91 research outputs found

    Improving accuracy and efficiency in seagrass detection using state-of-the-art AI techniques

    Get PDF
    Seagrasses provide a wide range of ecosystem services in coastal marine environments. Despite their ecological and economic importance, these species are declining because of human impact. This decline has driven the need for monitoring and mapping to estimate the overall health and dynamics of seagrasses in coastal environments, often based on underwater images. However, seagrass detection from underwater digital images is not a trivial task; it requires taxonomic expertise and is time-consuming and expensive. Recently automatic approaches based on deep learning have revolutionised object detection performance in many computer vision applications, and there has been interest in applying this to automated seagrass detection from imagery. Deep learning–based techniques reduce the need for hardcore feature extraction by domain experts which is required in machine learning-based techniques. This study presents a YOLOv5-based one-stage detector and an EfficientDetD7–based two-stage detector for detecting seagrass, in this case, Halophila ovalis, one of the most widely distributed seagrass species. The EfficientDet-D7–based seagrass detector achieves the highest mAP of 0.484 on the ECUHO-2 dataset and mAP of 0.354 on the ECUHO-1 dataset, which are about 7% and 5% better than the state-of-the-art Halophila ovalis detection performance on those datasets, respectively. The proposed YOLOv5-based detector achieves an average inference time of 0.077 s and 0.043 s respectively which are much lower than the state-of-the-art approach on the same datasets

    Semantic segmentation of major macroalgae in coastal environments using high-resolution ground imagery and deep learning

    Get PDF
    Macroalgae are a fundamental component of coastal ecosystems and play a key role in shaping community structure and functioning. Macroalgae are currently threatened by diverse stressors, particularly climate change and invasive species, but they do not all respond in the same way to the stressors. Effective methods of collecting qualitative and quantitative information are essential to enable better, more efficient management of macroalgae. Acquisition of high-resolution images, in which macroalgae can be distinguished on the basis of their texture and colour, and the automated processing of these images are thus essential. Although ground images are useful, labelling is tedious. This study focuses on the semantic segmentation of five macroalgal species in high-resolution ground images taken in 0.5 x 0.5 m quadrats placed along an intertidal rocky shore at low tide. The target species, Bifurcaria bifurcata, Cystoseira tamariscifolia, Sargassum muticum, Sacchoriza polyschides and Codium spp., which predominate on intertidal shores, belong to different morpho-functional groups. The study explains how to convert vector-labelled data to raster-labelled data for adaptation to convolutional neural network (CNN) input. Three CNNs (MobileNetV2, Resnet18, Xception) were compared, and ResNet18 yielded the highest accuracy (91.9%). The macroalgae were correctly segmented, and the main confusion occurred at the borders between different macroalgal species, a problem derived from labelling errors. In addition, the interior and exterior of the quadrats were correctly delimited by the CNNs. The results were obtained from only one hundred labelled images and can be performed on personal computers, without the need to resort to external servers. The proposed method helps automation of the labelling process.SIFundación Biodiversidad, the Ministerio para la Transición Ecológica y 383 el Reto Demográfico through the Pleamar program, co-funded by the European Maritime and Fisheries Fund (EMFF), call 2018; and Xunta de Galicia for human resources and competitive reference groupsFundación Biodiversidad, the Ministerio para la Transición Ecológica y 383 el Reto Demográfico through the Pleamar program, co-funded by the European Maritime and Fisheries Fund (EMFF), call 2018; and Xunta de Galicia for human resources and competitive reference groupsMinisterio de Ciencia, Innovación y Universidades -Gobierno de Españ

