields:

I Corollary 7. Pr [EU ∩ ECyc ∩ ECol] > ε
2kk .

Next we show thatn when EU , ECyc and ECol all occur, we find a k-cycle.

Color-Coded BFS. Each node u stores the weight wgtu associated with the lightest edge it
has heard of so far, and the root rootu of the BFS tree to which it currently belongs. Initially,
wgtu is set to the weight of the lightest of u’s outgoing edges, and rootu is set to u.

In each round r = 0, . . . , k − 1 of the BFS, nodes u with color r send (u,wgtu, rootu) to
their neighbors, and nodes v with color r + 1 update their state: if they received a message
(u,wgtu, rootu) from a neighbor u, they set wgtv to the lightest weight they received, and
rootv to the root associated with that weight.

After k rounds, if some node colored 0 receives a message (v,wgtv, rootv) where rootv = u,
then it has found a k-cycle, and it rejects.

In Section 2.5, we will use the same Ck-freeness algorithms, but some nodes will be
prohibited from taking certain colors. We incorporate this in Algorithm 1 by having some
nodes whose state is abort. These nodes do not forward BFS messages and do not participate
in the algorithm.



G. Even et al. 15:7

Algorithm 1: Procedure ColorCodedBFS, code for node u.
1 root ← u;
2 wgt ← min {w(u, v) | v ∈ N(u)};
3 for r = 0, . . . , k − 1 do
4 if color = r and state 6= abort then send (wgt, root) to neighbors ;
5 receive (w1, r1), . . . , (wt, rt) from neighbors;
6 if color = (r + 1) mod k then
7 i← argmin {w1, . . . , wt};
8 if wi < wgt then
9 root ← ri,wgt ← wi ;

10 if r = k − 1 and u ∈ {r1, . . . , rt} then return 1 ;
11 return 0;

I Lemma 8. If EU , ECyc and ECol all occur, and if in addition the cycle C0 contains no
nodes whose state is abort, then u0 returns 1 and Algorithm 1 finds a k-cycle (i.e., returns 1).

Proof of Theorem 3. Suppose that G is ε-far from being Ck-free. We have no nodes whose
state is abort (as we said, the abort state will be used in Section 2.5). Drawing random colors
and weights, the probability that EU , ECyc and ECol all occur is at least ε

2kk ; therefore, the
probability that we fail to detect a k-cycle after d20kk/εe attempts is at most 1/10. J

2.4 Detecting Constant-Size Trees
In this section we show that for any constant-size tree T , we can test T -freeness exactly
(that is, without the property-testing relaxation) in O(1) rounds. Let the nodes of T be
0, . . . , k − 1. We arbitrarily assign node 0 to be the root of T , and orient the edges of the
tree upwards toward node 0. Let R be the depth of the tree, that is, the maximum number
of hops from any leaf of T to node 0. Finally, let children(x) be the children of node x in the
tree.

In the algorithm, we map each node of the network graph G onto a random node of T by
assigning it a random color from [k]. Then we check if there is a copy of T in G that was
mapped “correctly”, with each node receiving the color of the vertex in T it corresponds to.

Initially the state of each node is “open” if it is an inner node of T , and “closed” if it is a
leaf. The algorithm has R rounds, in each of which all nodes broadcast their state and their
color to their neighbors. When a node with color j hears “closed” messages from nodes with
colors matching all the children of node j in T , it changes its status to “closed”. After R
rounds, if node 0’s state is “closed”, we reject.

Let x ∈ {0, . . . , k − 1} be a node of T , let T ′ be the sub-tree rooted at x, and let
G′ = (U,E′) be a subgraph of G = (V,E) isomorphic to T ′. We say that G′ is properly
colored if there is an isomorphism ϕ from G′ to T ′, such that color(u) = ϕ(u). (There may
be more than one possible isomorphism from G′ to T ′.)

I Lemma 9. Let u be a node with color color(u) = x, and let T ′ be the sub-tree of T rooted
at x. Let hx be the height of x, that is, the length of the longest path from a leaf of T ′ to x.
Then at any time t ≥ hx in the execution of Algorithm 2, we have stateu(t) = closed iff there
is a subgraph G′ containing u, which is isomorphic to T ′ and properly colored.

DISC 2017



15:8 Three Notes on Distributed Property Testing

Algorithm 2: Procedure CheckTree, code for node u.
1 if children(color) = ∅ then
2 state ← closed;
3 else
4 state ← open;
5 missing ← children(color);
6 for r = 1, . . . , R do
7 send (color , state) to neighbors ;
8 receive (c1, s1), . . . , (ct, st) from neighbors;
9 foreach i = 1, . . . , t do

10 if ci ∈ missing and si = closed then
11 missing ← missing \ {ci};
12 if missing = ∅ then state ← closed ;

13 if color = 0 and state = closed then
14 return 1;
15 else
16 return 0;

I Corollary 10. For any node u ∈ V , at time h we have stateu(h) = closed iff u is the root
of a properly-colored copy of T .

I Corollary 11. If G contains a copy of T , then repeating Algorithm 2 yields an constant
probability one sided-error algorithm for detecting a copy of T .

Proof. Fix a subgraph G′ which is isomorphic to T . Each time we pick a random coloring,
the probability that G′ is properly colored is at least 1/kk (perhaps more, if there is more
than one isomorphism mapping the nodes of G′ to T ). By Corollary 10, if G′ is properly
colored, the root of the tree will discover this and return 1. Therefore the probability that
we fail d10kke times is at most 1/10. J

2.5 Detecting Constant-Size Complex Graphs
In this section we define a class H of graphs, and give an algorithm for detecting those
graphs in constant number of round (taking the size of the graph as a constant). The class
H includes all graphs of size 5 except K5 (see full paper [17]).

Definition of the Class H. The class H contains all graphs that have the following property:
there exists an edge (u, v) such that any cycle in the graph contain at least one of u and v.
Equivalently, the class H contains all connected graphs that can be constructed using the
following procedure:
1. We start with two nodes, 0 and 1, with an edge between them
2. Add any number of cycles C1, . . . , C` using new nodes, such that:

Each cycle Ci contains either node 0 or node 1 or both; and
With the exception of nodes 0, 1, the cycles are node-disjoint.

3. Select a subset R of the nodes added so far, and for each node x selected, attach a tree Tx
rooted at x using “fresh” nodes (that is, with the exception of node x, each tree Tx that



G. Even et al. 15:9

Figure 1 A good labeling for each connected graph over five vertices, except K5.

we attach is node-disjoint from the graph constructed so far, including trees Ty added for
other nodes y 6= x).

4. For each x ∈ {0, 1}, add edges Ex between node x and some subset of nodes added in
the previous steps.

The class H includes all connected nodes over five vertices, except the clique K5. In
Figure 1 we show a labeling consistent with the construction above (once the “correct” edge
to label as (0, 1) is identified, the rest is easy to verify).

Our algorithm for testing H-freeness for H ∈ H combines the ideas from the previous
sections. We begin by color-coding the nodes of G, mapping each node onto a random node
of H. Next, we choose a random directed edge (u0, u1) from among the edges mapped to
(0, 1), and begin the task of verifying that the various components of H are present and
attached properly.

For simplicity, below we describe the verification process assuming that we really do
choose a unique random edge, and all nodes know what it is; however, we cannot really do
this, so we substitute using random edge weights as in Section 2.3.
1. Nodes u0 and u1 broadcast the chosen edge (u0, u1) for diam(H) rounds.
2. Any node whose color is 0 or 1 but which is not u0 or u1 (resp.) sets its state to abort.
3. For each edge {b, x} ∈ Eb, where b ∈ {0, 1}, nodes colored x verify that they have an

edge to node ub; if they do not, they set their state to abort.
4. For each tree Tx added in stage 3 of the construction, we verify that a properly-colored

copy of Tx is present, by having nodes colored x call Algorithm 2, with the colors replaced
by the names of the nodes in Tx. We denote this by CheckTree(Tx).
If a node colored x fails to detect a copy of Tx for which it is the root, it sets its state to
abort for the rest of the current attempt.

5. For each i = 1, . . . , `, we test for a properly-colored copy of Ci. We define the owner of
Ci, denoted owner(Ci), to be node 0 if C0 contains 0, and otherwise node 1. To verify the
presence of Ci, we call Algorithm 1, using the names of the nodes in Ci as colors: instead
of color 0 we use owner(Ci), and the remaining colors are mapped to the other nodes of
Ci in order (in a arbitrary orientation of Ci). We denote this call by ColorBFS(Ci). (As
indicated in Alg. 1, nodes whose state is abort do not participate.)

6. If both u0 and u1 are not in state abort, u0 rejects, otherwise it accepts. All other nodes
accept.

DISC 2017



15:10 Three Notes on Distributed Property Testing

The analysis and pseudo-code of this algorithm appear in the full paper [17].

2.6 Testing Ks-Freeness

In previous sections it was shown how to test K3 and K4 freeness in O(1/ε) rounds of
communication. In this section we describe how to test Ks-freeness for cliques of any
constant size s, in a sublinear number of rounds. Moreover, we show that triangle-freeness
can be tested in O(1) rounds, with no dependence on ε, when min

(
n
m ,m

−1/3) ≤ ε ≤ 1.
Finally, we show that if the maximal degree is bounded by O((εm)

1
s−2 ) then Ks-freeness can

be tested in O(1) rounds, but due to lack of space, this appears in the full paper version
only [17].

