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Abstract

In the past, ray tracing has been used widely in offline rendering applications
since it provided the ability to better capture high quality secondary effects such as
reflection, refraction and shadows. Such effects are difficult to produce in a robust,
high quality fashion with traditional, real-time rasterization algorithms. Motivated
to bring the advantages to ray tracing to real-time applications, researchers have
developed better and more efficient algorithms that leverage the current generation
of fast, parallel CPU hardware within the past few years. This thesis provides the
implementation and design details of a high performance ray tracing solution called
“RTTest” for standard, desktop CPUs. Background information on various algo-
rithms and acceleration structures are first discussed followed by an introduction
to novel techniques used to better accelerate current, core ray tracing techniques.
Techniques such as Omni-Directional Packets, Cone Proxy Traversal and Multi-
ple Frustum Traversal are proposed and benchmarked using standard ray tracing
scenes. Also, a novel soft shadowing algorithm called Edge Width Soft Shadows is
proposed which achieves performance comparable to a single sampled hard shadow
approach targeted at real time applications such as games. Finally, additional in-
formation on the memory layout, rendering pipeline, shader system and code level
optimizations of RTTest are also discussed.
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Chapter 1

Introduction

Recently, there has been a surge of new interest in ray tracing as a core algorithm
for rendering for real-time applications such as video games since it is now feasible
to perform such tasks at an interactive rate on current generation CPU hardware.
In theory, ray tracing provides many advantages to the traditional rasterization
used in today’s rendering applications and graphics processing units (GPUs) such
as its ability to be easily parallelized and capture many secondary rendering effects
such as shadows, reflections and refraction.

At a high level, rasterization iterates through scene geometry and projects in-
dividual polygons into screen space for rendering. A Z-buffer is traditionally used
for correct front to back occlusion which can lead to redundant raster and shading
calculations which is commonly called overdraw. There are many effective culling
algorithms which are aimed at reducing overdraw but none solve the problem com-
pletely. One of the advantages to a rasterization renderer is that it can be interfaced
to in a simple, immediate-mode manner in which the application only specifies a
set of geometry to the renderer per frame without any need for the renderer to
know about any acceleration structure (AS) of the scene. This advantage leads
to a simple hardware implementation which can be fast and able to easily handle
dynamic scenes. Another advantage to a rasterization renderer is that polygons
are processed one at a time which yields to high memory coherence during shad-
ing. This could also be a disadvantage when there is high overdraw as most of
these efficient shading computations would be wasted if occluded. Additionally, a
major disadvantage to rasterization is its inability to properly render secondary ef-
fects such as shadows, reflections and refraction. Such effects require multiple pass
rendering or precomputed maps which are inefficient and produce visible artifacts.

At a high level, ray tracing shoots rays called primary rays from the camera
into the scene and finds intersections with the scene geometry. Secondary rays can
be cast from the intersection points into the scene to query the scene for secondary
effects. Using these intersections, final colours are calculated through shading to
produce the final image. Since the rays find the first intersection with the scene,
there is theorectically zero overdraw which gives this technique a higher drawing
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efficiency over rasterization. The disadvantage to this technique is that there is
less memory coherency since each ray is traced independently even if many hit the
same polygon.

One of the greatest advantages and motivators of ray tracing is that each ray
can be traced independent of each other which leads to an easily parallelizable al-
gorithm. With the industry trend moving from complex, single, out-of-order CPUs
with large caches and speculative hardware to many in-order CPU cores, paralleliza-
tion is a very important factor of a high performance, scalable rendering algorithm.
Another significant property of ray tracing is its ability to trace secondary rays
for capturing secondary effects correctly which is a key to improving the fidelity of
current rendering techniques.

Unlike rasterization, ray tracing depends on an AS which subdivides the scene
for efficient searching of intersection points. The disadvantage to depending on an
AS is that it leads to a more complex hardware implementation since the rendering
interface is no longer immediate and the AS must be rebuilt or updated for dynamic
scenes which is not easily parallelizable.

Ray tracing alone is still an unproven algorithm for a robust solution to the
future of rendering. There have been many proposals for a hybrid solution involving
both rasterization and ray tracing in which rasterization provides fast rendering of
primary effects such as geometry rendering while ray tracing provides an efficient
and correct rendering of secondary effects.

This thesis goes in depth into the design and implementation of a high per-
formance ray tracing solution for current generation x86 CPUs. New ideas and
algorithms are presented for the acceleration and simplification of current kd-tree
traversal techniques and secondary rendering effects such as soft shadows. A new
omni-directional packet traversal method is proposed which simplifies packet trac-
ing by allowing any bundle of rays from a common origin to be traced without any
direction restrictions (Omni-Directional Packets). Next, a fast technique of travers-
ing multiple frustums simultaneously is proposed which allows for the masking of
individual frustums resulting in higher performance over a single frustum approach
(Multiple Frustum Traversal). An alternative to a traditional pyramidal frustum
is proposed using cones which can be used as an interval traversal algorithm for
tracing groups of rays that have a conical shape such as multiple shadow samples
to a spherical light source (Cone Proxy Traversal). Finally, a fast, approximated
technique for rendering soft shadows is proposed (Edge Width Soft Shadows). This
approach requires the use of one shadow ray to produce very fast, fuzzy shadows
which are superior in visual quality over hard shadows with comparable perfor-
mance.
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Chapter 2

Background

2.1 Ray Tracing Overview

Ray tracing is a recursive algorithm that first traces primary rays from the eye into
a scene to search for intersections with geometry and in turn traces secondary rays
from these intersection points (IPs) into the scene again as shown in Figure 2.1. In
the figure, a primary ray, which is searching for the first intersection along the ray, is
traced from the eye into the scene. If the red polygon that intersected the primary
ray was neither reflective nor refractive, both the reflect and refract rays can be
ignored. However, a shadow ray is required to search for any occluders between the
IP on the polygon and the light source. If an occluder is found, then no light is
contributed to the IP and is thus shadowed. On the other hand, if the polygon were
reflective and refractive, secondary reflect and refract rays are traced to sample the
scene for colour contributions to the final rendering of the pixel corresponding to
the primary ray sent from the eye. The logic and math used to calculate the final
pixel colour are known as the shading method or shader which uses information
such as the polygon colour, shadow, reflect and refract ray results as inputs. Any
secondary rays can produce more secondary rays recursively to better sample the
scene at the cost of performance.

For a ray tracing application, this process of shooting a primary ray from the eye,
tracing secondary rays and calculating shading for a final colour is performed once
for each pixel on the screen. To allow for anti-aliasing, multiple ray samples can be
traced through a single pixel which are jittered at sub pixel distances to produce
a final screen pixel colour. A key advantage and disadvantage of ray tracing is
that rays are all traced independently of one another. The advantage is that it
allows for an easy parallel implementation which can achieve high performance as
more computational units are available. The disadvantage to ray independence
is that there is no data coherence between pixels that are adjacent on the screen
even though they hit the same object and perform the same shading operations.
Figure 2.2 shows two polygons being rendered with the pixels shown in the grid.
For this scene, rasterization excels since data coherence can be used during scanline
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Figure 2.1: Ray tracing diagram where primary ray is traced from the eye to the
scene casting secondary rays.

rendering where there is no overdraw and wasted calculations. On the other hand,
ray tracing wastes computation by tracing the scene to the polygons and shading for
each pixel without using any data coherence between adjacent pixels. Figure 2.3
shows another scene with 3 polygons overlapping each other. In this case, the
advantages to ray tracing start to show as data coherence becomes less important
as many adjacent pixels belonging to a polygon should not even be drawn since they
are occluded by another polygon. As scene complexity increases, more occlusion
occurs leading to more overdraw for a rasterization approach. It begins to turn
out that the fast, data coherent rendering becomes wasted in the end for highly
complex scenes. In the end, both rasterization and ray tracing are good at solving
a subset of graphics problems but no algorithm is good for everything. This thesis
will go indepth into how to leverage the benefits of ray tracing while introducing
methods to make up for its shortcomings.

2.2 Acceleration Structures

As scene complexity grows, interactive ray tracing becomes infeasible if each ray
must be checked against each polygon in the scene to determine the closest inter-
section. Much like how binary search can be used to do fast searching into a sorted
list, the scene’s polygons must be sorted to allow for fast searching for intersection
points. This approach yields to the concept of an acceleration structure (AS) which
can be built offline prior to rendering for static scenes and updated or rebuilt ev-
ery frame for dynamic scenes. This section introduces three popular acceleration
structures: kd-trees, bounding volume hierarchies and grids for high performance
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Figure 2.2: Two polygons with no overdraw.

Figure 2.3: Three polygons with overdraw.

ray tracing.

2.2.1 kd-Tree

A kd-tree is basically a binary tree that defines a spatial hierarchy. Each internal
node represents a 3D slab or voxel and an axis-aligned split plane which subdivides
the voxel into 2 sub voxels which represent the child nodes which are referred to
as the left and right child. Figure 2.4 shows a 2D space using kd-tree partitioning
where each space is recursively subdivided into 2 sub spaces. For example, split
plane 1 subdivides the whole space into a left and right spaces relative to the
direction of the plane. In the left space, split plane 4 subdivides the space into sub
spaces labeled A and E. Figure 2.5 shows how the diagram in Figure 2.4 relates to
an actual kd-tree. The root node, labeled 1, represents the whole scene and split
plane 1. As each node is subdivided to produce child nodes lower in the tree, the
nodes become smaller due to splitting of space at each level. Once a space has
stopped subdividing, it is allocated in a leaf node labeled as a square in the tree.
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kd-trees are useful because they provide a structure of sorting objects/polygons
within a scene to allow for fast searching. Once a tree has been built, the 3D space
has been partitioned into leaf nodes where any single point within the 3D space is
contained in exactly one leaf node. Figuring out which leaf node a point belongs
to is on the order of O(log(n)) since at each level in the tree, half of the leaf nodes
are discarded on average.

In ray tracing, kd-tree leaf nodes contain the actual geometry where the internal
nodes are required for sorting purposes only. Each internal node partitions the
polygons into two sets: the polygons that lie in front of the split plane and those
that lie behind. Since there are no restrictions to split plane positions, polygons
can belong to more than one leaf node if it straddles a split plane as shown in
Figure 2.4 where a polygon belongs to leaves D and H since it’s split by node 5.

To achieve fast performance, the goal is to locate the polygon that a ray first
hits as fast as possible. To achieve this goal, kd-trees are not used to find which
leaf node a point is located in but which leaf nodes, in front to back order, a ray
visits when traced through a scene. In a kd-tree, it is guaranteed that if a leaf is
traversed before a second leaf during ray traversal, polygons contained within the
first leaf will be in front of the polygons contained within the second. However,
there is no assumed order to the polygons within the same leaf.

Figure 2.4: A 2D space subdivided by a kd-tree. Polygons contained within the
scene are shown in red.

kd-Tree Traversal

Figure 2.6 shows the same 2D space as in Figure 2.4 but with a ray tracing through
the scene. This example is used to help describe how a kd-tree is used for ray
traversal. As the ray is traversed through the scene, the leaf nodes that are visited
in front to back order are E, F, G and H. The job of the traversal algorithm is to
be able to figure out what leaves are visited by a ray as fast as possible. At each
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Figure 2.5: kd-tree representation of a 2D scene in Figure 2.4.

internal node in the tree, two cases can occur as shown in Figure 2.7. In the figure,
an internal node is shown with a split plane where a ray is pointing in the positive
direction and negative direction relative to the split plane. By convention, the child
nodes are labeled “near” and “far” based on if they are closer or farther from the
origin of the ray, respectively. kd-tree traversal keeps track of intervals along the
ray which represents the active part of the ray in the current node. Before tracing,
the interval of the ray should be from 0 to the length of the ray. However, as rays
visit internal nodes, intervals can be split at splitting planes if the ray intersects
the split plane within the interval of interest. Figure 2.8 shows the three cases that
can occur when a ray visits an internal node where the intervals are labeled from
tn to tf which are distances along the ray from the origin. In the left picture, the
ray intersects the split plane within the current interval. In the centre picture, the
ray intersects the split plane after the current interval. In the final picture, the
ray intersects before the interval. Using these cases and keeping track of intervals
of interest along the ray, a simple, recursive traversal algorithm can be derived as
shown in Listing 2.1.

In the listing, the function Traverse takes input vectors dir and origin which
are the direction and origin of the ray respectively. The values tNear and tFar are
the starting intervals and are usually 0 and the length of the ray respectively. The
next part of the function checks to see if the node is a leaf node or an internal node.
For the case of an internal node, the near and far nodes are set relative to the ray
direction as shown in Figure 2.7. The distance along the ray to the split plane is
then calculated and stored in the value dist. Next is the logic deciding whether the
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near, far or both children should be visited based on the current interval and the
split plane distance. The first case occurs when the interval is in front of the split
plane where the near child is visited only. The second case is when the interval is
behind the split plane resulting in only the far node being visited. The third case
occurs when the split plane is within the interval and thus the near child must be
visited depth first followed by the far node. In this case, the interval is split at the
split plane as the near child has an interval of tNear to dist and the far child has an
interval of dist to tFar. Also, the far node is only visited if an intersection was not
found from traversing the near node since no further traversing is necessary in that
case. When the traversal function reaches a leaf node the ray is intersected with
each polygon and the closest distance that lies within the active interval is returned.
The function completes when either all leaf nodes that are intersected by the ray are
visited or an intersection is found. For a high performance ray tracer, the function
shown should be rewritten so that it is no longer recursive and dependent on the
processor stack which is slow and can easily overflow for deep trees. Listing 2.2
shows an iterative version of the traversal method which maintains its own stack.
The logic is very similar to the recursive version except that an explicit stack is
maintained using stackelement types which hold tasks that need to be completed
such as the node to traverse and the active interval. The nice part about kd-
traversal is that the actual floating point math required is minimal per traversal
step since the split planes are axis aligned. The division by dir can also be turned
into a multiply by precomputing the inverse of the direction vector before traversal.
The next section describes how to build an efficient kd-tree structure.

