37 research outputs found

    Interactive ray tracing of massive and deformable models

    Get PDF
    Ray tracing is a fundamental algorithm used for many applications such as computer graphics, geometric simulation, collision detection and line-of-sight computation. Even though the performance of ray tracing algorithms scales with the model complexity, the high memory requirements and the use of static hierarchical structures pose problems with massive models and dynamic data-sets. We present several approaches to address these problems based on new acceleration structures and traversal algorithms. We introduce a compact representation for storing the model and hierarchy while ray tracing triangle meshes that can reduce the memory footprint by up to 80%, while maintaining high performance. As a result, can ray trace massive models with hundreds of millions of triangles on workstations with a few gigabytes of memory. We also show how to use bounding volume hierarchies for ray tracing complex models with interactive performance. In order to handle dynamic scenes, we use refitting algorithms and also present highly-parallel GPU-based algorithms to reconstruct the hierarchies. In practice, our method can construct hierarchies for models with hundreds of thousands of triangles at interactive speeds. Finally, we demonstrate several applications that are enabled by these algorithms. Using deformable BVH and fast data parallel techniques, we introduce a geometric sound propagation algorithm that can run on complex deformable scenes interactively and orders of magnitude faster than comparable previous approaches. In addition, we also use these hierarchical algorithms for fast collision detection between deformable models and GPU rendering of shadows on massive models by employing our compact representations for hybrid ray tracing and rasterization

    Ray Tracing Gems

    Get PDF
    This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for: Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPU

    Faster data structures and graphics hardware techniques for high performance rendering

    Get PDF
    Computer generated imagery is used in a wide range of disciplines, each with different requirements. As an example, real-time applications such as computer games have completely different restrictions and demands than offline rendering of feature films. A game has to render quickly using only limited resources, yet present visually adequate images. Film and visual effects rendering may not have strict time requirements but are still required to render efficiently utilizing huge render systems with hundreds or even thousands of CPU cores. In real-time rendering, with limited time and hardware resources, it is always important to produce as high rendering quality as possible given the constraints available. The first paper in this thesis presents an analytical hardware model together with a feed-back system that guarantees the highest level of image quality subject to a limited time budget. As graphics processing units grow more powerful, power consumption becomes a critical issue. Smaller handheld devices have only a limited source of energy, their battery, and both small devices and high-end hardware are required to minimize energy consumption not to overheat. The second paper presents experiments and analysis which consider power usage across a range of real-time rendering algorithms and shadow algorithms executed on high-end, integrated and handheld hardware. Computing accurate reflections and refractions effects has long been considered available only in offline rendering where time isn’t a constraint. The third paper presents a hybrid approach, utilizing the speed of real-time rendering algorithms and hardware with the quality of offline methods to render high quality reflections and refractions in real-time. The fourth and fifth paper present improvements in construction time and quality of Bounding Volume Hierarchies (BVH). Building BVHs faster reduces rendering time in offline rendering and brings ray tracing a step closer towards a feasible real-time approach. Bonsai, presented in the fourth paper, constructs BVHs on CPUs faster than contemporary competing algorithms and produces BVHs of a very high quality. Following Bonsai, the fifth paper presents an algorithm that refines BVH construction by allowing triangles to be split. Although splitting triangles increases construction time, it generally allows for higher quality BVHs. The fifth paper introduces a triangle splitting BVH construction approach that builds BVHs with quality on a par with an earlier high quality splitting algorithm. However, the method presented in paper five is several times faster in construction time

    Fast Ray Tracing Techniques

    Get PDF
    In the past, ray tracing has been used widely in offline rendering applications since it provided the ability to better capture high quality secondary effects such as reflection, refraction and shadows. Such effects are difficult to produce in a robust, high quality fashion with traditional, real-time rasterization algorithms. Motivated to bring the advantages to ray tracing to real-time applications, researchers have developed better and more efficient algorithms that leverage the current generation of fast, parallel CPU hardware within the past few years. This thesis provides the implementation and design details of a high performance ray tracing solution called ``RTTest'' for standard, desktop CPUs. Background information on various algorithms and acceleration structures are first discussed followed by an introduction to novel techniques used to better accelerate current, core ray tracing techniques. Techniques such as Omni-Directional Packets, Cone Proxy Traversal and Multiple Frustum Traversal are proposed and benchmarked using standard ray tracing scenes. Also, a novel soft shadowing algorithm called Edge Width Soft Shadows is proposed which achieves performance comparable to a single sampled hard shadow approach targeted at real time applications such as games. Finally, additional information on the memory layout, rendering pipeline, shader system and code level optimizations of RTTest are also discussed