    Image Labels Are All You Need for Coarse Seagrass Segmentation

    Full text link
    Seagrass meadows serve as critical carbon sinks, but estimating the amount of carbon they store requires knowledge of the seagrass species present. Underwater and surface vehicles equipped with machine learning algorithms can help to accurately estimate the composition and extent of seagrass meadows at scale. However, previous approaches for seagrass detection and classification have required supervision from patch-level labels. In this paper, we reframe seagrass classification as a weakly supervised coarse segmentation problem where image-level labels are used during training (25 times fewer labels compared to patch-level labeling) and patch-level outputs are obtained at inference time. To this end, we introduce SeaFeats, an architecture that uses unsupervised contrastive pre-training and feature similarity, and SeaCLIP, a model that showcases the effectiveness of large language models as a supervisory signal in domain-specific applications. We demonstrate that an ensemble of SeaFeats and SeaCLIP leads to highly robust performance. Our method outperforms previous approaches that require patch-level labels on the multi-species 'DeepSeagrass' dataset by 6.8% (absolute) for the class-weighted F1 score, and by 12.1% (absolute) for the seagrass presence/absence F1 score on the 'Global Wetlands' dataset. We also present two case studies for real-world deployment: outlier detection on the Global Wetlands dataset, and application of our method on imagery collected by the FloatyBoat autonomous surface vehicle.Comment: 10 pages, 4 figures, additional 3 pages of supplementary materia

    Undersea Water Objects Detection and Classification Using Optimized Region-Based Convolutional Neural Network

    Get PDF
    Underwater autonomous operation is becoming increasingly crucial to avoid the hazardous in the environment of high-pressure deep-sea due to the significance of underwater investigation. The most crucial piece of technology for underwater-based task is intelligent computer vision. In an underwater environment, underwater vision requires good image quality, and illumination with better classification of sea objects. This work presented a novel technique of Optimized Region-based Convolutional Neural Network (ORCNN). For this work, the Gaussian filter is used to remove the noise and enhance the image quality during pre-processing and the Improved Affinity Propagation Clustering (IAPC) model segments the objects. After that, the Region-based Convolutional Neural Network (RCNN) model classifies various objects such as urchins, seagrass, fishes, and rocks in which the RCNN parameters are tuned via a light spectrum optimizer algorithm (LSOA). can also input the segmentation prediction images and the labeled images into the discriminant convolutional network and improve the segmentation accuracy of underwater images by further enhancing the essential characteristics of learning data through the confrontation training of generators and discriminators. The experimental results demonstrate that higher performance is provided by the newly developed ORCNN -Net predictive model when compared to other comparative algorithms while considering the negative and positive metrics

    Novel deep learning architectures for marine and aquaculture applications

    Get PDF
    Alzayat Saleh's research was in the area of artificial intelligence and machine learning to autonomously recognise fish and their morphological features from digital images. Here he created new deep learning architectures that solved various computer vision problems specific to the marine and aquaculture context. He found that these techniques can facilitate aquaculture management and environmental protection. Fisheries and conservation agencies can use his results for better monitoring strategies and sustainable fishing practices

    Subtidal seagrass detector: development of a deep learning seagrass detection and classification model for seagrass presence and density in diverse habitats from underwater photoquadrats

    Get PDF
    This paper presents the development and evaluation of a Subtidal Seagrass Detector (the Detector). Deep learning models were used to detect most forms of seagrass occurring in a diversity of habitats across the northeast Australian seascape from underwater images and classify them based on how much the cover of seagrass was present. Images were collected by scientists and trained contributors undertaking routine monitoring using drop-cameras mounted over a 50 x 50 cm quadrat. The Detector is composed of three separate models able to perform the specific tasks of: detecting the presence of seagrass (Model #1); classify the seagrass present into three broad cover classes (low, medium, high) (Model #2); and classify the substrate or image complexity (simple of complex) (Model #3). We were able to successfully train the three models to achieve high level accuracies with 97%, 80.7% and 97.9%, respectively. With the ability to further refine and train these models with newly acquired images from different locations and from different sources (e.g. Automated Underwater Vehicles), we are confident that our ability to detect seagrass will improve over time. With this Detector we will be able rapidly assess a large number of images collected by a diversity of contributors, and the data will provide invaluable insights about the extent and condition of subtidal seagrass, particularly in data-poor areas

    Semi-supervised and weakly-supervised deep neural networks and dataset for fish detection in turbid underwater videos