Figure 2.6: A 2D space subdivided by a kd-tree.
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far             near

Figure 2.7: A ray within a node showing near and far voxels.

far             near

tn

tf

tn

tf

tn

tf

Figure 2.8: Different cases that occur with intervals and a split plane.
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Listing 2.1: Recursive, kd-tree traversal algorithm

float Traverse(Vector dir, Vector origin, float tNear, float tFar, kdnode ∗n)
{

if(!n−>isLeaf){

kdnode ∗near, ∗far;

if(dir[node−>axis] > 0.0f){
near = node−>left;
far = node−>right;

} else {
far = node−>left;
near = node−>right;

}

float dist = (node−>split − origin[node−>axis])/dir[node−>axis];

if(tFar < dist)
return Traverse(dir, origin, tNear, tFar, near);

if(tNear > dist)
return Traverse(dir, origin, tNear, tFar, far);

float rval = Traverse(dir, origin, tNear, dist, near);

if(rval == FLT MAX)
Traverse(dir, origin, dist, tFar, far);

else
return rval;

}
else
{

float shortestDist = FLT MAX;
float dist;
for(int i=0; i<node−>polyCount; i++){

if(Intersect(node−>polys[i], dir, origin, &dist)){
if(dist <= tFar && dist >= tNear)

shortestDist = min(dist, shortestDist);
}

}

return shorestDist;
}

}
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Listing 2.2: Iterative, kd-tree traversal algorithm

float Traverse(Vector dir, Vector origin, kdnode ∗n)
{

float tNear, float tFar;
nodestack stack;
stack.push((n, 0, MAX DIST));

stackelement element;

while(!stack.isEmpty()){

element = stack.pop();

n = element.node;
tNear = element.tNear;
tFar = element.tFar;

while(!n−>isLeaf){

kdnode ∗near, ∗far;

if(dir[node−>axis] > 0.0f){
near = node−>left;
far = node−>right;

} else {
far = node−>left;
near = node−>right;

}

float dist = (node−>split − origin[node−>axis])/dir[node−>axis];

n = far;

if(tNear > dist)
continue;

n = near;

if(tFar < dist)
continue;

tFar = dist;

stack.push((far, dist, tFar));
}

11



if(n−>isLeaf){

float shortestDist = FLT MAX;
float dist;
for(int i=0; i<node−>polyCount; i++){

if(Intersect(node−>polys[i], dir, origin, &dist)) {
if(dist <= tFar && dist >= tNear)

shortestDist = min(dist, shortestDist);
}

}

if(shortestDist != FLT MAX)
return shorestDist;

}
}

}
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kd-Tree Building

Building of a kd-tree is effectively picking a split plane for every node and having a
terminating criteria for subdivision. The first question is how to pick proper split
planes? A naive approach would be to pick split planes that divide the current
node in half as shown in Figure 2.9 where the arrowed lines are the split planes and
the grey object is the scene geometry. In the diagram, each node is split in half at
each level in the tree. This approach leads to a balanced tree but is only helpful
if the goal was to figure out what leaf node a certain point is in quickly as the
traversal distance to each leaf is equal. However, the goal for kd-tree traversal is to
quickly visit polygons that lie on the ray’s path and find the closest intersection. By
picking a middle split plane, the geometry is not taken into account for the splitting
decision which results in large leaf nodes with lots of geometry. The disavantage to
having this is that whenever a ray traverses through a leaf node, it must check for
intersection with all the polygons contained within the leaf even though it does not
intersect any of polygons. An example of this is shown in Figure 2.9 where the ray
intersects several leaf nodes with geometry. The ray must perform intersection tests
even though it is far away from the actual geometry. To minimize these redundant
intersection tests, the kd-tree builder should maximize the size of leaves containing
little to no geometry and minimize the size of leaves containing more geometry. By
doing this, there is a lower probability of a ray hitting a leaf with many polygons
and thus reducing intersection tests. Figure 2.10 shows a high quality kd-tree built
for the same scene as shown in Figure 2.9. The diagram shows how the splitting
planes adapt to the scene geometry and maximize the size of empty leaves. As the
blue ray travels through the scene, it no longer must perform any intersection tests
since all the leaves visited are empty and thus saving precious computational time.

Figure 2.9: Scene with kd-tree built by using middle split planes.
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Figure 2.10: Scene with kd-tree built by using high quality split planes.

A more precise definition of picking a proper split plane is given by minimizing
what is called a Surface Area Heuristic (SAH) [1] function given in Equation 2.1.
A SAH is a cost function that must be minimized to achieve a more optimal split
plane decision. Csplit represents the cost of the split which is trying to be minimized.
Ctraversal is the fixed cost for traversal which represents the traversal cost of splitting
the current node since more splits results in a deeper tree and thus more traversal
runtime costs. Cintersect is the fixed cost for intersecting a polygon. The actual
values of Ctraversal and Cintersect do not matter but the ratio between the two are
important. In this thesis, Cintersect was picked to be 5× that of Ctraversal which
yielded the best results in most cases. Numleft is the number of polygons in the
left subnode. SAleft represents the surface area of the left subnode and SA is the

surface area of the whole node. The whole term
SAleft

SA
represents the probability

that a ray will hit the left subnode and
SAright

SA
is the probability for the right.

Qualitatively, this cost function represents the computational cost that results for
a split as the added traversal cost for adding another level to the tree plus the
intersection costs of the subnodes based on the probability that the subnode is hit
times the cost of the node which is really the number of polygons it contains. This
cost function motivates larger leaf nodes containing little to no polygons and smaller
leaf nodes containing many polygons. Using a SAH does not guarantee a global
minimum cost kd-tree since it is a greedy algorithm that makes the local decision
of picking the most optimal split plane for each node with no information about
the tree as a whole. However, finding the global optimal solution is an intractable
problem since it is impossible to know if a split plane decision is the most optimal
without knowing the future.
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Csplit = Ctraversal + Cintersect × (Numleft ×
SAleft
SA

+Numright ×
SAright
SA

) (2.1)

Using this SAH function, split planes are picked which yield the minimum cost
at each node where subdivision terminates when any of the following are true:

1. there exists no split plane that yields a cost less than the current node cost
Cintersect ×N ,

2. the current node has reached a pre-defined maximum depth, or

3. the current node contains no polygons.

In the first case, the current node does not benefit from splitting as the cost
of the actual node is the minimum. In the second case, if a pre-defined depth
is set, subdivision should stop. A maximum depth is useful to bound memory
consumption, particularly for large scenes. Maximum depths are also useful to
prevent leaves from becoming too far from the root node which can become a
performance problem as too many traversal computations are required to get to
the leaves. Ctraversal of the SAH function should provide the same constraint but is
not a hard, explicit constraint like a maximum depth. The last termination case is
obvious as subdivision should stop when there are no more polygons to sort in the
current node.

For the special case when split planes divide a polygon, the polygon belongs
to both the left and right subnodes. This leads to more memory usage as these
polygons are referenced by more than one leaf node. Because of this special case,
it becomes difficult to predict beforehand how much memory is required to build
a kd-tree with a reasonable quality as opposed to bounding volume hierarchies
discussed in the following section.

The SAH cost function and terminating criteria have been discussed but which
possible split planes to choose from have not been. The SAH cost function is a
continuous, piecewise, linear function with respect to the split plane position along
an axis, where the only points of interest are local minima/maxima where the slope
changes. These points occur when the number of polygons in the left or right sub
voxels changes, Numleft and Numright in the SAH, as the surface area of each sub
voxel is linear with respect to split plane position along an axis. Figure 2.11 shows a
node containing polygons with candidate split positions labeled where Numleft and
Numright change value. For example, split position e has a value of Numleft = 3
and Numright = 2 where the polygon straddling the split plane is counted for both
sub voxels. Because of this observation, split plane positions can be taken as the
edge of the bounding boxes for each polygon along the axis of interest. In this case,
to find the most optimal SAH cost for a certain node, the SAH must be calculated
for each bounding box edge (2 per polygon along an axis) for each axis (3) which

15



works out to being N×2×3 = 6N candidate split planes. Although using bounding
box edges provides adequate results in most cases, they can be far from optimal.
In Figure 2.12, candidate split planes are shown for the same node but along a
vertical axis where the bounding box edges are used as candidate split planes. The
grey polygon to the far right which is not fully contained in the current node of
interest has a bounding box shown in blue which is used to generate a candidate
split at h. Since the range of the bounding box is from the top of the node to
split h, the polygon must be part of both sub voxels for all split planes above h,
which in this case is all of them. The disadvantage to this is that if a split is
picked at g, the polygon will be part of the lower subvoxel even though it is not
even contained within it. Because of this inefficiency, this leads to the idea of a
“perfect” candidate split planes which are not taken as edges of bounding boxes
of polygons but from bounding boxes of clipped polygons. By clipping the grey
polygon to the current node’s box, the resulting bounding box shown in green is
tighter and more optimal. Now, h is no longer a candidate and g is one. Also,
any splits below g will not contain the grey polygon within the lower subvoxel thus
reducing the number of polygons contained within leaf nodes. By using a SAH cost
function with terminating criteria discussed and polygon clipping for generating
“perfect” split candidates, a high quality kd-tree can be built for high performance
traversal.

Figure 2.11: Node containing polygons and candidate splits along the horizontal
axis.
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Figure 2.12: Node containing polygons and candidate splits along the vertical axis.

2.2.2 Bounding Volume Hierarchy

The bounding volume hierarchy (BVH) is an object hierarchy as opposed to the kd-
tree which is a spatial hierarchy. This means that the tree sorts objects or polygons
rather than strict spatial sorting. A BVH is a binary tree which partitions a group
of polygons into two sets at each level in the tree where the leaf nodes contain the
actual polygons like kd-trees as shown in Figure 2.13. In the diagram, the polygons
are partitioned into two sets where the green and blue boxes are the resulting
bounding boxes of the children nodes. Rather than a single split plane which divides
the space, the polygons are just put into two sets with no spatial sorting. In general,
the BVH is a simpler concept than a kd-tree in terms of traversing, building and
updating dynamic scenes. BVHs have not been thoroughly implemented in this
thesis’ research test system due to time restrictions so they are only discussed in
the Background Section but many ideas discussed in this thesis can be applied to
both a kd-tree and a BVH. Though BVHs tend to produce a less optimal AS for
static scene rendering, they provide a very good structure for dynamic scenes and
this is essential to the future of real time ray tracing.

BVH Traversal

Traversing a BVH is very simple since no distance intervals have to be maintained
and no “near” and “far” voxels must be defined. The only operation that must be
done per traversal is a fast ray/slab intersection test [2] which checks to see if there
is an intersection between the ray and the node’s bounding box. If no intersection
occurs, then no further traversal is done into the node whereas if an intersection does
occur, the children nodes must be checked since they can potentially be intersected
with. Listing 2.3 shows an iterative BVH traversal pseudocode. At each node a
SlabTest is performed and if an intersection occurs, the stack pushes one of the
children onto the stack and starts to traverse the other child. A disadvantage of
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Figure 2.13: BVH node containing polygons which have been partitioned into two
sets.

BVH traversal is that there is no early exit case where traversal stops when the
ray intersects a polygon as done in the kd-tree traversal. The reason for this is
that there is no guarantee that a closer intersection does not exist in another node
on the stack since there is no spatial sorting amongst nodes. Because of this, the
stack must be empty before the traversal finishes even in the case when the ray has
already found the closest intersection. Several heuristics can be used to provide
an earlier exit by using some spatial information such as choosing which child to
traverse first based on the direction of the ray and the relative positions of both
nodes. By using spatial heuristics to pick the node closest to the origin of the ray
to traverse first, nodes can be culled if an intersection is found as any nodes further
from the intersection distance will not provide a closer intersection.
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Listing 2.3: Iterative, BVH traversal algorithm

float Traverse(Vector dir, Vector origin, bvhnode ∗n)
{

nodestack stack;
stack.push(n);

stackelement element;

float t = MAX DIST;

while(!stack.isEmpty()){
n = stack.pop();

while(!n−>isLeaf){
if(SlabTest(n, dir, origin)){

stack.push(n−>child1);
n = n−>child2;

}
}

if(n−>isLeaf){
float shortestDist = FLT MAX;
float dist;
for(int i=0; i<node−>polyCount; i++){

if(Intersect(node−>polys[i], dir, origin, &dist)) {
if(dist <= tFar && dist >= tNear)

shortestDist = min(dist, shortestDist);
}

}

t = min(t, shortestDist);
}

}

return t;
}

BVH Building

Since at each node, BVH partitions polygons into two sets, there are 2N−1 possible
partitions for N polygons. By looking at Figure 2.13 it’s obvious that many of these
partitions are suboptimal as they don’t partition the space well. For example,
picking a polygon from the far right and from the far left to be in the same set will
yield a partition which is comparable in size to the parent node. This observation
leads to using a spatial heuristic to pick object partitioning such as an SAH cost
function used in kd-tree building. Since BVH is an object paritioning, there is no
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fine grain control over the SAH as spatial division is implicit from the bounding
boxes of the partitioned set. This leads to suboptimal SAH when compared to
a kd-tree implementation which has no restriction on spatial division. Once the
objects are paritioned into two sets to produce a minimum SAH, the children are
subdivided just like building kd-trees with the same termination criteria.

2.2.3 Grid

A grid is a 3D, uniform partitioning of voxels of the scene space where each voxel
usually has a unit length (1.0). To figure out which voxel a point is located in, the
floating point value of its coordinates are truncated to integer coordinates. Because
of this simple mapping, grids are very useful for dynamic scenes where a moving
object can be easily updated by using either its geometry or bounding box to set
which voxels it is currently located in. Typically, 3D digital differential analyzers
(3DDA) are used to trace the rays from voxel to voxel in front to back order though
the grid. Other faster algorithms have also been proposed that trace groups of rays
together in packets or frustums using a slice-based approach [3].

A disadvantage of grids are that they do not adapt well to varying geometric
sizes and densities where some parts the scene can have many large polygons, some
many very small polygons and some with none. Despite the geometric attributes,
a grid will have the same uniform voxel size for each case. This problem can be
mitigated with a hierarchical grid approach where there is a top level grid with
larger voxels containing a finer grain grid than a lower level. However, as more
levels are introduced into the hierarchy the slower it is to update for dynamic
scenes which is one of the key the selling points for such a structure.