2.6.1 Algorithm Overview

The basic idea is the following simple observation: suppose that each node u could learn the
entire subgraph induced by N(u), that is, node u knew for any two v1, v2 ∈ N(u) whether
they are neighbors or not. Then u could check if there is a set of s neighbors in N(u) that
are all connected to each other, and thus know if it participates in an s-clique or not. How
can we leverage this observation?

For nodes u with high degree, we cannot afford to have u learn the entire subgraph
induced by N(u), as this requires of N(u)2 bits of information. But fortunately, if G is ε-far
from Ks-free, then there are many copies of Ks that contain some fairly low-degree nodes,
as observed in [20]:

I Lemma 12 ([20]). Let I(G) be the set of edges in some maximum set of edge-disjoint copies
of H, and let g(G) = {(u, v) | d(u)d(v) ≤ 2m|E(H)|/ε}. Then |I(G)∩g(G)| ≥ εm/(4|E(H)|).

I Remark. [20] considers only subgraphs H with 4 vertices and constant ε, but their proof
works for any subgraph H and any 0 < ε ≤ 1.

The focus in [20] is on good edges, which are edges satisfying the condition in Lemma 12,
but here we need to focus on the endpoints of such edges. We call u ∈ V a good vertex if
its degree is at most

√
2m|E(H)|/ε, and we say that a copy of H in G is a good copy if it

contains a good vertex. Since each copy of H in I(G) contributes at most |E(H)| edges to
g(G),

I Corollary 13. If G is ε-far from H-free, then G contains at least εm/(4|E(H)|2) edge-
disjoint good copies of H.

Because there are many good edge-disjoint copies of Ks, we can sparsify the graph and
still retain at least one good copy of Ks.

We partition G into many edge-disjoint sparse subgraphs, by having each vertex u choose
for each neighbor v ∈ N(u) a random color color(v) ∈ {1, . . . , C(u)}, where the size of the
color range, C(u), will be fixed later. This induces a partition of G’s edges into C(v) color
classes; let Nc(u) denote the set of neighbors v ∈ N(u) with color(v) = c. The expected size
of Nc(u) is d(v)/C(v).

With this partition in place, we begin by showing how to solve triangle-freeness in constant
time, and then extend the algorithm to other cliques Ks with s > 3.



G. Even et al. 15:11

2.6.2 Triangle-Freeness for ε ∈ [min
{
m−1/3, n/m

}
, 1] in O(1) rounds

Assume that ε is not too small with respect to n and m: ε ≥ min
{
m−1/3, n/m

}
. Then we

can improve the algorithm from Section 2.3 and test triangle-freeness in constant time that
does not depend on ε.

To test triangle-freeness, we set C(v) = dd(v)/200e. Each node chooses a random color
for each neighbor from the range {1, . . . , C(v)}. Then, we go through the color classes
c = 1, . . . , C(v) in parallel, and for each color class c, we look for a triangle containing two
edges from Nc(u): let Nc(u) = {v1, . . . , vtc}. for R = 202e2 rounds r = 1, . . . , R, node u
sends vr to all neighbors v1, . . . , vr in Nc(u), and each neighbor vi responds by telling u
whether it is also connected to vr, that is, whether vr ∈ N(vi) (note that we do not insist
on the edge (vr, vi) having color c). If vr ∈ N(vi), then node u has found a triangle, and it
rejects. If after 202e2 attempts node u has not found a triangle in any color class, it accepts.

I Lemma 14. If G is ε-far from being triangle-free, then with probability 2/3, at least one
vertex detects a triangle.

Proof. Let T be a set of edge-disjoint good triangles in G, of size |T | ≥ εm/(4|E(T )|2) =
εm/36. By Corollary 13 we know that there is such a set.

Assume that T = {T1, . . . , Tt}. By definition, each good triangle has a good vertex ; let vi
be a good vertex from the i’th triangle Ti.

For each i ∈ {1, . . . , t}, let Ai be the event that vi assigned the same color, ci, to the
other two vertices in Ti, and let Xi be an indicator for Ai. We have Pr [Xi = 1] = 1/C(vi) =
200/d(vi). Also, since the triangles in T are edge-disjoint, X1, . . . , Xt are independent. Now
let X =

∑t
i=1 Xi be their sum; then

Pr[X = 0] = Pr[
t⋂
i=1

(Xi = 0)] =
t∏
i=1

(
1− 1

C(vi)

)
=

t∏
i=1

(
1− 200

d(vi)

)
.

We divide into two cases:
1. m < n3/2: then ε ≥ min

(
n
m ,m

−1/3) = m−1/3. Recall vi is a good vertex, which means
d(vi) ≤

√
6m/ε, and therefore

t∏
i=1

(
1− 200

d(vi)

)
≤

(
1− 200√

6m/ε

)t
≤ e
− 200t√

6m/ε ≤ e
− 200εm

36
√

6m/ε = e
− 200ε3/2√m

36
√

6 ≤ e−2.

2. m ≥ n3/2: then ε ≥ min
(
n
m ,m

−1/3) = n
m . The degree of each vertex is no more than n,

and hence
t∏
i=1

(
1− 200

d(vi)

)
≤
(

1− 200
n

)t
≤ e− 200t

n ≤ e− 200εm
36n ≤ e−2.

So in any case we get Pr[X = 0] ≤ e−2.
Conditioned on X ≥ 1, there is at least one vertex vi which put two of its triangle

neighbors in the same color class ci, which means that if Nc(vi) is no larger than 200e2, node
vi will go through all neighbors in Nc(vi) and find the triangle. Because the colors of the
edges are independent of each other, conditioning on Ai does not change the expected size
of Nci

(vi) by much: we know that the other two vertices in Ti received color ci, but the
remaining neighbors are assigned to a color class independently. The expected size of |Nci(vi)|
is therefore (d(vi)− 2)/C(vi) + 2 < 202 = R/e2, and by Markov, Pr [|Nci

(vi)| > R] ≤ 1/e2.

DISC 2017



15:12 Three Notes on Distributed Property Testing

To conclude, by union bound, the probability that no node vi has Xi = 1, or that the
smallest node vi with Xi = 1 has |Nc(vj)| > 200e2 for the smallest color class c containing
two triangle neighbors, is at most 1/e2 + 1/e2 < 1/3. J

2.6.3 General Tester for Ks-Freeness
Use the same algorithm but with a different setting of the parameters, we can test Ks-freeness
for any s ≥ 3.

I Theorem 15. There is a 1-sided error distributed property-testing algorithm for Ks-freeness,
for any constant s ≥ 4, with running time O(ε

−s
2(s−2)m

s−4
2(s−2) ).

I Corollary 16. There is a 1-sided error distributed property-testing algorithm for K5-freeness,
with running time O(m1/6).

We set

C(u) =
⌈(

1
2s4 εm

) 1
s−2
⌉

to be the number of color classes at node u, and

R = 2s4e2
[
ε−1/2−1/(s−2)m1/2−1/(s−2) + s− 1

]
to be the timeout. For R rounds, each node u sends the next node vr from each color class
to all neighbors v1, . . . , vtc in that color class, and each neighbor vi responds by telling u
whether vr is its neighbor or not. Node u remembers this information; if at any point it
knows of a subset S ⊆ Nc(u) of |S| = s nodes that are all neighbors of each other, then it
has found an s-clique, and it rejects. After R rounds u gives up and accepts.

I Lemma 17. If G is ε-far from Ks-free, then with probability at least 2/3, at least one
vertex detects a copy of Ks.

I Remark. For s ≥ 5, the algorithm requires a linear estimate of m to get good running
time. If m is unknown, then the vertices may run the algorithm logn times for exponentially-
increasing guesses m = [n, 2n, ...n2] , and as the protocol has one sided error, correctness is
maintained; however, the running time increases to O(ε

−s
2(s−2)n

s−4
(s−2) ) rounds.

3 Note #2: Deterministic Tree Detection and Applications in
Distributed Property Testing

3.1 Context and Objective
Given a fixed graph H (e.g., a triangle, a clique on four nodes, etc.), a graph G is H-free if it
does not contain H as a subgraph2. Detecting copies of H or deciding H-freeness has been
investigated in many algorithmic frameworks, including classical sequential computing [2],
parametrized complexity [32], streaming [8], property-testing [3], communication complex-
ity [27], quantum computing [5], etc. In the context of distributed network computing,
deciding H-freeness refers to the task in which the processing nodes of a network G must
collectively detect whether H is a subgraph of G, according to the following decision rule:

2 Recall that H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).



G. Even et al. 15:13

if G is H-free then every node outputs accept;
otherwise, at least one node outputs reject.

