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Abstract

Marine and aquaculture applications pose unique challenges for computer vision due to
the complex and dynamic underwater environment. Traditional methods based on hand-
crafted features and shallow models often fail to capture the rich information and variabil-
ity in underwater videos and images. This thesis proposes novel deep learning architec-
tures that leverage self-supervised learning, unsupervised learning, adaptive uncertainty
distribution, and lightweight transformer models to address various tasks related to fish
segmentation, trajectory tracking, image enhancement, landmark detection, weight es-
timation and morphometric analyses. Self-supervised learning is a technique that uses
auxiliary tasks to learn useful representations from unlabelled data. Unsupervised learn-
ing is a technique that learns from data without any supervision or labels. Adaptive un-
certainty distribution is a technique that models the uncertainty of the predictions and
adapts it according to the input data. Lightweight transformer models are variants of the
transformer architecture that reduce computational complexity and memory requirements
while maintaining high performance. The proposed methods are evaluated on several pub-
lic and private datasets of underwater videos and images collected from different sources
and scenarios. The results demonstrate that the proposed methods achieve state-of-the-art
performance in terms of accuracy, robustness and efficiency compared to existing meth-
ods. This thesis contributes to advancing the field of marine and aquaculture computer
vision by providing novel solutions that can facilitate various applications such as fish
monitoring, stock assessment, aquaculture management and environmental protection.
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Chapter 1

Introduction

1.1 Background and Motivation

Marine and aquaculture applications are vital for various purposes such as food produc-
tion, biodiversity conservation, environmental monitoring, and economic development.
However, these applications face many challenges [36] due to the complex and dynamic
underwater environment, which poses difficulties in observing, measuring, and analyzing
marine organisms and phenomena. Computer vision is a powerful tool that can help to
overcome these challenges by providing automated and accurate methods for processing
underwater videos and images. However, computer vision techniques developed for ter-
restrial or aerial scenarios are often not suitable or effective for underwater scenarios due
to several challenges. Some of these challenges are:

• Low visibility, noise, distortion, illumination variation, occlusion, motion blur, and
background clutter caused by light selective absorption and scattering as well as the
use of artificial light.

• Quality degradation due to water turbidity, uneven illumination, monotonous colour,
and complicated underwater background.

• Difficulty in estimating moving speed underwater due to water currents and buoy-
ancy.

• Difficulty in obtaining accurate ground truth labels for training and evaluation due
to limited human access and intervention.

These difficulties affect the experience of human perception and challenge the computer
vision algorithms that are developed for terrestrial or aerial scenarios. Therefore, novel
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theories and algorithms that can cope with these difficulties are needed for marine and
aquaculture applications.

To address these challenges, this thesis proposes novel deep learning architectures that
leverage self-supervised learning, unsupervised learning, adaptive uncertainty distribu-
tion, and lightweight transformer models to perform various tasks related to fish segmen-
tation, trajectory tracking, image enhancement, landmark detection, weight estimation
and morphometric analyses. These tasks are essential for various marine and aquacul-
ture applications such as fish monitoring, stock assessment, aquaculture management and
environmental protection.

Deep learning is a branch of machine learning that uses multiple layers of artificial neu-
ral networks to learn hierarchical representations from data. Deep learning has achieved
remarkable success in various computer vision tasks such as object detection, face recog-
nition, semantic segmentation and image generation. However, deep learning also faces
some limitations such as the need for large amounts of labelled data, the lack of inter-
pretability and generalization ability and the high computational complexity and memory
requirements.

Self-supervised learning is a technique that uses auxiliary tasks to learn useful repre-
sentations from unlabeled data. Self-supervised learning can reduce the need for manual
annotation and exploit large amounts of unlabeled data available in marine and aquacul-
ture domains. Unsupervised learning is a technique that learns from data without any
supervision or labels. Unsupervised learning can discover hidden patterns and structures
in data and generate realistic images or videos. Adaptive uncertainty distribution is a tech-
nique that models the uncertainty of the predictions and adapts it according to the input
data quality and complexity. Adaptive uncertainty distribution can improve the perfor-
mance and robustness of deep learning models by accounting for aleatoric and epistemic
uncertainty sources. Aleatoric and epistemic are two types of uncertainty that can affect
deep learning models. Aleatoric uncertainty arises from the inherent randomness or noise
in the data, such as measurement errors, sensor noise, or natural variability. Epistemic
uncertainty arises from the lack of data or knowledge about the true model, such as insuf-
ficient training samples, model misspecification, or parameter uncertainty. Both types of
uncertainty can affect the performance and robustness of deep learning models and should
be taken into account when making predictions or decisions based on them. Lightweight
transformer models are variants of the transformer architecture that reduce computational
complexity and memory requirements while maintaining high performance. Lightweight
transformer models can capture long-range dependencies and global context better than
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convolutional neural networks (CNNs), which rely on local features and fixed-size recep-
tive fields.

The main motivation of this thesis is to design new deep learning methods that can han-
dle the difficulties of processing underwater videos and images for marine and aquaculture
applications. These methods use self-supervised learning, unsupervised learning, adap-
tive uncertainty distribution, and lightweight transformer models to learn from unlabeled
data, model uncertainty, and capture global context. These methods aim to outperform ex-
isting methods in terms of accuracy, robustness and efficiency. These methods also aim to
explain how and why deep learning works for underwater videos and images. The results
of this research will contribute to the advancement of the field of marine and aquaculture
computer vision by providing novel solutions that can improve the efficiency, accuracy,
and sustainability of these industries. Moreover, the proposed methods may also have
broader applications in other areas that require the analysis of visual data in challenging
environments.

1.2 Research Problem

The research problem addressed in this thesis is the challenge of improving fish segmenta-
tion, trajectory tracking, underwater image enhancement, and fish morphometric analyses
and weight estimation using self-supervised learning, unsupervised learning, and deep
learning techniques. These challenges arise due to the complex nature of the underwa-
ter environment, which can include factors such as blurry images, cluttered backgrounds,
and the resemblance between fish and their environment. Traditional approaches to these
problems have relied on fully-supervised models that require manual annotations, limiting
their generalizability. This thesis aims to overcome these limitations by proposing novel
deep learning architectures that leverage self-supervised and unsupervised learning tech-
niques to improve the accuracy and efficiency of fish segmentation, trajectory tracking,
underwater image enhancement, fish morphometric analyses and weight estimation.

1.3 Research Questions

Based on the research problem, the following research questions are formulated:

1. How can self-supervised learning be used to improve fish segmentation and trajec-
tory tracking in underwater videos?
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2. How can unsupervised learning be used to enhance underwater images without any
reference images or labels?

3. How can deep learning be used to improve fish morphometric analyses and weight
estimation in an efficient and accurate manner?

These research questions are addressed in the subsequent chapters of this thesis. Each
chapter presents a novel deep learning architecture that tackles one of the research ques-
tions and evaluates its performance on several public and private datasets of underwater
videos and images collected from different sources and scenarios. The main contributions
and findings of each chapter are summarized in the conclusion and future work chapter.

1.4 Original Contributions

The overall contribution of this thesis is the development of novel deep learning architec-
tures that leverage self-supervised learning, unsupervised learning, adaptive uncertainty
distribution, and lightweight transformer models to address various tasks related to fish
segmentation, trajectory tracking, image enhancement, landmark detection, weight esti-
mation and morphometric analyses in marine and aquaculture applications. These contri-
butions are delivered through individual chapters that present specific methods and evalu-
ate their performance on several datasets of underwater videos and images. The individual
contributions of each chapter link together to form the overall contributions of the thesis,
which advances the field of marine and aquaculture computer vision by providing novel
solutions that can facilitate various applications such as fish monitoring, stock assessment,
aquaculture management and environmental protection. Each chapter can be considered
as a separate publication that presents a specific contribution to the overall research prob-
lem addressed in the thesis.

Specifically, this thesis comprises the following seven significant original research con-
tributions to the field of marine and aquaculture computer vision:

1. In [1], a survey of Computer Vision and Deep Learning studies conducted between
2003-2021 on fish classification in underwater habitats was provided. Key con-
cepts of Deep Learning were overviewed, while analyzing and synthesizing Deep
Learning studies. The main challenges faced when developing Deep Learning for
underwater image processing were discussed and approaches to address them were
proposed. Insights were given into the marine habitat monitoring research domain
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and future directions of Deep Learning for underwater image processing were sug-
gested.

2. In [2], the application of DL techniques for underwater fish habitat monitoring was
explored. A tutorial on the key concepts and steps of DL development was pro-
vided for marine scientists who want to learn and apply DL for their own problems.
A comprehensive survey of existing DL methods for fish habitat monitoring tasks
such as classification, counting, localisation, and segmentation was conducted. The
performance and limitations of various DL techniques were compared using pub-
licly available underwater fish datasets. Some open challenges and opportunities
for future research in this domain were discussed. This paper aimed to bridge the
gap between DL and underwater fish monitoring, and to facilitate the advancement
of both fields.

3. In [3], a Transformer-based method that uses self-supervision for high-quality fish
segmentation was introduced. The proposed model was trained on videos without
any annotations to perform fish segmentation in underwater videos taken in situ in
the wild. The model surpassed previous CNN-based and Transformer-based self-
supervised methods and achieved performance relatively close to supervised meth-
ods on two new unseen underwater video datasets. The models compute-efficiency
and great generalisability were also demonstrated.

4. In [4], a three-stage framework for robust fish tracking and segmentation was pro-
posed. The framework used an optical flow model to generate pseudo labels using
spatial and temporal consistency between frames. A self-supervised model refined
the pseudo-labels incrementally. The refined labels were used to train a segmen-
tation network. No human annotations were used during the training or inference.
Experiments were performed on three public underwater video datasets to validate
the method and demonstrate its effectiveness and robustness.

5. In [5], a novel framework called Uncertainty Distribution Network (UDnet) was
proposed. UDnet learns to adapt to Uncertainty Distribution in its unsupervised
reference map generation to produce enhanced output images. UDnet consists of
three main parts: a statistically guided multi-colour space stretch module, a U-
Net-like conditional variational autoencoder module, and a probabilistic adaptive
instance normalization block. UDnet does not need manual human annotation and
can learn with a limited amount of data to achieve state-of-the-art results. UDnet
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was evaluated on eight publicly-available datasets and showed competitive perfor-
mance compared to other state-of-the-art approaches.

6. In [6], a novel DL architecture called Mobile Fish Landmark Detection network
(MFLD-net) was developed. MFLD-net can achieve keypoint detection accuracies
on par or better than some of the state-of-the-art CNNs on a fish image dataset.
MFLD-net uses convolution operations based on Vision Transformers. MFLD-net
can achieve competitive or better results in low data regimes while being lightweight
and suitable for embedded and mobile devices. MFLD-nets generalisation capabil-
ities were also demonstrated.

7. In [7], a novel Deep Learning approach for automated weight estimation and mor-
phometric analysis of prawns from images was proposed. The approach consisted
of two main components: a feature extraction module that combined low-level and
high-level features using the Kronecker product operation, and a landmark local-
ization module that predicted the coordinates of key points on the prawn body
using a localization network. Once these landmarks were extracted, weight was
estimated using a weight regression module that estimated weight based on the ex-
tracted landmarks using a fully connected network. For morphometric analyses,
we utilized the detected landmarks to derive five important prawn traits. Principal
Component Analysis (PCA) was also used to identify landmark-derived distances,
which were found to be highly correlated with shape features such as size, body
length, and width. The approach was evaluated on a large-scale dataset of prawn
images collected from various farms and environments. The experimental results
demonstrated that the approach outperformed existing methods in terms of accu-
racy, robustness, and efficiency.

These contributions advance the state-of-the-art in marine and aquaculture computer
vision by providing novel solutions that can facilitate various applications such as fish
monitoring, stock assessment, aquaculture management and environmental protection.

1.5 Thesis Organization

As illustrated in Fig 1.1, this thesis is organized into nine chapters to convey all of the
original research contributions in a coherent way. The current Chapter, i.e., the Intro-
duction, highlighted in dark blue, introduces the research background and motivation.
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In addition, research questions are formulated, and the key original contributions of this
thesis are summarized.

The literature review component of this thesis is presented in Chapter 2 and Chapter
3, which are highlighted in orange in Fig 1.1. Chapter 2 of the thesis reviewed Deep
Learning for fish identification in marine environments from 2003 to 2021. It discussed
challenges and solutions for underwater image processing and offered insights into marine
habitat monitoring and future directions.

Chapter 3 explored DL techniques for monitoring underwater fish habitats. It provided
a tutorial for marine scientists and surveyed existing DL methods for fish habitat moni-
toring tasks. It compared the performance and limitations of various DL techniques and
discussed open challenges and opportunities for future research. The chapter aimed to
bridge the gap between DL and underwater fish monitoring, and to facilitate the advance-
ment of both fields.

For the sake of clarity, each research question is highlighted using a different colour,
and chapters are categorized using the aforementioned formulated research questions.
In lieu of an abstract at the beginning of each Chapter, a short text passage is included
introducing the Chapter and relating it to the formulated research questions.

As can be seen in Fig 1.1, Chapters 4, and 5 address the first research question. These
chapters presented two novel methods for fish segmentation and tracking in underwater
videos. The first used a Transformer-based model with self-supervision. The second used
a three-stage framework with an optical flow model and self-supervised refinement. Both
methods were validated on public datasets and demonstrated effectiveness and robustness.

Chapter 6 addresses the second research question. This chapter introduced a novel
framework called UDnet that adapts to Uncertainty Distribution in its unsupervised ref-
erence map generation. UDnet consists of three main parts and does not require manual
human annotation. It was evaluated on eight public datasets and showed competitive per-
formance.

The third and last research question is addressed in Chapters 7 and 8. Both chapters
proposed two novel DL architectures for fish landmark detection and prawn weight es-
timation. The first was MFLD-net, which used convolution operations based on Vision
Transformers. The second was a novel DL approach for automated weight estimation and
morphometric analysis of prawns. The approach was evaluated on a large-scale dataset
and outperformed existing methods.

