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A B S T R A C T   

Fish are key members of marine ecosystems, and they have a significant share in the healthy human diet. Besides, 
fish abundance is an excellent indicator of water quality, as they have adapted to various levels of oxygen, 
turbidity, nutrients, and pH. To detect various fish in underwater videos, Deep Neural Networks (DNNs) can be of 
great assistance. However, training DNNs is highly dependent on large, labeled datasets, while labeling fish in 
turbid underwater video frames is a laborious and time-consuming task, hindering the development of accurate 
and efficient models for fish detection. To address this problem, firstly, we have collected a dataset called 
FishInTurbidWater, which consists of a collection of video footage gathered from turbid waters, and quickly and 
weakly (i.e., giving higher priority to speed over accuracy) labeled them in a 4-times fast-forwarding software. 
Next, we designed and implemented a semi-supervised contrastive learning fish detection model that is self- 
supervised using unlabeled data, and then fine-tuned with a small fraction (20%) of our weakly labeled Fish
InTurbidWater data. At the next step, we trained, using our weakly labeled data, a novel weakly-supervised 
ensemble DNN with transfer learning from ImageNet. The results show that our semi-supervised contrastive 
model leads to more than 20 times faster turnaround time between dataset collection and result generation, with 
reasonably high accuracy (89%). At the same time, the proposed weakly-supervised ensemble model can detect 
fish in turbid waters with high (94%) accuracy, while still cutting the development time by a factor of four, 
compared to fully-supervised models trained on carefully labeled datasets. Our dataset and code are publicly 
available at the hyperlink FishInTurbidWater.   

1. Introduction 

Managing coastal ecosystems for species protection has traditionally 
relied on species abundance and richness data, which is usually collected 
following accepted protocols and rigor. In estuaries and nearshore 
coastal waters fish are a popular species surveyed by researchers, given 
their distribution and abundance can generally be associated with some 
environmental condition or habitat association (Aguzzi et al., 2019; 
Whitfield, 2017). 

Managing these coastal ecosystems requires data and information 
derived from field campaigns using labor-intensive and expensive tools 
like nets, traps, and pots. However, these methods can have inherent 
confounding problems. Overcoming these challenges is now possible 
with advancements in technology (Dutta and Arhonditsis, 2023). In 
aquatic science, scientists have teamed up with artificial intelligence 

programmers to develop and maximize the use of underwater video 
cameras because it offers a more affordable and rapid approach that 
presents reduced risk to operators (Ditria et al., 2021; Heggie and 
Ogburn, 2021; Jahanbakht et al., 2022b). Using this technology also 
increases sampling accuracy, replicability, and reproducibility over 
traditional sampling methods (Harvey et al., 2012; McIvor et al., 2022), 
which is the basis of any sound scientific investigation (Saleh et al., 
2022b). However, the use of this technology has putative challenges, 
too, namely relating to large amounts of video data to process, usually 
back in the laboratory using computer software. This is time-consuming 
and can be biased if using multiple operators, and video files recorded in 
turbid water or where the camera is moving, make the processing 
difficult (Donaldson et al., 2019). 

One approach to facilitate this processing is to utilize the unparal
leled power of Deep Neural Networks (DNNs) in image and video 
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understanding. Compared to traditional image processing techniques, 
DNNs require a longer training time and demand more computing re
sources (Lai, 2019). On the other hand, their learning capabilities result 
in achieving higher accuracies and better generalization, while 
requiring no expert preprocessing, thanks to their inherent feature 
extraction (Jahanbakht et al., 2021; Lai, 2019). 

The state-of-the-art studies around DNN-based image classification 
cover fish detection in clear waters (Iqbal et al., 2021; Shammi et al., 
2021), controlled aquaculture farms (Lau and Lai, 2021), and out of 
water (Smadi et al., 2022). Fish detection in turbid underwater situa
tions with limited vision is extremely difficult to impossible, in under
water video senses (Sheaves et al., 2016), and has thereby been mainly 
conducted by sonar imaging systems (Tarling et al., 2022). These sonar 
systems are expensive, with invasive ultrasonic radiations that can affect 
marine ecosystems (Pirotta et al., 2022). Furthermore, echo-sounder 
data labeling requires expert engagement, which will further increase 
the project costs. Although fish detection in turbid waters with visible 
light cameras faces serious challenges including low light, color distor
tion, obstructive suspended sediments, and high-dynamic underwater 
movements, when combined with deep learning, it can provide signifi
cant benefits compared to sonar systems (Jahanbakht et al., 2021). 