In other words, G is H-free if and only if all nodes output accept.
Recently, deciding H-freeness for various types of graph patterns H has received lots of

attention (see, e.g., [9, 10, 12, 13, 26, 19, 20]) in the congest model [36], and in variants of
this model. (Recall that the congest model is a popular model for analyzing the impact of
limited link bandwidth on the ability to solve tasks efficiently in the context of distributed
network computing). In particular, it has been observed that deciding H-freeness may require
nodes to consume a lot of bandwidth, even for very simple graph patterns H. For instance, it
has been shown in [13] that deciding C4-freeness requires Ω̃(

√
n) rounds in n-node networks

in the congest model. Intuitively, the reason why so many rounds of computation are
required to decide C4-freeness is that the limited bandwidth capacity of the links prevents
every node with high degree from sending the entire list of its neighbors through one link,
unless consuming a lot of rounds. The lower bound Ω̃(

√
n) rounds for C4-freeness can

be extended to larger cycles Ck, k ≥ 4, obtaining a lower bound of Ω(poly(n)) rounds,
where the exponent of the polynomial in n depends on k [13]. Hence, not only “global”
tasks such as minimum-weight spanning tree [11, 28, 34], diameter [1, 21], and all-pairs
shortest paths [24, 30, 33] are bandwidth demanding, but also “local” tasks such as deciding
H-freeness are bandwidth demanding, at least for some graph patterns H.

In this note, we focus on a generic set of H-freeness decision tasks which includes several
instances deserving full interest on their own right. In particular, deciding Pk-freeness, where
Pk denotes the k-node path, is directly related to the NP-hard problem of computing the
longest path in a graph. Also, detecting the presence of large complete binary trees, or of
large binomial trees, is of interest for implementing classical techniques used in the design of
efficient parallel algorithms (see, e.g., [29]). Similarly, detecting large Polytrees in a Bayesian
network might be used to check fast belief propagation [35]. Finally, as it will be shown in
this note, detecting the presence of various forms of trees can be used to tests the presence
of graph patterns of interest in the framework of distributed property-testing [9]. Hence, this
note addresses the following question:

For which tree T is it possible to decide T -freeness efficiently in the congest model,
that is, in a number of rounds independent from the size n of the underlying network?

At a first glance, deciding T -freeness for some given tree T may look simpler than detecting
cycles, or even just deciding C4-freeness. Indeed, the absence of cycles enables to ignore the
issue of checking that a path starts and ends at the same node, which is bandwidth consuming
because it requires maintaining all possible partial solutions corresponding to growing paths
from all starting nodes. When detecting cycles, discarding even just a few starting nodes may
result in missing the unique cycle including these nodes. However, even deciding Pk-freeness
requires to overcome many obstacles. First, as mentioned before, finding a longest simple
path in a graph is NP-hard, which implies that it is unlikely that an algorithm deciding
Pk-freeness exists in the congest model, with running time polynomial in k at every node.
Second, and more importantly, there exists potentially up to Θ(nk) paths of length k in a
network, which makes impossible to maintain all of them in partial solutions, as the overall
bandwidth of n-node networks is at most O(n2 logn) in the congest model.

3.2 Our Results
We show that, in contrast to Ck-freeness, Pk-freeness can be decided in a constant number
of rounds, for any k ≥ 1. In fact, our main result is far more general, as it applies to any
tree. Stated informally, we prove the following:

DISC 2017



15:14 Three Notes on Distributed Property Testing

Theorem A. For every tree T , there exists a deterministic algorithm for deciding T -freeness
performing in a constant number of rounds under the congest model.

For establishing Theorem A, we present a distributed implementation of a pruning
technique based on a combinatorial result due to Erdős et al. [15] that roughly states the
following. Let k > t > 0. For any set V of n elements, and any collection F of subsets of V ,
all with cardinality at most t, let us define a witness of F as a collection F̂ ⊆ F of subsets of
V such that, for any X ⊆ V with |X| ≤ k − t, the following holds:(
∃Y ∈ F : Y ∩X = ∅

)
=⇒

(
∃Ŷ ∈ F̂ : Ŷ ∩X = ∅

)
.

Of course, every F is a witness of itself. However, Erdős et al. have shown that, for every k,
t, and F , there exists a compact witness F̂ of F , that is, a witness whose cardinality depends
on k and t only, and hence is independent of n. To see why this result is important for
detecting a tree T in a network G, consider V as the set of nodes of G, k as the number of
nodes in T , and F as a collection of subtrees Y of size at most t, each isomorphic to some
subtree of T . The existence of compact witnesses allows an algorithm to keep track of only a
small subset F̂ of F . Indeed, if F contains a partial solution Y that can be extended into a
global solution isomorphic to T using a set of nodes X, then there is a representative Ŷ ∈ F̂
of the partial solution Y ∈ F that can also be extended into a global solution isomorphic
to T using the same set X of nodes. Therefore, there is no need to keep track of all partial
solutions Y ∈ F , it is sufficient to keep track of just the partial solutions Ŷ ∈ F̂ . This
pruning technique has been successfully used for designing fixed-parameter tractable (FPT)
algorithms for the longest path problem [32], as well as, recently, for searching cycles in the
context of distributed property-testing [19]. Using this technique for detecting the presence
of a given tree however requires to push the recent results in [19] much further. First, the
detection algorithm in [19] is anchored at a fixed node, i.e., the question addressed in [19] is
whether there is a cycle Ck passing through a given node. Instead, we address the detection
problem in its full generality, and we do not restrict ourselves to detecting a copy of T
including some specific node. Second, detecting trees requires to handle partial solutions
that are not only composed of sets of nodes, but that offer various shapes, depending on the
structure of the tree T , representing all possible combinations of subtrees of T .

Theorem A, which establishes the existence of distributed algorithms for detecting the
presence of trees, has important consequences on the ability to test the presence of more
complex graph patterns in the context of distributed property-testing. Recall that, for
ε ∈ (0, 1), a graph G is ε-far from being H-free if removing less than a fraction ε of its edges
cannot result in an H-free graph. A (randomized) distributed algorithm tests H-freeness if
it decides H-freeness according to the following decision rule:

if G is H-free then Pr[every node outputs accept] ≥ 2/3;
if G is ε-far from being H-free then Pr[at least one node outputs reject] ≥ 2/3.

That is, a testing algorithm separates graphs that are H-free from graphs that are far
from being H-free. So far, the only non-trivial graph patterns H for which distributed
algorithms testing H-freeness are known are:

the complete graphs K3 and K4 (see [9, 20]), and
the cycles Ck, k ≥ 3 (see [19]).

Using our algorithm for detecting the presence of trees, we show the following (stated
informally):



G. Even et al. 15:15

T e

C3 CkK4

K2,k

Figure 2 All these graphs are composed of a tree T and edge e with arbitrary connections between
them.

Theorem B. For every graph pattern H composed of an edge and a tree with arbitrary
connections between them, there exists a (randomized) distributed algorithm for testing
H-freeness performing in a constant number of rounds under the congest model.

At a first glance, the family of graph patterns H composed of an edge and a tree with
arbitrary connections between them (like, e.g., the graph depicted on the top-left corner of
Fig. 2) may look quite specific and artificial. This is not the case. For instance, every cycle
Ck for k ≥ 3 is a “tree plus one edge”. This also holds for 4-node complete graph K4. In fact,
all known results about testing H-freeness for some graph H in [9, 19, 20] are just direct
consequence of Theorem B. Moreover, Theorem B enables to test the presence of other graph
patterns, like the complete bipartite graph K2,k with k + 2 nodes, for every k ≥ 1, or the
graph pattern depicted on the top-right corner of Fig. 2, in O(1) rounds. It also enables to
test the presence of connected 1-factors as a subgraph in O(1) rounds. (Recall that a graph
H is a 1-factor if its edges can be directed so that every node has out-degree 1).

In fact, our algorithm is 1-sided, that is, if G is H-free, then all nodes output accept with
probability 1.

3.3 Detecting the Presence of Trees
In this section, we establish our main result:

I Theorem 18. For every tree T , there exists an algorithm performing in O(1) rounds in
the congest model for detecting whether the given input network contains T as a subgraph.

Proof. Let k be the number of nodes in tree T . The nodes of T are labeled arbitrarily by k
distinct integers in [1, k]. We arbitrarily choose a vertex r ∈ [1, k] of T , and view T as rooted
in r. For any vertex ` ∈ V (T ), let T` be the subtree of T rooted in `. We say that T` is a
shape of T . Our algorithm deciding T -freeness proceeds in depth(Tr) + 1 rounds. At round t,
every node u of G constructs, for each shape T` of depth at most t, a set of subtrees of G all
rooted at u, denoted by sosu(T`), such that each subtree in sosu(T`) is isomorphic to the
shape T`. The isomorphism is considered in the sense of rooted trees, i.e., it maps u to `. If

DISC 2017



15:16 Three Notes on Distributed Property Testing

we were in the local model3, we could afford to construct the set of all such subtrees of
G. However, we cannot do that in the congest model because there are too many such
subtrees. Therefore, the algorithm acts in a way which guarantees that:
1. the set sosu(T`) is of constant size, for every node u of G, and every node ` of T ;
2. for every set C ⊆ V of size at most k− |V (T`)|, if there is some subtree W of G rooted at

u that is isomorphic to T`, and that is not intersecting C, then sosu(Tl) contains at least
one such subtree W ′ not intersecting C. (Note that W ′ might be different from W ).