2.3 Faster kd-Tree Traversal

This section describes techniques for greatly accelerating the kd-traversal algorithm
which take advantage of the coherency between adjacent primary rays. This co-
herency is a measure of how closely rays trace the scene and follow a similar path
when traversing the kd-tree. Adjacent primary rays that form a square tile on the
screen can be traced together, thus decreases the revisiting of kd-tree nodes which
would have been visited by each ray if traced individually and reducing memory
bandwidth. However, as tile sizes increase and more rays are traced together, there
is less coherency between the rays since they start to diverge at the lower part
of the tree when the granularity of paritioning becomes finer. The following sec-
tions use this idea of coherency, tiles and tracing rays together to achieve superior
performance to that of the traditional mono ray tracing algorithms.
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2.3.1 Packets

The idea of tracing multiple rays together is called packet or bundle tracing [4]
where the screen is split into square tiles which determine the size of the packet
such as a 2× 2 packet traces a tile of width 2 containing 4 rays. However, as rays
start to diverage towards the bottom of the tree, inactive rays are masked out so
as to keep correctness as shown in Figure 2.14. In the figure, rays R1 to R4 are
traced together in a packet visiting Nodes A, B and C. When traversing Node B,
R1 and R2 are inactive and must be masked out while R3 and R4 remain active
and are allowed to affect further traversal decisions within Node B and intersect
any geometry within the node. Figure 2.15 shows two cases which can occur at
a split plane. The intervals labeled on each ray are just an example of a possible
interval case that might occur. Like mono tracing traversal, voxels are determined
to be either near or far based on the direction of the rays as the near voxel is
closest to the origin. This determination leads to a directional restriction on the
rays within a packet as they must all have the same direction sign for each axis in
order to be able to agree on which voxel is near and far. Packets that do not obey
this restriction must be split into smaller packets that have same direction signs. In
the Omni-Directional Ray Packet section, a solution to this problem is presented
which allows for no direction restriction and leads to a simpler implementation.
Listing 2.4 shows pseudocode for a standard packet traversal of 4 rays. In the
pseudocode, each variable with an array index is a 4 wide variable which is used
for each of the 4 rays. The first part of the traversal checks each rays’ interval to
determine if it is active in the current node. Rays that are inactive have an interval
in which t far ≤ t near which is a convenient side effect of the way the intervals
are updated. The next step is to determine if all the rays are inactive which, if true,
stops the traversal of the current node. The next step is the same as the mono ray
traversal which calculates the distance to the splitting plane. Using this distance,
the split plane distance along each ray is calculated. Using the direction of the first
ray, the near and far children are defined. Once the far child is determined, it is
pushed on the stack with the updated interval for that node and traversal continues
into the near node.
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Figure 2.14: Diagram of 4 rays being traced together using packet travesal.
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Figure 2.15: Diagram of 2 rays being traced together for 2 cases.
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Listing 2.4: Iterative, kd-tree 2x2 packet traversal algorithm

while ( !node.isLeaf ) {
active[i] = ( t near[i] < t far[i] );

if (for all i=0..3(!active[i]))
break;

dist = split − origin[axis];

d[i] = dist / dir[i][axis];

Node ∗near, ∗far;

if(dir[0] < 0.0f) {
near = ( KDTreeNode ∗ ) node.left;
far = ( KDTreeNode ∗ ) node.right;

} else {
near = ( KDTreeNode ∗ ) node.right;
far = ( KDTreeNode ∗ ) node.left;

}

stack.push( far, max( d[i], t near[i] ), t far[i] );
( node, t far[i] ) = ( near, min( d[i], t far[i] ) );

}

Using SIMD

By using standard packet traversal with up to 4 rays per packet, memory band-
width due to node traversal can be reduced by a factor of 4 in the most optimal
circumstances where the scene is not too complex. However, computations within
the traversal loop must be performed per ray which increases the compute time
by a factor of 4 within the traversal loop. By using an Single Instruction Multiple
Data (SIMD) instruction set such as Intel’s SSE, floating point computations can
be sped up by a factor of 4. To fully utilize SSE for tracing 4 rays at a time,
data must be reorganized in a manner which is easy to load and unload from these
special XMM vector registers.

To best take advantage of architectures with different SIMD widths, data must
be reorganized from an “array of structures” format to a “structure of arrays”
format. For example, in Listing 2.5, a Vector structure is defined and a group of
four vectors in FourVectors which show a standard “array of structures” grouping.
Since SIMD instructions do not perform fast horizontal operations on elements
within a vector but element by element operations between two vectors, an “array
of structures” format requires data reorganization to do any useful computations
on it. Listing 2.6 shows a “structure of arrays” format which lends itself to a SIMD
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architecture. The same structure of 4 vectors is now rearranged such that each
axis is an array of data for each vector. Using this new format, four vectors can be
added to four other vectors using SSE without any data rearrangement as shown
in Listing 2.6. First, the data is loaded into the XMM registers for each axis. Next,
the vector elements are added four at a time and finally stored back into memory
as the output. Such a format can be used throughout the ray tracing pipeline from
ray generation to shading to reduce floating point computations significantly.

Listing 2.5: “array of structures” format for a group of 4 vectors

typedef struct{
float x,y,z;

} Vector;

typedef struct {
Vector v[4];

} FourVectors;

Listing 2.6: “structure of arrays” format for a group of 4 vectors with an example
of adding 4 vectors to another 4

typedef struct {
float x[4], y[4], z[4];

} FourVectors;

void VectorAdd(FourVectors ∗out, FourVectors ∗in1, FourVectors ∗in2)
{

m128 r1[3], r2[3], ro[3];

r1[0] = mm load ps(in1−>x);
r1[1] = mm load ps(in1−>y);
r1[2] = mm load ps(in1−>z);

r2[0] = mm load ps(in2−>x);
r2[1] = mm load ps(in2−>y);
r2[2] = mm load ps(in2−>z);

for(int i=0; i<3; i++)
ro[i] = mm add ps(r1[i], r2[i]);

mm store ps(out−>x, ro[0]);
mm store ps(out−>y, ro[1]);
mm store ps(out−>z, ro[2]);

}
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2.3.2 Frustums

With a SIMD width of 4 on almost all desktop CPUs, four rays can be traced
together in a packet with very little overhead. Larger number of rays can be traced
together in group by tracing multiple packets of 4 to further reduce memory band-
width due to traversal. The disadvantage of doing this is that more SSE operations
would have to be done in the traversal loop to calculate and update the intervals
for each ray. This tradeoff leads to a frustum approach which allows a large group
of rays with multiple packets to be traced together with a constant number of op-
erations within the traversal loop with respect to the number of rays in the group.
A frustum can be used to bound a large group of rays and act as a proxy during
traversal such that the traversal logic has no knowledge of the internal rays and just
traverses the frustum. As the frustum is traversed through the scene, it visits leaf
nodes from front to back order just like ray traversal. The idea of frustum traversal
is not to figure out what leaves the frustum visits but what leaves the frustums
don’t visit through various culling algorithms such as direct frustum culling using
the frustum planes or inverse frustum culling [5] using the nodes’ bounding box
planes. The frustum traverses the tree by checking to see whether or not a node’s
bounding box intersects the frustum and if so traverses the children. When a leaf
node is visited, the internal rays are used to intersect the contained polygons. This
approach allows a large group of rays to be traversed together without any per ray
operations within the traversal loop.

Another faster form of frustum traversal is the frustum interval traversal algo-
rithm [5] which updates active intervals rather than using culling algorithms. The
idea is similar to standard packet tracing except the way intervals are handled.
Rather than tracing a single ray or a packet of rays, the extremal (boundary) rays
of a frustum are traced. For primary rays, these extremal rays are usually the
corner rays of the tile. Using the corner rays, distances to the split plane are cal-
culated using SSE operations but only a single interval is updated rather than 4
intervals or a group of intervals. This single interval encompasses all the intervals
of the internal rays since they are calculated with the extremal values. By using a
single interval to describe a group of rays, information is lost and thus more nodes
are traversed than a standard frustum traversal using culling. Figure 2.16 shows
3 cases of frustums at a node where the active segment/interval of the frustum is
highlighted. Since only a single interval is used, the segment does not tightly bound
the active region within the node causing redundant traversed nodes. However, the
advantage to this approach is that the traversal loop requires less operations than
frustum culling since only intervals are updated. Like ray packets, the extremal
values of the frustum must have the same direction signs. Pseudocode for the in-
terval traversal algorithm is provided in Listing 4.2 where the traditional traversal
is modified to remove any direction restriction on rays. In the Cone Proxy Traversal
section, an algorithm of tracing a cone shaped frustum using intervals is proposed
instead of a pyramid shaped frustum.
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far             near

Figure 2.16: Diagram of 3 cases of frustum interval traversal.

2.3.3 Multi Level Ray Tracing Algorithm

The Multi Level Ray Tracing Algorithm (MLRT) [5] is a two stage algorithm com-
prised of an entry point (EP) search followed by an intersection point search (XP).
The EP search stage uses a frustum traversal algorithm to search for subtrees in
which all rays within the frustum must intersect a polygon. The root of this subtree
is referred to as an entry point within the tree. Once an entry point is found, the
XP search begins as all the internal rays within the frustum can be traced for inter-
sections from the entry point rather than the root of the tree, thus saving traversal
costs. The advantage of MLRT is that it produces very fast results for scenes with
large polygons and many flat, axis aligned surfaces such as walls. The reason for
this is that the EP search depends on a whole frustum of rays to completely inter-
sect a large polygon or a flat, axis aligned surfaced referred to as a “water-tight”
object. The disadvantage to MLRT is that it requires a modified SAH function
to produce good results and strongly depends on the type of geometry to obtain
successful EP search results.

2.4 Faster BVH Traversal

BVH traversal can reap the same benefits as a kd-tree using packets and frustum
culling as the ideas can be easily extended to BVH traversal. An algorithm that
can be used to further improve BVH traversal is an early hit test [6]. This test can
be used to quickly determine if a frustum of rays intersects a certain box. This can
be accomplished using a single ray from the frustum, called an active ray, to test if
it intersects the box in question. If so, the box’s children are then traversed. If the
early hit test fails, the rest of the rays can be tested against the box to determine if
the frustum actually intersects the box which is a slow process since it can involve
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intersecting all the rays in a frustum at many points during traversal. Rather than
test all rays if the early hit test fails, a faster way would be to use frustum culling to
determine if the frustum does not intersect the box. Using this method, the result
of the frustum culling only determines if the frustum does not intersect the box
but cannot determine if the frustum actually hits the box since it is a conservative
test. This means that if the frustum culling test fails, the last resort would be to
test every ray against the box. If this last resort test fails, then the box is not
traversed, else, the box is traversed and the ray that hit the box becomes the new
active ray for the frustum. The advantage of this algorithm is that it has a quick
test for intersection using the early hit test, a quick test for non intersection using
conservative frustum culling and a slower, more accurate fall back test. In practice,
performance using this algorithm is very comparable to the fastest kd-tree traversal
algorithms.

2.5 Dynamic Scenes of kd-Trees and BVHs

The difficulty with dynamic scenes is that ray tracing depends on a high quality
AS to achieve high performance. With dynamic scenes, these structures must
be either updated or rebuilt every frame. For kd-trees, any small change to the
geometry can invalidate the whole tree because of the strict spatial paritioning.
Scanning [7] and binning [8] algorithms have been used to approximate the SAH
cost function through regular sampling of the cost for different split positions. This
approach has led to an order of magnitude speed up for the rebuilding of moderately
complex scenes but still at a non-interactive rate. Parallel approaches to kd-tree
construction have been moderately successful as the difficulty lies in minimizing
communication overhead and providing scalability [9]. Fuzzy kd-trees using motion
decomposition [10] has been shown to provide interactive rates for scenes using
predefined animations and skinned meshes.

Since BVHs are an object hierarchy rather than a spatial hierarchy, any slight
changes to the scene will not invalidate the whole tree as the bounding boxes can
just be refitted to produce a correct and updated tree very quickly. If the topology
of the scene is known and never changes throughout the lifetime of the scene, only
box refitting is necessary to produce a high quality tree. The original topology
to be updated can be precomputed before rendering, or can come from the joint
structure of a skinned mesh. For more general scenes, refitting can be done per
frame but results in deterioration of tree quality which can be fixed through periodic
rebuilding [11] or asychronous rebuilding [12]. To speed up the actual rebuilding
process, a binning algorithm can be used to achieve a relatively high quality tree
at a non-interactive rate.
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2.6 Secondary Effects

Secondary rays due to reflection and refraction become incoherent after each bounce
thus reduces the efficiency of packet and frustum traversal methods [13] for tertiary
rays. Methods such as packet reordering using hardware scatter and gather opera-
tions for large SIMD widths have been proposed to increase efficiency when tracing
groups of rays [14]. Also, n-way BVH structures have been investigated to increase
the performance of mono ray traversal by using SIMD instructions to test a sin-
gle ray against n BVH nodes in parallel. Such n-way structures such as a 4-way
QBVH [15] and a 16-way BVH are targeted at hardware architectures with a large
SIMD width such as Intel’s Larrabee [16] or current generation graphics processing
units (GPUs).

To achieve high quality soft shadows, approaches such as cone tracing [17], soft
shadow volumes [18] and multi-sampled approaches achieve high quality shadows
at non-interactive rates. Parker’s [19] faked soft shadows using single sample soft
shadows produce believable results with a single shadow sample but require a special
ray/polygon intersection test and a lower quality BVH. In this thesis, a similar idea
is presented in Chapter 5 which also requires a single shadow sample but requires
only a change to the traversal logic with no required changes to any other part of
the ray tracing system.
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Chapter 3

Implementation of Scene Builder
and Runtime Renderer

3.1 Test Application

The ray tracing application, called “RTTest”, was implemented fully in C and was
developed on an Intel 3.2 GHz Pentium D, which has 2 cores and 2 MB L2 cache,
with 1 GB of RAM. The goal of RTTest was to act as a prototyping platform for
testing and benchmarking new traversal methods for moderately complex static
scenes. RTTest has both offline and runtime components: The offline component is
a kd-tree builder which takes in the scene geometry and builds an efficient kd-tree
for fast runtime rendering; the runtime component is the actual renderer which uses
the precomputed kd-tree to render the scene in real time.

The RTTest runtime has been designed to take advantage of Intel’s Streaming
SIMD Extensions (SSE) for calculating floating point operations of a vector width
of 4 giving an effective 4× speed up for floating point operations. Throughout the
ray tracing pipeline, from ray generation to traversal, to shading, SSE has been
used to take full advantage of all 4 lanes in the floating point unit.

On a coarser level, the RTTest runtime is also a threaded application that
spawns the same number of threads as the number of CPU cores available and is
able to render on a subset of the scene independently from another with very little
synchronization.

3.2 RTTest Offline

The following sections are related to the RTTest offline tool used for 3D scene
importing and processing for the RTTest runtime. The offline tool supports the
importing of scene data from AutoDesk’s 3D Studio Max and id Software’s Quake
III Arena. Scene data comprise of geometry, texture coordinates and material
properties used for rendering.
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3.2.1 kd-Tree Building

The RTTest offline tool builds a kd-tree for the input scene geometry using a
traditional Surface Area Heuristic (SAH) function as described earlier in Section 2.
When implementing the kd-tree builder, run-time performance was not considered
as a factor since it is used as an offline tool.