To unlock these benefits new methods and algorithms need to be 
devised to efficiently work with underwater videos, including situations 
with low visibility. For example, both King et al. (2018) and Donaldson 
et al. (2019) reported the usability of various underwater camera de
ployments (i.e., floating/submerged, fixed/moving, and baited/not- 
baited) on surveying fish assemblages in turbid waters. While the 
former entirely relied on humans to count fish, the latter used traditional 
image processing techniques to increase video quality (color enhance
ment), before the human agents engaged in fish detection. None of these 
papers used advanced DNN techniques in their projects. 

To enhance marine visual monitoring in turbid and low-visibility 
waters for improved aquatic ecological experiments, we propose a 
novel approach. As part of this approach, we first collect and present a 
new dataset named FishInTurbidWater. This dataset includes fish video 
data series collected within a major Australian shipping port facility, 
where water quality conditions can include high turbidity due to ship 
movements, strong tidal range (up to 8 m in a 6-h time period), and 
ocean currents that together can contribute to resuspension of benthic 
sediments into the water column in the region (Waltham et al., 2015). 

We then perform a rapid and inaccurate labeling of fish presence in 
our video data frames, which results in a dataset for weak supervision. 
We then use the weakly labeled FishInTurbidWater to develop a semi- 
supervised contrastive learning model (CNT), as well as a new weakly- 
supervised ensemble DNN architecture with transfer learning from 
ImageNet. In the next step, we analyze our two models in terms of 
development time and accuracy. The proposed workflow is visually 

illustrated in Fig. 1, which covers data gathering to two independent 
image processing outcomes. 

The term weakly-supervised in Fig. 1 refers to a machine learning 
model that is trained by a weakly labeled dataset (like our Fish
InTurbidWater). This contrasts with a fully-supervised model that is 
trained by a carefully labeled dataset. In the meantime, if a machine 
learning model is trained by no labeled data, it is called a self-supervised 
model. In state-of-the-art applications, a self-supervised model receives 
extra training from a fully-supervised dataset to increase its detection 
capacity. In this case, the resulting model is called a semi-supervised 
model. Finally, when we independently train multiple models and 
then use a dedicated model to merge their outputs into a single final 
output, the whole structure is called an ensemble model. 

Using our proposed novel approach, we present some new results for 
deep learning in fish recognition. We demonstrate that our contrastive 
semi-supervised model is developed over five times faster than the 
weakly-supervised ensemble DNN, while using only a small fraction of 
weakly labeled FishInTurbidWater data. We also show that the ensemble 
model achieves 4.6% higher accuracy. In addition, we demonstrate that 
both our newly developed models can be developed much quicker 
compared to a fully-supervised approach, mainly due to the lower data 
annotation time they require. These results demonstrate that our pro
posed approaches can significantly facilitate the use of deep learning in 
aquatic ecology studies, e.g. those measuring fish abundance in turbid 
waters using underwater cameras. 

To summarize, our specific contributions are as follows:  

1. Collecting and presenting a new fish dataset in turbid waters.  
2. Weakly labelling this dataset to provide the world’s first weakly 

labeled fish dataset in turbid waters.  
3. Developing two novel deep learning models to achieve two different 

goals.  
a. A semi-supervised model for accelerating model development 

speed from data collection to deployment.  
b. A weakly-supervised model for accelerating the development 

time, while also conserving the accuracy, compared to the fast 
semi-supervised model. 

The remainder of this paper is organized as follows. Section 2 de
scribes the weakly-supervised database and proposes two DNN struc
tures as a novel solution to the problem of fish detection in turbid 
waters. We evaluate the accuracy of the proposed models, compare them 
with each other, and with the other fully-supervised models in Section 3. 
A detailed discussion of our findings is carried out in Section 4. The 
paper is concluded in Section 5. 

2. Material and methods 

This section starts by describing our labeled dataset and then pro
ceeds by proposing two DNN models to enhance the capability of marine 
scientists in turbid underwater and coastal environment monitoring. 