The intuition for the second condition is the following. Assume that there exists some
subtree W of G rooted at u, corresponding to some shape T`, which can be extended into a
subtree isomorphic to T by adding the vertices of a set C. The algorithm may well not keep
the subtree W in sosu(Tl). However, we systematically keep at least one subtree W ′ of G,
also rooted at u and isomorphic to T`, that is also extendable to T by adding the vertices of
C. Therefore the sets sosu(T`), over all shapes T` of depth at most t, are sufficient to ensure
that the algorithm can detect a copy of T in G, if it exists. Our approach is described in
Algorithm 3. (Observe that, in this algorithm, if we omit Lines 13 to 15, which prune the
set sosu(T`), we obtain a trivial algorithm detecting T in the local model). Implementing
the pruning of the sets sosu(T`) for keeping them compact, we make use of the following
combinatorial lemma, which has been rediscovered several times, under various forms (see,
e.g., [19, 32]).

I Lemma 19 (Erdős, Hajnal, Moon [15]). Let V be a set of size n, and consider two integer
parameters p and q. For any set F ⊆ P(V ) of subsets of size at most p of V , there exists a
compact (p, q)-representation of F , i.e., a subset F̂ of F satisfying:
1. For each set C ⊆ V of size at most q, if there is a set L ∈ F such that L ∩ C = ∅, then

there also exists L̂ ∈ F̂ such that L̂ ∩ C = ∅;
2. The cardinality of F̂ is at most

(
p+q
p

)
, for any n ≥ p+ q .

By Lemma 19, the sets sosu(T`) can be reduced to constant size (i.e., independent of
n), for every shape T` and every node u of G. Moreover, the number of shapes is at most k,
and, for each shape T`, each element of sosu(T`) can be encoded on k logn bits. Therefore
each vertex communicates only O(logn) bits per round along each of its incident edges. So,
the algorithm does perform in O(1) rounds in the congest model4.

Proof of correctness. First, observe that if sosu(T`) contains a graph W , then W is indeed
a tree rooted at u, and isomorphic to T`. This is indeed the case at round t = 0, and we can
proceed by induction on t. Let T` be a shape of depth `. Each graph W added to sosu(T`)
is obtained by gluing vertex-disjoint trees at the root u. These latter trees are isomorphic
to the shapes Tj1 , . . . , Tjs , where j1, . . . , js are the children of node j in T . Therefore W is
isomorphic to T`. In particular, if the algorithm rejects at some node u, it means that there
exists a subtree of G isomorphic to T .

We now show that if G contains a subgraph W isomorphic to T , then the algorithm
rejects in at least one node. For this purpose, we prove a stronger statement:

3 The local model is similar to the congest model, but it has no restriction on the size of the
messages [36].

4 We may assume that, for compacting a set sosu(T`) in Lines 13-15, every node u applies Lemma 19 by
brute force (e.g., by testing all candidates F̂ ). In [32], an algorithmic version of Lemma 19 is proposed,
producing a set F̂ of size at most

∑q

i=1 p
i in time O((p+ q)! ·n3), i.e., in time poly(n) for fixed p and q.



G. Even et al. 15:17

Algorithm 3: Tree-detection, for a given tree T . Algorithm executed by node u.
1 for each leaf ` of T do
2 let sosu(T`) be the unique tree with single vertex u
3 exchange the sets sos with all neighbors
4 for t = 1 to depth(T ) do
5 for each node ` of T with depth(T`) = t do
6 sosu(T`)← ∅
7 let j1, . . . , js be the children of ` in T
8 for every s-uple (v1, . . . , vs) of nodes in N(u) do
9 for every (W1, . . . ,Ws) ∈ sosv1(Tj1)× · · · × sosvs

(Tjs
) do

10 if {u} and W1, . . . ,Ws are pairwise disjoint then
11 let W be the tree with root u, and subtrees W1, . . . ,Ws

12 add W to sosu(T`) ; // each Wi is glued to u by its root

13 let F = {V (W ) |W ∈ sosu(Tl)}
; // collection of vertex sets for trees in sosu(Tl)

14 construct a (|V (T`)|, k − |V (T`)|)-compact representation F̂ ⊆ F
; // cf. Lemma 19

15 remove from sosu(T`) all trees W with vertex set not in F̂
16 exchange sosu(T`) with all neighbors

17 if sosu(Tr) = ∅ then ; // r denotes the root of T

18

19 return accept
20 else
21 return reject

I Lemma 20. Let u be a node of G, T` be a shape of T , and C be a subset of vertices of G,
with |C| ≤ k − |V (Tu)|. Let us assume that there exists a subgraph Wu of G, satisfying the
following two conditions:
(1) Wu is isomorphic to T`, and the isomorphism maps u on `, and
(2) Wu does not contain any vertex of C.
Then sosu(T`) contains a tree W ′u satisfying these two conditions.

We prove the lemma by induction on the depth of T`. If depth(T`) = 0 then ` is a leaf
of T`, and sosu(T`) just contains the tree formed by the unique vertex u. Il particular, it
satisfies the claim. Assume now that the claim is true for any node of T whose subtree has
depth at most t− 1, and let ` be a node of depth t. Let j1, . . . , js be the children of ` in T .
For every i, 1 ≤ i ≤ s, let vi be the vertex of Wu mapped on ji. By induction hypothesis,
sosv1(Tj1) contains some tree W ′v1

isomorphic to Tj1 and avoiding the nodes in C ∪ {u}, as
well as all the nodes of Wv2 , . . .Wvs . Using the same arguments, we proceed by increasing
values of i = 2, . . . , s, and we choose a tree W ′vi

∈ sosvi
(Tji

) isomorphic to Tji
that avoids

C ∪ {u}, as well as all the nodes in W ′v1
, . . . ,W ′vi−1

and the nodes of Wvi+1 , . . . ,Wvs
. Now,

observe that the treeW ′′ obtained from gluing u toW ′v1
, . . . ,W ′vs

has been added to sosu(T`)
before compacting this set, by Line 11 of Algorithm 3. Since W ′′ does not intersect C, we get
that, by compacting the set sosu(T`) using Lemma 19, the algorithm keeps a representative
subtree W ′ of G that is isomorphic to Tl and not intersecting C. This completes the proof
of the lemma. �

DISC 2017



15:18 Three Notes on Distributed Property Testing

To complete the proof of Theorem 18, let us assume there exists a subtree W of G
isomorphic to T , and let u be the vertex that is mapped to the root r of T by this
isomorphism. By Lemma 20, sosu(Tr) 6= ∅, and thus the algorithm rejects at node u. J

3.4 Distributed Property Testing
In this section, we show how to construct a distributed tester for H-freeness in the sparse
model, based on Algorithm 3. This tester is able to test the presence of every graph pattern H
composed of an edge e and a tree T connected in an arbitrary manner, by distinguishing
graphs that include H from graphs that are ε-far5 from being H-free.

Specifically, we consider the set H of all graph patterns H with node-set V (H) =
{x, y, z1, . . . , zk} for k ≥ 1, and edge-set E(H) = {f} ∪ E(T ) ∪ E , where f = {x, y}, T is a
tree with node set {z1, . . . , zk}, and E is some set of edges with one end-point equal to x or
y, and the other end-point zi for i ∈ {1, . . . , k}. Hence, a graph H ∈ H can be described by
a triple (f, T, E) where E is a set of edges connecting a node in T with a node in f .

We now establish our second main result, i.e., Theorem B, stated formally below as
follows:

I Theorem 21. For every graph pattern H ∈ H, i.e., composed of an edge and a tree
connected in an arbitrary manner, there exists a randomized 1-sided error distributed property
testing algorithm for H-freeness performing in O(1/ε) rounds in the congest model.

Proof. Let H = (f, T, E), with f = {x, y}. Let us assume that there are ν copies of H in G,
and let us call these copies H1 = (f1, T1, E1), . . . ,Hν = (fν , Tν , Eν)). Let E = {f1, . . . , fν}.
Our tester algorithm for H-freeness is composed by the following two phases:
1. determine a candidate edge e susceptible to belong to E;
2. checking the existence of a tree T connected to e in the desired way.

In order to find the candidate edge, we exploit the following lemma:

I Lemma 22 ([20]). Let H be any graph. Let G be an m-edge graph that is ε-far from being
H-free. Then G contains at least εm/|E(H)| edge-disjoint copies of H.

Hence, if the actual m-edge graph G is ε-far from being H-free, we have |E| ≥ εm/|E(H)|.
Thus, by randomly choosing an edge e and applying Lemma 22, e ∈ E with probability at
least ε/|E(H)|.

As shown in [19], the first phase can be computed in the following way. First, every edge
is assigned to the endpoint having the smallest identifier. Then, every node picks a random
integer r(e) ∈ [1,m2] for each edge e assigned to it. The candidate edge of Phase 1 is the
edge emin with minimum rank, and indeed Pr[emin ∈ E] ≥ ε/|E(H)|.