Finally, the thesis is concluded in Chapter 9, Conclusion and Future Work. In Fig 1.1,
this Chapter is highlighted in the same colour as the Introduction to indicate a strong link/-
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connection. In the Conclusion, the findings in other chapters are summarized with respect
to the research questions formulated in the Introduction, and future research directions
are discussed.
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Figure 1.1: Thesis structure.
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Chapter 2

Computer Vision and Deep
Learning for Fish Classification in
Underwater Habitats: A Survey

Marine scientists use remote underwater image and video recording to survey fish species
in their natural habitats. This helps them get a step closer toward understanding and pre-
dicting how fish respond to climate change, habitat degradation, and fishing pressure.
This information is essential for developing sustainable fisheries for human consumption,
and for preserving the environment. However, the enormous volume of collected videos
makes extracting useful information a daunting and time-consuming task for a human.
A promising method to address this problem is the cutting-edge Deep Learning (DL)
technology. DL can help marine scientists parse large volumes of video promptly and
efficiently, unlocking niche information that cannot be obtained using conventional man-
ual monitoring methods. In this Chapter, we first provide a survey of Computer Visions
(CV) and DL studies conducted between 2003-2021 on fish classification in underwater
habitats. We then give an overview of the key concepts of DL, while analyzing and syn-
thesizing DL studies. We also discuss the main challenges faced when developing DL for
underwater image processing and propose approaches to address them. Finally, we pro-
vide insights into the marine habitat monitoring research domain and shed light on what
the future of DL for underwater image processing may hold. The results and analysis
presented in this Chapter and the next Chapter led to the refined focus of this thesis on
marine and aquaculture applications in Chapters 4-8.
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Chapter 2 Computer Vision and Deep Learning for Fish Classification in Underwater
Habitats: A Survey

2.1 Introduction

Understanding and modelling how fish respond to climate change, habitat degradation,
and fishing pressure are critical for environmental protection, and are crucial steps toward
ensuring sustainable natural fisheries, to support ever-growing human consumption [37].
Effective monitoring is a vital first step underpinning decision support mechanisms for
identifying problems and planning actions to preserve and restore the habitats. However,
there is still a gap between the complexity of marine ecosystems and the available moni-
toring mechanisms.

Marine scientists use underwater cameras to record, model, and understand fish habi-
tats and fish behaviour. Remote Underwater Video (RUV) recording in marine appli-
cations [37] has shown great potential for fisheries, ecosystem management, and con-
servation programs [38]. With the introduction of consumer-grade high-definition cam-
eras, it is now feasible to deploy a large number of RUVs or Autonomous Underwater
Vehicles (AUVs) to collect substantial volumes of data and to perform more effective
monitoring [39–41]. However, underwater habitats introduce diverse video monitoring
challenges such as adverse water conditions, high similarity between fish species, clut-
tered backgrounds, and occlusions among fish. In addition, the volume of data generated
by deployed RUVs and AUVs rapidly surpasses the capacity of human video viewers,
making video analysis prohibitively expensive [42]. Moreover, humans are more prone
to error than a well-designed machine-centred monitoring algorithm. Therefore, an au-
tomated, comprehensive monitoring system could significantly reduce labour expenses
while improving throughput and accuracy, increasing the precision in estimates of fish
stocks, fish distribution and biodiversity in general [43]. Implementing such systems ne-
cessitates effective Computer Vision (CV) processes. As a result, significant research has
been conducted on implementing monitoring tools and techniques that build upon CV
algorithms for determining how fish exploit various maritime environments and differen-
tiating between fish species [44].

Figure 2.1: Illustration of four typical types of CV tasks From left: Image Classifi-
cation (i.e. is there a fish in the image, or what type (class) of fish is in
the image?), Object Detection/Localisation, Semantic Segmentation, Instance
Segmentation.
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In image analysis and CV domains, Deep Learning (DL) approaches have consis-
tently produced state-of-the-art results in a variety of applications from agriculture [45]
to medicine [46, 47] using Deep Neural Networks (DNNs) [48–50]. Notably, a video
is inherently composed of images or frames, which are processed using image analysis
techniques. Therefore, image- and video-based monitoring tasks can be done using DL
models such as CNNs that receive an image (frame) as their input. Therefore, the methods
mentioned for image-based tasks are useful for both images and videos.

Many of DNN-based approaches outperform conventional methods in marine applica-
tions, including ecological and habitat monitoring, using video trap data [51, 52]. DL
is a technique that mimics how people acquire knowledge by continuous analysis of in-
put data. The main drivers of DNN success over the past decade have been architectural
progress by a large community of computer scientists, more powerful computers and pro-
cessors, and access to massive amounts of data, which is critical for developing successful
generalizable DL applications.

DNNs have been successfully employed in many CV applications such as object clas-
sification [53], identification [6], and segmentation as a result of the invention of CNN.
CNN is a class of DNN, most commonly applied to visual analyses. For instance, CNNs
have been successfully used for analysis of fish habitats [39, 42, 54]. In comparison to
other image recognition algorithms, CNNs have the significant benefit that they require
limited pre-processing. CNNs are not hand-engineered but uncover and learn hidden fea-
tures in the data on their own. They learn level-by-level with various levels of abstraction.
For instance, they learn simple shapes (edges, lines, etc.) in the first few layers, under-
stand more sophisticated patterns in their next layers, and learn classes of objects in their
final layers.

A putative challenge with CNNs is that they require a large number of images to be
fully trained and generalise their learning to unseen scenarios. On the other hand, CNNs
have an interesting and powerful feature that enables transfer of their learning and knowl-
edge across different domains. This means that they can be fine-tuned to work on new
datasets (e.g. fish datasets) other than the one that they have been trained on (e.g. gen-
eral objects). However, fine-tuning with annotated datasets specific for a given domain
implies cost/effort/time needed to generate the annotations, and also requires a larger set
of data which may not always be available.

Equipping CV algorithms with the powerful learning and inference capabilities of
CNNs can provide marine scientists and ecologists with powerful tools to help them bet-
ter understand and manage marine environments. However, although DL, and its vari-
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ants such as CNNs, have been applied to various applications across a multitude of do-
mains [55–57], their use in conjunction with computer vision for marine science and fish
habitat monitoring is not broadly appreciated, meaning they remain under utilised. To
address this, in this paper, we introduce key concepts and typical architectures of DL,
and provide a comprehensive survey of key CV techniques for underwater fish habitat
monitoring. In addition, we provide insights into challenges and opportunities in the un-
derwater fish habitat monitoring domain. It is worth noting that our article is written to
provide a general and high-level, as opposed to detailed, introduction of deep learning and
its relevant contexts for marine scientists. This is useful in understanding the follow-up
discussions on the use of deep learning in the marine task of underwater fish classification.

Although a recent survey reviews deep learning techniques for marine ecology [58] and
briefly discusses DL-based fish image analysis, to the best of our knowledge, no compre-
hensive survey and overview of deep learning with a specific focus on fish classification
in underwater habitats currently exists. Our paper tries to address this gap and to facili-
tate the application of modern deep learning approaches into the challenging underwater
fish images analysis and monitoring domains. We do this by comprehensively review-
ing and analysing the literature providing information about the DL model the previous
works have used, their training dataset, their annotation techniques, their performance and
a comparison to other similar works. This detailed analysis is not provided in [58].

In addition, another survey [59] exists that focuses on five different tasks of classifi-
cation, detection, counting, behaviour recognition, and biomass estimation. Compared
to [59], we provide a different analysis and review of the literature because we mainly
focus on the classification of fish in underwater images. Li and Du’s work [59] fits mostly
in the domain of aquaculture, while our paper is mostly a review of ”fish classification
techniques in underwater habitats” and the challenges they bring. Li and Du introduce a
background to many different DL architectures, one of which is CNN, which is the focus
of our paper. Also, the challenges and opportunities that Li and Du introduce are different
to our paper, which is mainly about underwater fish classification in their natural habitat.

Furthermore, we provide a historical review of the CV and DL research using underwa-
ter cameras for fish classification, and analyse how their accuracy has evolved over years.
This is not covered by previous works including [58, 59].
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2.2 Background To Computer Vision and Machine

Learning

Humans, have a natural ability to comprehend the three-dimensional structure of the world
around us. Vision scientists [60] have spent decades attempting to understand how the
human visual system functions [61]. Inspired by their findings, CV researchers [62–64]
have also been working on ways to recover the 3D shape and appearance of objects from
photos. The automatic retrieval, interpretation, and comprehension of useful information
from a single image or collection of images can be referred to as CV. In another defi-
nition, CV is a field of Artificial Intellegence (AI) that focuses on training computers to
detect, recognise, and understand images similarly to processes used by humans. This
necessitates the development of logical and algorithmic foundations for automated visual
understanding [65]. This understanding can include image classification, object localisa-
tion, object recognition, semantic segmentation, and instance segmentation, as shown in
Figure 2.1. Today, computers with CV powers can extract, analyse, and interpret signifi-
cant information from a single image or a sequence of images.

Despite this progress, the goal of making a computer to understand a picture at the
same level as a two-year-old child remains unattainable. This is due, in part, to the fact
that CV is an inverse problem in which we attempt to recover specific unknowns despite
having inadequate knowledge to completely describe the solution. In CV applications,
the cause is usually an exploration process, while the effects are the observed data. The
corresponding forward problems then consist of predicting empirical data given complete
knowledge of the exploration process. In some sense, solving inverse problems means
“computing backwards”, which is usually more difficult than forward problem solving
[66].

The problem of backward computation was eased by the introduction of ML techniques
more than 6 decades ago. However, in conventional ML approaches, the majority of
complex features of the learning subject must be identified by a domain expert in order
to decrease the complexity of the data and make patterns more evident for successful
learning (see Figure 2.2-top). However, DL offered a fundamentally new method to ML.
Most DL algorithms possess the ground-breaking ability of automatically learning high-
level features from data with minimal or no human intervention (see Figure 2.2-bottom).

DL is based on neural networks, which are general-purpose functions that can learn
almost any data type that can be represented by many instances. When you feed a neural
network a large number of labelled instances of a certain type of data, it will be able to
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Figure 2.2: Comparison between ML and DL. In ML techniques, the features need to
be extracted by domain expert while DL relies on layers of artificial neural
networks to extract these features.

uncover common patterns between those examples and turn them into a mathematical
equation that will assist in categorising future data. Empowered by this fundamental
feature, DL and DNN have progressed from theory to practice as a result of advancements
in hardware and cloud computing resources [47]. In recent years, DL approaches have
outperformed previous state-of-the-art ML techniques in a variety of areas, with CV being
one of the most notable examples.

Before the introduction of DL, the capabilities of CV were severely limited, necessi-
tating a great deal of manual coding and effort. However, owing to improved research in
DL and neural networks, CV is now able to outperform humans in several tasks related to
object recognition and classification [67–70]. CV equipped with DL, is being used today
in a wide variety of real-world applications, that include, but are not limited to:

• Optical character recognition (OCR) [71]: automatic number plate recognition and
reading handwritten postal codes on letters;

• Machine inspection [72]: fast quality assurance inspection of components using
stereo vision with advanced lighting to assess tolerance levels on aircraft wings or
car body parts, or to spot flaws in steel castings using X-ray technology;
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Figure 2.3: A popular CNN architecture, named UNET [32] is demonstrated. The first
component of UNET is the encoder, which is used to extract features from
the input image. The second component is the decoder that outputs per-pixel
scores. The network is composed of five different layers including convolu-
tional (Conv Layer), Rectified Linear Unit (ReLU), Pooling, Deconvolutional
(DeConv), and Softmax.Here, the task of the DNN layers has been to give a
high score to only the pixels in the input image that belong to the fish body,
resulting in the demonstrated white blobs output, showing where the fish are.

• Retail [73]: object detection for automatic checkout lanes;

• Medical imaging [74]: registration of preoperative and intra-operative imaging or
long-term analyses of human brain anatomy as they age;

• Automotive safety [75]: detection of unforeseen objects such as pedestrians on the
street (e.g. fully autonomously driving vehicles);

• Surveillance [76]: Monitoring of trespassers, studies of highway traffic, and moni-
toring pools for drowning victims;

• Fingerprint recognition and bio-metrics [77]: For both automatic entry authentica-
tion and forensic software.

This demonstrates the significant impact of DL on CV and demonstrates its potential
for marine visual analysis applications.
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2.3 The evolution of Computer vision approaches

to fish classification

The last two decades have witnessed the emergence of novel computer vision approaches
for fish classification including the design and evaluation of complex algorithms that could
not be applied before and became possible with the availability of sufficiently large data
and the use of powerful Graphical Processing Units (GPUs). Here, we perform a system-
atic literature review of the evolution of computer vision applications and their different
approaches over the past two decades.

2.3.1 Search and Selection Criteria

We systematically reviewed the literature for underwater fish classification using com-
puter vision from 2003 to 2021. The search terms used included ”underwater fish classifi-
cation”, ”Deep Learning”, ”Computer Vision”, ”Machine vision”. The databases searched
included Wiley Online Library, IEEE Xplore, Elsevier/ScienceDirect, and ACM Digital
Library. We believe that combining these four databases accurately represents global re-
search on this topic.

We divided the search into two stages. First, we queried the databases for articles with
the above-mentioned keywords in their titles and contents. Secondly, we independently
reviewed the titles and abstracts of each article in order to check its relevance to our
research topic. After the individual title and abstract reviews, we considered 64 articles
for full-text reading. In the full-reading phase, we extracted information relevant to our
research topic. In this phase, it became clear that 21 papers were not relevant to our work
and therefore were excluded. This left us with 43 papers for fish classification, 26 of
which were classical Computer Vision methods, and 17 Deep Learning papers. Figure
2.4 presents an overview of the methods used in the identified studies and classifies them
into several groups, based on their classification algorithms that can be categorized into
two general category of conventional CV, and modern DL models.
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Figure 2.4: An overview of the methods used for fish classification using different Com-
puter Vision techniques from 2003 to 2021. It is evident from the graph that
DL and its CNNs have attracted more attention than classical ML methods.

2.3.2 The Evolution of Fish Classification Algorithms over
Two Decades

The publication trend for fish classification studies is summarized in Fig. 2.5. The
figure shows the cumulative number of publications and how the studies evolved over
the past two decades. It is evident that the number of publications has been gradually
increasing, but in 2016, when the first few studies using deep learning were combined
with CV methods, the study numbers have seen the highest increase and a fast upward
trajectory for a few years (2015-2019) after DL burgeoned in fish classification, and before
slowing down.