Since the kd-tree builder is a recursive algorithm and trees can reach depths of
30 or more, the code implementation of the builder is iterative while maintaining
its own stack rather than relying on the CPU stack which is implicitly maintained
through recursive function calls and can quickly overflow. Another implementation
remark is that a maximum depth size is set to prevent the tree from becoming
too deep which can lead to bad performance since traversal would take too long
to get to the leaf nodes. Another reason for specifying a maximum depth is that
it constrains the memory size of the tree structure since additional splitting would
increase the number of internal nodes and primitives. Also, as the tree gets deeper,
more duplicated primitives occur which can lead to leaf and primitive indices that
overflow 32 bit values.

In the RTTest implementation, candidate split planes were taken as the edges
of each polygon’s clipped bounding box to the current node’s bounding box. It
is important to clip polygons before generating split plane candidates since this
can lead to a more optimal SAH solution. By clipping the polygon to the node’s
bounding box before generating a bounding box for candidate split planes, a tighter
bound to the polygon can be achieved and thus a more optimal SAH solution.
Without clipping, the kd-tree builder failed to find any splitting node in some cases
where polygons were not axis-aligned which led to large leaves with lots of polygons
and bad rendering performance.

Since tree traversal is a key kernel operation, the memory layout of the tree
nodes is important to maximize cache coherency. Modern CPUs tend to have 128
bytes per cacheline which should be able to fit multiple, contiguous nodes. To
maximize cache usage, node data sizes should be minimized by using the minimal
set of information necessary for node traversal. The following shows the memory
layout for a kd-tree node used in the system which comprises of 14 bytes:

typedef struct {
float split;
BYTE axis;
BYTE isLeaf;
int left;
int leaf;

} kd node;

left is either the index of the left child node if the node is an internal node or
the index of leaf data if it’s a leaf. In RTTest, the left and right child nodes are
allocated contiguously which means that if the index of the left child is x, the index
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of the right child is x+1. The result of this is that another index is not required per
node and generating the right index from the left during runtime requires only one
addition and both children can be fetched together to a single cacheline. split is
the splitting plane value for the node and axis is the axis of the split plane. For leaf
nodes, isLeaf is 1 and for internal nodes it is 0. For leaf nodes, leaf is the number
of polygons contained within the leaf and is unused for internal nodes. Since leaf
nodes have no children, left is used instead as a pointer to extra leaf data in a
kd leaf structure as described in the following section. It is possible to compact
the kd node structure down to 8 bytes [20] requiring bitshifting to unpack the data
during traversal. This was not used in RTTest.

3.2.2 Scene Data

Figure 3.1 shows a high level overview of the data structures and memory layout
used by the renderer. The kd node which was explained in the previous section
represents the internal nodes and leaves of the kd-tree. In memory, all the kd-
trees are allocated in an array of contiguous memory and reference each other
via the left data member. However, for leaf nodes, left refers to an index into
another block of contiguous memory which holds leaf data. Since each leaf node
can contain a variable number of polygons, the size of each kd leaf structure is
variable where the leaf data member of the kd node structure that’s pointing to
the leaf is used to determine the size at runtime. To maximize cache coherency,
all kd leaf structures are allocated in a block of contiguous memory. The kd leaf
structures contain the actual polygon data that is required for intersection and may
be duplicated among different leaves since kd-tree leaves can share polygons. The
reasoning for duplicating the polygon data among leaves is that there is a clear
benefit in keeping polygon data close together in memory since each polygon is
accessed sequentially during intersection and as the first polygon is fetched from
memory so are others into the same cacheline. Storing unique polygon data in
another memory area and then refering to them through another form of indirection
would cause incoherent memory accesses and inferior performance. However, for
larger scene sizes, duplicating the polygon data among the leaves would not be
practical due to memory constraints. The remaining data member of the kd leaf is
ext which represents the bounding box of the leaf node and is required for packet
culling and intersection tests.

The poly structure holds all the information that is required for an intersec-
tion test. The first bunch of parameters are used for the projected Barycentric
coordinate intersection test. The remaining parameters are shading parameters
for that specific polygon. normals are the vertex normals which are used for nor-
mal interpolation during shading. material id is a reference to a sh info structure
that describes the material properties that are used to shade the polygon. Fi-
nally, uvcoords are texture coordinates for each vertex used during shading. For
multitexturing, multiple UV data members can be used for each texture.

31



kd_node
float split;
BYTE axis;
BYTE isLeaf;
int left;
int leaf;

sh_info
int type;
union {
   d_info d;
   s_info s;
   r_info r;
   t_info t;   t_info t;
   tr_info tr;
};

refer

kd_leaf
BBox ext;
poly prim[ ]

refer

poly
//intersect params
BYTE axis[2];
Vector normal;
float d;
float Xx,Xy,Yx,Yy;
float p1x, p1y;float p1x, p1y;

//shading
Vector normals[3];
int material_id;
UV uvcoords[3];

contains

Figure 3.1: Memory map of the RTTest runtime renderer.
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In retrospect, it would be possible to keep all the shading data in the poly
structure in another memory location since it has nothing to do with intersection
but would require another incoherent memory access during shading. However, as
more shading data members are required for each polygon, it might be a viable
solution but for now, the current design serves its purpose.

The sh info data structures are kept in another contiguous memory location
that contain data for different types of materials. These materials can be defined
in a 3D editor such as 3D Studio Max and can be referenced by each polygon
through its material id. Further information on the shading system is discussed in
the Shading section.

3.3 RTTest Runtime

Figure 3.2 shows a high level view of the rendering pipeline used in RTTest. For
a multi-core machine, RTTest will spawn the same number of threads as number
of cores and each thread will process a rendering task via the same pipeline. Each
rendering task specifies a tile on the screen which must be rendered and processed
in parallel on a multicore processor. At the beginning of the pipeline, the task
is popped from a stack and the tile parameters are used to generate primary ray
packets and bounding frustums. The frustums are then passed to the traversal
system which traverses the internal nodes of the kd-tree in search for leaf nodes.
Once a leaf node is hit, the internal ray packets within the frustum are culled
against the leaf’s bounding box. Any packets that are not culled are then forwarded
to the intersector which performs polygon intersection tests against each packet.
If there are any remaining packets left to be intersected, the frustum is further
traversed in search of the next leaf node for intersection. When each packet in
the frustum has been intersected, the intersection results of each packet are then
passed to a proxy shader. The proxy shader is a general shader which operates
on one ray packet at a time and is responsible for spawning secondary ray packets
for reflection or refraction if required and simple fixed function shading operations
such as parameterized diffuse lighting and specular highlights. These secondary
traces are sent to the kd-tree for traversal, intersection and shading which do not
further spawn additional rays. Once the resulting colours of the secondary traces
have been calculated, the proxy shader computes the final colours which are then
sent to the final stage for writing into the backbuffer.

3.4 RTTest Runtime Profiling

Table 3.1 shows profile statistics of the more processing intensive stages of the ren-
der pipeline for both primary and secondary rays when rendering the scene shown
on the thesis cover page which features reflection and refraction secondary effects.
The secondary ray traversal stage takes up the most cycles due to the fact that each
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recurse once

Pop Tile Task From Stack

Write to Frame Buffer

Proxy Shader

Polygon Intersection Test

Packet/Leaf Culling Test

hit leaf

kd-Tree Traversal

Ray Generation & Frustum Building

tile is finished intersecting

pass culling test

Figure 3.2: High level view of the rendering pipeline
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ray packet (4 rays) is traced individually rather than together within a frustum (256
rays) since many of the secondary rays are incoherent. The primary intersection
calculations take up slightly more cycles than the secondary ray intersections since
there are less secondary rays traced overall. The primary ray shading is very com-
putationally expensive since it is responsible for building the secondary ray packets
based on different material types and handling the diffuse, specular, reflection and
refraction colours to produce the final screen colour that has to be written to the
back buffer.

Table 3.1: RTTest runtime profiling for the rendering pipeline

Stage Processing %

Primary Ray Traversal 21.00%
Primary Ray Intersection 13.00%
Primary Ray Shading 12.90%
Secondary Ray Traversal 34.31%
Secondary Ray Intersection 12.00%
Secondary Ray Shading 5.65%
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Chapter 4

Algorithms and Techniques for
Ray Tracing

This chapter documents the algorithms, techniques and ideas used for the imple-
mentation of a high performance ray tracer. Several new algorithms are introduced
that simplify and accelerate current techniques. Figure 4.1 shows the scenes used
for benchmarking these ray tracing core algorithms. The Quake III scene is a cus-
tom map made for id Software’s Quake III Arena first person shooter game which
has a moderate polygon count and larger polygons with even distribution. Trans-
formed kitchen has a high polygon count and non-axis aligned geometry. Sponza
has a moderate polygon count with complex geometry and good variation of large
and small polygons. Finally, Fairy is a high polygon scene with many little details.

Figure 4.1: Benchmark scenes from left to right: Quake III (12.8k polys), Trans-
formed Kitchen (110k polys), Sponza Attrium (67k polys), Fairy (174k polys)

All tests were done on an Intel Pentium D processor (2 Cores) at a 512 ×
512 resolution from the views shown in Figure 4.1 with a single point light with
attentuation and simple shading.
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4.1 Traversal

The following sections describe and analyze some traversal techniques for high
performance ray tracing. Traversal is the most important optimization target since
it’s responsible for the actual tracing of rays and the minimizing of redundant,
expensive intersection tests.

4.1.1 Goals of Fast Traversal

The following are the goals for fast traversal:

1. minimize internal node visiting,

2. maximize cache coherency,

3. minimize memory usage,

4. minimize redundant intersection tests, and

5. minimize traversal operations in the traversal loop.

From the renderer’s perspective, internal nodes are all overhead since they just
help get at the leaf nodes where the actual geometry lies. Internal node visits can
be minimized via tracing coherent rays simultaneously and finding a good entry
point into the tree. The tracing of coherent rays simultaneously by using packets
or frustums can decrease the number of internal nodes visited since common paths
along the tree are not revisited.

To maximize cache coherency, the working set of data must be kept to a mini-
mum. By doing proper data layout so data is accessed in sequence and by minimiz-
ing the size of data structures, cache coherency can be increased. Also, operating
on a subset of the problem such as rendering tiles can increase cache coherency by
picking tile sizes in which the working set of data fit in the cache. Care must be
done when accessing large 2D arrays since they are implemented as row major 1D
arrays in C. This means that accessing elements adjacent in the same column are
not adjacent in memory which can lead to an incoherent memory access for large
row sizes.

Traversal is a memory intensive operation as new nodes are accessed in the
traversal’s inner loop which are usually incoherent in memory since the children
nodes are not guaranteed to be adjacent in memory to the parent node. To reduce
these accesses, packet and frustum traversal help by allowing rays to be traced
simultaneously, thus reducing the number of accesses to the same nodes along a
common traversal branch. As rays become less coherent, however, simultaneous
ray tracing becomes ineffective since there are no longer common branches that are
visited amongst a group of rays.
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The most effective optimization on a traversal algorithm is to reduce the number
of traversal steps. A secondary optimization would be to reduce the actual number
of traversal operations actually performed in the inner traversal loop. By using
SSE instructions and good old fashion code optimization, the number of traversal
operations can be reduced.

4.1.2 Omni-Directional Packets

The traditional packet traversal algorithm requires that all rays must have the same
direction signs per axis as described in the Background chapter. Because of this
restriction, any bundle which does not abide will have to be split into smaller packets
and traced individually leading to more traversal steps and more complex code due
to fall back code paths. A modification to the traditional kd-tree traversal algorithm
is proposed to remove this restriction to allow for a simpler code implementation
that requires no direction sign maintenance or packet splitting fall back code paths.

By using the following two modifications to the traditional kd-tree, ray packets
can be traversed with no direction sign limitations:

1. Independent of ray directions, always trace from front voxel to the back voxel
which are defined as the voxel on the same and opposite side of the split plane
as the camera, respectively

2. Treat negative intersection distances as large (infinite) positive distances

The following is an example of a 2×2 bundle traversal code which has been
modified to handle rays with no direction restriction:
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Listing 4.1: Omni-Directional Packet Traversal

while ( !node.isLeaf ) {
active[i] = ( t near[i] < t far[i] );

if (for all i=0..3(!active[i]))
break;

dist = split − origin[axis];

d[i] = dist / dir[i][axis];

//modification 1
for all i=0..3

d[i] = (d[i] < 0 ? FLT MAX : d[i]);

//modification 2
int node index = ( dist < 0.0f ) ? 1 : 0;
Node ∗front = ( Node ∗ ) ( node.left + ( node index ˆ 0x1 ) );
Node ∗back = ( Node ∗ ) ( node.left + node index );

stack.push( back, max( d[i], t near[i] ), t far[i] );
( node, t far[i] ) = ( front, min( d[i], t far[i] ) );

}

The first modification compensates for negative distances, d, by setting negative
distances to FLT MAX. This requires an extra conditional move per ray. The
second modification is shown by selecting the front and back variables based on the
dist variable independent of ray directions.

The same two modifications can be made to the frustum, interval traversal
algorithm by applying the negative distance compensation to the extremal (corner)
rays of the frustum and selecting front and back voxels based on ray origin only.
Listing 4.2 shows a modified version of the interval traversal algorithm by [21]
which allows frustums to be traced with no direction sign restrictions.
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Listing 4.2: Frustum Interval Traversal Algorithm with Omni-Directional Modifi-
cation

while ( !ISLEAF( node ) )
{

const float split = node−>split;
const unsigned int k = DIMENSION( node );
adr += OFFSET( node );
const float dist = split − ray4.origin;

// Modification #1: Pick front and back based on origin
int node index = ( dist < 0.0f ) ? 1 : 0;
KDTreeNode ∗front = ( KDTreeNode ∗ ) ( adr + ( node index ˆ 0x1 ) );
KDTreeNode ∗back = ( KDTreeNode ∗ ) ( adr + node index );

const sse t d = mm mul ps( mm set ps1( dist ), oneOverDir4.t[k] );

const sse t cmp = mm cmplt ps(d, mm setzero ps());

// Modification #2: Compensate for infinite case
d = mm or ps( mm and ps(cmp, mm set ps1(MAX TRACE LENGTH)),

mm andnot ps(cmp, d));

const float dMin = mm cvtss f32( sseHorizontalMin( d ) );
const float dMax = mm cvtss f32( sseHorizontalMax( d ) );

node = back;

if ( dMax < near )
continue;

node = front;

if ( dMin > far )
continue;

stack[stackIndex] = back;
stack[stackIndex].near = MAX( dMin, near );
stack[stackIndex].far = far;
stackIndex++;

far = MIN( dMax, far );
}

For primary rays, there’s a 2× performance increase for omni-directional ray
packets over standard ray packets when the packets have differing direction signs.
This is the case because standard ray packets must be split into two on average and
traced individually which requires two times more processing than omni-directional
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ray packets. However, the overall performance benefit is minimal since these types
of packets represent only a small fraction of the primary ray packets for any given
view: 4/1024 for a 1024× 1024 resolution [13].