It might be the case that emin is not unique though. However: Pr[emin is unique] ≥ 1/e2

where e denotes here the basis of the natural logarithm. Also, every node picks, for every edge
e = {v1, v2} assigned to it, a random bit b. Assume, w.l.o.g., that ID(v1) < ID(v2). If b = 0,
then the algorithm will start Phase 2 for testing the presence of H with (x, y) = (v1, v2),
and if b = 1, then the algorithm will start Phase 2 for testing the presence of H with
(x, y) = (v2, v1). We have Pr[emin is considered in the right order] ≥ 1/2. It follows that the
probability emin is unique, considered in the right order, and part of E is at least ε

2|E(H)|e2 .

5 For ε ∈ (0, 1), a graph G is ε-far from being H-free if removing less than a fraction ε of its edges cannot
result in an H-free graph.



G. Even et al. 15:19

Using a deterministic search based on Algorithm 3, H will be found with probability at
least ε

2|E(H)|e2 . To boost the probability of detecting H in a graph that is ε-far from being
H-free, we repeat the search 2e2|E(H)| ln 3/ε times. In this way, the probability that H is
detected in at least one search is at least 2/3 as desired.

During the second phase, the ideal scenario would be that all the nodes of G search for
H = (f, T, E) by considering only the edge emin as candidate for f , to avoid congestion.
Obviously, making all nodes aware of emin would require diameter time. However, there is
no needs to do so. Indeed, the tree-detection algorithm used in the proof of Theorem 18
runs in depth(T ) rounds. Hence, since only the nodes at distance at most depth(T ) + 1 from
the endpoints of emin are able to detect T , it is enough to broadcast emin at distance up
to 2 (depth(T ) + 1) rounds. This guarantees that all nodes participating to the execution
of the algorithm for emin will see the same messages, and will perform the same operations
that they would perform by executing the algorithm for emin on the full graph. So, every
node broadcasts its candidate edge with the minimum rank, at distance 2 (depth(T ) + 1).
Two contending broadcasts, for two candidate edges e and e′ for f , resolve contention by
discarding the broadcast corresponding to the edge e or e′ with largest rank. (If e and e′ have
the same rank, then both broadcast are discarded). After this is done, every node is assigned
to one specific candidate edge, and starts searching for T . Similarly to the broadcast phase,
two contending searches, for two candidate edges e and e′, resolve contention by aborting the
search corresponding to the edge e or e′ with largest rank. From now on, one can assume
that a single search in running, for the candidate edge emin.

It remains to show how to adapt Algorithm 3 for checking the presence of a tree T
connected to a fixed edge e = {x, y} ∈ E(G) as specified in E . Let us consider Instruction 5
of Algorithm 3, that is: “for each node ` of T with depth(T`) = t do”. At each step of this
for-loop, node u tries to construct a tree W that is isomorphic to the subtree of T rooted at
`. In order for u to add W to sosu(T`), we add the condition that:

if {`, x} ∈ E(H) then {u, x} ∈ E(G), and
if {`, y} ∈ E(H) then {u, y} ∈ E(G).

Note that this condition can be checked by every node u. If this condition is not satisfied,
then u sets sosu(T`) = ∅.

This modification enables to test H-freeness. Indeed, if the actual graph G is H-free,
then, since at each step of the modified algorithm, the set sosu(T`) is a subset of the set
sosu(T`) generated by the original algorithm, the acceptance of the modified algorithm is
guaranteed from the correctness of the original algorithm.

Conversely, let us show that, in a graph G that is ε far of being H-free, the algorithm
rejects G as desired. In the first phase of the algorithm, it holds that emin ∈ E happens
in at least one search whenever G is ε-far from being H-free, with probability at least 2/3.
Following the same reasoning of the proof of Lemma 20, since the images of the isomorphism
satisfy the condition of being linked to nodes {x, y} in the desired way, the node of G that is
mapped to the root of T correctly detects T , and rejects, as desired. J

3.5 Conclusion
In this note, we have proposed a generic construction for designing deterministic distributed
algorithms detecting the presence of any given tree T as a subgraph of the input network,
performing in a constant number of rounds in the congest model. Therefore, there is a
clear dichotomy between cycles and trees, as far as efficiently solving H-freeness is concerned:
while every cycle of at least four nodes requires at least a polynomial number of rounds to be
detected, every tree can be detected in a constant number of rounds. It is not clear whether

DISC 2017



15:20 Three Notes on Distributed Property Testing

one can provide a simple characterization of the graph patterns H for which H-freeness
can be decided in O(1) rounds in the congest model. Indeed, the lower bound Ω̃(

√
n) for

C4-freeness can be extended to some graph patterns containing C4 as induced subgraphs.
However, the proof does not seem to be easily extendable to all such graph patterns as,
in particular, the patterns containing many overlapping C4 like, e.g., the 3-dimensional
hypercube Q3, since this case seems to require non-trivial extensions of the proof techniques
in [13]. An intriguing question is to determine the round-complexity of deciding Kk-freeness
in the congest model for k ≥ 3, and in particular to determine the exact round-complexity
of deciding C3-freeness.

Our construction also provides randomized algorithms for testing H-freeness (i.e., for
distinguishing H-free graphs from graphs that are far from being H-free), for every graph
pattern H that can be decomposed into an edge and a tree, with arbitrary connections
between them, also running in O(1) rounds in the congest model. This generalizes the
results in [9, 19, 20], where algorithms for testing K3, K4, and Ck-freeness for every k ≥ 3
were provided. Interestingly, K5 is the smallest graph pattern H for which it is not known
whether testing H-freeness can be done in O(1) rounds, and this is also the smallest graph
pattern that cannot be decomposed into a tree plus an edge. We do not know whether this
is just coincidental or not.

4 Note #3: Algorithms for Testing and Correcting Graph Properties
in the CONGEST Model

4.1 Computational Models

Notations. Let G = (V,E) denote a graph, were V is the set of vertices and E is the set of
edges. Let n , |V (G)|, and let m , |E(G)|. For every v ∈ V , let NG(v) , {u ∈ V | {u, v} ∈
E} denote the neighborhood of v in G. For every v ∈ V , let dG(v) , |NG(v)| denote the
degree of v. When the graph at hand is clear from the context we omit the subscript G.

4.1.1 Distributed CONGEST Model

Computation in the distributed congest [36] model is done as follows. Let G = (V,E)
denote a network where each vertex is a processor and each edge is a communication link
between its two endpoints. Each processor is given a local input. Each processor v has a
distinct ID - for brevity we say that the ID of processor v is simply v.6 The computation is
synchronized and is measured in terms of rounds. In each round, each processor performs
the following steps:
1. Receive the messages that were sent by its neighbors in the previous round.
2. Execute a local (randomized) computation.
3. Sends (different) messages of O(logn) bits to every neighbor neighbors (or a possible

“empty message”).
In the last round all the processors stop and output a local output.

6 In this paper we focus on randomized algorithms. Note that, with high probability, distinct IDs can be
randomly generated using O(logn) bits.



G. Even et al. 15:21

4.1.2 (Global) Testing Model
Graph property testing [22, 23] is defined as follows. A graph property P is a subset of all
(undirected and unlabeled) graphs e.g., the graph is cycle-free, the graph is bipartite, etc.
We focus on edge monotone (with respect to deletions) properties.

I Definition 23. A graph property P is edge-monotone if G ∈ P and G′ is obtained from G

by the removal of edges, then G′ ∈ P.

We define the edge-distance between two graphs G = (V,E) and G′ = (V,E′) as the
number edges in the symmetric difference E 4 E′. We say that a graph G is ε-far (in the
general model) from having the property P if |E 4 E′| ≥ ε · |E|, for every G′ = (V,E′) ∈ P.

The tester accesses the graph via queries. The type of queries we consider are: (1) what
is the degree of v for v ∈ V ? (2) who is the ith neighbor of v ∈ V ?

We say that an algorithm is a one sided ε-tester for property P in the general model
if given query access to the graph G the algorithm ACCEPTS the graph G if G has the
property P , i.e, completeness, and REJECTS the graph G with probability at least 2/3 if G
is ε-far from having the property P, i.e., soundness.

We note that since the tester must accept graphs G ∈ P, a reject occurs if only if the
tester has a proof that that G /∈ P. Such a proof is called a witness against G ∈ P. In fact,
in [9], it is required that the witness is an induced proper subgraph of G.

The complexity measure of this model is the number of queries made to G. The goal is
to design an ε-tester with as few as possible queries. In particular, the number of queries
should be sublinear in the size of the graph.

In Section 4.4 an additional query type is allowed; this query is called a random edge
query, and enables on to pick an edge e u.a.r. from E.

4.1.3 Distributed Testing in the CONGEST model
Let G = (V,E) be a graph and let P denote a graph property. We say that a randomized
distributed CONGEST algorithm is an ε-tester for property P in the general model [9] if
when G has the property P then all the processors v ∈ V output ACCEPT, and if G is ε-far
from having the property P, then there is a processor v ∈ V that outputs REJECT with
probability at least 2/3.

4.1.4 Distributed Correcting
In this section we define correction in the distributed setting. We then explain how to obtain
correction for the property of cycle-freeness. We focus here on edge-monotone properties,
and therefore, consider only corrections that delete edges. One can view an ε-corrector as an
approximation algorithm to the distance to property P , where the approximation is additive.