Fig. 2.5 also shows the highest classification accuracy achieved in each year, as a qual-
ity assessment metric. It is evident that since 2016, when DL techniques were first
proposed for fish classification, the accuracy has seen its highest value. At the same time,
it can be seen that there are large differences in the accuracies achieved over years. The
main reasons for this difference include (i) using different classification and CV methods,
and (ii) using different fish image sources that were captured differently and in different
environments. These bring huge variations among studies, such as different image reso-
lutions and inconsistent resolutions and image qualities across time. For example, some
fish image datasets are in grayscale [78–80], while others are in colour [81–83]. Some
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datasets contain only images [80, 84], while others include videos [85–87]. Also, some
datasets [88] used low-quality images from the internet, which negatively affects the ac-
curacy, due to their wide range of resolutions, colours, and angles. They are also taken at
random locations. Due to these factors in various studies, direct comparison of accuracy
values is unfeasible, though the accuracy trend can be still observed in Fig. 2.5.

Figure 2.5: An overview of the publication trend and performance of an extensive range
of fish classification Computer Vision (CV) and Deep Learning (DL) models
from 2003 to 2021. Here the bars show the cumulative number of publica-
tions over years and the growth thereof, while the line graphs demonstrate the
highest classification accuracy in each year in literature on the right-hand-side
vertical axis.

Computer vision for fish classification in the early 2000s and up to 2016, when first DL
works started, has been mainly to manually extract fish features and then build classifiers
that recognize these features. These conventional studies are listed, in a chronological
order, in Table 2.1. Although there are many existing models, most of the classical non-
DL models are based on local and engineered features. These include works using Haar
features [89], Scale-Invariant Feature Transform (SIFT) [90], and Histogram of Oriented
Gradient (HOG) [91], which need hand-engineered algorithms. Because these algorithms
are not suitable for recognizing images of untrained animals and cannot capture fish fea-
tures from complex backgrounds, they usually use a large number of manually extracted
samples to build classifiers.

As shown in Table 2.1, support vector machines [79, 84, 87, 88, 92–96] were one of the
most commonly used classifiers for fish recognition, but they are prone to overfitting when
trained with too many samples. This problem limits the scale of application. Another
popular classification technique in early works is using a simple feed-forward shallow
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neural network trained using backpropagation [97–101]. Although this technique can
handle simple samples, it is difficult to scale because of the neural network shallow layers,
which will be explained in the next Section. Naive Bayes [80–82, 102] have also been
used to classify fish since the early 2000s and up to 2017. The technique does not require
much training data, and as shown in Table 2.1 can reach good accuracy levels. Table 2.1
also shows some other CV classification techniques, which while not as popular as the
above-mentioned methods, could demonstrate good performance. However, it should be
noted that, most of the CV techniques in Table 2.1, were carefully engineered for their
target datasets and are not capable of showing a similar performance level if used for
another similar dataset. They will perhaps require an overhaul in their design, starting
from manual feature engineering, to designing the detailed classification models.

In contrast, deep learning can extract features and perform classification tasks auto-
matically. The features are invariant to data scaling, translation, rotation, and distortion.
Because these features are better for classification, the classification performance can be
better than that conventional CV tasks using manually designed features. Also, DL clas-
sification models, compared to traditional CV one, usually require a simpler redesign
procedure to work on a new similar dataset, due to the ability to extract features on their
own.

Although DL emerged in 2012 [103], its first use for underwater fish classification
was in 2016 [68]. After that, 16 other works also used DL and its CNNs, as shown in
Fig. 2.4, to develop models that learn features from large amounts of data without manual
interference. These studies have shown that, by using deep learning, some of the usual fish
image classification challenges such as image noise reduction, classification of difficult
or rare-seen fish, and classifying small fish, can be solved.

In the following parts of this paper, we mainly focus on deep learning, how it works,
and how it can be applied to develop efficient and high-performance underwater fish clas-
sifiers. We will also critically analyse the 17 DL studies found as part of our systematic
literature review described earlier.

2.4 Background To Deep Learning

Deep Learning (DL) [108, 109] is a subset of ML algorithms that employs a neural net-
work with several layers to very loosely replicate the function of the human brain by
enabling it to ”learn” from huge quantities of data. The learning happens when the neural
network extracts higher-level features from input training data. The term ”deep” refers
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Table 2.1: List of fish classification studies using hand-crafted computer vision and accu-
racy between 2003-2021. The reported accuracies were obtained from different
datasets with varying settings.

Article Year Classification Method AC

An Automated Fish Species Classification and Migration Monitoring
System [104]

2003 Feature vector Classification 92

Determining the appropriate feature set for fish classification tasks
[102]

2005 Naive Bayes 90

Real-time underwater sorting of edible fish species [82] 2006 Naive Bayes 98

One Fish, Two Fish, Butterfish, Trumpeter: Recognizing Fish in Un-
derwater Video [92]

2007 Support vector machine 90

Classification of guppies’ (Poecilia reticulata) gender by computer vi-
sion [81]

2008 Naive Bayes 96

Automatic Fish Classification for Underwater Species Behavior Un-
derstanding [105]

2010
Discriminant Analysis Classifi-
cation

92

Fish Recognition Based on Robust Features Extraction from Size and
Shape Measurements Using Neural Network [97]

2010 Backpropagation 86

Fish Classification Based on Robust Features Extraction From Color
Signature Using Back-Propagation Classifier [98]

2011 Backpropagation 84

Fish species classification by color, texture and multi-class support
vector machine using computer vision [93]

2012 Support vector machine 97

Real-world underwater fish recognition and identification, using
sparse representation [106]

2013
Sparse representation classifica-
tion

81

A research tool for long-term and continuous analysis of fish assem-
blage in coral-reefs using underwater camera footage [107]

2013 Gaussian Mixture Model 97

Automatic Nile Tilapia Fish Classification Approach using Machine
Learning Techniques [94]

2013 Support vector machine 94

Shape- and Texture-Based Fish Image Recognition System [99] 2013 Backpropagation 90

A General Fish Classification Methodology Using Meta-heuristic Al-
gorithm With Back Propagation Classifier [100]

2014 Backpropagation 80

GMM improves the reject option in hierarchical classification for fish
recognition [88]

2014 Support vector machine 74

Supervised and Unsupervised Feature Extraction Methods for Under-
water Fish Species Recognition [78]

2014 Hierarchical Partial Classifier 93

A Feature Learning and Object Recognition Framework for Underwa-
ter Fish Images [79]

2015 Support vector machine 98

A novel tool for ground truth data generation for video-based object
classification [85]

2015 K-means algorithm 93

Automated detection of rockfish in unconstrained underwater videos
using Haar cascades and a new image dataset: labeled fishes in the
wild [86]

2015 Haar cascade classifiers 89

Fish Classification Using Support Vector Machine [95] 2015 Support vector machine 79

Fish identification from videos captured in uncontrolled underwater
environments [83]

2016
Sparse Approximated Nearest
Point

94

Fish Activity Tracking and Species Identification in Underwater Video
[87]

2016 Support vector machine 91

Koi Fish Classification based on HSV Color Space [80] 2016 Naive Bayes 97

Optical Fish Classification Using Statistics of Parts [101] 2016 Backpropagation 95

Shrinking Encoding with Two-Level Codebook Learning for Fine-
Grained Fish Recognition [96]

2017 Support vector machine 98

Indigenous Fish Classification of Bangladesh using Hybrid Features
with SVM Classifier [84]

2019 Support vector machine 94
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to the usage of several layers in the neural network. Lower layers, for example in image
processing, could detect edges, whereas higher layers might identify parts of the object.

2.4.1 How Deep Learning differs from Machine Learning

Machine Learning (ML) is usually referred to as a class of algorithms that can recognise
patterns in data and create prediction models automatically. Deep Learning (DL) is a
subclass of standard ML because it uses the same type of data and learning methods that
ML applies. However, when dealing with unstructured data, e.g. text and images, ML
usually goes through some pre-processing to convert it to a structured format for learning.
DL, on the other hand, does not usually require the data pre-processing needed by ML. It
is capable of recognising and analysing unstructured data, as well as automating feature
extraction, significantly reducing the need for human knowledge (see Figure 2.2-bottom).

For example, to recognise fish in an image, ML requires that specific fish features (such
as shape, colour, size, and patterns) be explicitly defined in terms of pixel patterns. This
may be a challenge for non-ML specialists because it typically requires a deep grasp of
the domain knowledge and good programming skills. DL techniques, on the other hand,
skip this step entirely. Using general learning techniques, DL systems can automatically
recognise and extract features from data. This means that we just need to tell a DL algo-
rithm whether a fish is present in an image, and it will be able to figure out what a fish
looks like given enough examples. Decomposing the data into layers with varying levels
of abstraction enables the algorithm to learn complex traits defining the data, allowing for
an automatic learning approach. DL algorithms may be able to determine which features
(such as fishtail) are most important in differentiating one animal from another. Prior to
DL, this feature hierarchy needed to be determined and created by hand by an ML expert.

2.4.2 How Deep Learning works

Deep Neural Network (DNN), also known as artificial neural network, is the basis of
deep learning. DNNs use a mix of data inputs, weights, and biases to learn the data, by
properly detecting, categorising, and characterising objects in a given dataset of interest.
DNNs are made up of several layers of linked nodes, each of which improves and refines
the network prediction or categorisation capabilities. For instance, Fig. 2.3 shows a
popular DNN architecture for image processing, called UNET [32]. UNET, which is a
fairly complex deep learning architecture, is composed of a few different components and
layers, to achieve a specific learning goal, i.e. to segment fish body in an input image.
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Any DNN is composed of three types of layers, namely input, output, and hidden lay-
ers. The visible layers are the input and output layers (see Figure 2.6). The DL model
gets the data for processing in the input layer, and the final prediction or classification is
generated in the output layer. In a typical neural network, including a DNN, the learning
happens through two general processes, i.e. forward and backward propagations. For-
ward propagation refers to the propagation of input data through the network layers to
generate a prediction or classification result. Backward propagation or, backpropagation
in short, is where the learning happens in the network. Backpropagation uses a training
model that determines prediction errors and then changes the weights and biases of the
neural network by going backwards through its layers. Forward propagation and back-
propagation work together to allow a neural network to generate predictions and reduce
the network errors. Through many iterations of backward and forward propagation, the
neural network prediction or classification accuracy improves.

Almost all DNNs work on and through the same principles described above. However,
different DL networks and architectures are used to solve different tasks. For instance,
CNNs, which are commonly used in computer vision and image classification applica-
tions, can recognise characteristics and patterns within an image, allowing tasks such as
object detection and recognition to be accomplished. However, in tasks with a different
nature, such as natural language processing, speech recognition, or timeseries forecast-
ing [110], Recurrent Neural Networks (RNNs) are commonly employed. Despite the
differences in their architectures, many DL techniques, use the concept of supervised
learning to process their input data and accomplish different tasks.

2.4.3 Supervised Learning

Supervised learning is a method used to enable finding and optimising a function that
maps an input to its corresponding output in an input-output object pair, also known as
training example [111]. Supervised learning uses a set of training examples based on
manually-labelled training data prepared by human observers or ’supervisors’, hence the
name for the learning method.

The aim of supervised learning is to generate an inferred function, f , that maps to the
training examples, and can then be used to map to new examples outside of the training
examples. In order to accomplish any general task, a computer can be programmed to
find function f to map X to Y , i.e. (f : X 7→ Y ), where X is an input domain and Y is
an output domain. For example, in an image classification task, X is the dataset of images
and Y is a set of corresponding classification labels, which determine whether an object
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F I G U R E 6 A diagram of a single-layer neural network,
composed of input, hidden, and output layers.

4.3 | Supervised Learning

Supervised learning is a method used to enable finding and

optimising a function that maps an input to its corresponding

output in an input-output object pair, also known as training

example [75]. Supervised learning uses a set of training

examples based on manually-labelled training data prepared

by human observers or ’supervisors’, hence the name for the

learning method.

The aim of supervised learning is to generate an inferred

function, 𝑓 , that maps to the training examples, and can then

be used to map to new examples outside of the training ex-

amples. In order to accomplish any general task, a computer

can be programmed to find function 𝑓 to map 𝑋 to 𝑌 , i.e.

(𝑓 ∶ 𝑋 ↦ 𝑌 ), where 𝑋 is an input domain and 𝑌 is an

output domain. For example, in an image classification task,

𝑋 is the dataset of images and 𝑌 is a set of corresponding

classification labels, which determine whether an object is

present in the respective image in the dataset or not.

To determine the function 𝑓 that can recognise, for in-

stance, a fish in an image using DL, one solution is to do

feature engineering. However, it is usually very difficult to

perform this, i.e. hand-pick features of the fish, based on

the domain knowledge that comes from the training dataset.

In addition, most of the time, the hand-picked features need

to be pruned to reduce their pixel dimensionality. Compar-

atively, it is often more feasible to collect a large dataset of

(𝑥, 𝑦) ∈ 𝑋 × 𝑌 to find the mapping function 𝑓 , and this af-

fords supervised learning advantage as an alternative mapping

technique compared with direct feature engineering. Specif-

ically, in the fish classification task, a large dataset of fish

images is collected, where each image 𝑥 is labelled with 𝑦

that shows the presence or absence of a fish, without the need

to hand-pick its features.

One of the main supervised learning approaches is training

a neural network, which is the foundation of deep learning,

especially for computer vision applications such as fish image

processing. We, therefore, dedicate the next subsection to

neural networks and their underlying working principles.

4.4 | Neural Networks

A ’neural network’ [76] is a computer program originally

conceived by mimicking actual cerebral neural networks that

make up the brain’s grey matter. A computer’s neural network,

a.k.a. an artificial neural network, "learns" to do a specific task

by using a large amount of data, usually through supervised

network training that does not involve any task-specific rules.

As briefly mentioned, a neural network is constructed from

three types of layers: an input layer, hidden or latent layers,

and an output layer (see Figure 6). These layers include

processing neurons within them (coloured circles in Figure

6), and connecting synapses (weights) between them (edges

in the figure).