    Get PDF
    Fish are key members of marine ecosystems, and they have a significant share in the healthy human diet. Besides, fish abundance is an excellent indicator of water quality, as they have adapted to various levels of oxygen, turbidity, nutrients, and pH. To detect various fish in underwater videos, Deep Neural Networks (DNNs) can be of great assistance. However, training DNNs is highly dependent on large, labeled datasets, while labeling fish in turbid underwater video frames is a laborious and time-consuming task, hindering the development of accurate and efficient models for fish detection. To address this problem, firstly, we have collected a dataset called FishInTurbidWater, which consists of a collection of video footage gathered from turbid waters, and quickly and weakly (i.e., giving higher priority to speed over accuracy) labeled them in a 4-times fast-forwarding software. Next, we designed and implemented a semi-supervised contrastive learning fish detection model that is self-supervised using unlabeled data, and then fine-tuned with a small fraction (20%) of our weakly labeled FishInTurbidWater data. At the next step, we trained, using our weakly labeled data, a novel weakly-supervised ensemble DNN with transfer learning from ImageNet. The results show that our semi-supervised contrastive model leads to more than 20 times faster turnaround time between dataset collection and result generation, with reasonably high accuracy (89%). At the same time, the proposed weakly-supervised ensemble model can detect fish in turbid waters with high (94%) accuracy, while still cutting the development time by a factor of four, compared to fully-supervised models trained on carefully labeled datasets. Our dataset and code are publicly available at the hyperlink FishInTurbidWater

    Deep Learning Approaches for Seagrass Detection in Multispectral Imagery

    Get PDF
    Seagrass forms the basis for critically important marine ecosystems. Seagrass is an important factor to balance marine ecological systems, and it is of great interest to monitor its distribution in different parts of the world. Remote sensing imagery is considered as an effective data modality based on which seagrass monitoring and quantification can be performed remotely. Traditionally, researchers utilized multispectral satellite images to map seagrass manually. Automatic machine learning techniques, especially deep learning algorithms, recently achieved state-of-the-art performances in many computer vision applications. This dissertation presents a set of deep learning models for seagrass detection in multispectral satellite images. It also introduces novel domain adaptation approaches to adapt the models for new locations and for temporal image series. In Chapter 3, I compare a deep capsule network (DCN) with a deep convolutional neural network (DCNN) for seagrass detection in high-resolution multispectral satellite images. These methods are tested on three satellite images in Florida coastal areas and obtain comparable performances. In addition, I also propose a few-shot deep learning strategy to transfer knowledge learned by DCN from one location to the others for seagrass detection. In Chapter 4, I develop a semi-supervised domain adaptation method to generalize a trained DCNN model to multiple locations for seagrass detection. First, the model utilizes a generative adversarial network (GAN) to align marginal distribution of data in the source domain to that in the target domain using unlabeled data from both domains. Second, it uses a few labeled samples from the target domain to align class-specific data distributions between the two. The model achieves the best results in 28 out of 36 scenarios as compared to other state-of-the-art domain adaptation methods. In Chapter 5, I develop a semantic segmentation method for seagrass detection in multispectral time-series images. First, I train a state-of-the-art image segmentation method using an active learning approach where I use the DCNN classifier in the loop. Then, I develop an unsupervised domain adaptation (UDA) algorithm to detect seagrass across temporal images. I also extend our unsupervised domain adaptation work for seagrass detection across locations. In Chapter 6, I present an automated bathymetry estimation model based on multispectral satellite images. Bathymetry refers to the depth of the ocean floor and contributes a predominant role in identifying marine species in seawater. Accurate bathymetry information of coastal areas will facilitate seagrass detection by reducing false positives because seagrass usually do not grow beyond a certain depth. However, bathymetry information of most parts of the world is obsolete or missing. Traditional bathymetry measurement systems require extensive labor efforts. I utilize an ensemble machine learning-based approach to estimate bathymetry based on a few in-situ sonar measurements and evaluate the proposed model in three coastal locations in Florida
    • …
    corecore