    Ray tracing of dynamic scenes

    Get PDF
    In the last decade ray tracing performance reached interactive frame rates for nontrivial scenes, which roused the desire to also ray trace dynamic scenes. Changing the geometry of a scene, however, invalidates the precomputed auxiliary data-structures needed to accelerate ray tracing. In this thesis we review and discuss several approaches to deal with the challenge of ray tracing dynamic scenes. In particular we present the motion decomposition approach that avoids the invalidation of acceleration structures due to changing geometry. To this end, the animated scene is analyzed in a preprocessing step to split it into coherently moving parts. Because the relative movement of the primitives within each part is small it can be handled by special, pre-built kd-trees. Motion decomposition enables ray tracing of predefined animations and skinned meshed at interactive frame rates. Our second main contribution is the streamed binning approach. It approximates the evaluation of the cost function that governs the construction of optimized kd-trees and BVHs. As a result, construction speed especially for BVHs can be increased by one order of magnitude while still maintaining their high quality for ray tracing.Im letzten Jahrzehnt wurden interaktive Bildwiederholraten bei dem Raytracen von nicht trivialen Szenen erreicht. Dies hat den Wunsch geweckt, auch sich verändernde Szenen mit Raytracing darstellen zu können. Allerdings werden die vorberechneten Datenstrukturen, welche für die Beschleunigung von Raytracing gebraucht werden, durch Veränderungen an der Geometrie einer Szene unbrauchbar gemacht. In dieser Dissertation untersuchen und diskutieren wir mehrere Lösungsansätze für das Problem der Darstellung von sich verändernden Szenen mittels Raytracings. Insbesondere stellen wir den Motion Decomposition Ansatz vor, welcher die bisher nötige Neuberechnung der Beschleunigungsdatenstrukturen aufgrund von Geometrieänderungen zu einem großen Teil vermeidet. Dazu wird in einem Vorberechnungsschritt die animierte Szene untersucht und diese in sich ähnlich bewegende Teile zerlegt. Da dadurch die relative Bewegung der Primitiven der Teilszenen zueinander sehr klein ist kann sie durch spezielle, vorberechnete kd-Bäume toleriert werden. Motion Decomposition ermöglicht das Raytracen von vordefinierte Animationen und Skinned Meshes mit interaktiven Bildwiederholraten. Unser zweiten Hauptbeitrag ist der Streamed Binning Ansatz. Dabei wird die Kostenfunktion, welche die Konstruktion von für Raytracing optimierten kd-Bäumen und BVHs steuert, näherungsweise ausgewertet, wobei deren Qualität kaum beeinträchtigt wird. Im Ergebnis wird insbesondere die Zeit für den Aufbau von BVHs um eine Größenordnung reduziert