The input layer is the gate to the network. It provides infor-

mation to the network from outside data, and no calculation is

made in this layer. Instead, input nodes pass the information

on to the hidden layer. This layer is not visible to the outside

world and serves as an abstraction of the inputs, independent

of the neural network structure. The hidden layer (layers)

processes the data received from the input layer and transfers

the results to the output layer. Finally, the output layer brings

the information that the network has learned into the outside

world.

Learning in a neural network happens through minimising

a loss function. Generally, a loss function is a function that

returns a scalar value to represent how well the network per-

forms a specific task. For example, in image classification,

the network is expected to correctly classify all the images

containing a fish as fish, and all those not including a fish, as

no fish, returning a loss value of zero. During learning, the

Figure 2.6: A diagram of a single-layer neural network, composed of input, hidden, and
output layers.

is present in the respective image in the dataset or not.
To determine the function f that can recognise, for instance, a fish in an image using

DL, one solution is to do feature engineering. However, it is usually very difficult to
perform this, i.e. hand-pick features of the fish, based on the domain knowledge that
comes from the training dataset. In addition, most of the time, the hand-picked features
need to be pruned to reduce their pixel dimensionality. Comparatively, it is often more
feasible to collect a large dataset of (x, y) ∈ X × Y to find the mapping function f , and
this affords supervised learning advantage as an alternative mapping technique compared
with direct feature engineering. Specifically, in the fish classification task, a large dataset
of fish images is collected, where each image x is labelled with y that shows the presence
or absence of a fish, without the need to hand-pick its features.

One of the main supervised learning approaches is training a neural network, which
is the foundation of deep learning, especially for computer vision applications such as
fish image processing. We, therefore, dedicate the next subsection to neural networks and
their underlying working principles.

2.4.4 Neural Networks

A ’neural network’ [112] is a computer program originally conceived by mimicking ac-
tual cerebral neural networks that make up the brain’s grey matter. A computer’s neural
network, a.k.a. an artificial neural network, ”learns” to do a specific task by using a
large amount of data, usually through supervised network training that does not involve
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any task-specific rules. As briefly mentioned, a neural network is constructed from three
types of layers: an input layer, hidden or latent layers, and an output layer (see Figure
2.6). These layers include processing neurons within them (coloured circles in Figure
2.6), and connecting synapses (weights) between them (edges in the figure).

The input layer is the gate to the network. It provides information to the network
from outside data, and no calculation is made in this layer. Instead, input nodes pass the
information on to the hidden layer. This layer is not visible to the outside world and serves
as an abstraction of the inputs, independent of the neural network structure. The hidden
layer (layers) processes the data received from the input layer and transfers the results
to the output layer. Finally, the output layer brings the information that the network has
learned into the outside world.

Learning in a neural network happens through minimising a loss function. Generally,
a loss function is a function that returns a scalar value to represent how well the network
performs a specific task. For example, in image classification, the network is expected to
correctly classify all the images containing a fish as fish, and all those not including a fish,
as no fish, returning a loss value of zero. During learning, the network receives a large
amount of input data, e.g. thousands of fish images, and eventually learns to minimise
the loss between its predicted output and the true target value. In the case of supervised
learning, these true target values are provided to the network, to find function f described
in the previous section, to minimise the loss function. This minimisation happens through
optimising f using an algorithm such as Stochastic Gradient Descent (SGD) [113] that
helps find network weights/parameters that minimise the loss.

Figure 2.7: Schematic diagram of pooling layer: (Left) single feature map spatially down-
sampled from a representation block with shape 224×224×1 to a new repre-
sentation of shape 112×112×1. (Right) types of pooling layer (max-pooling
and average-pooling).
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2.4.5 Convolutional Neural Network

CNNs are probably the most commonly used artificial neural networks. They have been
the dominant deep learning tool in computer vision and have been widely used in un-
derwater marine habitat monitoring [24]. CNNs are broadly designed after the neuronal
architecture of the human cortex but on much smaller scales [114]. A CNN [115] is
specifically designed for dealing with datasets that have some spatial or topological fea-
tures (e.g. images, videos), where each of the neurons are placed in such a manner that
they overlap and thus react to multiple spots in the visual field. A CNN neuron is a simple
mathematical design of the human brain’s neuron that is utilised to transform nonlinear
relationships between inputs and outputs in parallel. There are two primary layer types
in a CNN, i.e. convolutional layers and pooling layers, which generate feature maps, as
explained in the following subsections.

Convolutional Layer

In this layer, the convolutional processes (i.e., the multiplication of a small matrix of the
input neurons by a small array of weights called filter) are used on limited fields (which
depend on the size of the filter) to avoid the need to learn billions of weights (parameters),
which would be required if all the neurons in one layer are connected to all the neurons
in the next layer. This excessive computation is avoided through the weight-sharing of
convolutional layers combined with filters for their corresponding feature maps. In a
convolution operation, a small matrix of the input neurons is multiplied in its same-sized
matrix, called a filter. In a convolutional layer, this convolution operation happens by
sliding the filter on the entire input neurons, generating a feature map. Filters work on a
reduced area of the input (convolutional kernel). Convolutional layers can either use the
same kernel size or they can use different kernel sizes, which makes it possible to extract
complex features from the input using fewer parameters. In addition, weight-sharing is
useful in avoiding model overfitting, i.e. memorising the training data, [116], while also
reducing computing memory requirements and enhancing learning performance [117].

Pooling Layer

This layer is used to reduce the spatial dimension (not depth) of the input features and
add control for avoiding overfitting by reducing the number of representations with a
specified spatial size. Pooling operations can be done in two different ways, i.e. Max
and Average pooling. In both methods (see Figure 2.7), an input image is down-scaled in
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size, by taking the maximum of 4 pixels and down-sampling them to one pixel. Pooling
layers are systematically implemented between convolutional layers in conventional CNN
architectures. The pooling layers work on each channel (activation map) individually and
downsample them spatially. By having fewer spatial information, pooling layers make a
CNN more computationally efficient.

Feature Maps

Feature Maps, also called Activation Maps, are the result of applying convolutional filters
or feature detectors to the preceding layer image. The filters are moved on the preceding
layer by a specified number of pixels. For instance, in Figure 2.8, there are 37 filters of
the size 3× 3 that move across the input image with a stride of 1 and result in 37 feature
maps.

The majority of CNN layers are convolutional layers. These layers are used to apply the
same convolutional filtering operation to different parts of the image, creating “neurons”
that can then be used to detect features, like the edges and corners. A collection of weights
connects each neuron in a convolutional layer to the preceding layer’s feature maps, or
to the input layer image. The feature maps help visualise the features that the CNN is
learning to give an understanding of the network learning process, as shown in Figure
2.8.

2.5 Applications of Deep Learning in Fish-Habitat

Monitoring

In a recent special issue titled ”Applications of machine learning and artificial intelligence
in marine science” published in the International Council for the Exploration of the Sea
(ICES) journal of marine science [118], many uses of deep learning and CNNs have been
shown. These include identifying the species of harvested fish [119], analysis of fisheries
surveillance videos [120], and natural mortality estimation [121]. Other published works
have used CNN for other marine applications such as automatic vessel detection [122],
and analysis of deep-sea mineral exploration [123]. However, in this paper we focus on
using CNNs for CV tasks.

These tasks are mainly designed to extract knowledge from underwater videos and
images. Despite the recent use of CNNs for various visual analysis tasks such as seg-
mentation [28, 124–126], localisation [127–129], and counting [10, 130, 131], the most
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common and the widest studied CV task in underwater fish habitat monitoring has been
classification. Therefore, in this paper, we focus mainly on classification of underwa-
ter fish images. We survey some of the latest works on fish classification and provide a
high-level technical discussion of these works.

The task of classification is defined as classifying the input samples into different cate-
gories, usually based on the presence or absence of a certain object/class, in binary clas-
sification; or the presence of several different objects belonging to different classes, in
multi-class classification [132]. Similarly, image classification is concerned with assign-
ing a label to a whole image based on the objects in that image. Conceivably, an image can
be labelled as fish, when there is a fish present in it, or negative when no fish is present.
Similarly, images of different species should be automatically assigned to their respective
classes or given a label representing their class.

Classification is a difficult process if done manually, because an image may need to
be categorised into more than one class. In addition, there may be thousands of images
to be classified, which makes the task very time-consuming and prone to human error.
Consequently, automation can help perform classification quicker and more efficiently.

Figure 2.8: Schematic diagram of feature maps of the CNN used in the classification task.
The feature map is a two-dimensional representation of an input image. Here
(3 × 3) is the size of the filter slid over the entire image to generate feature
maps.

In the context of fish and marine habitat monitoring, CV offers a low-cost, long-term,
and non-destructive observation opportunity. One of the initial tasks performed using
deep learning on CV-collected marine habitat images is fish classification, which is a key
component of any intelligent fish monitoring systems, because it may activate further pro-
cessing on the fish image. However, underwater monitoring based on image and video
processing pose numerous challenges related to the hostile condition under which the fish
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images are collected. These include poor underwater image quality due to low light and
water turbidity, which result in low resolution and contrast. Additionally, fish movements
in an uncontrolled environment can create distortion, deformations, occlusion, and over-
lapping. Many previous works [133–135] have tried to address these challenges. Some
of these works focused on devising new methods to properly extract traditional low-level
features such as colours and textures using mean shift algorithm [136], in the presence
of the challenges. However, these works have not been very successful compared to DL
approaches.

With the inception of CNNs, many researchers utilised them to extract both high-level
and low-level features of input images. These features, which can be automatically de-
tected by the CNN, carry extensive semantic information that can be applied to recognise
objects in an image. In addition, CNNs have the ability to address the challenges out-
lined above. Therefore, they are currently the main underwater image processing tool in
literature for fish classification, as shown in Tables 2.2 and 2.3. These tables list some of
the latest classification works, while providing details about the DL models used and the
framework within which the model was implemented. It also provides information about
the data source, as well as the pre-processing of the data and its labels, while reporting the
Classification Accuracy (CA) and a short comparison with other methods if the reviewed
work has provided it. One of the main metrics when comparing different methods for
classification is their CA, which is defined as the percentage of correct predictions by the
network.

CA = (TP + TN)/(TP + TN + FP + FN), (2.1)

where TP (True Positive) and TN (True Negative) represent the number of correctly clas-
sified instances, while FP (False Positive) and FN (False Negative) represent the number
of incorrectly classified instances. For multi-class classification, CA is averaged among
all the classes.

DL algorithms are gaining momentum in their growing accuracy in different applica-
tions. However, they have inherent limitations, which should be considered before choos-
ing a DL algorithm for a given application. This is because accuracy, for example in a fish
classification task, may significantly differ from true accuracy due to the distribution of
samples in the training and testing populations. To address this limitation of classification
accuracy, the Receiver Operating Characteristics (ROC) [137] and Area Under The Curve
(AUC) [138] are widely used as a standard measure for determining the performance of
a model in a binary classification setting. Their definition is very similar to accuracy but
they help one understand the probability that the classifier produces correct outputs with
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desired levels of true positives and false negatives, using a certain classification threshold.

The works in Tables 2.2 and 2.3 can be divided into two general categories. The first
category deals with designing effective CNNs that address the challenge of unconstrained,
complex, and noisy underwater scenes, while the second category also tries to address the
usual problem of limited fish training datasets.

As mentioned, when processing unconstrained underwater scenes specific attention
should be paid to implementing a classification approach that is capable of handling vari-
ations in light intensity, fish orientation, and background environments, and similarity in
shape and patterns among fish of various species. In order to overcome these challenge
and to improve classification accuracy, various works have devised different methodolo-
gies. In [139], the authors used different activation functions to examine the most suitable
for fish classification, while in [67] different number of convolutional layers and differ-
ent filter sizes were examined. In [68], the authors used a CNN model in a hierarchical
feature combination setup to learn species-dependent visual features for better accuracy.
In another work [69], principal-component analysis was used in two convolutional layers,
followed by binary hashing in the non-linear layer and block-wise histograms in the fea-
ture pooling layer. Furthermore, a single-image super-resolution method was used in [70]
to resolve the problem of limited discriminative information of low-resolution images.
Moreover, [140] used two independent classification branches, with the first branch aim-
ing to handle the variation of pose and scale of fish and extract discriminative features, and
the second branch making use of context information to accurately infer the type of fish.
The reviewed works show that depending on the type of environment and fish species
similarities in the dataset under consideration, various techniques should be considered
and investigated to find the best classification accuracy.

As already mentioned, data gathering in the wild is sometimes very difficult and chal-
lenging, thus to maximize the success rate of training, it is essential to consider gather-
ing field data from the beginning of the project. This ensures that the collected training
dataset has good sample diversity including samples collected at different environmental
conditions such as water turbidity and salinity, and it captures fish species similarities.
Diversity and comprehensiveness in the dataset is one of the key factors in reaching high
classification accuracies when the model is deployed in the real world. Data augmentation
is another important method that can help improve the classification accuracy, through
increasing the dataset size and diversity. An alternative to data augmentation is trans-
fer learning, but the model should be always fine-tuned to the new dataset to maximize
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accuracy. Image pre-processing is another important technique that can help improve
classification accuracy, and should be considered when working with new fish datasets.

Dataset limitation, i.e. having limited number of fish images from different species,
and/or having few numbers of different fish etc, is another challenge in underwater fish
habitat monitoring in general and in fish classification, in specific. This challenge has
been addressed in [24, 141–143] using transfer learning.

Transfer learning is a ML method that works by transferring information obtained while
learning one problem or domain to a different but related problem or domain. Comparing
a randomly initialised classifier with another one pre-trained on ImageNet [144], Saleh
et al. [24] achieved a fish classification accuracy of 99%, outperforming the randomly-
initialised classifier, significantly. This finding shows that transfer learning can bring
learned information from the ImageNet learning domain to fish classification domain and
can be a useful and crucial method for evaluating fish environments. Transfer learning
was also used in [145] where general-domain above-water fish image learning was trans-
fered and used for underwater fish classification. In the same way, to train large-scale
models that are able to generate reasonable results, [146] collected 1000 fish categories
with 54,459 unconstrained images from various professional fish websites and Google
engine.