2.1. Weakly labeled public FishInTurbidWater dataset 

Machine learning models learn and understand how to detect objects 
in a video frame, using essential training datasets that provide examples 
of the target in its various situations. In supervised learning, these 
datasets must be accurately labeled by human experts. However, it is not 
usually easy to obtain substantial amounts of underwater images with 
the object of interest being present. Besides, adding manual tags to each 
image is a time-consuming and tedious task that requires many hours in 
a laboratory, labeling images by a human. To avoid these difficulties, 
here, a weakly-supervised dataset, called FishInTurbidWater is created 
and made publicly available. To the authors’ best knowledge, Fish
InTurbidWater is the first labeled image set of fish species in turbid 
underwater environments. 
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Fig. 1. Graphical abstract of the proposed workflow from lazy image labeling 
to two state-of-the-art deep neural network designs with short turnaround time 
and high accuracy. 
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FishInTurbidWater includes realistic underwater videos captured by 
dropping a camera-array in two geolocations around the Port of Mackay, 
QLD, Australia. The camera-array was equipped with 15 waterproof 
cameras attached to a rope at 1 ~ m distance. In each drop, the cameras 
capture 60 min of MP4 video footage. The video frames are not only very 
low in visibility, but also shaky which is due to maritime waves, oper
ator/boat movements, and occasionally dragging overwater or colliding 
with the seabed. For sample frames included in the dataset, see Fig. 2. 

Nephelometric Turbidity Units (NTU) in our two data gathering 
Ports are recorded as part of a broader water quality monitoring pro
gram, which has been in place since 2014 (Waltham et al., 2021). As 
better illustrated in Fig. 3, the turbidity level during this period was 
variable between 1 and 105 NTU. More than 66% of the time, this NTU 
level is greater than 5.0 (local regional water quality guidelines for the 
protection of marine ecosystems is 1 NTU (Authority, 2010)). 

To quickly label the dataset, an overall 1800 min of MP4 videos were 
4× fast-forwarded and inattentively labeled by a human agent, resulting 
in a weakly labeled dataset with a binary label of fish present in the 
frame or no fish present. After this weak labeling method, we investi
gated the labeling accuracy of randomly sampled video frames. Some 
frames with fish in them were labeled as no fish, while some other 
frames without any fish present were labeled fish. 

Our approach of labeling all the frames at nearly one-fourth of the 
careful labeling time resulted in addressing the putative problem of 
limited access to labeled data. However, the labeling is weakly done and 
its effect on model performance needs to be investigated. The dataset is 
available to the public and is shared at FishInTurbidWater for the benefit 
of the community. 

2.2. Semi-supervised contrastive learning 

To further reduce the impact of reliance on a high volume of accu
rately labeled data, we also opted to use another well-known technique 
in deep learning, i.e., contrastive learning. For this, we developed a two- 
phase semi-supervised contrastive learning approach as illustrated in 
Fig. 4. Our proposed model consists of a self-supervised contrastive 
learning phase (phase 1), followed by fully-supervised incremental fine- 
tuning learning (phase 2). It is worth noting that, for the full supervision 
training stage of our model, we use our weakly labeled fish dataset. This 
is in contrast to prior works that mostly use carefully labeled data for the 

Fig. 2. FishInTurbidWater image samples, which includes (a) waiting onboard for deployment, (b) overwater port viewing, (c) seabed turbidity increasing by port 
activities, (d) wharf encountering, (e-f) seafloor visiting, and (g-i) lots of fish exhibiting. 

Fig. 3. Distribution plot of the measured Nephelometric Turbidity Units (NTU) 
in the same geolocation as our FishInTurbidWater dataset gathering. 
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fine-tuning stage (Saleh et al., 2022b). 
Implemented using the Keras APIs under the TensorFlow framework, 

the first self-supervised contrastive learning phase composes of a train
able encoder, followed by a trainable projection head. The encoder takes 
a batch of input images and augments them with random horizontal 
flipping, random ±7o rotation, and random ±40% brightness. 

The augmented images are then input to a ResNet-50 model to be 
mapped from an RGB matrix into an encoded 2048 × 1 vector (He et al., 
2016). This vector is then input to the subsequent projection head, 
which maps the encoded vector into its 128 × 1 representative vector. 
These vectors are then used in the self-supervised contrastive learning 
mechanism to learn features without labels (Khosla et al., 2020). In 
other words, the ResNet-50 will be trained to reduce the distance be
tween in-group clusters of vector batches, while simultaneously pushing 
apart out-group clusters (Khosla et al., 2020). 