    Ray tracing techniques for computer games and isosurface visualization

    Get PDF
    Ray tracing is a powerful image synthesis technique, that has been used for high-quality offline rendering since decades. In recent years, this technique has become more important for realtime applications, but still plays only a minor role in many areas. Some of the reasons are that ray tracing is compute intensive and has to rely on preprocessed data structures to achieve fast performance. This dissertation investigates methods to broaden the applicability of ray tracing and is divided into two parts. The first part explores the opportunities offered by ray tracing based game technology in the context of current and expected future performance levels. In this regard, novel methods are developed to efficiently support certain kinds of dynamic scenes, while avoiding the burden to fully recompute the required data structures. Furthermore, todays ray tracing performance levels are below what is needed for 3D games. Therefore, the multi-core CPU of the Playstation 3 is investigated, and an optimized ray tracing architecture presented to take steps towards the required performance. In part two, the focus shifts to isosurface raytracing. Isosurfaces are particularly important to understand the distribution of certain values in volumetric data. Since the structure of volumetric data sets is diverse, op- timized algorithms and data structures are developed for rectilinear as well as unstructured data sets which allow for realtime rendering of isosurfaces including advanced shading and visualization effects. This also includes tech- niques for out-of-core and time-varying data sets.Ray-tracing ist ein flexibles Bildgebungsverfahren, das schon seit Jahrzehnten für hoch qualitative, aber langsame Bilderzeugung genutzt wird. In den letzten Jahren wurde Ray-tracing auch für Echtzeitanwendungen immer interessanter, spielt aber in vielen Anwendungsbereichen noch immer eine untergeordnete Rolle. Einige der Gründe sind die Rechenintensität von Ray-tracing sowie die Abhängigkeit von vorberechneten Datenstrukturen um hohe Geschwindigkeiten zu erreichen. Diese Dissertation untersucht Methoden um die Anwendbarkeit von Ray-tracing in zwei verschiedenen Bereichen zu erhöhen. Im ersten Teil dieser Dissertation werden die Möglichkeiten, die Ray- tracing basierte Spieletechnologie bietet, im Kontext mit aktueller sowie zukünftig erwarteten Geschwindigkeiten untersucht. Darüber hinaus werden in diesem Zusammenhang Methoden entwickelt um bestimmte zeitveränderliche Szenen darstellen zu können ohne die dafür benötigen Datenstrukturen von Grund auf neu erstellen zu müssen. Da die Geschwindigkeit von Ray-tracing für Spiele bisher nicht ausreichend ist, wird die Mehrkern- CPU der Playstation 3 untersucht, und ein optimiertes Ray-tracing System beschrieben, das Ray-tracing näher an die benötigte Geschwindigkeit heranbringt. Der zweite Teil beschäftigt sich mit der Darstellung von Isoflächen mittels Ray-tracing. Isoflächen sind insbesonders wichtig um die Verteilung einzelner Werte in volumetrischen Datensätzen zu verstehen. Da diese Datensätze verschieden strukturiert sein können, werden für gitterförmige und unstrukturierte Datensätze optimierte Algorithmen und Datenstrukturen entwickelt, die die Echtzeitdarstellung von Isoflächen erlauben. Dies beinhaltet auch Erweiterungen für extrem große und zeitveränderliche Datensätze

    Towards Fully Dynamic Surface Illumination in Real-Time Rendering using Acceleration Data Structures

    Get PDF
    The improvements in GPU hardware, including hardware-accelerated ray tracing, and the push for fully dynamic realistic-looking video games, has been driving more research in the use of ray tracing in real-time applications. The work described in this thesis covers multiple aspects such as optimisations, adapting existing offline methods to real-time constraints, and adding effects which were hard to simulate without the new hardware, all working towards a fully dynamic surface illumination rendering in real-time.Our first main area of research concerns photon-based techniques, commonly used to render caustics. As many photons can be required for a good coverage of the scene, an efficient approach for detecting which ones contribute to a pixel is essential. We improve that process by adapting and extending an existing acceleration data structure; if performance is paramount, we present an approximation which trades off some quality for a 2–3× improvement in rendering time. The tracing of all the photons, and especially when long paths are needed, had become the highest cost. As most paths do not change from frame to frame, we introduce a validation procedure allowing the reuse of as many as possible, even in the presence of dynamic lights and objects. Previous algorithms for associating pixels and photons do not robustly handle specular materials, so we designed an approach leveraging ray tracing hardware to allow for caustics to be visible in mirrors or behind transparent objects.Our second research focus switches from a light-based perspective to a camera-based one, to improve the picking of light sources when shading: photon-based techniques are wonderful for caustics, but not as efficient for direct lighting estimations. When a scene has thousands of lights, only a handful can be evaluated at any given pixel due to time constraints. Current selection methods in video games are fast but at the cost of introducing bias. By adapting an acceleration data structure from offline rendering that stochastically chooses a light source based on its importance, we provide unbiased direct lighting evaluation at about 30 fps. To support dynamic scenes, we organise it in a two-level system making it possible to only update the parts containing moving lights, and in a more efficient way.We worked on top of the new ray tracing hardware to handle lighting situations that previously proved too challenging, and presented optimisations relevant for future algorithms in that space. These contributions will help in reducing some artistic constraints while designing new virtual scenes for real-time applications