In addition to transfer learning, some works have developed specific machine learning
techniques suiting their applications. For instance, in a previous study [147], a pre-trained
CNN was used as a generalised feature extractor to avoid the need for a large amount of
training data. The authors showed that by feeding the CNN-extracted features to a Support
Vector Machine (SVM) classifier [148], a CA of 94.3% for fish species classification can
be achieved, which significantly outperforms a stand-alone CNN achieving an accuracy
of 53.5%. Also, [149] used the same techniques in [147] to achieve a CA of 98.79%. In
addition, [150] developed a new technique for fish classification by modifying AlexNet
[103] model with fewer number of layers. Moreover, [42] presented a labelling efficient
method of training a CNN-based fish-detector on a small dataset by adding 27,000 above-
water and underwater fish images.

CNNs are sometimes capable of surpassing human performance in identifying fish in
underwater images. By training a CNN on 900, 000 images, Villon et al. [151] could
achieve a CA of 94.9% while human CA was only 89.3%. This result was achieved mainly
because the CNN was able to successfully distinguish fish that were partially occluded by
corals or other fish, while human could not. Furthermore, the best CNN model developed
in [151] takes 0.06 seconds on average to identify each fish using typical hardware (Titan

31



Chapter 2 Computer Vision and Deep Learning for Fish Classification in Underwater
Habitats: A Survey

X GPU). This demonstrates that DL techniques can conduct accurate fish classification on
underwater images cost-effectively and efficiently. This facilitates monitoring underwater
fish and can advance marine studies concerned with fish ecology.

If DL methods are going to be deployed widely for different marine applications such
as fish classification, there is a need to implement them efficiently, so that they can run
on low-power embedded systems, which can run in real-time on mobile devices such as
underwater drones. To that end, Meng et al. [152] have developed an underwater drone
with a panoramic camera for recognising fish species in a natural lake to help protect the
environment. They have trained an efficient CNN for fish recognition and achieved 87%

accuracy while requiring only 6 seconds to identify 115 images. This promising result
shows that, DL can be used to classify underwater fish while also satisfying the real-time
conditions of mobile monitoring devices. In addition, other efficient hardware design
approaches that have proven useful in reducing power consumption and increasing speed
in classification task in other domains such as agriculture [153] can be adopted on edge
underwater processors.

In DL applications, video storage is currently a bottleneck that may be bypassed with
real-time algorithms, because they only need to store some and not all the video frames
in memory and process them in-situ, as they become available. This eliminates the time
it takes for all the frames to be stored and retrieved from memory. This is helpful in
situations where large amounts of data have to be processed quickly, for example, in an
underwater fish observation camera, where frames are collected continuously and should
either be stored locally or transfered to surface, which are both costly and mostly im-
possible. Using real-time processing algorithms, the frames are processed and only the
information obtained, i.e. the number of fish in a frame are sent or stored, which is much
lighter than the entire frame.

2.6 Challenges and Approaches to Address

Applications of DL

Despite the rapid improvement of DL for marine habitat monitoring through visual analy-
sis, four main challenges still exist [53]. The first challenge is to develop models that can
generalise their learning and perform well on new unseen data samples. The second chal-
lenge is limited datasets available for general DL tasks, and in particular for marine visual
processing tasks. The third challenge is lower image quality in underwater scenarios. The
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fourth challenge is the gap between DL and ecology.
To address these challenges, various computer algorithms and techniques have been

developed. In the following subsections, we explain the challenges in detail and briefly
review various approaches to address them. However, we do not intend to include details
of these approaches as they are out of the scope of this paper. The interested reader is
invited to refer to relevant DL materials and the cited papers.

2.6.1 Model Generalisation

One of the most difficult challenges in DL is to improve deep convolutional networks
generalisation abilities. This refers to the gap between a model’s performance on previ-
ously observed data (i.e. training data) and data it has never seen before (i.e. testing data).
A wide gap between the training and validation accuracy is usually a sign of overfitting.
Overfitting occurs when the model accurately predicts the training data, mostly because
it has memorised the training data instead of learning their features.

One way to monitor overfitting is by plotting the training and validation accuracy at
each epoch during training. That way, we will see that if the gap between the validation
and training acuuracy/error is widening (over- or under-fitting) or narrowing (learning).
A well-known and effective method for improving the generalisability of a DL model
is to use regularisation [155]. Some of the regularisation methods applied to fish and
marine habitat monitoring domains include transfer learning [156], batch normalisation
[28], dropout [150], and using a regularisation term [130].

2.6.2 Dataset Limitation

Another challenge of training DL models is the limited dataset. DL models require enor-
mous datasets for training. Unfortunately, most datasets are large, expensive, and time-
consuming to build. For this reason, model training is usually conducted by collecting
samples from a small number of datasets, rather than from a large number of datasets.

A dataset can be categorised into two parts: labelled data and unlabeled data. The
labelled data is the set of data that needs the labelling of classes, e.g. fish species in
an image, or absence or presence of fish in an image. The unlabeled data is the set of
data that has not been processed. The labelled data forms the training set whose size is
closely related to the accuracy of the trained model. The larger the training set, the more
accurate the trained model. Large training set, however, are expensive to build. They
require a large number of resources, such as people-hours, space, and money, making it
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very difficult for many researchers to achieve them, and in turn hinders their research.
Since it is difficult to obtain a large labelled dataset, various techniques have been pro-

posed to address this challenge. Some of the techniques applied to the fish and marine
habitat monitoring domains include transfer learning [157], data augmentation [24, 67],
using hybrid features [158–160], weakly supervised learning [9], and active learning
[161].

2.6.3 Image Quality

Underwater image recognition’s average accuracy lags significantly behind that of terres-
trial image recognition. This is mostly owing to the low quality of underwater photos,
which frequently exhibit blurring, and colour deterioration, caused by the physical char-
acteristics of the water and the hostile underwater environment.

Most CV applications perform some initial preprocessing of images before feeding
them to their image processor. In underwater scenarios, these preprocessing techniques
are typically used to enhance the image quality. Preprocessing can also help with the red
channel information loss problem, which is required for obtaining relevant colour data.
The red channel information loss problem is about losing the actual intensity of the red
colour in the scene, for instance, compared to the blue and green colour channels. This
is more pronounced in the underwater environment and as the depth increases, which
attenuates red channel values more strongly than the other colour channels. We should,
therefore, consider that the red channel value depends not only on the distance from the
subject but also on the intensity of the light reflected by the subject, as the reflection
of intense light is typically much stronger than that of a light of a very low intensity.
Another issue that arises in the detection of a specific target in an underwater image is the
fact that multiple pixels can potentially be activated in the image in theform of an object.
For example, sunlight shining through a periscope lens can cause spurious activation of
a given pixel. There is a need for a reliable method and system for determining whether
a given pixel in a remote underwater image is activated by some cause other than the
presence of a target in the area of the image.

Preprocessing of underwater photos has been extensively researched, and several so-
lutions have been devised for correcting typical underwater image artefacts [162, 163].
However, the image quality produced by these approaches is subjective to the observer,
and because acquisition settings vary so widely, these methods may not be applicable to
all datasets. According to empirical results [164, 165], the current tendency appears to be
to perform picture repair and enhancement processes based on the dataset, i.e. determin-
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ing the most appropriate preprocessing strategy for a specific dataset. This strategy also
depends on the purpose (e.g labelling, classification or both) of the images in the dataset.

In addition, basic image enhancement techniques have been shown to be effective in im-
proving image quality. For instance, in [159] increasing the uniformity of the background
was used to boost picture contrast in underwater images for marine animal classification.
This is a strong indicator that simple enhancing approaches might result in increased per-
formance. Furthermore, some recent studies have employed DL algorithms to enhance
image quality using low-quality images. In [166], for example, end-to-end mapping is
performed between low-resolution and high-resolution images.

When compared to state-of-the-art handcrafted and traditional image enhancement meth-
ods, DL-based algorithms typically perform better in addressing picture quality in terres-
trial photos. However, significant new research is required to customise these DL-based
techniques for underwater images and maritime datasets. This poses as a future research
opportunity for image quality enhancement in fish monitoring applications. Below, we
discuss some more opportunities.

2.6.4 Deep Learning Gap

DL is an emerging field that has a lot to offer in terms of ecology. The first and most
obvious ecological applications are fish classification or fish count. However, there is still
a gap between the DL-predicted fish counts and, for example, absolute abundance (fish
per area or volume unit). The existing DL literature discusses mainly the use of CNNs for
the ecological problems of species classification or fish counting. However, the absolute
abundance of fish is important for ecological research and species conservation.

Another important problem in ecological research is fish population dynamics. A step
in addressing this problem is to analyze long-term data on fish movements and fish densi-
ties. However, such long-term datasets are relatively rare and expensive to obtain. Hence,
there is a need to obtain as much information as possible from the small amount of data
given. This requires novel methods to give an accurate long-term estimate of fish densities
or, even better, an estimate of the absolute abundance of fish.

Other exemplar ecological questions that can be addressed using DL include species
habitat selection, or the relationship between the physical environment and the life history
of species [167–169]. DL methods can help us with this because they can take advantage
of all the available information. The current state of DL research can be improved by con-
sidering alternative network architectures, more complex training algorithms, and more
detailed knowledge of the problem domain. The existing DL literature suggests that we
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may see many new methods in the future. Most of them still do not have sufficient data
to prove that they can outperform existing methods. There are, however, examples of
successful applications, such as fish classification. For many ecological problems, a DL
method can give very accurate predictions of fish densities or absolute abundance. How-
ever, it remains unclear whether this accuracy can be obtained only with the appropriate
method or whether this is a property of the particular dataset on which the method was
trained. From this perspective, the development of a general method for predicting fish
densities and absolute abundance from very little data is a major problem in ecology.

One potential approach to solving this problem is to take advantage of DL models
trained on other datasets, as long as they are related to the fish density/abundance problem.
The ecological literature suggests that the relationship between the physical environment
and the life history of species (e.g., fish density) is likely to be complex because the phys-
ical environment differs from species to species. Therefore, we may be able to find many
similar datasets on other related problems (e.g., environmental science or engineering).
In addition to developing and testing general methods to estimate the absolute abundance
of fish from very little data, there is a need to develop general methods that can take ad-
vantage of the ecological knowledge and domain-specific data from a particular problem.

2.7 Opportunities in Application of DL to Fish

Habitat Monitoring

New methods and techniques will need to be devised to improve the accuracy of deep
learning models for various marine habitat monitoring applications and to bring them
closer to their terrestrial counterparts.

2.7.1 Spatio-temporal and Image Data Fusion

Most of the current marine habitat monitoring and visual processing tools only use image-
based data to train their model to understand the habitats and monitor the environment. In
such tools, each frame or image is separately processed and spatiotemporal correlations
across neighbouring frames are simply overlooked. Exploiting this extra information and
fusing it with the image-processing model can be beneficial [36]. For instance, fusing
a master-slave camera setup with LSTM [170] can help to learn the kinematic model of
fish in a 3D fish tracking system. Future works should consider including spatiotemporal
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information in training their model and understanding the scene. In particular, approaches
similar to Long short-term memory (LSTM) networks or other RNN models can be used
in conjunction with CNNs, to obtain improved classification or prediction outcomes by
taking advantage of the time-domain information. For example, An RNN and a CNN
model are combined in [171] to achieve better performance for salmon feeding action
recognition from underwater videos. In [172], the authors propose a spatio-temporal re-
current network to classify behavioural patterns. Similar schemes have been proposed
in [173]. However, their performance and complexity heavily rely on the ability of the
RNN to track the temporal relations of the frames and on the effectiveness of the CNN.

For instance, estimating and monitoring fish development based on previous continu-
ous observations, and analysing fish behaviour are some of the applications where time
domain information will be not only useful but also critical. Such models can also be used
to build novel video-based protocols for the surveillance of critically endangered reef fish
biodiversity.

2.7.2 Underwater Embedded and Edge Processing

DNNs have proven to be successful in both industry and research in recent years, par-
ticularly for CV tasks. Specifically, large-scale DL models have had a lot of success in
real-world scenarios with large-scale data. This is mainly due to their capacity to encode
vast amounts of data and handle millions of model parameters that enhance generalisation
performance when new data is evaluated. However, this high computational complexity
and substantial storage requirement makes them difficult to use in real-time applications,
especially on devices with restricted resources (e.g. embedded devices and underwater
edge processors for online monitoring). One approach to address this is to use com-
pressed networks such as binarised neural networks, which have shown promise toward
reaching low-power and high-speed edge inference engines [153], for near-underwater-
sensor processing. This can significantly improve underwater image analysis capabilities,
because the collected large-volume images do not need to be transferred to surface for
processing, and only the low-volume results can be communicated to shore. This also
solves another problem, which is the challenging underwater communication [174].

2.7.3 Combining Data from Multiple Platforms

The use of different data collection platforms such as autonomous underwater vehicles
(AUVs) or occupied submarines, can provide different image data from different per-
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spectives of the same or different underwater habitats, to train more effective DNNs. In
addition, using simultaneous data from multiple platforms can give more monitoring in-
formation, for instance, of fish distribution patterns, especially in situations where the
number of platforms is limited. However, combining data from multiple platforms in-
troduces some challenges such as the lack of ground truth (e.g., the number of fish in
the sampled area for all the platforms), and the need to develop techniques that can in-
tegrate these data in a robust manner. Future research can work toward addressing these
challenges to exploit the significant benefits of multiple platform data combination.

2.7.4 Automated Fish Measurement and Monitoring

DL can be used to achieve automated fish measurements, which may be useful in under-
water fish monitoring, for instance to survey fish growth [36] through monitoring of fish
length [175] and abundance [176]. Here, abundance means the number of fish in an im-
age or video frame, and not the fish count per area or volume unit. In addition, automated
measurements can realise remote fish assessments, for example when the monitoring lo-
cations are remote, or the environmental conditions and or potential hazards do not allow
frequent underwater scouting by human.

DL can also be used for automation of monitoring of other fish biological variables
such as their movement dynamics, present species, and their abundance and biomass. On
top of these, DL can be used to automate understanding of environmental and habitat
features. To achieve these, new datasets should be collected, and new or existing DL
techniques should be devised or customised in future research.