I Definition 24. In the distributed CONGEST model, we say that an algorithm is an
ε-corrector for an edge-monotone property P if the following holds.
1. Let G = (V,E) denote the network’s graph. When the algorithm terminates, each

processor v knows which edges in E that intersect with v are in the set of deleted edges
E′ ⊆ E.

2. G(V,E \ E′) is in P.
3. |E′| ≤ dist(G,P) + ε|E|, where dist(G,P) denotes the minimum number of edges that

should be removed from G in order to obtain the property P.

DISC 2017



15:22 Three Notes on Distributed Property Testing

4.2 Reducing the Dependency on the Diameter and Applications
In this section we present a general technique that reduces the dependency of the round
complexity on the diameter. The technique is based on graph decompositions defined below.

I Definition 25 ([31]). Let G = (V,E) denote an undirected graph. A (β, d)-decomposition
of G is a partition of V into disjoint subsets V1, . . . , Vk such that
1. For all 1 ≤ i ≤ k, diam(G[Vi]) ≤ d, where G[Vi] is the vertex induced subgraph of of G

that is induced by Vi.
2. The number of edges with endpoints belonging to different subsets is at most β · |E|. We

refer to these as cut-edges of the decomposition.
Note that the diameter constraint refers to strong diameter, in particular, each induced
subgraph G[Vi] must be connected.

Algorithms for (ε, (logn)/ε)-decompositions were developed in many contexts (e.g., par-
allel algorithms [6, 7, 31]). An implementation in the CONGEST-model is presented
in [14].

I Theorem 26 ([14]). A (ε,O(logn/ε))-decomposition can be computed in the randomized
CONGEST-model in O((logn)/ε) rounds with probability at least 1− 1/Poly(n).

A nice feature of the algorithm based on random exponential shifts is that at the end of the
algorithm, there is a spanning BFS-like rooted tree Ti for each subset Vi in the decomposition.
Moreover, each vertex v ∈ Vi knows the center of Ti as well as its parent in Ti. In addition,
every vertex knows which of the edges incident to it are cut-edges.

The following definition captures the notion of connected witnesses against a graph
satisfying a property.

I Definition 27 ([9]). 7 A graph property P is non-disjointed if for every witness G′ against
G ∈ P, there exists an induced subgraph G′′ of G′ that is connected such that G′′ is also a
witness against G ∈ P.

The main result of this section is formulated in the following theorem. We refer to a
distributed algorithm in which all vertices accept iff G ∈ P as a verifier for P.

I Theorem 28. Let P be an edge-monotone non-disjointed graph property that can be verified
in the CONGEST-model in O(diam(G)) rounds, where G is the input graph. Then there is
an ε-tester for P in the randomized CONGEST-model with O((logn)/ε) rounds.

Proof. The algorithm tries to “fix” the input graph G so that it satisfies P by removing less
than ε·m edges. The algorithm consists of two phases. In the first phase, an (ε′, O((logn)/ε′))
decomposition is computed in O((logn)/ε′) rounds, for ε′ = ε/2. The algorithm removes all
the cut-edges of the decomposition. (There are at most ε ·m/2 such edges.) In the second
phase, in each subgraph G[Vi], an independent execution of the verifier algorithm for P is
executed. The number of rounds of the verifier in G[Vi] is O(diam(G[Vi])) = O((logn)/ε).

We first prove completeness. Assume that G ∈ P . Since P is an edge-monotone property,
the deletion of the cut-edges does not introduce a witness against P. This implies that each

7 An alternative (nonequivalent) definition which suffices for proving Theorem 28 is as follows. A property
P is non-disjointed if, for every nonconnected graph G, the following holds:

G ∈ P ⇐⇒ for every connected component G′ of G: G′ ∈ P.



G. Even et al. 15:23

induced subgraph G[Vi] does not contain a witness against P , and hence the verifiers do not
reject, and every vertex accepts.

We now prove soundness. If G is ε-far from P , then after the removal of the cut-edges (at
most εm/2 edges) property P is still not satisfied. Let G′ be a witness against the remaining
graph satisfying P. Since property P is non-disjointed, there exists a connected witness
G′′ in the remaining graph. This witness is contained in one of the subgraphs G[Vi], and
therefore, the verifier that is executed in G[Vi] will reject, hence at least one vertex rejects,
as required. J

We remark that if the round complexity of the verifier is f(diam(G), n) (e.g., f(∆, n) =
∆ + logn), then the round complexity of the ε-tester is O((logn)/ε) + f((logn)/ε, n). This
follows directly from the proof.

Extensions to ε-Testers

The following “bootstrapping” technique can be applied. If there exists an ε-tester in the
CONGEST-model with round complexity O(diam(G)), then there exists an ε-tester with
round complexity O((logn)/ε). The proof is along the same lines, expect that instead of a
verifier, an ε′-tester is executed in each subgraph G[Vi]. Indeed, if G is ε-far from P, then
there must exist a subset Vi such that G[Vi] is ε′-far from P. Otherwise, we could “fix” all
the parts by deleting at most ε′ ·m edges, and thus “fix” G by deleting at most 2ε′ ·m = εm

edges, a contradiction.

4.2.1 Testing Bipartiteness
Theorem 28 can be used to test whether a graph is bipartite or ε-far from being bipartite. A
verifier for bipartiteness can be obtained by attempting to 2-color the vertices (e.g., BFS
that assigns alternating colors to layers). In our special case, each subgraph G[Vi] has a root
which is the only vertex that initiates the BFS. In the general case, one would need to deal
with “collisions” between searches, and how one search “kills” the other searches initiated by
vertices of lower ID.

4.2.2 Testing Cycle-Freeness
Theorem 28 can be used to test whether a graph is acyclic or ε-far from being acyclic. As
in the case of bipartiteness, any scan (e.g., DFS, BFS) can be applied. A second visit to a
vertex indicates a cycle, in which case the vertex rejects.

I Corollary 29. There exists an ε-tester in the randomized CONGEST-model for bipartite-
ness and cycle-freeness with round complexity O((logn)/ε).

4.2.3 Corrector for Cycle-Freeness
Our ε-testers for testing cycle freeness can be easily converted into ε-correctors as follows::
(1) All the cut-edges are removed. (2) In each G[Vi], all the edges which are not in the
BFS-like spanning tree Ti are removed.

I Theorem 30. There exists an ε-corrector for cycle-freeness in the randomized
CONGEST-model with round complexity O((logn)/ε).

DISC 2017



15:24 Three Notes on Distributed Property Testing

Proof sketch. The remaining edges form a forest of disjoint trees, and are therefore acyclic.
The proof that the number of deleted edges is at most dist(G,P) + ε · |E| is based on the
following two observations. Let G′ denote the graph obtained from G by deleting all the
cut-edges. dist(G′,P) ≤ dist(G,P) and dist(G′[Vi],P) = |E(G[Vi]) \ E(Ti)|. J

4.3 Testing H-Freeness in Θ(1/ε) Rounds for |V (H)| ≤ 4

4.3.1 Testing Triangle-Freeness
In this section we present an ε-tester for triangle-freeness that works in the CONGEST-model.
The number of rounds is O(1/ε).

Consider a triangle ABC in the input graph G = (V,E). This triangle can be detected if
A tells B about a neighbor C ∈ N(A) with the hope that C is also a neighbor of B. Vertex
B checks that C is also its neighbor, and if it is then the triangle ABC is detected. Hence,
A would like to send to B the name of a vertex C such that C ∈ N(A)∩N(B). Since A can
discover N(A) in a single round, it proceeds by telling B about a neighbor C ∈ N(A) \ {B}
chosen uniformly at random. Let MA→B denote the random neighbor that A reports to B.
A listing of the distributed ε-tester for triangle-freeness appears as Algorithm 4. Note that
all the messages {MA→B}(A,B)∈E are independent, and that the messages are rechosen for
each iteration.

I Claim 31. For every triangle x, the probability that triangle x is detected is at least 1/m.

Proof. Label the vertices of x arbitrarily by A,B,C. The event that triangle x is detected
is contained in the event that MA→B ∈ N(B). Since ABC is a triangle, C ∈ N(A) ∩N(B),
and Pr [MA→B ∈ N(B)] ≥ 1/d(A) ≥ 1/m. J

I Claim 32. If a graph G is ε-far from being triangle-free, then it contains at least ε ·m/3
edge-disjoint triangles.

Proof. Consider the following procedure for “covering” all the triangles: while the graph
contains a triangle, delete all three edges of the triangle. When the procedure ends, the
remaining graph is triangle-free, hence at least εm edges were removed. The set of deleted
triangles is edge disjoint and hence contains at least εm/3 triangles. J

I Theorem 33. Algorithm 4 is an ε-tester for triangle-freeness.

Proof. Completeness: If G is triangle free then Line 4 is never satisfied, hence for every v
Algorithm 4 terminates at Line 5.

Soundness: Let G = (V,E) be a graph which is ε-far from being triangle free. By Claim 32
there are ε ·m/3 edge disjoint triangles in G. Edge disjointness implies that the detection of
these triangles are independent events8. Hence, the probability of not detecting any of these
triangles in a single iteration is at most (1− 1/m)εm/3. The reject probability is amplified to
2/3 by setting the number of iterations to be t = Θ(1/ε). J

4.3.2 Testing C4-Freeness in Θ(1/ε) Rounds
In this section we present an ε-tester in the CONGEST-model for C4-freeness that runs in
O(1/ε) rounds.