    Ray tracing of dynamic scenes

    Get PDF
    In the last decade ray tracing performance reached interactive frame rates for nontrivial scenes, which roused the desire to also ray trace dynamic scenes. Changing the geometry of a scene, however, invalidates the precomputed auxiliary data-structures needed to accelerate ray tracing. In this thesis we review and discuss several approaches to deal with the challenge of ray tracing dynamic scenes. In particular we present the motion decomposition approach that avoids the invalidation of acceleration structures due to changing geometry. To this end, the animated scene is analyzed in a preprocessing step to split it into coherently moving parts. Because the relative movement of the primitives within each part is small it can be handled by special, pre-built kd-trees. Motion decomposition enables ray tracing of predefined animations and skinned meshed at interactive frame rates. Our second main contribution is the streamed binning approach. It approximates the evaluation of the cost function that governs the construction of optimized kd-trees and BVHs. As a result, construction speed especially for BVHs can be increased by one order of magnitude while still maintaining their high quality for ray tracing.Im letzten Jahrzehnt wurden interaktive Bildwiederholraten bei dem Raytracen von nicht trivialen Szenen erreicht. Dies hat den Wunsch geweckt, auch sich verändernde Szenen mit Raytracing darstellen zu können. Allerdings werden die vorberechneten Datenstrukturen, welche für die Beschleunigung von Raytracing gebraucht werden, durch Veränderungen an der Geometrie einer Szene unbrauchbar gemacht. In dieser Dissertation untersuchen und diskutieren wir mehrere Lösungsansätze für das Problem der Darstellung von sich verändernden Szenen mittels Raytracings. Insbesondere stellen wir den Motion Decomposition Ansatz vor, welcher die bisher nötige Neuberechnung der Beschleunigungsdatenstrukturen aufgrund von Geometrieänderungen zu einem großen Teil vermeidet. Dazu wird in einem Vorberechnungsschritt die animierte Szene untersucht und diese in sich ähnlich bewegende Teile zerlegt. Da dadurch die relative Bewegung der Primitiven der Teilszenen zueinander sehr klein ist kann sie durch spezielle, vorberechnete kd-Bäume toleriert werden. Motion Decomposition ermöglicht das Raytracen von vordefinierte Animationen und Skinned Meshes mit interaktiven Bildwiederholraten. Unser zweiten Hauptbeitrag ist der Streamed Binning Ansatz. Dabei wird die Kostenfunktion, welche die Konstruktion von für Raytracing optimierten kd-Bäumen und BVHs steuert, näherungsweise ausgewertet, wobei deren Qualität kaum beeinträchtigt wird. Im Ergebnis wird insbesondere die Zeit für den Aufbau von BVHs um eine Größenordnung reduziert

    Interactive global illumination on the CPU

    Get PDF
    Computing realistic physically-based global illumination in real-time remains one of the major goals in the fields of rendering and visualisation; one that has not yet been achieved due to its inherent computational complexity. This thesis focuses on CPU-based interactive global illumination approaches with an aim to develop generalisable hardware-agnostic algorithms. Interactive ray tracing is reliant on spatial and cache coherency to achieve interactive rates which conflicts with needs of global illumination solutions which require a large number of incoherent secondary rays to be computed. Methods that reduce the total number of rays that need to be processed, such as Selective rendering, were investigated to determine how best they can be utilised. The impact that selective rendering has on interactive ray tracing was analysed and quantified and two novel global illumination algorithms were developed, with the structured methodology used presented as a framework. Adaptive Inter- leaved Sampling, is a generalisable approach that combines interleaved sampling with an adaptive approach, which uses efficient component-specific adaptive guidance methods to drive the computation. Results of up to 11 frames per second were demonstrated for multiple components including participating media. Temporal Instant Caching, is a caching scheme for accelerating the computation of diffuse interreflections to interactive rates. This approach achieved frame rates exceeding 9 frames per second for the majority of scenes. Validation of the results for both approaches showed little perceptual difference when comparing against a gold-standard path-traced image. Further research into caching led to the development of a new wait-free data access control mechanism for sharing the irradiance cache among multiple rendering threads on a shared memory parallel system. By not serialising accesses to the shared data structure the irradiance values were shared among all the threads without any overhead or contention, when reading and writing simultaneously. This new approach achieved efficiencies between 77% and 92% for 8 threads when calculating static images and animations. This work demonstrates that, due to the flexibility of the CPU, CPU-based algorithms remain a valid and competitive choice for achieving global illumination interactively, and an alternative to the generally brute-force GPU-centric algorithms
    corecore