2.8 Conclusion

Deep Learning (DL) sits at the forefront of the machine learning technologies providing
the processing power needed to enable underwater video to fulfill its promise as a critical
tool for visual sampling of fish. It offers efficient and accurate solutions to the challenges
of adverse water conditions, high similarity between fish species, cluttered backgrounds,
occlusions among fish, that have limited the spatio-temporal consistency of underwater
video quality. As a result, DL, complemented by many other advances in monitoring
hardware and underwater communication technologies, opens the way for underwater
video to provide comprehensive fish sampling. This can span from shallow fresh and
marine waters to the deep ocean, opening the way for the development of the truly com-
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parative understanding of marine and aquatic fish fauna and ecosystems that has hitherto
been impossible. At least as importantly, DL solves the problem of handling the vast
quantities of data produced by underwater video in a consistent and cost-effective way,
converting a prohibitively expensive activity into a simple issue of computer processing.
By enabling the processing of vast quantities of data, DL allows underwater fish video
surveys to be conducted with unprecedented levels of spatial and temporal replication en-
abling the massive knowledge advances that flow from the ability of underwater videos
to be deployed contemporaneously across many habitats, and at many spatial scales, or to
provide continuous data over time.

DL, and associated techniques, have the potential for widespread use in marine habi-
tat monitoring for (1) data classification and feature extraction to improve the quality of
automatic monitoring tools; or (2) to provide a reliable means of surveying fish habitats
and understanding their movement dynamics. While this will allow marine ecosystem
researchers and practitioners to increase the efficiency of their monitoring efforts, effec-
tive development of DL will require concentrated and coordinated data collection, model
development, and model deployment efforts, as well as transparent and reproducible re-
search data and tools, which help us reach our target sooner.
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Chapter 3

Applications of Deep Learning in
Fish Habitat Monitoring: A Tutorial
and Survey

Marine ecosystems and their fish habitats are becoming increasingly important due to
their integral role in providing a valuable food source and conservation outcomes. Due
to their remote and difficult to access nature, marine environments and fish habitats are
often monitored using underwater cameras to record videos and images for understanding
fish life and ecology, as well as for preserve the environment. There are currently many
permanent underwater camera systems deployed at different places around the globe. In
addition, there exists numerous studies that use temporary cameras to survey fish habi-
tats. These cameras generate a massive volume of digital data, which cannot be effi-
ciently analysed by current manual processing methods, which involve a human observer.
DL is a cutting-edge AI technology that has demonstrated unprecedented performance
in analysing visual data. Despite its application to a myriad of domains, its use in un-
derwater fish habitat monitoring remains under explored. In this Chapter, we provide
a tutorial that covers the key concepts of DL, which help the reader grasp a high-level
understanding of how DL works. The tutorial also explains a step-by-step procedure on
how DL algorithms should be developed for challenging applications such as underwater
fish monitoring. In addition, we provide a comprehensive survey of key deep learning
techniques for fish habitat monitoring including classification, counting, localisation, and
segmentation. Furthermore, we survey publicly available underwater fish datasets, and
compare various DL techniques in the underwater fish monitoring domains. We also dis-
cuss some challenges and opportunities in the emerging field of deep learning for fish
habitat processing. This Chapter is written to serve as a tutorial for marine scientists who
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would like to grasp a high-level understanding of DL, develop it for their applications by
following our step-by-step tutorial, and see how it is evolving to facilitate their research
efforts. At the same time, it is suitable for computer scientists who would like to sur-
vey state-of-the-art DL-based methodologies for fish habitat monitoring. This Chapter
presents the second part of the literature review component of this thesis.

3.1 Introduction

Proper understanding of our planet and its ecosystems is not possible unless suitable tools
are developed to explore and learn about our largest ecosystem, the marine environment.
Computer Vision (CV) technology through deployment of its underwater cameras can
help us better comprehend and manage remote marine fish habitats. However, due to
the sheer volume of their visual data, manual processing is time- and cost-prohibitive,
requiring a new radical shift in data analysis, through advanced technologies such as
Deep Learning (DL).

DL is at the frontier of computer vision. Its deep neural network architectures are ca-
pable of learning complex mappings from high-dimensional data to interpretable feature
representations, hence, DL has been successfully applied to various challenging com-
puter vision tasks such as semantic image segmentation [177–181], visual object detec-
tion [77, 182–184], and tracking [185–188]. These applications have the potential to rad-
ically alter the way we interact with the world through computers. Recently, the appli-
cations of DL and its underlying DNNs for underwater visual processing have received
significant attention [9, 24, 79, 147, 151, 161, 189–191].

The main advantage of deep learning is its ability to learn features in different data
types, such as underwater fish images, through end-to-end training. Training of DNNs is
often thought to be easy. Many frameworks take delight in providing few lines of code
that solve some CV tasks, providing the misleading impression that all that is needed is
then plug and play, using some general Application Programming Interfaces (APIs). In
these APIs, the developers have lifted the burden from us and, in doing so, disguised the
complexity behind a few lines of code needed to achieve the task at hand. The framework
developers have achieved the purpose of ”providing a few lines of code” but we, the end-
users, have been fooled into believing we need to spend only a few hours learning the
intricacies of the provided APIs.

However, when it comes to training a DL algorithm, things become more complicated.
The task of training a DNN is actually as complicated as the problem it is intended to
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solve. In fish monitoring, for example, the number of input images you use, how you pre-
process your images, how you build your models, how you fine-tune the model (using
dropout or regularisation, for example), how you extract the features, how you combine
them to produce final predictions, what metric you use to report your model performance,
and your choice of which layer to extract features from to feed to your classifier, are
among some of the many variables to consider when training a DNN. You can include
any number of variations on these factors to further optimise your model and achieve the
best possible accuracy.

Due to the above intricacies, most of the time DNNs are not simply an ”off-the-shelf”
technology that works with all kinds of datasets, even those similar to the one that has been
meticulously customised for it. The fact that training a customised high-performance
DNN is rigorous and challenging is now widely accepted. However, this challenging
process can be facilitated by being patient, paying attention to details, and working sys-
tematically. Developing customised DNNs with a specific application, for example, for
underwater fish monitoring, should follow the same systematic steps of developing any
other computer vision applications ( e.g. detection of vehicles in traffic). The only differ-
ence lies in the type of data being fed to the DNN.

In this paper, we first present a tutorial that covers the background of DL to help un-
derstand the above-mentioned common DL terminologies. The tutorial also provides a
comprehensive overview of the essential systematic steps to help better develop a super-
vised DL model, with a focus on underwater fish habitat monitoring.

In the second part of the paper, we survey state-of-the-art research and development on
the use of DL for fish monitoring. We synthesise the literature into four main categories
covering the common CV tasks of classification, counting, localisation, and segmentation
of fish images. We investigate different deep learning architectures and their performance.
We also survey publicly available underwater fish image datasets. Finally, we provide
a comprehensive overview of the challenges in applying DL to marine fish monitoring
domains. We also draw a roadmap for future research works.

Although a number of previous relevant review articles [1, 58, 59, 192–195] exist, our
paper has a different approach and motivation that compliments prior surveys. Compared
to [58], which provides a survey of the general domain of ecological data analysis, cov-
ering a wide array of studies on plankton, fish, marine mammals, pollution, and nutrient
cycling, we focus only on fish monitoring. We also provide a detailed analysis of fish
datasets and comprehensively review the literature on four key tasks in underwater fish
video and image processing. This detailed analysis and review are not provided in [58],
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or any of the previous works, making our paper useful for readers who would like to
study fish monitoring using DL in more detail and depth, while seeing a comprehensive
literature review.

In addition, [59] provides a review of studies on fish condition, growth, and behaviour
monitoring in aquaculture settings. It briefly covers and reviews various DL architec-
tures and their aquaculture applications, unlike the present communication that is focused
mainly on CNN and provides a detailed survey and analysis of the underwater fish moni-
toring literature.

The work presented in [192] covers the general domain of Machine Learning, as op-
posed to the specific domain of DL in our paper. This is done for aquaculture applications
as wide as fish biomass and behaviour analysis to water quality predictions, while also
briefly covering and reviewing fish classification and detection methods.

A survey of computer vision models for fish detection and behaviour analysis in digital
aquaculture is provided in [193]. An interested reader should study [193] before reading
our paper, due to the background technical details provided on image acquisition, which
are key to developing effective DL datasets and models, as we discussed in our paper.

Furthermore, the DL-based studies presented in [194] and [195] are mainly around the
two specific tasks of underwater fish tracking, and underwater object detection, respec-
tively. These applications are different to our study. However, since our underwater fish
monitoring task are related to these applications, our paper can complement these works.

In [1], we have provided a historical survey of fish classification methods between
the years 2003-2021. These methods cover traditional CV techniques and modern DL
methods, only for fish classification in underwater habitats and not for the general domain
of underwater fish habitat monitoring.

This paper covers the use of deep learning in underwater fish monitoring. Section 3.2
covers the basics of deep learning, including neural networks, convolutional neural net-
works, and supervised learning. Section 3.3 provides an overview of the development
process of deep learning models, from training to deployment. Section 3.4 discusses
the applications of deep learning in underwater fish monitoring, including classification,
counting, localization, and segmentation. Section 3.5 discusses the advantages and dis-
advantages of the application of DL to fish habit monitoring. Section 3.6 explores the
challenges of underwater fish monitoring, such as environmental factors, model general-
ization, and limitations of available datasets. Section 3.7 presents potential opportunities
for deep learning in underwater fish monitoring, including knowledge distillation, merg-
ing image data from multiple sources, automatic fish phenotyping, and visual monitoring
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of fish behaviour and movements. Finally, Section 3.8 summarizes the study’s main find-
ings and provides concluding remarks.

3.2 Deep Learning

This section discusses the basics of deep learning [1], a sub-field of machine learning,
and its utilization of multi-layered neural networks to automatically learn input features.
It also introduces Convolutional Neural Networks (CNNs) and their efficient learning of
deep features for image processing, making them suitable for underwater fish monitoring
[1].

3.2.1 Neural Networks

Neural networks are a type of computational model that are inspired by the structure and
function of biological neural systems in animals. They consist of basic processing units
called neurons that take input signals, apply a function to them, and produce an output.
In a neural network, the neurons are organized into layers, with each layer performing a
specific type of computation. The layers are typically arranged in a hierarchical fashion,
with the input layer receiving raw data and the output layer producing the final result.

The activation function of a neuron is the mathematical function that determines whether
or not the neuron ”fires” or produces an output signal based on the input signals it receives.
One common activation function is the sigmoid function, which is a non-linear function
that maps the input to a value between 0 and 1. This function is useful for classification
tasks, such as image classification, where the output of the neuron can be interpreted as a
probability.

Bias nodes are another important component in neural networks. These nodes are like
neurons, but they do not receive input signals. Instead, they have a fixed input value of 1
and a weight associated with them. The bias value is added to the sum of the input-weight
products to increase the flexibility of the model. In other words, bias nodes allow the
neural network to adjust the output even when all input features are equal to zero.

Different types of loss functions are used for different types of tasks. For classification
tasks, such as image classification, the cross-entropy loss is a common choice. This loss
function measures the difference between the predicted probability of the correct class
and the actual probability. Hinge loss is another type of loss function that is commonly
used for classification tasks, where the correct class score should be higher than the sum
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of the scores for all other classes by some margin.
Regularisation is a technique used in neural network learning to prevent overfitting by

discouraging complex mapping functions or models. This technique involves adding a
regularisation term to the general model loss function, which takes into account the loss
function value for all the training dataset examples. The two most common forms of
regularisation are L1 and L2, with L2 being the sum of the square of the weights, and L1
being the sum of the weights.

Optimisation

In supervised learning, the learning task can be reduced to an optimisation problem in the
form of

θ∗ = argmin
θ

g(θ), (3.1)

where θ is a parameter vector, at which the loss function g(θ) that usually represents the
average loss for all training examples, reaches its minimum. g can be represented as

g(θ) =
1

n

n∑
i=1

L (fθ (xi) , yi) , (3.2)

where (xi, yi) represents a (input, desired output) training pair.
Similarly, in DL, an optimisation method is used to train the neural network by min-

imising the error function E that is defined as

E(W, b) =
m∑
i=1

L (ŷi, yi) (3.3)

where W and b are the weights and biases of the network, respectively. The value of the
error function E is thus the sum of the mean squared loss L between the predicted value
ŷ and true value y, for m training examples. The value of ŷ is obtained during the forward
propagation step and makes use of the previously-mentioned weights and biases of the
network, which can be initialised in different ways. Optimisation minimizes the value of
the error function E by updating the values of the trainable parameters W and b.

The error function E is usually minimised by using its gradient slopes for the parame-
ters. The most commonly used optimisation method is Gradient Descent [196], in which
the gradient is optimised by calculating a matrix of partial derivatives (computed using
backpropagation, as detailed in the next subsection). These derivatives provide the slope
of g simultaneously at each dimension of θ. Therefore, the gradient-based optimizer is
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used to iteratively update the network weights in the direction of the steepest descent of
the loss function, with the aim of reducing the training loss to as low a value as possible.
This is achieved by subtracting a small quantity from each weight in the direction of the
negative gradient of the loss function. While the ultimate goal is to find a good local
minimum of the loss function, the non-convexity of the loss function makes it difficult
to search for the global optimum directly. Instead, the optimizer seeks to improve the
network’s performance on the training data, while also ensuring that the validation loss
remains low, which indicates that the network is generalizing well to new data.

Backpropagation

Backpropagation is probably the most important part of learning in neural networks. It is
performed after a forward propagation or pass, in which a subset of the training dataset
(named a batch) {(xi, yi)}mi=1 and the current network parameters θ are used to calculate
the final layer output and the loss. During the forward pass, the data input is passed to
the first layer to process according to its activation function and their values are passed on
to the next layer, hence the term ”forward pass”. After the forward pass and calculating
the final layer loss, backpropagation happens, through which we start to calculate the
loss backwards, layer by layer, and the layer derivatives are then ”chained” by the local
gradients to minimise the overall loss, g.

Overall, neural networks are a powerful and flexible tool for a wide range of machine
learning tasks, and their components, including neurons, activation functions, bias nodes,
and loss functions, are essential to their success.