The practical advantages to using this modification is that direction signs no
longer have to be checked per bundle which can be helpful for a simpler software
implementation or a fixed function hardware implementation. In RTTest, omni-
directional ray packets are used for the packet traversal of secondary rays since it’s
simpler to implement in the Shader Proxy when spawning secondary traces.

4.1.3 Frustums

For primary rays, a frustum interval traversal is used to provide a speed up over
standard packet traversal as shown in Table 4.1 where FPS is the frames per second,
N is the average number of traversed node per packet and I is the average number of
intersections per packet. As seen in the performance data, frustums incur a higher
number of intersection tests. The reason for this is that all packets in a frustum
are traversed and intersected together, resulting in leaf nodes that are visited which
only intersect a fraction of the packets within a frustum. This means that some
packets within the frustum visit leaf nodes that they wouldn’t have intersected if
traversed alone. Despite more redundant intersection tests, frustum approaches
yield a better overall performance due to the fact that they traverse much less
nodes. The reason behind this is that frustums support larger groups of rays than
2× 2 packets which allows highly coherent primary rays to be traced together and
thus visiting nodes along the common path within the tree only once. In Table 4.1,
peak frame rates are shown in bold where most scenes peak at a 8× 8 tile size with
the exception of the Quake scene which peaks at 16 × 16 due to the simplicity of
the scene which allows for a larger group of rays to follow a common path through
the tree during traversal.

As described in the following sections, the use of a cone shaped frustum was also
investigated and resulted in superior performance over packets for primary rays but
were less optimal than standard pyramid shaped frustums used for the benchmarks
in this section. Also, the idea of multiple frustums is also discussed in the following
sections. This idea can be used to deliver improved performance over standard
frustum traversal for primary rays.

For secondary rays, frustums were not used since as rays become more incoher-
ent, frustums will incur too many redundant intersection tests and there are less
common paths in the tree to exploit. For frustums bounding incoherent rays, many
nodes can be intersected and traversed while only a small fraction of internal rays
are actually active since a frustum approach does not use any information about
the internal rays during traversal. For primary rays, frustums incur redundant
traversal and intersection to a lesser extent due to coherency but packets should
still be culled against leaf bounding boxes prior to intersection tests as shown in
the next section to prevent redundant intersection computation.
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Table 4.1: Frame rate (FPS), # traversed Nodes (N) and # intersection tests (I)
for 2× 2 packet tracing and increasing tile sizes for primary rays.

Packet 2× 2 FPS N I

Quake 15.00 fps 38.68 3.46
Kitchen 9.00 fps 46.50 11.12
Sponza 13.60 fps 33.81 3.83
Fairy 7.80 fps 54.62 11.78

Frustum 4× 4 FPS N I

Quake 22.00 fps 10.38 4.39
Kitchen 13.00 fps 13.94 30.04
Sponza 17.50 fps 11.05 9.86
Fairy 11.30 fps 15.74 39.21

Frustum 8× 8 FPS N I

Quake 37.00 fps 2.90 5.83
Kitchen 16.90 fps 4.92 77.74
Sponza 24.00 fps 4.17 22.20
Fairy 14.80 fps 5.78 100.16

Frustum 16× 16 FPS N I

Quake 44.00 fps 0.911 9.90
Kitchen 14.00 fps 2.38 269.60
Sponza 20.60 fps 2.14 63.71
Fairy 12.40 fps 3.06 347.40

Frustum 32× 32 FPS N I

Quake 37.00 fps 0.35 22.77
Kitchen 6.80 fps 1.60 1081.16
Sponza 9.90 fps 1.52 226.81
Fairy 6.80 fps 2.10 1156.30

42



4.1.4 Packet/Leaf Culling

A packet/leaf culling algorithm similar to a packet BVH traversal was used to
filter out any redundant intersection tests due to frustums. Table 4.2 shows the
frame rate improvement due to packet/leaf culling and the percentage of packets
that are culled for a tile size of 8 × 8. The numbers shown in Table 4.1 in the
previous section are performed with packet/leaf culling turned on and are used
to generate the percentage of frame rate change and percentage of culled packets.
From the table, the importance of a fast culling algorithm is evident. Especially
for scenes with a high polygon count such as Kitchen and Fairy, the performance
benefit is around 2× solely due to an efficient culling test. As tile sizes and scene
complexity increase, it becomes more important to perform a simple packet/leaf
culling algorithm for high performance rendering.

The Multiple Frustum Traversal section introduces the use of multiple frustums
to help further decrease these redundant intersection operations.

Table 4.2: Overall performance change from packet culling and the percentage of
packets culled per frame.

8x8 Framerate increase % Culled Intersections %

Quake 15.60% 40.35%
Kitchen 182.00% 85.60%
Sponza 76.50% 82.40%
Fairy 208.00% 86.60%

4.1.5 Multiple Frustum Traversal

In this section, a novel traversal technique is proposed which allows better rendering
performance and uses ideas similar to beam tracing [22] for the purpose of ray
acceleration. Since using an interval frustum algorithm does not require SSE for
traversal, it is possible to traverse a packet of frustums, not rays, together using SSE
instructions much like beams. This can be done by splitting a tile into 4 smaller
subtiles as shown on the left in Figure 4.2. The advantage to doing this would be to
enable quick masking of inactive or “completed” (intersected) frustums to minimize
the number of traversed nodes with comparable computations to tracing a 2 × 2
packet. By using quick masking, the overall “tile” that is traced will shrink when
frustums become inactive or completed, thus allowing more efficiency with larger
tiles. This idea of using multiple frustums instead of a single frustum is very similar
to the idea of using packet tracing over mono-ray tracing by taking advantage of
the underlying SSE architecture.

Multiple Frustum Traversal (MFT) can be implemented by keeping track of
near (t near) and far (t far) values for each frustum. For SSE enabled systems
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Figure 4.2: left: MFT used for 4 pyramidal frustums, centre: single cone frustum
bounding a tile, right: MFT used for 4 conical frustums

with four wide vector units, four frustums can be traced in parallel while keeping
traversal data within CPU registers. A frustum can be masked if it is inactive
(t far < t near) OR if it is complete. By keeping track of a simple frustum mask,
many branches can be culled during traversal since less inactive rays are “forced”
down branches that they wouldn’t have visited if traversed alone. Also, when a
frustum is masked, it will not be involved in the decision making at each split
plane. The following list describes the essential changes to the traditional, kd-tree
frustum interval traversal for MFT:

1. Treat each frustum as a ray with an interval (t near, t far) using frustum
interval traversal.

2. Maintain an active mask for each frustum: active = (t near ≤ t far) AND
there exist packets inside frustum are not intersected.

3. Using SSE, traverse 4 frustums simultaneously while updating intervals (like
packet tracing).

4. When pushing a node on the stack, push the active mask with it.

5. If all frustums are inactive, stop traversal into current node.

6. When a leaf is visited, perform intersection tests using packets bounded by
active frustums only.

7. If all rays in the frustum has intersected, make frustum inactive.

Figure 4.3 shows how intersections and traversal can be culled by tracing 2 frus-
tums simultaneously, instead of one larger frustum or tracing 1 and 2 individually.
By tracing one large frustum, node A is visited only once as well as nodes B and
C. The advantage to tracing one large frustum is that all nodes are visited only
once. However, the disadvantage is that not all rays within the frustum actually
intersect with nodes B and C resulting in redundant intersection tests. Another
disadvantage is that if all the rays that intersect node B or C have already hit a
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polygon in node A, then traversal would still continue into nodes B and C until all
the rays within the frustum have been intersected.

If the large frustum is split into frustum 1 and 2, and traced indvidually, nodes
A and B would be visited twice and node C once. The advantage to this method
would be that frustum 1 would never intersect node C, thus decreasing the num-
ber of redundant intersection tests over the single frustum approach. However,
the disadvantage to this method is that nodes A and B are traversed twice even
though they lie within the common path of the larger frustum, thus leading to more
traversal operations.

Using MFT, frustums 1 and 2 can be together using SSE such that node A,
B and C are visited only once like the single frustum approach. Note that this
example features only 2 frustums but on a SSE enabled system, 4 frustums are
traced simultaneously using MFT. The advantage of MFT over the single frustum
approach is that when traversing node C, frustum 1 is masked out such that no
intersection tests are performed for rays within frustum 1 against any geometry
within node C. Also, if any two frustums have completely intersected geometry in
node A, they will be masked out during any further traversal into nodes B and
C. Note that MFT never performs more traversal or intersection operations over
a single frustum approach or an approach that traces frustums individually. The
only overhead of using MFT is using SSE to maintain 4 intervals and a frustum
mask.

Node A

Node C Node B

Frustum 1
Frustum 2

Figure 4.3: Diagram of MFT with 2 frustums being traced hitting nodes A, B and
C.

Table 4.3 shows statistics of benchmark scenes using MFT. The columns labeled
% FPS, % N, and % I show the percentage difference of MFT compared to the single
frustum traversal for the same tile sizes as shown in Table 4.1. For each test case,
MFT shows a improvement of a higher frame rate, less nodes traversed and less
intersection tests performed. When comparing the percentages of improvement,
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there is a significant difference in the number of intersection tests solely due to
frustum masking. Another important metric is the peak performance comparison
for MFT versus single frustum peak performance shown in Table 4.4. The statistics
show that for every test case, MFT yields the highest peak performance at around
12% over the single frustum peak performance. Table 4.4 also shows that MFT
achieves peak performance at a larger tile size. The reason for this is that at
higher tile sizes, MFT allows all frustums to be active in areas of the scene where
there is low geometric complexity and masks out inactive frustums in areas of high
geometric complexity as shown in Figure 4.3 where both frustums are active in
node A and frustum 1 is masked in Node C. By doing masking, fewer redundant
intersection tests occur in areas of high complexity and the speed benefit of a large
furstum occurs in areas of low complexity.

MFT has been successfully implemented in RTTest and it offers the highest
performing code path in the renderer. Due to the ease of implementation and
the increase in performance in all test scenes, MFT is a very useful technique for
improving kd-tree traversal. It can also improve the XP search stage of the MLRT
algorithm since it also uses an interval frustum traversal.

Table 4.3: Statistics for using MFT. Each tile is divided into four quadrants and
traced as four simultaneous frustums

MFT 4× 4 FPS N I % FPS % N % I

Quake 24.00 fps 10.34 3.79 9.00% -0.40% -13.70%
Kitchen 14.30 fps 13.57 16.57 10.00% -2.65% -44.84%
Sponza 18.80 fps 10.74 5.74 7.40% -2.80% -41.80%
Fairy 12.30 fps 15.34 21.25 8.85% -2.50% -45.80%

MFT 8× 8 FPS N I % FPS % N % I

Quake 39.30 fps 2.87 4.39 6.20% -1.00% -24.70%
Kitchen 18.00 fps 4.60 30.71 6.50% -6.50% -60.50%
Sponza 26.00 fps 3.92 9.96 8.30% -6.00% -55.14%
Fairy 16.10 fps 5.40 39.67 8.78% -6.57% -60.39%

MFT 16× 16 FPS N I % FPS % N % I

Quake 49.00 fps 0.88 5.87 11.36% -3.40% -40.70%
Kitchen 18.50 fps 2.24 83.56 32.14% -5.88% -69.00%
Sponza 27.50 fps 1.93 22.86 33.50% -9.81% -64.11%
Fairy 16.90 fps 2.670 104.41 36.29% -12.75% -69.95%

MFT 32× 32 FPS N I % FPS % N % I

Quake 50.00 fps 0.33 10.10 35.14% -5.71% -55.64%
Kitchen 12.50 fps 1.56 328.20 83.82% -2.50% -69.64%
Sponza 19.50 fps 1.31 68.98 96.97% -13.82% -69.59%
Fairy 12.30 fps 1.93 371.24 80.88% -8.10% -67.90%

46



Table 4.4: Peak performance comparison between a single frustum or packet versus
MFT

Scene MFT framerate MFT tile size non-MFT framerate non-MFT tile size

Quake 50.00 fps 32× 32 44.00 fps 16× 16
Kitchen 18.50 fps 16× 16 16.90 fps 8× 8
Sponza 27.50 fps 16× 16 24.00 fps 8× 8
Fairy 16.90 fps 16× 16 14.80 fps 8× 8

BVH Multiple Frustum Traversal

MFT could also apply to BVH frustum traversal proposed by Wald [6] by having
four frustums with four different active rays from each frustum. The four active
ray tests could be done in parallel using SSE as proposed by Wald [6] but the
difference is that each ray should be from different frustums. The early miss frustum
test should be done on four frustums using interval arithmetic instead of a single
frustum using SSE. Using the results from the active ray and early miss frustum
tests, a frustum mask can be maintained like in the MFT kd-tree implementation.
Also, the frustum mask can also keep track of frustums that have been completely
intersected. Using this frustum mask, only ray packets within active frustums need
to perform and per ray operations such as the “test of last resort” [6] and polygon
intersection tests. Also, during traversal, if all of the frustums are inactive, traversal
into the current node should be stopped. To summarize, the following modifications
to the traditional BVH frustum traversal should be done to support MFT:

1. Maintain 4 active rays from 4 different sub frustums.

2. Perform 4 active ray tests simultaneously using SSE; for tests that pass, up-
date the frustum active mask.

3. If all tests pass: continue traversal into node.

4. If any of the 4 active ray tests fail, perform early miss frustum culling for all
4 frustums together using SSE; for tests that pass, update the frustum active
mask.

5. If all early miss tests pass, stop traversing current node.

6. For all frustums that failed the early miss test, update the frustum’s active
ray and continue traversal.

7. For frustums that could not find a new active ray, make it inactive in the
frustum mask; Otherwise, make it active.
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8. If all frustums are inactive, stop traversing current node.

9. When pushing a node on the stack, push the active mask with it.

10. When a leaf is visited, perform intersection tests using packets bounded by
active frustums only.

11. If all rays in the frustum have intersected, make the frustum inactive.

The BVH version of MFT has not been implemented in RTTest but predicted
results should be similar to the kd-tree version as traversal and intersection opera-
tions are able to be further culled with little overhead. In the Future Work chapter,
profile results are planned to be obtained for this flavor of MFT.