After the successful completion of the first self-supervised phase, the 
model enters its second phase to undergo fully-supervised incremental 
learning. In this phase, the encoder’s mode changes into non-trainable, 
the projection head switches off, and a new trainable decoder is attached 
to the encoder tail (see Fig. 4). The decoder’s job is to map the encoded 
vector into a binary fish/no-fish answer. This fully-supervised setting 
allows very efficient use of limited label information (Khosla et al., 
2020). In other words, the compact decoder with only 129 neurons can 
be easily trained by a fraction as small as 20% of the whole training 
dataset. 

2.3. Weakly-supervised DNN ensemble 

A second approach to counteract the problem of limited labeled data 
availability is to combine weak supervision (Laradji et al., 2021) and 
transfer learning. Transfer learning is a technique that provides an op
portunity to ensure that we make the best use of available labeled data. 
For instance, in this work, we have used the open-source fully-labeled 
ImageNet dataset to pre-train two well-known DNNs, i.e., EfficientNet 
(Tan and Le, 2019) and ViT (Dosovitskiy et al., 2020), with a great ca
pacity for image classification, while requiring fewer computational 
resources compared to other DNNs. ImageNet is a huge visual dataset 
with fourteen million images, designed for object recognition tasks (Lab, 
2023). This free dataset has been hand-annotated with bounding boxes 
to indicate what objects are present and where in the images. 

ImageNet consists of one thousand object classes, with tens of 
maritime categories, including goldfish, ray fish, jellyfish, spiny lobster, 
crayfish, grey whale, starfish, anemone fish, garfish, lionfish, pufferfish, 
sea. 

snake, etc. (Lab, 2023). Pre-training our DNNs with this dataset 
means, they can distinguish between one thousand different objects in 
the first place. However, this is subject to having a clear vision of those 
objects, which is not the case in our highly turbid underwater environ
ment. Therefore, after pre-training and transfer learning on ImageNet, 
DNNs must be retrained on realistic underwater videos, which in our 

case are weakly labeled. 
We investigate how training on these weakly labeled data can 

improve the accuracy of our DNNs in detecting fish in turbid waters. 
Below, we discuss the two selected DNNs that were pre-trained using 
ImageNet to provide transfer learning for weakly-supervised training 
using our FishInTurbidWater dataset. 

2.3.1. EfficientNet 
The first model selected is EfficientNet-B7, which is a Convolutional 

Neural Network (CNN) with efficient scaling factors (Tan and Le, 2019). 
To elaborate, all CNNs are a cascade of convolutional layers that can 
scale the input image’s resolution (width and height) and channel 
(number of color channels). CNN architectures can also scale by the 
number of consecutive convolutional layers (depth). 

As illustrated in Fig. 5a, the main advantage of EfficientNet is that it 
can uniformly scale all depth, channel, and resolution dimensions by a 
simple yet effective compound rate (Tan and Le, 2019). This rate has 
been applied in nine stages with different repeat amounts. In other 
words, each stage in Fig. 5a is a Conv layer that repeats exactly for the 
given number of times. Changing this compound rate gives the DNN 
designer power to arbitrarily adjust the CNN’s scaling, which in turn 
results in the currently existing B0 to B7 variants. Among these variants, 
the EfficientNet-B7 is proven to produce more accurate results (Tan and 
Le, 2019). 

2.3.2. Vision transformer (ViT) 
The second model of choice in this paper is the Vision Transformer 

(ViT). The original Transformer architecture has been widely used in 
natural language processing tasks. This was until Dosovitskiy et al. 
(2020) turned it into an accurate model in computer vision applications. 
As shown in Fig. 5b, the Transformer’s attention mechanism is applied 
directly to the sequences of image patches in ViT (Jahanbakht et al., 
2022a). This is shown to perform very well on image classification tasks 
(Dosovitskiy et al., 2020) and therefore has been used in our study. 