3.2.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a type of Deep Neural Network that are par-
ticularly powerful for computer vision tasks. They work by applying a convolution (filter-
ing) operation on the input data through several convolution layers. This extracts useful
features from the input data by sliding convolution filters across the input image repre-
sented to the network as matrices. One of the first and most successful examples of CNNs
in computer vision was AlexNet proposed in 2012 [103] . Since then, many different
variations of CNNs have been proposed, revolutionizing image processing in different
domains.

A typical CNN architecture consists of convolutional layers, pooling layers, non-linear
activation layers, and final output layers, as shown in Figure 3.1. The building blocks and
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layers of a typical CNN include Convolutional Layers, Batch Normalisation, Activation
Layer, Pooling Layer, Dropout, and Fully Connected Layers. Convolutional Layers apply
a filtering operation on input matrix data to generate a feature map. Batch Normalisation
is used to normalise the learning of the network across the current set of training data to
improve the speed of learning and convergence of the deep learning model. Activation
Layers increase the non-linearity of the convolutional layer output to learn complex data.
Pooling Layers reduce the size of the feature map and improve the efficiency of compu-
tation. Dropout is used to avoid overfitting the training data. Fully Connected Layers
contain a small number of neurons and are the second-last layer of a CNN, before the
output layer.

conv1

conv2

Conv
Layer

ReLU
Pooling
Layer

FC
Layer Softmax

conv3

conv4

conv5

fc6 fc7

fc8 +
softmax

Figure 3.1: Schematic diagram of a CNN architecture used for the classification of fish
images. The architecture consists of five convolutional layers that include the
batch norm operation within them, followed by pooling layers (conv1-conv5).
In this model, the feature maps from convolutional layers are pooled through
pooling layers and then flattened through two fully connected layers (fc6 and
fc7). The classification output is the result of a fully connected layer and a
softmax activation layer (fc8+softmax).

3.2.3 Supervised Learning

There are two main approaches to learning in general DL. These include unsupervised
and supervised learning. Unsupervised learning is often used to discover the structure
and composition of the input and output domains without explicit and supervised target
domain. This approach enables generalisation from one input domain to another by trans-
forming data representations that are not directly related to the data distribution of target
domain.
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The supervised learning approach, on the other hand, is designed to explicitly map
data from the input domain to its output domain via training pairs that exhibit matching
representations. These pairs are carefully crafted by a human (supervisor), hence the
name. The training process of supervised learning can suffer from instability and is less
effective than the unsupervised learning method, because it learns with an accurate target
distribution without domain-specific knowledge.

Supervised deep learning uses a subtle deep neural network mechanism to extract use-
ful features from large amounts of input training data that are labelled to show their de-
sired output domain. The learning is done by using the repetitive backpropagation pro-
cess [197] explained earlier, to adjust the DL architecture parameters (such as weights and
biases) while keeping fixed its hyperparameters (such as the shape, number, and size of
convolutional, pooling, and fully connected layers). The goal is to optimize the function
f , which maps the input domain X to the output domain Y . While the architecture of the
network is typically fixed during training, the optimizer adjusts the internal parameters of
the network to achieve the best possible mapping of the input training data to their desired
output.

3.2.4 Deep learning and Fish Monitoring

One of the applications of DL is fish monitoring, which is the process of observing and
measuring fish populations and their habitats. Fish monitoring is important for under-
standing the ecology and biodiversity of aquatic ecosystems, as well as for managing
fisheries and aquaculture. DL can help with fish monitoring by providing accurate and
efficient methods for fish classification, detection, counting, tracking, behaviour analysis,
health assessment, and so on. DL can also handle complex underwater environments that
pose challenges for traditional image processing techniques, such as low visibility, noise,
distortion, illumination variation, etc.

The data for DL-based fish monitoring can come from various sources, such as under-
water cameras, sonar, drones, satellites, etc. The data can be collected in different sce-
narios, such as shallow or deep water, fresh or marine water, natural or artificial habitats,
etc. To improve the performance and robustness of DL-based fish monitoring systems,
domain knowledge such as fish biology, ecology, and aquaculture management can be
integrated and other technologies can be combined with DL algorithms [59]. These in-
clude hardware technologies: such as sensors, communication devices, storage devices,
etc. Software technologies: such as data augmentation, feature extraction, model opti-
mization, etc.
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Figure 3.2: A schematic diagram showing the steps and components required for training
a deep learning model.

The goals and effects of applying DL to fish monitoring are manifold [36]. Some
examples of these goals are:

• Enhancing scientific understanding of aquatic ecosystems and their dynamics

• Improving fisheries management and conservation by providing reliable data on
fish stocks and their distribution.

• Increasing aquaculture productivity and profitability by optimizing feeding strate-
gies, reducing disease outbreaks, and preventing escapes and predation.

• Reducing human intervention and labour costs by automating fish monitoring tasks.

• Promoting public awareness and education on aquatic biodiversity and sustainabil-
ity.

In summary, DL is a promising technique for fish monitoring that can provide auto-
mated solutions for various tasks related to fish identification, measurement, localization,
and segmentation. By combining DL with other technologies such as sonar or drones,
fish monitoring can be performed more effectively and efficiently in different underwater
environments.

51



Chapter 3 Applications of Deep Learning in Fish Habitat Monitoring: A Tutorial and
Survey

3.3 Developing Deep Learning Models

A comprehensive overview of the essential systematic steps for training a DL model is
summarised in Figure 3.2. Even though these steps are general in DL training, we in-
cluded useful tips arising from our experience in developing DL applications in various
domains from medical imaging to marine science applications. Nevertheless, we put an
emphasis on the development of DL for underwater fish habitat monitoring.

3.3.1 Training Dataset

The available training data is essential for developing an efficient DL model. Datasets are
becoming increasingly crucial, even more so than algorithms. Perhaps, the most impor-
tant factor when considering a supervised learning dataset is its size. The requirement for
a large training dataset to achieve high accuracy is often a big obstacle. Because visual al-
gorithms are trained by pairs of images and labels, in a supervised manner, they can only
identify what has already been given to them. As a result, depending on the project, the
number of objects to identify, and the required performance, training datasets might con-
tain hundreds to millions of images. However, smaller training datasets with only a few
hundred samples per class may also achieve good results [17,42,198,199]. Nevertheless,
the larger the training dataset, the greater the recognition accuracy.

Because of the scarcity of datasets and the difficulty of acquiring reliable data, ap-
proaches for boosting the accuracy rate from small samples will inevitably become a
focus of future studies. The problem of limited sample data can be also alleviated by
transfer learning [200–202]. Furthermore, data augmentation will become increasingly
critical. Section 3.6.3 covers some challenges of limited data and some approaches to
address these challenges.

The second factor to consider when preparing a dataset for DL training is having a
balance. This is critical to ensure that each class to be identified contains a sufficient
number of instances to minimise class imbalance biases. These biases happen when the
DL favours one or more classes due to seeing them more often when being trained.

Also, the training dataset is typically divided into two subsets, the training subset for ef-
ficiently training the model and the validation/test subset for assessing the trained model’s
performance. For the training subset, a subset of the training dataset is reserved for train-
ing the model. If the training subset is too large, it can prolong the model training. If,
on the other hand, the training subset is too small, the resulting model may not generalise
well to unseen inputs. The validation/test subset is typically used to avoid overfitting,
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which is a common problem in machine learning and happens when the developed model
simply memorises the inputs rather than properly learning them. Cross-validation is an-
other widely used methodology for testing a DL model’s training performance, by split-
ting the training dataset into multiple mutually exclusive subsets of training and testing
data. One method of cross-validation is called k − fold cross-validation, in which the
training dataset is split into k equally sized subsets. In this method, k − 1 folds are used
for training the model, while the remaining fold is used to test the learning performance.
This process is repeated until all the folds have been used once as a test/validation set.

In addition to the above, it is usually vital to, initially and before embarking on code
development, perform a comprehensive inspection of the dataset. This will help to clean
the dataset, for instance by finding and removing duplicate data instances. It also helps
identify imbalances and biases, as well as data distribution, trends, or outliers, which will
help in better model design and understanding of possible wrong DNN predictions.

Fortunately, in the domain of fish habitat monitoring, researchers currently have access
to a variety of datasets. Table 3.1 lists publicly available underwater fish datasets, their
sources, and where to get them, in addition to a summary of their features, their labels,
and their sizes. The main point to note about these datasets is that they differ in both size
and number of features. Although the number of these fish datasets is still small (17), the
diversity of aquatic species they cover is already quite wide. They cover a large number
of aquatic species, as indicated in Fig. 3.3. Moreover, each dataset features a different
number of images that have varying resolutions. For each image, there is also a ground
truth annotated by a human expert, which make them very useful. For instance, these
datasets can be used by researchers to test their DL models or to pre-train them, as the
first step, for their more specific fish monitoring tasks.

After preparing the training dataset or utilising alternative approaches to addressing
insufficient data challenge, one can start developing their DL model using a machine-
learning development framework.

3.3.2 Development framework

The rapid evolution of DL has led to the creation of a vast number of development li-
braries and packages that enable the setting up of DNNs with insignificant effort. Us-
ability and availability of resources, architectural support, customisability, and hardware
support are all various benefits of using existing machine-learning frameworks. The most
commonly used frameworks are PyTorch, Tensorflow, MATLAB, Microsoft Cognitive
Toolkit (CNTK) and Apache MXNET. In the context of DL for marine research, as will
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Table 3.1: Summary of some publicly available datasets containing fish for training and
testing deep learning models.

Dataset Summary Labels Dataset size Website

A - Deepfish
Videos from coastal habitats in
north-eastern and western Aus-
tralia

fish/no fish

40k classification labels, 3.2k
images with point-level an-
notations, 310 segmentation
masks

github.com/alzayats/DeepFish

B - Croatian Fish
Dataset

12 species of fish found in
Croatian waters

species names 794 classification labels
www.inf-cv.uni-jena.de/fine grained recogni-
tion.html#datasets

C - Fish in seagrass
habitats

RUV taken in Australian sea-
grass habitat of 2 species

species
9k classification labels, bound-
ing boxes and segmentation
masks

github.com/globalwetlands/luderick-seagrass

D - Fish4Knowledge
Fish detection and tracking
dataset, 17 videos at 10 min
long, rate of 5 fps.

fish/no fish 3.5k bounding boxes groups.inf.ed.ac.uk/f4k/index.html

E - Fish-Pak
Image dataset of 6 different
fish species from 3 locations in
Pakistan

species 1k classification labels data.mendeley.com/datasets/n3ydw29sbz/3

F - Labeled Fishes in
the Wild

Rockfish (Sebastes spp.) and
other species (non-fish) near
the seabed

fish/non-fish
1k bounding boxes (fish), 3k
(non-fish)

swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/

G - OzFish Large data set comprising of
507 species of fish.

species, fish/no
fish

80k labeled cropped images,
45k bounding box annotations
(fish/no fish)

github.com/open-AIMS/ozfish

H - QUT Fish
Dataset

468 species in varying ex-situ
and in-situ habitats.

species name 4k classification images
www.dropbox.com/s/e2xya1pzr2tm9xr/QUT fish -
data.zip?dl=0

I - Whale Shark ID 543 individual whale sharks
(Rhincodon typus)

individuals 7.8k bounding boxes http://lila.science/datasets/whale-shark-id

J - Large Scale Fish
Dataset

9 different seafood types col-
lected from a supermarket in
Izmir, Turkey

species name

For each class, there are 1000
augmented images and their
pair-wise augmented ground
truths

www.kaggle.com/crowww/a-large-scale-fish-dataset

K - NCFM Image dataset of 8 different fish
species

species name ˜16000 classification images
www.kaggle.com/c/the-nature-conservancy-fisheries-
monitoring/data

L - Mugil liza sonar
Sonar-based underwater videos
of schools of migratory mullets
(Mugil liza)

number of fish 500 counting images zenodo.org/record/4751942#.YKzfUKgzayk

M - MSRB Dataset
Real underwater images with-
out marine snow and synthe-
sized with marine snow

NA ˜6000 images github.com/ychtanaka/marine-snow

N - WildFish 1,000 fish categories species name ˜54000 classification images github.com/PeiqinZhuang/WildFish

O - SUIM Image dataset of 8 different un-
derwater objects

object name
˜1500 annotated images se-
mantic segmentation mask

github.com/xahidbuffon/SUIM

P - DZPeru fish-
datasets

Several species in varying ex-
situ and in-situ habitats.

species name
˜17000 annotated images seg-
mentation mask

github.com/DZPeru/fish-datasets

Q - LifeCLEF 10 different fish species species name ˜1000 annotated videos www.imageclef.org/

be shown later in Tables 3.3 to 3.5, PyTorch and TensorFlow are the dominant frame-
works, while Matlab and Caffe have been used only in a few works. Overall, details such
as the project needs and the programmer and developer preference should be taken into
account, when choosing the development framework.

When the development framework is chosen, the next step is to find the most suitable
network architecture for the task at hand. This sometimes depends on the framework, as
some recent methods may not immediately be supported by all frameworks.
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Figure 3.3: Sample images from publicly available datasets detailed in Table 3.1.
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3.3.3 Network Architecture

Network architecture is the structure of the DL model, which depends on what it intends
to achieve and its expected input and output. Therefore, the type of training dataset and
the expected outcome influence the architecture’s choice and its performance. DL net-
work architectures can differ in a variety of ways such as the type and number of layers,
their structure, and their order. Before selecting a network architecture, it is critical to
understand the dataset you have and the task you are going to complete. For example,
convolutional neural networks or CNNs are known to learn higher-order features, such as
colours and shapes, from data within their convolution layers. Therefore, they are ideally
adapted to image-based object recognition. On the other hand, Recurrent Neural Net-
works (RNNs) have the capability of processing temporal information or sequential data,
such as the order of words in a sentence. This feature is ideal for tasks such as handwriting
or speech recognition.

In the context of fish habitat monitoring, if you are working on a task that requires you
to learn temporal information of the input sequence, for example fish image sequence
analysis, the DL architecture you choose can be very important. For example, a CNNs
architecture is more suited for image-based object recognition such as fish classification,
while the RNN architecture is more suitable for tasks where the input sequence is temporal
in nature such as generating fish habitat descriptions.