4.1.6 Cone Proxy Traversal

Cone proxies provide an alternative to a pyramidal proxy for ray traversal accel-
eration. The following sections derive a fast, interval method of a cone frustum
traversal through a kd-tree hierarchy. This traversal algorithm can then be used as
a proxy frustum to accelerate bundles of rays by exploiting coherency without any
knowledge of the internal rays. This method can also be used to accelerate cone
tracing [17] to render high-quality, secondary effects.

4.1.7 Cone Frustums

A cone is defined by a ray and an angle, α, of separation between between the
ray and outer edge as shown in Figure 4.4. Unlike standard mono-ray traversal
which calculates single distances to the split plane, cone traversal calculates two
intersection distances to the split plane as shown in Figure 4.4 as t1 and t2. These
two distances are defined as the distances along the ray of the cone in which the
outer edges of the cone intersect the split plane at a single point. By using these
two distances, an interval traversal algorithm can be derived which is done in the
Cone Traversal section.

The following shows a derivation of t1 and t2. Figure 4.4 shows a cone with
origin s, direction v and angle α. The cone is intersecting with a split plane with
normal n, distance d at an angle φ. Using these definitions we want to derive
an equation for the distances t1 and t2 along vector v from s in which the cone
intersects the split plane at a point. The following equations represent the two
distances of interest, t1 and t2, as t12.

point along ray = s+ t12v (4.1)
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Figure 4.4: A cone with origin s, direction v and angle α intersecting a split plane
with normal n, distance d at an angle φ.

solving for the distance from the plane gives:

distance from plane = (s+ t12v) · n− d (4.2)

using trigonometry gives another equation for the same distance:

distance from plane = t12 tanα cos(β) (4.3)

where β = 90◦ − φ

equating the two distances

(s+ t12v) · n− d = t12 tanα cos(90◦ − φ) (4.4)

solving for φ by finding the angle between vectors n and v:

φ = cos−1(
n · v
|n||v|

) (4.5)

solving for t12 gives the following:
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t12 =
d− n · s

n · v − tanα cos(φ− 90◦)
(4.6)

substituting for φ and solving for the cos term gives

t12 =
d− n · s

n · v ± tanα
√

1− ( n·v
|n||v|)

2
(4.7)

since the plane normal n can assumed to be normalized and if the ray v is also
normalized, then the equation for t12 can be simplified to:

t12 =
d− n · s

n · v ± tanα
√

1− (n · v)2
(4.8)

Because of the ±, two values are obtained which correspond to the two points
of intersection, t1 and t2, as shown in Figure 4.4.

4.1.8 Cone Traversal

Using Equation 4.8, a cone traversal algorithm is derived. For primary rays, tanα
for each cone can be precomputed offline before rendering since they are view
direction independent. Everything in the denominator is cone dependent therefore
they can be precomputed per frame for each cone before traversal when the frustum
is built. During traversal, to obtain t1 and t2, the distance from the split plane,
d − n · s, must be calculated as usual and multiplied by the precomputed values
per cone. The following code illustrates the traversal code which requires only one
more multiply and two conditional moves over mono ray traversal:

Listing 4.3: cone frustum traversal code

//d − ns
split minus origin = split − origin[axis];

temp1 = split minus o ∗ precompute[0][axis];
temp2 = split minus o ∗ precompute[1][axis];

t1 = min(temp1, temp2);
t2 = max(temp1, temp2);
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The precomputed values are calculated per frame for each cone as shown in the
following where dir is the vector v in Figure 4.4:

Listing 4.4: cone frustum precomputed values

for ( int axis = 0; axis < 3; axis++ )
{

beta = tanAlpha ∗ sqrt ( 1.0f − dir[axis] ∗ dir[axis] );
precompute[0][axis] = 1 / ( beta + dir[axis] );
precompute[1][axis] = 1 / ( −beta + dir[axis] );

}

Using these calculations for solving for distances t1 and t2, the traversal algo-
rithm can be derived where t1 <= t2 is always true.

The following shows the traversal algorithm for cones where negative distance
compensation is used to allow for omni-directional traversal as described in the
Omni-directional Ray Packets section:

Listing 4.5: full cone frustum traversal code

while ( !node.IsLeaf ) {
split minus o = split − origin[axis];
temp1 = split minus o ∗ precompute[0][axis];
temp2 = split minus o ∗ precompute[1][axis];

//negative distance compensation
temp1 = (temp1 < 0) ? FLT MAX : temp1;
temp2 = (temp2 < 0) ? FLT MAX : temp2;

t1 = min(temp1, temp2);
t2 = max(temp1, temp2);

//modification 2
int node index = ( dist < 0.0f ) ? 1 : 0;
Node ∗front = ( KDTreeNode ∗ ) ( node.left + ( node index ˆ 0x1 ) );
Node ∗back = ( KDTreeNode ∗ ) ( node.left + node index );

if ( t2 <= t near )
node = back;

else if ( t1 >= t far )
node = front;

else {
stack.push( back, max( t1, t near ), t far );
(node, t far ) = ( front, min( t2, t far ) ); }

}
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The advantage of using cone traversal in terms of a pyramid traversal as de-
scribed in Listing 4.2 is that no horizontal max/min functions are required. One
can argue that it is possible to precompute the max/min directions before pyramid
traversal but that still requires additional computation resulting in inferior per-
formance in some cases. Another advantage over pyramids is that cones can be
traversed omni-directionally requiring no SSE which is not the case for an omni-
directional pyramid traversal since all four corner distances must be calculated first
using SSE before applying a horizontal min/max operation as shown in Listing 4.2.
For smaller tile sizes, cones provide better performance and no directional restric-
tions over pyramids as shown in Table 4.5 in the following section where a single
cone beats out a single frustum for a 4 × 4 tile size even though it traverses more
nodes.

4.1.9 Cone vs Pyramid

This section analyzes some profile results for the use of cones versus pyramids as
a frustum for primary rays. Much like how MFT was used for pyramid frustums,
MFT can be applied to cone frustums as well. An added benefit to MFT cones
over intersection and traversal culling due to masking is that multiple cones bound
the primary ray tiles tighter than a single cone as shown in Figure 4.2 where a
single cone is shown in the middle and multiple cones on the right. Table 4.5 shows
how single cone and MFT cone traversal compare with a single pyramid frustum
traversal for the Sponza benchmark scene. The three leftmost columns specify
the frame rate, average number of nodes traversed per packet and the number
of intersections performed per packet, respectively. The three rightmost columns
show the same statistics as a percentage of difference relative to a single frustum
approach as summarized in Table 4.1.

The data shows that there is significant overhead to using a single cone in terms
of the number of nodes visited and intersection tests over a pyramid frustum due to
the fact that cones more loosely bound primary rays. It’s worth noting that the 4×4
single cone beats out the 4×4 single frustum in framerate due to the fact that cone
traversal doesn’t require a min and max direction value to be calculated from the
extremal rays before each traversal which leads to less computational overhead over
the cone traversal which doesn’t require such calculations. However, as tile sizes
increase, this overhead gets amortized over more rays, thus allowing the pyramid
frustum to overtake the cone frustum in terms of performance.

The use of MFT cones provides a better overall performance than the pyramid
frustum due to the masking of frustums which leads to less intersection tests but
slightly more traversed nodes. When compared to MFT pyramids as shown in
Table 4.3, MFT cones are still inferior. Despite the fact that cones does not provide
an overall performance benefit due to the fact that cones do not tightly bound
primary rays, this section provides some good insight into the possibilities of using
frustum acceleration of different shapes.
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From the performance numbers, cones do not look like a practical frustum
method for ray acceleration. However, for a beam tracer where rays are replaced
with beams with actual volume, cones can provide better performance than a pyra-
mid frustum due to the smaller number of traversal operations required with no
direction limitations. The use of cones for beam tracing is beyond the scope of this
project but it is an interesting approach noted for future work.

Table 4.5: Performance metrics for single cone and MFT cone traversal compared
to a single pyramid frustum for Sponza.

4×4 FPS N I % FPS % N % I

Single Cone 20.00 fps 12.10 13.32 14.29% 9.50% 35.09%
MFT Cone 18.80 fps 11.23 6.93 7.43% 1.63% -29.72%

8×8 FPS N I % FPS % N % I

Single Cone 22.20 fps 5.03 33.40 -7.50% 20.51% 50.47%
MFT Cone 25.00 fps 4.28 13.32 4.17% 2.73% -40.00%

16×16 FPS N I % FPS % N % I

Single Cone 15.50 fps 2.95 106.08 -24.76% 37.90% 66.50%
MFT Cone 25.10 fps 2.27 33.40 21.84% 6.00% -47.57%

32×32 FPS N I % FPS % N % I

Single Cone 6.40 fps 2.30 382.47 -35.35% 51.62% 68.63%
MFT Cone 15.50 fps 1.62 106.08 56.57% 6.63% -53.23%

Despite providing poorer performance numbers for primary ray accerlation due
to loose bounding, cones can provide better performance than pyramids for a group
of rays which are cone-shaped. Cone-shaped ray groups are useful for doing multi-
sampled soft shadows to spherical light sources as shown in Figure 4.5. Since
they provide a tighter bound to internal rays, cone frustums yield a better overall
performance than pyramid frustums as shown in Table 4.6.

Table 4.6: Performance metrics for a 16 sample soft shadow rendering using cone
and pyramid frustums for a light radius of 1 and 2.

radius = 1 FPS N I

Cone 2.72 fps 118.28 116.10
Pyramid 2.00 fps 120.72 129.31

radius = 2 FPS N I

Cone 1.97 fps 164.30 378.91
Pyramid 1.36 fps 174.23 449.69
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Figure 4.5: Diagram of multiple shadow samples to a spherical light using a cone
frustum.

4.2 Ray/Polygon Intersection

For fast ray/polygon intersection, the projected Barycentric coordinates test [20]
was implemented in RTTest. The advantage to using this test is that the coordi-
nates must be calculated anyways for proper texture lookup during shading.

By using the projected Barycentric test, the vertices of the actual polygon do not
have to be present at all which further saves on memory and achieves better cache
coherency. The following listing shows the structure render poly that was used
for representing polygons for intersection. All the data members are precomputed
parameters for the Barycentric test which amounts to 42 bytes.

typedef struct
{

BYTE axis[2];
Vector normal;
float d, Xx, Xy, Yx, Yy, p1x, p1y;

} render poly;

In RTTest, all intersection tests are performed for four (SIMD WIDTH) rays
simultaneously using SSE. The result of an intersection test is kept in a trace rt
structure which is shown in the following listing:
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Listing 4.6: trace result structure

typedef struct
{

float t[SIMD WIDTH];
float pid[SIMD WIDTH];

//barycentric coords
float a1[SIMD WIDTH];
float a2[SIMD WIDTH];
float a3[SIMD WIDTH];
bool isCompleteHit; //all hits same poly

} trace rt;

The data members are arrays of SIMD WIDTH since they are results for each
ray. isCompleteHit is true if all rays in the packet intersect the same polygon.
This is helpful to know during shading since packets no longer have to be broken
and can be quickly shaded in groups of SIMD WIDTH. The t data member is the
distance along each ray in which the intersection occurs. These values can be used
with the ray directions to find the actual point of intersection during shading. The
pid data member contains the id numbers of the polygon intersected for each ray.
When isCompleteHit is true, all elements in pid are the same. a1, a2 and a3 are
the resulting Barycentric coordinates which are used for interpolation along the
polygon between the vertices during shading.

After intersection, these results are passed to the Proxy Shader which is respon-
sible for using these results to produce the final colour output for the packet of rays
as discussed in the following section.

4.2.1 Shader System

The shader system used in RTTest is fixed function which means that the system
exposes a set of parameters which can be used to customize certain material at-
tributes that can be set through a scene editor such as 3D Studio Max. To support
a fully programmable shading model as in the current generation of GPUs, shaders
must written in C and compiled/linked to the runtime code. For a research appli-
cation, this fixed function design can be adequate enough to prototype new shaders
but for a production application, requiring the developer to recompile and link the
application each time a new shader is changed is not acceptable. An alternative to
this would be to support a runtime compiler or interpreter such as LLVM [23] to
support a specific shading language to allow on the fly changes to shaders without
any rebuilding of the application or any need for an offline compiler. Such an im-
plementation is beyond the scope of this project but remains a future feature that
should be implemented to make the RTTest rendering engine usable by developers
for production applications.
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Exposing every possible configurable shading parameter for maximum config-
urability would be detrimental to performance since there would be too many con-
ditionals and branches within the performance critical shader which is executed at
least once for every pixel. To maximize the number of different effects that can
be rendered, a set of shading parameters has been chosen and exposed from the
shading API to the materials. The following listing documents the different shader
parameters exposed to the materials:

Listing 4.7: Shader and material types and parameters

typedef enum {
M D, //DIFFUSE
M S, //DIFFUSE + SPECULAR
M R, //DIFFUSE + SPECULAR + REFLECTIVE
M T, //DIFFUSE + TRANSPARENT
M TR, //DIFFUSE + SPECULAR + TRANSPARENT + REFLECTIVE
NUM MATERIAL TYPES

}SH TYPE;

typedef struct { //DIFFUSE
float base[4];
texture ∗diffMap;
texture ∗normMap;

} d info;

typedef struct { //SPECULAR
d info diffuse;
int exp;
float blend;

} s info;

typedef struct { //DIFFUSE + SPECULAR + REFLECTIVE
s info specular;
float blend;

} r info;

typedef struct { //DIFFUSE + TRANSPARENT
d info diffuse;
float blend;
float refract index;

} t info;

typedef struct { //DIFFUSE + SPECULAR + TRANSPARENT + REFLECTIVE
r info reflective;
float blend;
float refract index;

} tr info;
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typedef struct {
SH TYPE type;
union {

d info d;
s info s;
r info r;
t info t;
tr info tr;

};
} material;

The SH TYPE type defines the different shaders that can bound to a mate-
rial. These are specified as the type data member in the material structure. The
M D type is used for diffuse materials that are not reflective or refractive and is
paramerterized by the d info structure. In d info, a base floating point colour can
be specified but it is ignored if there is a diffuse texture map specified through the
diffMap texture pointer. A normal map can also be optionally specified through
the normMap texture pointer for higher quality rendering. Since all the shader
types support a base colour with normal mapping, they each contain diffuse pa-
rameters which appear at the top bytes of the structure. This memory layout helps
during the shading stage since it can be assumed that the first 24 bytes of each
material contains diffuse shading information without knowing the actual shader
type. The next type, M S is used for shiny diffuse materials with specular high-
lights. The exp integer specifies the Phong highlighting exponent and while the
blend float specifies the intensity of the specular highlights. The next type is M R
which has parameters r info for reflective surfaces. Since reflective surfaces are
usually specular and can have a base colour, the r info structure contains an s info
and a reflective intensity factor blend. The difference between a specular and a
reflective shader is that a reflective shader actually sends out secondary rays for
sampling whereas a specular does not. Another type that requires secondary re-
fraction rays is the transparent type, M T which is parameterized by t info. The
transparent type supports a diffuse base, a transparency factor blend and an in-
dex of refraction refract index. Finally, the most processing intensive shader is the
transparent-reflective type, M TR. This type supports both secondary reflection
and refraction rays which means that each shaded pixel requires more than twice
the traversal costs over a diffuse shaded pixel. Since the type is reflective, tr info
contains a r info and transparency parameters blend and refract index. Since a
material can be of only one shader type, the material structure contains a union of
all types.