8 In fact, the events are independent even for triangles which are not edge disjoint.



G. Even et al. 15:25

Algorithm 4: Triangle-free-test(v).
1 Send v to all u ∈ N(v) // 1st round: each v learns N(v)
2 for t , Θ(1/ε) times do
3 For all u ∈ N(v), simultaneously: send u the message Mv→u ∼ U(N(v) \ {u}).
4 If ∃w ∈ N(v) such that Mw→v ∈ N(v) then return REJECT
5 return ACCEPT

Uniform Sampling of 2-paths

Let P2(v) denote the set of all paths of length 2 that start at v. The algorithm is based
on the ability of each vertex v to uniformly sample a path from P2(v). How many paths
in P2(v) start with the edge (v, w)? Clearly, there are (d(w) − 1) such paths. Hence
the first edge should be chosen according to the degree distribution over N(v) defined by
πv(w) , (d(w)− 1)/

∑
x∈N(v)(d(x)− 1). Moreover, for each x ∈ N(w) \ {v}, the (directed)

edge (w, x) appears exactly once as the second edge of a path in P2(v). Hence, given the
first edge, the second edge is chosen uniformly.

This implies that v can pick a random path p ∈ P2(v) as follows: (1) Each neighbor
w ∈ N(v) sends v its degree and a uniformly randomly chosen neighbor Bv(w) ∈ N(w) \ {v}.
The edge (w,Bv(w)) is a candidate edge for the second edge of p. (2) v picks a neighbor
A(v) ∈ N(v) where A(v) ∼ πv. The random path p is p = 〈v,A(v), Bv(A(v))〉, and it is
uniformly distributed over P2(v).

In the algorithm, vertex v reports a path to each neighbor. We denote by pu(v) the
path in P2(v) that v reports to u ∈ N(v). This is done by independently picking neigh-
bors Au(v) ∈ N(v), where each Au(v) ∼ πv. Hence, the path that v reports to u is
pu(v) , 〈v,Au(v), Bv(Au(v))〉 Algorithm 5 uses this process for reporting paths of length 2.
Interestingly, these paths are not independent, however for the case of edge disjoint copies of
C4, their “usefulness” in detecting copies of C4 turns out to be independent (see Lemma 35).

Detecting a Cycle

Consider a copy C = (v, w, x, u) of C4 in G. If the 2-path pu(v) that v reports to u is
pu(v) = (v, w, x), then u can check whether the last vertex x in pu(v) is also in N(u). If
x ∈ N(u), then the copy C in G of C4 is detected. (The vertex u also needs to verify that
w 6= u.)

Description of the Algorithm

The ε-tester for C4-freeness is listed as Algorithm 5. In the first round, each vertex v learns
its neighborhood N(v) and the degree of each neighbor. The for-loop repeats t = O(1/ε)
times. Each iteration consists of three rounds. In the first round, v independently draws
fresh values for Au(v) and Bu(v) for each of its neighbors u ∈ N(v), and sends Bu(v) to u.
In the second round, for each neighbor u ∈ N(v), v sends the path 〈v,Au(v), Bv(Au(v))〉. In
the third round, v checks if it received a path 〈w, a, b〉 for a neighbor w ∈ N(v) where a 6= v

and b ∈ N(v). If this occurs, then (v, w, a, b) is a copy of C4, and vertex v rejects. If v did
not reject in all the iterations, then it finally accepts.

DISC 2017



15:26 Three Notes on Distributed Property Testing

Analysis of the Algorithm

I Definition 34. We say that pu(v) is a success (wrt C = (v, w, x, u)) if pu(v) = (v, w, x).
Let Iv,u denote the indicator variable of the event that pu(v) is a success.

I Lemma 35. Let {Cj(vj , wj , xj , uj)}j∈J denote a set of edge-disjoint copies of C4 in G.
Then the random variables Ivj ,uj are independent.

Proof. The event Iv,u = 1 occurs iff Au(v) = w and Bv(w) = x. Both Au(v) and Bv(w) are
random variables assigned to (directed) edges. By construction, all the random variables
{Au(v)}(u,v∈E ∪ {Bv(w)}(v,w)∈E are independent. Since the cycles are edge-disjoint, the
lemma follows. J

I Claim 36. Pr[Iv,u = 1 | C] ≥ 1/(2m).

Proof. The path pu(v) equals (v, w, x) iff Au(v) = w and Bv(w) = x. As Au(v) and Bv(w)
are independent, we obtain

Pr [Iv,u = 1 | C] = Pr [Au(v) = w|C] · Pr [Bv(w) = x | C]

= d(w)− 1∑
x∈N(v)(d(x)− 1) ·

1
d(w)− 1 ≥

1
2m. J

I Claim 37. If a graph G is ε-far from being C4-free, then it contains at least ε · m/4
edge-disjoint copies of C4.

I Theorem 38. Algorithm 5 is an ε-tester for C4-freeness. The round complexity of the
algorithm is Θ(1/ε) and in each round no more than O(logn) bits are communicated along
each edge.

Proof. Completeness: If G is C4-free then Line 7 is never satisfied, hence for every v

Algorithm 5 terminates at Line 8.
Soundness: Let G = (V,E) be a graph which is ε-far from being C4-free. Therefore, there

exist ` , εm/4 edge disjoint copies of C4 in G. Denote these copies by {C1, . . . , C`}, where
Cj = (vj , wj , wj , uj). In each iteration, the cycle Cj is detected if Ivj ,uj = 1, which (by
Claim 36) occurs with probability at least 1/(2m). The cycles {Cj}j are edge-disjoint, hence,
by Lemma 35, the probability that none of these cycles is detected is at at most (1−1/(2m))`.
The iterations are independent, and hence the probability that all the iterations fail to detect
one of these cycles is at most (1− 1/(2m))`·t. Since ` = εm/4, setting t = Θ(1/ε) reduces
the probability of false accept to at most 1/3, as required. J

Extending Algorithm 5

The algorithm can be easily extended to test H-freeness for any connected H over four
nodes. If H is a K1,3 then clearly H-freeness can be tested in one round. Otherwise, H is
Hamiltonian and can be tested by simply sending an additional bit in the message sent in
Line 5 of the algorithm. The additional bit indicates whether v is connected to Bv(Au(v)).
Given this information, u can determine the subgraph induced on {u, v,Au(v), Bv(Au(v))},
and hence rejects if H is a subgraph of this induced subgraph. Therefore we obtain the
following theorem.

I Theorem 39. There is an algorithm which is an ε-tester for H-freeness for any connected
H over 4 vertices. The round complexity of the algorithm is Θ(1/ε) and in each round no
more than O(logn) bits are communicated along each edge.



G. Even et al. 15:27

Algorithm 5: C4-free-test(v).
1 Send v and d(v) to all u ∈ N(v) // v learns N(v) and d(u) for every u ∈ N(v)
2 Define the following distribution πv over N(v): For every w ∈ N(v),

πv(w) , d(w)/
∑

x∈N(v) d(x) .
3 for t , Θ(1/ε) times do
4 For every neighbor u ∈ N(v) independently draw Au(v) ∼ πv and

Bu(v) ∼ U(N(v) \ {u}, send Bu(v) to u.
5 For every neighbor u ∈ N(v) send the path 〈v,Au(v), Bv(Au(v))〉 to u.
6 if ∃w ∈ N(v) s.t. v received the path 〈w, a, b〉 from w, where v 6= a and b ∈ N(v) then
7 return REJECT // A cycle C = (v, w, a, b) was found.

8 return ACCEPT

4.4 Testing T -Freeness for any Tree T

In this section we generalize the tester by Iwama and Yoshida [25] of testing k-path freeness
to testing the exclusion of any tree, T , of order k. We assume that the vertices of T are
labeled by v0, . . . , vk−1. Our tester has a one sided error and it works in the general graph
model with random edge queries. This algorithm can be simulated in the CONGEST model.
The complexities of the algorithms are stated in the next theorems.

I Theorem 40. Algorithm 6 is a global ε-tester, one-sided error for T -freeness. The query
complexity of the algorithm is O

(
kk

2+1 · ε−k
)
. The algorithm works in the general graph

model augmented with random edge samples.

I Theorem 41. There is an ε-tester in the CONGEST model that on input T , where T is a
tree, tests T -freeness. The round complexity of the tester is O

(
kk

2+1 · ε−k
)
where k is the

order of T .

Global Algorithm Description

The algorithm by Iwama and Yoshida [25] for testing k-path freeness proceeds as follows.
An edge is picked u.a.r. and an endpoint, v, of the selected edge,is picked u.a.r. A random
walk of length k is performed from v, if a simple path of length k is found then the algorithm
rejects. The analysis in [25] shows that this process has a constant probability (depends only
on k and ε) to find a k-path in an ε-far from k-path freeness graph.