2.3.3. Transfer learning and weak supervision 
After pre-training of both EfficientNet and ViT using ImageNet, all 

their layers, except the last Fully Connected (FC) layer are frozen to 
transfer their learning of one thousand ImageNet classes. The last FC 
layer is then fine-tuned in a weakly-supervised fashion by our weakly 
labeled video dataset. The learning rate during the weak supervision 
process was kept as low as 0.0001 to minimize the undesirable effects of 
mislabeled frames. In other words, this lower learning rate prevents the 
FC layer from training instabilities, which can be imposed by bad labels 
(Gotmare et al., 2018). 

2.3.4. XGBoost ensemble of DNNs 
After successfully and independently training the two EfficientNet 

and ViT DNNs with ImageNet transfer learning followed by weak su
pervision using FishInTurbidWater, we merge their isolated single fish/ 

Fig. 4. The proposed semi-supervised ResNet-based contrastive learning structure with two orderly training phases. The model trains from no labeled data during the 
self-supervised first phase and then fine-tunes with a small 20% subset of weakly labeled FishInTurbidWater data during the second phase. 
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no-fish results into an answer. To this end, the novel XGBoost ensemble 
is used. 

Gradient boosting refers to a class of ensemble Decision Tree (DT) 
algorithms that can be used in classification, regression, and ranking 
applications (Badirli et al., 2020). However, gradient boosting leaves the 
width and depth dimensions of its DTs, along with the number of DTs in 
the ensemble adjustable. This leads to a vast number of hyperparameters 
that cannot be easily optimized for a given application. In this regard, 
XGBoost was originally introduced by Chu (2023) as an efficient and 
distributed gradient boosting algorithm with rapidly optimized hyper
parameters. XGBoost outperforms individual DNN models when it 
makes the final decision in their ensemble (Shwartz-Ziv and Armon, 
2022). It is therefore beneficial to use an ensemble of DNNs with 
XGBoost, which can perform better than any individual model, as well as 
other classical ensemble techniques (Shwartz-Ziv and Armon, 2022). 

As illustrated in Fig. 6, the XGBoost block consists of m distinct DT 
networks (i.e., T1 to Tm). Each DT Ti receives three inputs, including the 
probability of fish existence by EfficientNet and ViT, along with the 
residual error ri− 1 of the previous DT Ti− 1 in the row. The final output is 

calculated by the weighted sum DT outputs, as 

Fout =
∑m

i=1
aiTi(X, ri− 1), (1)  

where ai coefficients are the regularization parameters found by the 
XGBoost optimization algorithm. 

3. Results 

To evaluate the performance of all three DNNs explained in the 
previous Section, 30% of the whole FishInTurbidWater was carefully 
labeled manually to make a solid validation dataset. This validation 
dataset has never been exposed to these models during their training 
phase, and it has been used only for calculating the performance results 
presented in this Section. 

As described in the previous Section, our weakly-supervised DNN 
ensemble structure consists of two weakly-supervised DNN models, i.e., 
EfficientNet and ViT, whose outputs are merged via an XGBoost 

Fig. 5. The employed architecture of (a) EfficientNet and (b) ViT classifier DNNs. Each model takes a video frame at its input and returns the probability of fish 
existence. Conv, pooling, and FC layers are respectively referring to convolutional, max pooling, and fully connected layers. Besides, the dropout layer has used a 0.1 
dropout ratio. 

Fig. 6. The XGBoost ensemble structure, which concatenates the probability outputs of EfficientNet and ViT from Fig. 5a and Fig. 5b into an optimized network of m 
decision tree classifiers. The final binary output is the weighted sum of all decision trees’ outputs. 
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ensemble. To demonstrate the impact of our proposed ensemble model, 
we investigated the individual performance of each model and 
compared it to the ensemble. The results are shown in Table 1. 

Accuracy in Table 1 simply measures how often the classifier 
correctly predicts fish presence. Precision explains how many of the 
predicted fish frames turned out to contain fish. F1-score gives an idea 
about precision and sensitivity combination. In other words, it measures 
the harmonic mean of precision and sensitivity. Besides, the Area Under 
the Curve of Receiver Operating Characteristics (AUC-ROC) in this table 
is a performance measurement of a classifier against various probability 
thresholds. This metric indicates how certainly a classifier can distin
guish between different classes. However, AUC-ROC is not available for 
XGBoost, as its class-separation mechanism is not based on probabilities. 
According to Table 1, XGBoost outperforms both the EfficientNet and 
ViT networks at all performance metrics showing the impact of our 
proposed ensemble technique. 