All the fixed function shading is handled in the “Shader Proxy” stage of the
rendering pipeline as shown in Figure 3.2. This proxy is responsible for taking in
the trace results of each ray as specified by Listing 4.6 and producing a resulting
colour. Using the trace rt structure, the polygons are referenced from the pid data
member for each ray in the packet. For each polygon intersected, the vertex normals
are loaded into registers and interpolated at each hitpoint using the Barycentric
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coordinates from the trace rt structure. Next, the material id for each intersected
polygon, as shown in Figure 3.1, is used to reference a material structure for shad-
ing. The Shader Proxy uses these material structures and interpolated normals to
compute the following:

1. build and trace secondary reflection and refraction packets,

2. build and trace shadow rays,

3. texture lookups for diffuse and normal maps using bilinear filtering,

4. compute diffuse term: N · L using interpolated normals or normal map,

5. compute Phong specular term: (R · V )α, and

6. using reflection, refraction, diffuse, specular, ambient and shadow results,
produce the final colour.

Once the final colours have been determined, they are sent to the colour writing
stage which writes the final colour to the framebuffer.

4.2.2 Code Level Optimization

Writing high performance software such as a ray tracer can be a difficult task
requiring some code level optimizations to best utilize the CPU hardware. This
section provides an overview of some techniques to optimize code.

Proper data layout is very important for maximizing cache coherency via local-
ity. By keeping data structures as small as possible and data accesses in sequence,
cache utilization can be maximized. One such example of a structure to optimize
are tree nodes which can be optimized down to 8 bytes (14 bytes were used in
RTTest). By storing all nodes in an array of contiguous memory instead of heap
allocated memory for each node, memory access patterns will be coherent and local.

The use of SSE intrinsics is essential for achieving high performance rendering.
SSE allows full utilization of all 4 lanes of the floating point unit which effectively
gives a 4× speed up for all floating point calculations. When using SSE in per-
formance critical areas such as the traversal loop, branching should be replaced by
masking to allow better thoroughput and reduce inefficiencies due to branch mispre-
diction. One of the most effective ways of utilizing SSE is to work on 4 rays/pixels
at a time. Coding in terms of groups of 4 can be difficult for some programmers as
another dimension is introduced throughout the code. To help with the transition
to working with packets of rays, a simple math library can be used for common
functions that work on packets of rays much like a single ray. Listing 4.8 shows some
common functions that can be used to handle ray packets. The BLEND macro can
act as a helper for the common masking operation of selecting values from either
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SIMD values, x or y. The DotProduct mm computes 4 dot products simultaneously
between 4 vectors in array v1 and 4 vectors in array v2. The inv mm function com-
putes a fast reciprocol by using an initial approximation given by mm rcp ps and
performing one iteration of Newton’s Method for more precision. This is a common
method in graphics to perform fast reciprocols without a costly division. The final
function is used for subtracting 4 vectors in array b from 4 vectors in array a and
returning the result as 4 vectors in array out. These helper functions are far from
complete but show how common functions using SSE can be wrapped to allow for
better code readability and easier coding.

Listing 4.8: SSE ray packet helpers

#define BLEND(mask, x,y) mm or ps( mm and ps(mask,x), mm andnot ps(mask, y))

inline m128 DotProduct mm( m128 v1[3], m128 v2[3])
{

m128 x,y,z;

x = mm mul ps(v1[0], v2[0]);
y = mm mul ps(v1[1], v2[1]);
z = mm mul ps(v1[2], v2[2]);

return mm add ps( mm add ps(x,y), z);
}

inline m128 inv mm( m128 in)
{

m128 estimate = mm rcp ps(in);
m128 diff = mm sub ps( mm set ps1(1.0f), mm mul ps( estimate, in));

return mm add ps( mm mul ps(diff, estimate), estimate);
}

inline void VectorSubtract mm( m128 out[3], m128 a[3], m128 b[3])
{

for(int i=0; i<3; i++)
out[i] = mm sub ps(a[i], b[i]);

}

In all cases of the rendering loop, the number of divisions and square roots
should be minimized since they are costly floating point operations. The most
common use is during vector normalization which requires a square root to find the
length of the vector and a division to normalize it. When building rays for tracing,
it is not necessary to normalize the rays before traversal since all calculated split
plane distances will be correctly ordered. However, vector normalization is usually
required in shading operations but should be used sparingly.

A common operation in many numerical processing applications is casting from
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a floating point value to an integer. In a renderer such as a ray tracer, all internal
values are calculated in floating point, but colour values are usually stored in the
frame buffer as RGB integer values. Since over a million pixels are processed every
frame at HD resolutions, the float to int casting is a target for optimization. Using
a traditional float to int cast “(int)” is a very expensive operation because the ISO
standard C compiler will have to change the floating point mode from rounding to
truncate before casting which effectively flushes the floating point pipeline [24] [25].
By using the function in Listing 4.9, casting can occur using rounding without
changing the floating point mode. SSE supported hardware exposes a fast float
to int conversion using both trunction and rounding as mm cvttps epi32 and
mm cvtps epi32 which can be used instead of the code in Listing 4.9 [24] for a

group of values.

Listing 4.9: Fast float to int cast using rounding [24]

inline long int
lrintf (float flt)
{ int intgr;

asm
{ fld flt

fistp intgr
} ;

return intgr ;
}
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Chapter 5

Edge Width Soft Shadows

Soft shadows are traditionally rendered by using multiple shadow ray samples per
intersection point to an area light as shown in Figure 5.1 where multiple shadow
rays are traced to the area light source. The results of these shadow ray traces
are then used to determine the factor of occlusion. For a high quality, smooth soft
shadow, at least 32 shadow ray samples per point are required. This is effectively
32 times more processing over primary rays. In Figure 5.2, multiple sponza render-
ings are shown ranging from 4 to 32 shadow samples per point. From renderings,
significant banding can be seen for shadows with 4 to 8 samples which is already
very performance intensive and not feasible for a real time application on current
CPU hardware. For larger light sources which produce a larger pneumbra, even
more samples must be taken to produce visibly smooth results.

This section proposes a novel technique for rendering fake soft shadows with
smooth pneumbra edges called “Edge Width Soft Shadows” using only one shadow
sample only. For most views, this method can achieve slightly less performance
than tracing a single, traditional shadow ray which produces hard shadows. The
visible advantage by using edge width shadows can be seen in Figure 5.3. A 32
multi-sampled soft shadow, an edge width soft shadow and a hard shadow Sponza
rendering are shown in the top, middle and bottom pictures, respectively. From the
comparison, the edge width soft shadows look much more realistic than the hard
shadows and comparable to the multi-sampled shadows.
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Figure 5.1: Diagram of an area light casting a soft shadow due to an occluder with
umbra, pneumbra and un-shadowed regions

Algorithm

The key to soft shadowing algorithms using a single shadow sample is to use a
fast method to detect if a point is either in the following regions: un-shadowed
(lit), pneumbra or umbra. When the point is in the un-shadowed region, there
is no occluder between the point and light source which results in the light’s full
intensity, referred to as a magnitude of 1.0. When in the pneumbra region, the light
is partially occluded which results in an intensity factor from the light between 0.0
and 1.0. When in the umbra region, the point is fully occluded and has an intensity
factor of 0.0 from the light. Figure 5.4 shows a diagram of an area light casting
a soft shadow on a ground surface where the umbra, pneumbra and un-shadowed
regions are labeled. Points in the umbra region are unlit while there’s a smooth,
gradient transition from dark to light in the pneumbra region leading to the un-
shadowed region. Traditional soft shadow techniques use multiple shadow rays
to sample the area light to calculate what percentage of the point is occluded as
shown in Figure 5.1. For points within the umbra, all shadow rays intersect an
occluder before reaching the light source whereas points in the un-shadowed region
cast shadow rays which all reach the light source. For points in the pneumbra,
some shadow rays hit an occluder and some reach the light source which leads to a
partially shadowed region.

This detection of a pneumbra region is what differentiates a soft shadow multi-
sampled approach from a hard shadow single sampled approach. The goal of the
edge width shadowing method is to be able to approximate the location of the
pneumbra with a single sample shadow ray. The difficulty in doing this is that the
information returned from a single shadow sample is binary: either it’s occluded or
lit. From this binary result, there is no way of detecting if a point is actually fully
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Figure 5.2: Sponza scene rendered with multisampled soft shadows; topleft: 4
samples, topright: 8, bottomleft: 16, bottomright: 32
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Figure 5.3: Sponza scene rendered with soft shadows; top: multisampled soft shad-
ows (32); middle: edge width soft shadows, bottom: single sample hard shadows

64



occluder

light

pneumbraumbra un-shadowed

Figure 5.4: Diagram of an area light casting a soft shadow due to an occluder with
umbra, pneumbra and un-shadowed regions

or partially lit. This leads to the definition of an “edge width” which is defined
as the distance between the entry and exit point of a ray which intersects a closed
polygonal object as shown in Figure 5.5. Rather than calculating a binary result
using a single sample, edge widths can be calculated and used to better approximate
soft shadows using a single sample.

edge width

Figure 5.5: Diagram of an edge width

In Figure 5.5, as the ray moves to the right and closer to the edge of the object,
the edge width becomes smaller and eventually 0 at the tangent. By using edge
width value, occluder edges can be detected which lead to an approximate pneumbra
region as shown in Figure 5.6. In the figure, edge width values are used to compare
to a fixed value R which represents a number proportional to the radius of the
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light source. Any distances between 0 and R yield an interpolated value between
0 and 1 resulting in a partially shadowed pneumbra region where a value of 0 is
un-shadowed and a value of 1 is full occluded. Simple linear interpolation was used
as shown in Equation 5.1 but to calculate the occlusion factor, the following is used:

occlusion factor =


0 for edge width ≤ 0
edge width

R
for 0 ≤ edge width ≤ R

1 for edge width ≥ R

(5.1)

By comparing Figure 5.4 using edge widths to Figure 5.6 using multi-sampling,
it is clear that the pneumbra regions are different in width and location.

The larger the value of R, the larger the pneumbra region is which can be
correlated to the radius of the light source.

occluder

light

pneumbraumbra

R

un-shadowed

Figure 5.6: Diagram of fake soft shadows using a maximum edge width value of R.

At a glance, the overall idea using edge widths is simple: trace a single shadow
ray to the light and calculate the edge width to determine the factor of occlusion.
However, in practice, the implementation is a bit more involved as polygons are
not visited in correct front to back order within leaf nodes, and special cases such
as shadows cast ontop of shadows have to be handled explicitly.

Detailed Algorithm + Pseudocode

Standard shadow rays are either traced from the light to the point or vice versa
until an occluder is hit or the length of the ray has been traced returning a binary
result of either occluded or not occluded. Edge width shadow rays are traversed
in the same way but handle leaf nodes differently and have different terminating
criteria. When an edge width ray is traversing through the scene, the polygons must
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be visited in strict front the back ordering. This allows the algorithm to determine
if the ray is entering or leaving an object as shown in Figure 5.5. This gives a ray
two states: inside or outside an object. Every edge width ray is assumed to start
outside an object and toggles state each time it intersects a polygon along its path.
Using this assumption, only correct soft shadows can be rendered if all geometry
are enclosed polygons with no “holes” or “leaks” such as a polygon floating in the
air with no actual volume. If part of the scene contains malformed geometry that
does not abide by these restrictions, the shadows occluded by geometry will simply
not be soft shadowed but hard shadowed.

Using the two ray states, edge widths are calculated based on the distance
between the entry polygon and exit polygon with the maximum of all edge widths
along the path being the final edge width result returned. The ray traversal is
terminated when either the ray has finished tracing from the light to the point or
that an edge width was calculated that is larger than the fixed value proportional
to the light radius, R. The special case when a ray finishes traversal to the end and
has an “inside object” state returns an infinite edge width which means the point
is fully occluded. This special case makes sure that malformed geometry will still
be hard shadowed.

Traversal through a kd-tree can assume to visit leaves in strict front to back
order. Within leaves, polygons must be sorted in front to back order to allow for
proper edge width calculation. Rather than sort the polygons, the intersection
distances are calculated for each intersected polygon and put in a list. This list of
intersected distances is then sorted using any sorting algorithm from smallest to
largest. Since leaves usually contain very few polygons for a moderately complex
scene, a simple bubble sort works quite well.

Figure 5.7 shows a diagram of a ray traversing through leaves A, B and C while
intersecting with labeled polygons p1 to p6. For each polygon, the normal vector
is drawn to better show which side the polygon is facing where the front facing
side is in the positive normal direction. From the figure, tracing an edge width
shadow ray while maintaining proper inside/outside state can be tricky since there
is no assumed order within leaves and entry and exit polygons might be in different
leaves. This problem can be solved by keeping track of unpaired entry polygons
with no exit polygons. At any state of the ray traversal, only two possibilities can
occur: either there’s an outstanding entry polygon with no matching exit polygon
or all pairs are matched. For example, as the ray in Figure 5.7 finishes visiting leaf
A, p1 is an outstanding polygon with no exit polygon to pair with. When the ray
reaches leaf B, p1 pairs with p2 and an edge width is calculated. After leaf B is
finished being visited, p3 is an outstanding entry polygon. Once in leaf C, p3 is
paired with p4 and p5 is paired with p6. At the end of traversal, the maximum
edge width from all pairs is returned.

Listing 5.1 shows pseudocode for the edge width shadow traversal algorithm.
The function returns a floating point value between 0 and 1 which is the fractional
distance along the shadow ray where the shadow ray is the unnormalized delta
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Figure 5.7: Diagram of ray traversal through a scene hitting various leaves and
polygons.

vector between the light and point of interest. The radius is not the actual radius
of the light but a value that represents the maximum fractional distance along the
shadow ray that an edge width can be before the point is determined to be fully
occluded. The radius value should be proportional to the light radius and can be
used to control the width of the pneumbra. The pseudocode in Listing 5.1 is shown
for a single shadow ray rather than a shadow ray packet as implemented in RTTest.
Through proof of concept, the algorithm can be efficiently implemented using SSE
for shadowing packets at a time.