We generalize this tester in the following straightforward manner. We pick a random
vertex v as in the above-mentioned algorithm. The vertex v is a candidate for being the root
of a copy of T . For the sake of brevity we denote the (possible) root of the copy of T also by
v0. From v we start a “DFS-like” revealing of a tree which is a possible copy of T with the
first random vertex acting as its root. DFS-like means that we scan a subgraph of G starting
from v as follows: the algorithm independently and randomly selects dT (v0) neighbors (out
of the possible dG(v)) and recursively scans the graph from each of these randomly chosen
neighbors. While scanning, if we encounter any vertex more than once then we abort the
process (we did not find a copy of T ). If the process terminates, then this implies that the
algorithm found a copy of T . In order to obtain probability of success of 2/3 the above
process is repeated t = f(ε, k) times. The listing of this algorithm appears in Algorithm 6.
The algorithm can be simulated in the CONGEST model in a straight-forward way. The
proofs of Theorems 40 and 41 appear in the full version of this paper [16].

DISC 2017



15:28 Three Notes on Distributed Property Testing

Algorithm 6: Global-tree-free-test(T, v).
1 for t , Θ(kk2

/εk) times do
2 Pick an edge u.a.r. and an endpoint, v, of the selected edge u.a.r.
3 Initialize all the vertices in G to be un-labeled.
4 Call Recursive-tree-exclusion(T, 0, v) and return REJECT if it returned 1.
5 return ACCEPT .

Procedure Recursive-tree-exclusion(T, i, v).
1 If v was already labeled then return 0, otherwise, label v by i. // The recursion

returns 0 if the revealed labeled subgraph is not T.
2 Define ` = dT (vi)− 1 if i > 0 and ` = dT (vi) otherwise.
3 Let vi1 , . . . , vi` denote the labels of the children of vi in T (in which v0 is the root).
4 Pick u.a.r. ` vertices u1, . . . , u` from NG(v) and recursively call

Recursive-tree-exclusion(T, ij , uj) for each j ∈ [`]
5 If one of the calls returned 0, then return 0, otherwise return 1.

References
1 Amir Abboud, Keren Censor-Hillel, and Seri Khoury. Near-linear lower bounds for distrib-

uted distance computations, even in sparse networks. In 30th International Symposium in
Distributed Computing (DISC), pages 29–42, 2016. doi:10.1007/978-3-662-53426-7_3.

2 Noga Alon, Sonny Ben-Shimon, and Michael Krivelevich. A note on regular ramsey graphs.
Journal of Graph Theory, 64(3):244–249, 2010.

3 Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of
large graphs. Combinatorica, 20(4):451–476, 2000.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
5 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.
6 Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Low-diameter graph

decomposition is in nc. In Scandinavian Workshop on Algorithm Theory, pages 83–93.
Springer, 1992.

7 Guy E Blelloch, Anupam Gupta, Ioannis Koutis, Gary L Miller, Richard Peng, and Kanat
Tangwongsan. Nearly-linear work parallel sdd solvers, low-diameter decomposition, and
low-stretch subgraphs. Theory of Computing Systems, 55(3):521–554, 2014.

8 Luciana Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In 25th ACM Symposium on Prin-
ciples of Database Systems (PODS), pages 253–262, 2006.

9 Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast dis-
tributed algorithms for testing graph properties. In 30th Int. Symposium on Distributed
Computing (DISC), volume 9888 of LNCS, pages 43–56. Springer, 2016.

10 Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. In ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pages 143–152, 2015.

11 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. In 43rd ACM Symposium on Theory of Computing (STOC),
pages 363–372, 2011.

http://dx.doi.org/10.1007/978-3-662-53426-7_3


G. Even et al. 15:29

12 Danny Dolev, Christoph Lenzen, and Shir Peled. Tri, tri again: Finding triangles and
small subgraphs in a distributed setting. In 26th International Symposium on Distributed
Computing, pages 195–209, 2012.

13 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In ACM Symposium on Principles of Distributed Computing (PODC), pages 367–
376, 2014.

14 Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners
and emulators. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 652–669. SIAM, 2017.

15 Paul Erdős, András Hajnal, and J. W. Moon. A problem in graph theory. The American
Mathematical Monthly, 71(10):1107–1110, 1964.

16 Guy Even, Reut Levi, and Moti Medina. Faster and simpler distributed algorithms for
testing and correcting graph properties in the congest-model. CoRR, abs/1705.04898, 2017.
URL: http://arxiv.org/abs/1705.04898.

17 Orr Fischer, Tzlil Gonen, and Rotem Oshman. Distributed property testing for subgraph-
freeness revisited. CoRR, abs/1705.04033, 2017. URL: http://arxiv.org/abs/1705.
04033.

18 Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport, and Ioan Todinca.
Distributed subgraph detection. CoRR, abs/1706.03996, 2017. URL: http://arxiv.org/
abs/1706.03996.

19 Pierre Fraigniaud and Dennis Olivetti. Distributed detection of cycles. In 29th ACM on
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2017.

20 Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed testing of
excluded subgraphs. In 30th Int. Symposium on Distributed Computing (DISC), volume
9888 of LNCS, pages 342–356. Springer, 2016.

21 Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute
their diameter in sublinear time. In 23rd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1150–1162, 2012.

22 Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

23 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

24 Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest paths and
applications. In ACM Symposium on Principles of Distributed Computing (PODC), pages
355–364, 2012. doi:10.1145/2332432.2332504.

25 Kazuo Iwama and Yuichi Yoshida. Parameterized testability. In Innovations in Theoretical
Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages 507–516,
2014. doi:10.1145/2554797.2554843.

26 Taisuke Izumi and François Le Gall. Triangle finding and listing in CONGEST networks.
In ACM Symposium on Principles of Distributed Computing (PODC), 2017.

27 Stasys Jukna and Georg Schnitger. Triangle-freeness is hard to detect. Combinatorics,
Probability, & Computing, 11(6):549–569, 2002.

28 Shay Kutten and David Peleg. Fast distributed construction of small k-dominating sets
and applications. J. Algorithms, 28(1):40–66, 1998. doi:10.1006/jagm.1998.0929.

29 Tom Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kaufmann,
1992.

30 Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and applications.
In ACM Symposium on Principles of Distributed Computing (PODC), pages 153–162, 2015.
doi:10.1145/2767386.2767398.

DISC 2017

http://arxiv.org/abs/1705.04898
http://arxiv.org/abs/1705.04033
http://arxiv.org/abs/1705.04033
http://arxiv.org/abs/1706.03996
http://arxiv.org/abs/1706.03996
http://dx.doi.org/10.1145/2332432.2332504
http://dx.doi.org/10.1145/2554797.2554843
http://dx.doi.org/10.1006/jagm.1998.0929
http://dx.doi.org/10.1145/2767386.2767398


15:30 Three Notes on Distributed Property Testing

31 Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using
random shifts. In Proceedings of the twenty-fifth annual ACM symposium on Parallelism
in algorithms and architectures, pages 196–203. ACM, 2013.

32 Burkhard Monien. How to find long paths efficiently. In Analysis and design of algorithms
for combinatorial problems, volume 109 of North-Holland Math. Stud., pages 239–254.
North-Holland, Amsterdam, 1985. doi:10.1016/S0304-0208(08)73110-4.

33 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In
ACM Symposium on Theory of Computing (STOC), pages 565–573, 2014. doi:10.1145/
2591796.2591850.

34 Hiroaki Ookawa and Taisuke Izumi. Filling logarithmic gaps in distributed complex-
ity for global problems. In 41st International Conference on Current Trends in The-
ory and Practice of Computer Science (SOFSEM), pages 377–388, 2015. doi:10.1007/
978-3-662-46078-8_31.

35 Judea Pearl. Fusion, propagation, and structuring in belief networks. Artif. Intell.,
29(3):241–288, 1986.

36 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

http://dx.doi.org/10.1016/S0304-0208(08)73110-4
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1007/978-3-662-46078-8_31
http://dx.doi.org/10.1007/978-3-662-46078-8_31

	General Introduction
	Summary of the Results and Techniques

	Note #1: Color-Coding Based Algorithms for Testing Subgraph-Freeness
	Introduction
	Preliminaries
	Detecting Constant-Size Cycles
	Detecting Constant-Size Trees
	Detecting Constant-Size Complex Graphs
	Testing K-s-Freeness
	Algorithm Overview
	Triangle-Freeness for epsilon in [min m^-1/3, n/m, 1] in O(1) rounds
	General Tester for K-s-Freeness


	Note #2: Deterministic Tree Detection and Applications in Distributed Property Testing
	Context and Objective
	Our Results
	Detecting the Presence of Trees
	Distributed Property Testing
	Conclusion

	Note #3: Algorithms for Testing and Correcting Graph Properties in the CONGEST Model
	Computational Models
	Distributed CONGEST Model
	(Global) Testing Model
	Distributed Testing in the CONGEST model
	Distributed Correcting

	Reducing the Dependency on the Diameter and Applications
	Testing Bipartiteness
	Testing Cycle-Freeness
	Corrector for Cycle-Freeness

	Testing H-Freeness in Theta(1/epsilon) Rounds for |V(H)|<=4
	Testing Triangle-Freeness
	Testing C-4-Freeness in Theta(1/epsilon) Rounds

	Testing T-Freeness for any Tree T