The confusion matrix of our proposed DNNs, i.e., the first semi- 
supervised contrastive learning and the second weakly-supervised 
XGBoost ensemble are compared together in Fig. 7. The zero and one 
values in this matrix respectively represent fish absence and presence. 
Based on the confusion matrix, both models have close to 50% true- 
negative detections (i.e., 49.6% and 49.7%). However, the XGBoost 
Ensemble shows a better performance by halving the false-negative 
detections from 10.6% to 5.8%. 

Additionally, the performance of both our semi-supervised and 
weakly-supervised models are compared in Table 2 with other recent 
publications in the literature. In this table, Sun et al. (2022) and Yu et al. 
(2023) used out-of-the-box RCNN and YOLO models, and they trained 
these models with clear-water datasets. On the other hand, Soom et al. 
(2022) designed their own DNN model, based on traditional CNNs, and 
they trained it in multiple water quality scenarios, including turbid 
waters. 

According to Table 2, the XGBoost ensemble shows great perfor
mance at all three metrics, i.e., accuracy, precision, and F1-score. This 
better performance was achieved using a weakly labeled dataset, 
compared to fully labeled datasets, (Soom et al., 2022; Sun et al., 2022; 
Yu et al., 2023). 

Finally, the time and accuracy trade-off in our proposed models is 
compared to that of a typical fully-supervised CNN (Deep and Dash, 
2019) in Table 3. Even though we are training two independent DNNs in 
our proposed ensemble model, its turnaround time is more than 4×
shorter than the conventional supervised networks. 

With transfer learning from ImageNet and retraining on our weakly- 
supervised FishInTurbidWater dataset, our XGBoost ensemble model in 
Table 3 has comparable accuracy with a state-of-the-art fully-supervised 
CNN (Deep and Dash, 2019), which is trained on the clear-water 
DeepFish dataset. In the meantime, the proposed semi-supervised 
DNN has a noticeably short turnaround time, which is due to the self- 
supervised nature of contrastive learning. 

To better illustrate the video qualities and the performance of the 
contrastive learning, EfficientNet, ViT, and the XGBoost ensemble in fish 
classification, some typical outputs of the DNN models are presented in 
Fig. 8. Here, a ✓ and a ⨯ respectively indicate fish or no-fish 
classification. 

4. Discussions 

The development of deep learning methodologies continues to 
advance at an astonishing rate and be applied to various applications 
ranging from biomedical (Azghadi et al., 2020), hydrological processes 
in river channels (Talukdar et al., 2023) and agricultural (Olsen et al., 
2019) systems, to marine (Laradji et al., 2021; Saleh et al., 2022b), and 
environmental (Jahanbakht et al., 2022a) sciences. The application of 
deep learning technologies has been also used in profiling the ecosystem 
services of estuarine habitats by community members (Yee et al., 2023). 
In this paper, we extend the application of deep learning methodologies 
to advance state-of-the-art underwater fish video processing techniques 
applied to turbid waters. 

Processing fish images in turbid water has been addressed in previ
ous literature. One study included the use of bait positioned close to the 
camera lens to attract fish to the camera for identification (Donaldson 
et al., 2019). Another study used underwater cameras equipped with 
clear liquid optical chambers to reduce light scatter that occurs when 
passing through turbid water (Jones et al., 2021). Further, Xu and 
Matzner (2018) examined the effects of water turbines on local fish 
species with low accuracy owing to local vagaries in conditions (bubbles 

Table 1 
Performance metrics of the two weakly-supervised DNN models (i.e., Effi
cientNet and ViT) and their XGBoost ensemble. These results are obtained using 
the carefully labeled FishInTurbidWater validation dataset.  

Metric EfficientNet ViT XGBoost 

Accuracy 90.0% 93.0% 94.0% 
Precision 90.3% 95.0% 99.5% 
F1-score 0.893 0.925 0.936 
AUC-ROC 0.974 0.953 N/A  

Fig. 7. Comparing the confusion matrix of our (a) Semi-supervised Contrastive 
Learning model with (b) the Weakly-supervised XGBoost Ensemble. 