The GetEdgeWidth function is very similar to any normal monotracing traversal
routine except for the way leaves are handled. maxEdgeWidth is the maximum edge
width calculated so far and is initialized to 0. distances is scratch space for the
intersection distances calculated within a leaf and used for sorting. The first element
of the array is reserved for any outstanding distances to an entry polygon that has
not yet been paired. Since there are no distances stored before the traversal starts,
the first element of distances is initialized to 1.0f meaning the maximum distance
or infinite.

Once a non-empty leaf is hit, all the polygons within the leaf are intersected with
no backface or front face culling since both entry and exit polygons are of interest.
For each intersected distance within the interval range of tNear ≤ t ≤ tFar it
is added to the distances list. The next step is to sort the intersection distances
from smallest to largest and determine what state the ray is in. The state can
be determined by the first element of distances. If the first element is not 1, then
there exists an entry polygon that was unpaired and the ray is put in an “inside”
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state. The next step is to iterate through the remaining distances and calculate
edge widths only on pairs where the first distance is from an entry polygon and
the next is from an exit polygon while keeping track of the maximum edge width.
After all the distances have been handled, the state is checked for an outstanding
entry polygon and distances[0] is set for the next leaf. If the maximum edge width
is greater than the input value radius, the traversal exits early since the point
is determined to be fully occluded. If there is no early exit and the ray finishes
traversing to the point, either the maximum edge width is returned or 1.0f if there
is an outstanding entry polygon and the ray is in an “inside” state.
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Listing 5.1: Edge width shadow tracing pseudocode

float GetEdgeWidth(ray shadowRay, float radius)
{

float maxEdgeWidth = 0.0f;
float distances[MAX POLYS PER LEAF];

distances[0] = 1.0f;
int distCount = 0;

while(!stack.isEmpty){
... pop from stack, setup for traversal

while ( !node.IsLeaf ) {
... any standard traversal from the light to the point
}

//enters if a leaf node with actual polygons
if(node.IsLeaf && node.PolyCount){

bool hit = false;
distCount = 0;

for(int i=0; i<node.PolyCount; i++){
float t = intersect poly(node.polys[i], shadowRay);

if(t >= tNear && t <= tFar){
distances[distCount + 1] = t;
hit = true;
distCount++;

}
}

if(hit) {
Sort(&distances[1], distCount);

bool isInside = (distances[0] == 1.0f) ? false : true;

for(int i=1; i< (distCount + 1); i++){
isInside = !isInside;

if(isInside)
continue;

float width = distances[i] − distances[i−1];
maxEdgeWidth = max(difference, maxEdgeWidth);

}

distances[0] = (isInside ? distances[distCount − 1] : 1.0f);
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//early exit
if(maxEdgeWidth > radius)

return 1.0f;
}

}
}
//return 1.0 if there’s an outstanding entry poly
return ((distances[0] == 1.0f) ? maxEdgeWidth : 1.0f);

}

The advantage of the implementation of the algorithm is that it requires no
change to the AS, geometry or intersection routines. The full implementation can
reside in the shadow ray leaf handling routine. Also, it is not necessary to reference
any other polygon data except for the essential data used for intersections. No ver-
tices, normals or edges have to be referenced or calculated. This results in a simple
implementation. However, there are several disadvantages to this method that lead
to incorrect shadowing artifacts that are discussed in the following sections.

Light Leaks

The most obvious artifact to edge width shadows are light leaks as shown in Fig-
ure 5.8 where the R value is larger than the thickness of the occluder which leads to
no umbra. This artifact can be seen in Figure 5.9 where a thin plate leaks light and
thus has no umbra within the shadow. There are several ways that light leaking
can be minimized but no solution that solves every case. What is common amongst
all methods is that extra information is required to weed out cases where light can
possibly leak through thin occluders. One simple way is to allow the artist or scene
designer to specify that thin occluders be treated differently during edge width
shadow ray traversal. This can be done through adding extra data to the polygons
such that edge width values calculated from these polygons are larger than what is
actually calculated via a scaling factor.

Another way of handling light leaks without any artist intervention can be to
only allow edge width values to be calculated from entry and exit polygons that
share at least one vertex, otherwise the edge width value is infinite. By doing this, it
forces edge width values to be calculated from polygons that have a high probability
of sharing an actual edge which weeds out cases of light leaking through thin objects
with entry and exit polygons that share no common vertices. For large polygons,
this method works very well but can lead to slight artifacts within the pneumbra
for scenes with very small polygons since restricting edge width calculations to
only polygons sharing a vertex will not allow rendering of larger pneumbra widths.
Figure 5.10 shows a diagram of a red ray hitting an entry and exit polygon. The two
polygons can be considered for edge width calculations since they share a common
vertex. On the other hand, the blue ray yields an infinite edge width since the
entry and exit polygons do not abide by the common vertex restriction.
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Figure 5.8: Diagram of light leaking through an occluder where there is no umbra

Figure 5.9: Rendering of light leaking through a thin plate.
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Figure 5.10: Polygons that share a vertex can be considered as entry and exit
polygons.

Other Artifacts

Besides light leaks, edge width shadows can lead to other artifacts such as no
pneumbra when lights cast shadows directly inline with the edge as shown in Fig-
ure 5.6 when the light moves directly above the edge of the occluder. One can argue
that such a case is rare and barely noticible in a dynamic scene such as a game
application. As mentioned earlier, malformed geometry consist of objects that are
not fully enclosed by polygons such as a curtain with no thickness. These types of
geometry will end up being rendered with hard shadows instead of soft shadows,
thus resulting in a noticable artifact that does not deter much from the overall
scene.

Performance

Figure 5.11 shows some soft shadow rendering using edge widths and no light leak
fixing. The results are pretty believable and are a definite improvement over hard
shadows. Table 5.1 compares overall performance results from the Sponza rendering
shown in Figure 5.3 using single sample, edge width, 4 sample and 32 sample
shadowing. The 4 sample approach results in significant banding and a very low
performance with a third of the performance of the edge width method. Using 32
samples creates smooth believable shadows at an interactive rate of just over 1 frame
per second. It should be noted that the 32 sample rendering was using secondary
cone frustums for acceleration resulting in better performance than multiple shadow
ray packets. The edge width shadow method performs at a very fast speed compared
to the multi sampled approach and comparable to the single sample hard shadow
performance. Despite significant artifacts, an edge width approach provides a good
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improvement in terms of visual fidelity over hard shadows with moderate overhead
which is practical for a high performance application such as a game.

Figure 5.11: Soft shadows using edge widths.

Future Shadow Work

The edge width algorithm proposed has been implemented sucessfully for a kd-
tree. Future work includes applying this algorithm for a BVH to support dynamic
objects. Such a task proves to be more challenging since leaf nodes are not guar-
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Table 5.1: Performance metrics for edge width, single sample and multi sampled
shadows in the Sponza scene.

Shadow Type FPS

Single Sample 15.0 fps
Edge Width 12.0 fps
4 Sample 4.26 fps
32 Sample 1.42 fps

anteed to be visited in front to back order which could lead to large sorting lists of
distances, thus hindering performance.
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Chapter 6

Effect of Processor Hardware and
Threading

One of the main selling points for a ray tracing algorithm is its ability to be highly
parallelized since each ray is traced independently. The following tests show how
overall frame rate performance can change with different processor architectures
and the number of physical hardware cores. RTTest is threaded by dividing the
screen into fixed sized tiles and worked on independently by available threads. In
the application, the number of threads spawned is always equal to the number of
hardware cores available.

Figure 6.1 shows the scene used for benchmarking. The scene is comprised of
two Ferrari F40s within a garage setting which is 89 754 polygons in total. All
primary rays are using multi frustum traversal of a 16 × 16 tile size with perfect
reflections traced using mono tracing for the metallic garage and the cars. Glass
transparency through the windows are computed using coherent packets and the
shadows are calculated in real time using edge widths. The benchmark scene was
rendered at a 512× 512 resolution.

The two processors that are used for benchmarking are the Intel Pentium D
and the Intel Core 2 Quad with specifications shown in Table 6.1. The Pentium
D is the predecessor to the Core 2 architecture which was clocked lower but was
rearchitected for higher performance using a larger L2 cache.

Table 6.1: Processor specifications used for benchmarking.

Processor # Cores Clockrate L2 Cache per Core

Intel Pentium D 2 3.2 GHz 1 MB
Intel Core 2 Quad 4 2.4 GHz 4 MB

Table 6.2 shows the resulting frame rate for each processor while utilizing 1,2
and 4 cores. For the Pentium D, there is almost a 2× speedup when moving to
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Figure 6.1: Scene used for benchmarking.

2 cores. On the Core2, the performance is almost double that of the Pentium D
for 1 and 2 cores despite the fact that it is clocked at a lower rate. This speedup
can be attributed to the revamped architecture with more efficient decoding stages,
execution units, caches and buses. The Core 2 scales perfectly between 1 and 2
cores and slightly less than a factor of 2 between 2 and 4 cores. The reason that
perfect speedup cannot be achieved in all cases is that each core shares the same
memory bus which is a major point of contention if data is not already present in
the cache. This is supported from the fact that a larger cache size provides perfect
speedup from 1 to 2 cores on the Core 2 architecture but less than perfect speed up
on the Pentium D due to the smaller cache. From the performance numbers, future
performance can be predicted as going to 8 cores would achieve true “real-time”
performance above 30 fps. Doubling the cores again to 16 cores would allow the
same scene to be rendered at HD resolutions at a reasonably interactive rate. Due
to the highly parallel nature of ray tracing, the future seems promising as processor
architectures become more and more parallel in nature.

Table 6.2: Benchmarks for differenct processors

Processor 1 Core 2 Cores 4 Cores

Intel Pentium D 2.7 fps 5.0 fps –
Intel Core 2 Quad 4.5 fps 9.0 fps 17.4 fps
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Chapter 7

Conclusions

An introduction and overview of relevancy of ray tracing was discussed and how
it compares to rasterization. Acceleration structures such as kd-trees, BVH and
grids were introduced for both the building and traversal of such structures. The
use of a SAH cost function was shown and the terminating criteria for tree build-
ing was established. Next, an indepth look into packet and frustum tracing was
done showing the importance of exploiting the coherency between rays. By tracing
multiple rays together, an SSE implementation can be used to take full advantage
of the full vector width of the floating point unit. Using frustum traversal, the two
stage MLRT algorithm was discussed followed by the early miss frustum algorithm
for BVH traversal. Following the traversal discussion, background information on
dynamic scenes using kd-tree and BVH rebuilding was given. Next, new ideas using
packet reordering and n-ary BVH trees were introduced for increasing the efficiency
of ray packets for secondary rays. Various shadow algorithms were then discussed
as a setup for the edge width soft shadow algorithm introduced in Chapter 5.

Chapter 3 described the inner workings of the RTTest offline and runtime appli-
cations. A kd-tree was chosen for the acceleration structure to build using RTTest
offline using “perfect splits” through polygon clipping. The memory layout of im-
portant structures were given along with the RTTest runtime rendering pipeline.
These pipeline stages were profiled and the statistics of percentage of frame time
usage were shown and discussed.

Chapter 4 introduced a new omni-directional packet traversal algorithm which
has no direction limitations and results in a simpler implementation that avoids
many special cases involving packet splitting. Next, benchmarks were shown for
the frustum interval traversal algorithm as implemented in RTTest which yields
a 2× speed up over standard packet traversal in most cases. The importance of
a packet/leaf culling test was shown through performance numbers which can be
detrimental to performance if not done for complex scenes. Next, the Multiple Frus-
tum Traversal algorithm was introduced which traverses multiple frustums simul-
taneously using SSE to provide for quick masking of frustums and thus less nodes
traversed and fewer intersection tests. Following the MFT algorithm, the Cone
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Proxy Traversal algorithm was introduced which performs better than a pyramid
shaped frustum for small tile sizes for primary ray acceleration. Cones were also
shown to beat out pyramids when bounding multiple shadow samples to a spherical
light source.

After the traversal algorithms, the ray/polygon intersection tests using the pro-
jected Barycentric coordinates test was described. Next a description of the fixed
function shader system was detailed which supports diffuse, specular, reflective
and transparent materials. Following the shader system description, various code
level optimizations were introduced which were learned during the development of
RTTest.

Chapter 5 introduces a novel shadowing algorithm using edge widths to render
fast soft shadows with less accuracy. The ideas behind the algorithm were discribed
in detail along with pseudocode. Visually, the shadows create a believable fuzzy
shadow which are superior in quality to hard shadows. Artifacts such as light
leaking were described along with methods of reducing them. Performance numbers
show that the edge width method is comparable to performance to that of a single
sampled hard shadow approach.

Chapter 6 shows the results of simple tests done on two different Intel CPUs
with different number of cores and cache sizes. The Core 2 architecture provided a
significant improvement over the older Pentium D architecture. As the number of
utilized cores is doubled from 1 to 2, there is perfect linear speed up on the Core 2
architecture. Moving from 2 to 4 cores provides less than perfect speedup due to
the memory bus contention which is a shared resource and contention point. Larger
cache sizes can help alleviate the memory bus contention and even the integrated
memory controllers in the new Intel Nehalem architecture.

In conclusion, this thesis introduces novel techniques and algorithms for a prac-
tical, real time ray tracing engine. A modification to the traditional kd-tree packet
traversal algorithm is proposed which allows any packet of rays from a common
origin to be traced together with no direction restrictions. This leads to a sim-
pler implementation for both hardware and software renderers. Next, the Multiple
Frustum Traversal algorithm is detailed which takes full advantage of the SIMD
width for traversal via the updating of a frustum mask which allows the culling of
many redundant traversal and intersection operations. The use of MFT results in
a 12% increase in overall performance over a single frustum approach. Next, the
Cone Proxy Traversal algorithm is derived which provides superior performance to
a pyramid frustum for primary ray acceleration only for small tile sizes. Cones
have also been shown to be a useful frustum for multi-sampled soft shadows to
spherical light sources due to a tighter bound to the internal rays. Finally, a novel
soft shadow algorithm is proposed called Edge Width Soft Shadows which requires
one single sample edge width traversal. Edge width soft shadows have been shown
to be high performance and provide smooth pneumbra transitions. Artifacts such
as light leaking have also been discussed with several partial solutions.
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