Table 2 
Comparing both our semi-supervised contrastive learning DNN and the weakly- 
supervised XGBoost ensemble of DNNs with recent publications in the literature.  

Metric Semi- 
supervised 
Contrastive 
Learning 

Weakly- 
supervised 
XGBoost 
Ensemble 

(Sun 
et al., 
2022) 

(Yu 
et al., 
2023) 

(Soom 
et al., 
2022) 

Customized 
DNN 

✓ ✓ ⨯ ⨯ ✓ 

Accuracy 89.4% 94.0% N/A N/A 91.6% 
Precision 99.8% 99.5% 51% 90.2% 88.1% 
F1-score 0.883 0.936 0.817 0.859 0.919 
AUC-ROC 0.917 N/A N/A N/A N/A  

Table 3 
Performance comparison between a fully-supervised DNN model, which is 
trained on a clear-water image dataset (Deep and Dash, 2019) and our two 
proposed XGBoost ensemble and contrastive learning DNNs, which are trained 
on our FishInTurbidWater dataset.  

Metric Semi-supervised 
CNT Learning 
(turbid water) 

Weakly-supervised 
XGBoost Ensemble 
(turbid water) 

Typical Supervised 
Deep Learning 
(clear-water) 

Labeling Time Very Short Short Very Long 
Training Time 1.0 h 6.9 h ~3.5 h 
Turnaround 

Time 
4 h 22 h 94 h 

Accuracy 89.4% 94.0% 98%  
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from fast-flowing water and debris which interfered in fish observa
tions). These studies mostly conclude that harsh environmental chal
lenges such as water turbidity hinder the wide adoption of computer 
vision and deep learning technologies for fish habitat monitoring. 

The need for improved ways to process video under conditions where 
the data has been compromised is necessary (Morán-López and Tolosa, 
2023; Soom et al., 2022). For example, in situations where video images 
are affected by poor water conditions including high turbidity, the data 
has been disregarded with only video that occurs during times with 
more improved water clarity retained for statistical analysis. This not 
only increases costs for data collection but could also bias data collection 
to only periods when environmental conditions are more ideal 
(Donaldson et al., 2019). Our proposed methodologies enhance the 
capability of marine scientists who use underwater computer vision 
technologies in their turbid environment monitoring worldwide, which 
has previously been avoided due to impracticality. To address this 
challenge, we made the following contributions. 

We collected the FishInTurbidWater dataset and quickly and weakly 
labeled it to contribute to the first weakly-supervised fish dataset in 
turbid waters. We, then used this dataset to develop two novel deep 
learning networks, one using semi-supervised contrastive learning for 
significantly accelerated model deployment time, and one weakly- 
supervised model to shorten deployment time, while providing high 
accuracy. 

For semi-supervised contrastive learning, we first trained a self- 
supervised contrastive learning model and then fine-tuned it on our 

weakly labeled dataset. This semi-, weakly-supervised approach re
quires only a small portion of our weakly labeled dataset, which makes 
the development cycle from data labeling to final model inferencing 
very fast (i.e., 4 h) while producing a relatively high accuracy of 89%. 

For the ensembling approach, we first trained two state-of-the-art 
DNNs on ImageNet. We then performed transfer learning of these two 
DNNs on our weakly labeled dataset. This generated two weakly- 
supervised DNNs, which we ensembled using the XGBoost technique. 
This novel ensemble technique significantly improves the overall accu
racy compared to the two weakly-supervised individual DNNs. 

Despite not having access to a control clear water dataset to run our 
two proposed semi- and weakly-supervised methods on, we have 
compared them to a state-of-the-art fully-supervised method, which is 
for clear water. Compared to a fully-supervised underwater fish classi
fication model that needs many hours of turnaround time from dataset 
collection to model deployment (as shown in Table 3Table 3), both our 
approaches are significantly faster, while providing slightly reduced 
accuracies. This suggests a trade-off between development time and 
budget, and the accuracy required. 

We show that our XGBoost ensemble model outperforms other recent 
publications in the literature (Soom et al., 2022; Sun et al., 2022; Yu 
et al., 2023). This ensemble model shows very high True Positive Rate 
(TPR) and True Negative Rate (TNR) of 0.88 and 0.99, while providing 
low False Negative Rate (FNR) and False Positive Rate (FPR) of 0.11 and 
0.01. In this regard, TPR (i.e., sensitivity, recall, or hit rate) refers to the 
fraction of video frames with fish prediction, conditioned on fish being 

Fig. 8. The output of contrastive learning model (CNT), EfficientNet, ViT, and XGBoost ensemble are compared with the ground-truth for fish detection in some 
typical frames, taken from the entire dataset. In this example, XGBoost makes its own independent decision based on the best of EfficientNet and ViT outputs. It is 
worth noting that the video frame (f) was incorrectly labeled as no-fish in the initial weakly-supervised dataset. 
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truly present. TNR (i.e., specificity and selectivity) is the portion of the 
no-fish frames that have been correctly classified. Conversely, FNR or 
miss rate and FPR or fall-out are respectively calculating the portion of 
fish and no-fish frames that were incorrectly classified. Sensitivity, 
specificity, miss rate, and fall-out are the most used metrics to measure 
the true and false classification probabilities. 

We also show that our semi-weakly-supervised model can be devel
oped roughly 23.5 times faster than a fully-supervised DNN, at the cost 
of nearly a 9% drop in its accuracy. This tradeoff is 4.3 times faster 
development for a 4% accuracy degradation. The methods presented in 
this paper, therefore, can assist marine scientists and environmental 
managers in fast and improved fish detection and monitoring in turbid 
water conditions. 

It is worth noting that the typical operation of fully-supervised 
models in Table 3 is extracted from a recent survey paper by Saleh 
et al. (2022b), which is mainly focused on clear-water scenarios. 
Therefore, a more accurate comparison between our semi- and weakly- 
supervised models with a fully-supervised deep learning in both clear 
and turbid waters is required. We believe that applying the clear-water 
models of Saleh et al. (2022b) in turbid water situations (like our Fish
InTurbidWater dataset) would dramatically degrade their performance. 

Besides, the approximate turnaround time in Table 3 is measured 
against a non-experienced human agent. Here, we added an extra 30% 
to the labeling time of fully-supervised networks to consider the 
necessary double-checks and quality controls. Overall, these numbers 
are only rough estimates of the required time, and they heavily depend 
on and vary with the human agent’s circumstances. For instance, one 
human agent can eventually acquire experience, leading to faster 
labeling. 

Although the proposed techniques in this paper are for binary fish 
video frame/image classification, future research could investigate the 
development of similar semi- and weakly-supervised deep learning 
techniques for fish species classification, and/or other applications such 
as fish counting, segmentation, and localization (Saleh et al., 2022a). 
These may need the collection and processing of new datasets in turbid 
waters. 

In addition, while the proposed models have been successfully tested 
on data collected in turbid underwater conditions in two geolocations 
around the Port of Mackay in Australia, future studies can employ them 
for underwater fish video classification in other turbid waters as well. 

In summary, the methodology we have introduced in this paper 
holds considerable promise for the ecological informatics community. It 
has the potential to significantly alleviate the financial and labor- 
intensive aspects of annotating data, a critical step in developing deep 
learning models. By doing so, it promises to expedite the progress of fish 
recognition models designed for challenging turbid water conditions. 
Ultimately, this could make deep learning a more viable and valuable 
tool for a wider range of aquatic ecology researchers. 

5. Conclusion 

The problem of fish detection in turbid underwater video frames was 
addressed by collecting a new dataset. The usually slow dataset labeling 
process was sped up by a factor of four, resulting in a quick compilation 
but also occasional incorrect labels. This rapid/weak labeling is known 
to influence the accuracy of traditional DNNs. To mitigate this problem, 
two different weak supervision approaches, one using contrastive 
learning and the other one using an XGBoost ensemble, were proposed. 
The contrastive learning model was self-supervised with no labeled data 
but was then fine-tuned in a semi- and weak-supervised manner, using 
only 20% of our weakly labeled dataset. This resulted in 23.5 times 
faster deployment time, compared to a fully-supervised model, while 
lowering the accuracy by 9%. The ensemble model, on the other hand, 
suffered only an accuracy loss of 4% compared to the fully-supervised 
model, while being 4.3 times faster in development. The result of this 
work can facilitate developing fast and efficient fish abundance and 

surveying applications in turbid underwater videos, assisting in coastal 
ecosystem management and decision making. 
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