To find a suitable architecture, you first need to define your problem. This problem
is defined by two questions: (1) What features will you extract? (2) How will you label
these features? The features you extract are defined by your data. In other words, you
are interested in the representation of the data you have. The number of features you
choose to extract is defined by the task you are trying to solve. As described above, the
DL architectures can learn features such as colours and shapes from image-based object
recognition. Before trying to construct your network, you first need to decide what data
type you will use and how will you encode the information. After you have defined your
task, you should think about what features are important for the task. You will need to
define this in order to construct your network. For example, if the features you want to
extract are fish shape and fish location, then you could define a convolutional architecture.
The features you choose to define should be a subset of all the features in the data. For
example, for an image-based object recognition network, you would extract features such
as fish species. However, your extracted features will also need to cover all the data. For
example, you will also need features of the type of water or the type of background. It
is important to take all these features into account when defining your network. For a
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complete discussion on different DL architectures see [203].

3.3.4 Network Model

When a general network architecture is selected, the next step is to select, or sometimes
develop, a network model of that architecture. For instance, when you decided to use a
CNN, you can use different varieties of CNN models. The rule of thumb for selecting
a CNN is to choose a model that results in a satisfactory training loss for your dataset.
Creating an exotic and creative model is not recommended at this stage. It is usually
recommended to avoid the temptation and choose a model big enough to overfit your
dataset, and then regularise it properly to improve the validation loss.

For example, one may pick a well-known CNN model, e.g. ResNet, which can be used
out-of-the-box, if their task is simple, e.g. fish classification. In later stages, they can
customise their model to adequately capture their dataset. We show in Tables 3.3 to 3.5
in the next section that ResNet is the most commonly used model for fish counting (Table
3.3), fish localisation (Table 3.4), and fish segmentation (Table 3.5).

3.3.5 Training the model

After choosing the best model is time to set up a full train/validation pipeline. The below
steps are recommended at this stage of development.

• Start with a simple model (i.e. a small number of convolutional layers) that can
hardly go wrong and visualise the model performance metrics. Do not use an out-
of-the-box large model like ResNet, just yet. It is recommended to plot training
loss to see how the network is progressing during learning and if the loss is getting
smaller. This also shows the speed of learning.

• To better understand the process, it is recommended to use a fixed random seed (for
randomly initialising the network parameters) to ensure that the same results can be
achieved when running the code twice.

• Do not perform any data augmentation at this stage as it may introduce errors. You
can do data augmentation at a later stage after confirming that your network works
properly. You can see a brief introduction to data augmentation and other methods
at subsection 3.6.2.
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• Use ADAM algorithm [204], which helps the learning by applying adaptive opti-
misation to the learning rate of the network.

• The learning rate is an important hyperparameter of a deep learning model. It is
usually the most crucial value during training and should be configured using trial
and error. Depending on the size of your dataset, a specific learning rate decay may
be needed. The learning rate decay is a technique that allows the learning rate to
fall during successive training epochs until it converges. A high learning rate at
the start prevents the network from memorising noisy data, whereas decaying the
learning rate improves complex pattern learning.

• Implement early stopping and monitor the learning process by looking at the train-
ing loss plot to prevent overfitting.

• Add complexity to your model gradually, e.g. add more layers or use off-the-shelf
CNN models, and obtain a performance improvement over time.

3.3.6 Testing the model

When the model is trained, its accuracy and performance should be tested using the test
subset of the training dataset. A test set can also be independent of the training dataset to
evaluate the model performance. The main point to remember is that the test set should
not have been used for the training or evaluation of the model, at all.

The model’s performance should be measured by computing appropriate metrics suit-
able to the task at hand. A list of the most common metrics used in testing fish monitoring
models is given in Tabel 3.2. For classification tasks, Classification Accuracy (CA), Pre-
cision and Recall rates are appropriate metrics, while F1-score, which is a combination
of precision and recall, can provide a better measure of model performance and is used
in fish counting and localisation tasks as shown in Tables 3.3 and 3.4. The Intersection-
Over-Union (IoU) is the appropriate metric for segmentation tasks, while the mean av-
erage precision (mAP) metric suits pixel-wise localisation of fish in images. Looking at
Tables 3.3 to 3.5, other metrics such as Mean Square Error (MSE) and Root MSE (RMSE)
have also been used in the marine fish monitoring literature. These can be considered and
used if required.
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3.3.7 Fine Tuning the model

The performance and accuracy of the model could be improved if needed. The amount
of this improvement is, though, strongly influenced by its current accuracy. This step
may quickly become complicated, since increasing the model accuracy might require
several steps such as adjusting the learning rate, collecting new data, or fully modifying
the model’s architecture. You should keep this fine-tuning step to a reasonable level.
Otherwise, the model might overfit the data.

3.3.8 Deploying the model

Finally, the model deployment mode should be chosen. This depends on the application
and the deployment requirements. The model can be deployed to run on a local or remote
device (on a web server, a docker container, a virtual private server (VPS), etc). This will
determine whether the results can be accessed remotely or only within the local network.
It is recommended to use a cross-platform deployment method to avoid issues such as
input/output data format, or the type of files used for storing data.

The most commonly used cross-platform model deployment method is Docker [205,
206], which is a virtualisation software that allows setting up and running other software
environments on top of a base Linux distribution without the need to set-up virtual ma-
chines. Docker helps build, configure, and run applications using the same Docker file.
Typically, Docker is the recommended approach for web applications. In this method,
you can use Docker container or Docker host on your development machine. Docker con-
tainer may be the easiest option for web applications. You can also deploy your network
to a remote machine via Docker. The advantage of using a container is that you can share
the development environment and run tests of your model using multiple docker contain-
ers. You can also install the Docker tool on your local machine to manage containers, so
it is convenient.

Figure 3.4: Illustration of four typical fish monitoring tasks. From left: Fish Classification
(i.e. is there a fish in the image, or what type (class) of fish is in the image?);
Fish Detection/Localisation/Counting; Fish Semantic Segmentation, and Fish
Instance Segmentation.
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Table 3.2: Performance metrics used to compare various surveyed works.

Performance Met-
ric

Sym-
bol
Used

Description

Classification Ac-
curacy CA

The percentage of correct predictions. For multi-class
classification, CA is averaged among all the classes.
CA = (TP + TN)/(TP + TN + FP + FN)

Precision P
The fraction of true positives (TP ), to the sum of TP and
false positives (FP ). P = TP/(TP + FP )

Recall R
The fraction of true positives (TP) to the sum of TP and
false negatives (FN). R = TP/(TP + FN)

F1 score F1
The harmonic mean of precision and recall. F1 = 2 ×
(P ×R)/(P +R)

Mean Square Er-
ror

MSE
Mean of the square of the errors between predicted and
observed values

Root Mean Square
Error RMSE

Is the square root of the mean of the square of all of the
errors.

Mean Relative Er-
ror

MRE
The mean error between predicted and observed values, in
percentage

L2 error L2
Root of the squares of the sums of the differences between
predicted counts and the actual counts

Intersection over
Union

IoU

A metric that evaluates how similar the predicted bounding
box is to the ground truth bounding box. by dividing the
area of overlap between the predicted and the ground truth
boxes, by the area of their union.

The maximum
number

MaxN
MaxN, the maximum number of the target species in any
one frame.

Mean average pre-
cision

mAP
Depending on the detection difficulty, the mean AP across
all classes and/or total IoU thresholds are used.

Classification Er-
ror

CE
Is how often is the classifier incorrect and also known as
”Misclassification Rate”. CE = (FP + FN)/(TP +
TN + FP + FN)
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3.4 Applications of Deep Learning in Underwater

Fish Monitoring

Deep learning has been widely used in marine environments with applications spanning
from deep-sea mineral exploration [123] to automatic vessel detection [122]. However,
we confine the scope of this paper to only marine fish image processing, which typically
includes four tasks of classification, counting, localisation, and segmentation of underwa-
ter fish images, as shown in Fig. 3.4.

Here, the goal is to assist the reader in understanding the similarities and differences
across these tasks and their relevant DL models and techniques. We provide a background
of what each task involves, what previous works have been published toward addressing
it using deep learning, and synthesise the literature on each task.

3.4.1 Classification

As its name infers, in visual processing, classification is the task of classifying images
into different categories. There can be only two categories, i.e. a binary classification, in
which the images are classified into two groups, e.g. ”fish” and ”no fish”, depending on
the presence or absence of fish in an image (e.g. Deepfish dataset described in the first
row of Table 3.1). The classification can also involve multiple ”classes” or groups. For
instance, consider assigning different underwater fish images into different groups based
on the species (e.g. FishPak dataset in Table 3.1) present in them.

Consider a manual procedure, in which images in a dataset are compared and relative
ones are classified based on similar features, but without necessarily knowing what you
are searching for in advance. This is a difficult assignment as there could be thousands
of images in the dataset. Moreover, many image classification tasks involve images of
different objects. It rapidly becomes clear that an automatic system, such as a DNN, is
required to complete this task quickly and efficiently.

Classification is the most widely-used and -studied underwater image processing task
using DL. In a previous work, we have covered the use of DNNs specifically for the task
of underwater fish classification. We refer the reader to [1] for a comprehensive review of
prior art on classification.
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3.4.2 Counting

The purpose of the counting task is to predict the number of objects existing in an image
or video. Object counting is a key part of the workflow in many major CV applications,
such as traffic monitoring [207, 208]. In the context of marine applications and fish mon-
itoring, counting may be used to map distinct species and monitor fish populations for
effective conservation. With the use of commercially available underwater cameras, data
gathering can be done more comprehensively. It is, however, difficult to correctly count
fish in underwater habitats. To perform effective counting, models must understand the
diversity of the items in terms of posture, shape, dimension, and features, which makes
them complex. Meanwhile, manual counting is very time-consuming, costly, and prone
to human error.

DL affords a faster, less expensive, and more accurate alternative to the manual data
processing methods currently employed to monitor and analyse fish counts. Table 3.3
lists several of the recent DL techniques used for fish counting. Saleh et al [24] created a
novel large-scale dataset of fish from 20 underwater habitats. They used Fully Convolu-
tional Networks (FCNs) for several monitoring tasks including fish counting and reported
a Mean Average Error (MAE) of 0.38%. DL has the potential to be a more accurate
method for assessing fish abundance than humans, with results that are stable and trans-
ferable between survey locations. Ditria et al [10, 209, 210] compared the accuracy and
speed of DL algorithms for estimating fish population in underwater pictures and video
recordings to human counterparts in order to test their efficacy and usability. In single
image test datasets, a DL method performed 7.1% better than human marine specialists
and 13.4% better than citizen scientists. For video datasets, DL was better by 1.5% and
7.8% compared to marine and citizen scientists, respectively.

Despite this high potential, DL has not been thoroughly investigated for counting un-
derwater fish. One possible reason for the lack of comprehensive research on fish counting
is the scarcity of large publicly available underwater fish datasets. In addition, properly
annotating fish datasets to train robust DL models is time-prohibitive and expensive. Al-
though underwater fish counting is limited in the literature, several previous works have
advanced the field in this area. For instance, Tarling et al [130] created a novel dataset of
sonar video footage of mullet fish labelled manually with point annotations and developed
a density-based DL model to count fish from sonar images. They counted fish by using
a regression method [212] and achieved a MAE of 0.30%. Other researchers [131, 211]
used sonar images as well because they present substantially different visual characteris-
tics compared to natural images. Counting fish in sonar images, however, is substantially
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different from counting fish in underwater video surveillance [189]. Unlike natural im-
ages, sonar images present unique visual characteristics and are in lower resolution due
to the specific imaging forming principle.

Using DL, a computer can be taught to identify fish in underwater images, thus elim-
inating the subjectivity of humans in counting fish. However, its use for fish population
and count analysis is dependent on the model performance on a set of well-defined perfor-
mance metrics and parameters, which is in itself a challenge. In section 3.3, we discussed
how one can train high-performance DL models, how the use of the current DL pipeline
(and other methodologies) can be improved, and how future DL models can be designed
for better assessing fish population including their abundance and their location, which is
the subject of the next subsection.

3.4.3 Localisation

Object localisation is an essential task in CV, where the goal is to locate all instances of
specified objects (e.g. fish, aquatic plants and coral reef) in images. Marine scientists
assess the relative abundance of fish species in their environments regularly and track
population variations. Various CV-based fish sample methods in underwater videos have
been offered as an alternative to this tedious manual assessment. Though, there is no
perfect method for automated fish localisation. This is mostly owing to the difficulties
that underwater videos bring, such as illumination fluctuations, fish movements, vibrant
backgrounds, shape deformations, and a variety of fish species.

To address these issues, several research works have been carried out, which are listed
in Table 3.4. Saleh et al [24] have developed a fully convolutional neural network that
performs localising of fish in realistic fish-habitat images with high accuracy. Jalal et
al [128] introduced a hybrid method based on motion-based feature extraction that com-
bines optical flow [213] and Gaussian mixture models [214] with the YOLO deep learning
technique [215] to identify and categorise fish in unconstrained underwater videos using
temporal information. They achieved fish detection F-scores of 95.47% and 91.2% on
LifeCLEF 2015 benchmark [216] and their own dataset, respectively. Gaussian mixture
is an unsupervised generative modelling approach that may be used to learn first and
second-order statistical estimates of input data features [214]. Within an overall popu-
lation, this is used to indicate Normally Distributed subpopulations. The weakness of
Gaussian mixture is when trained on videos with some fish but no pure background, the
fish are modelled as background as well, resulting in misdetections in subsequent video
frames [217]. In order to compensate for the Gaussian mixture’s weakness, optical flow
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can be used to extract features that are solely caused by underwater video motion. The
pattern of apparent motion of objects, surfaces, and edges in a visual scene generated by
the relative motion of an observer and a scene is known as optic flow [213].

Knausgard et al [129] also implemented YOLO [215] for fish localisation. To over-
come their small training samples, they employed transfer learning (explained in the next
Section). The YOLO technique achieved Mean Average Precision (mAP) of 86.96% on
the Fish4Knowledge dataset [218]. YOLO-based object detection systems have been also
used in several other research to robustly localise and count fish [128, 129, 219]. To test
how well Yolo could generalise to new datasets, [219] used it to localise fish in underwa-
ter video using three very different datasets. The model was trained using examples from
only two of the datasets and then tested on examples from all three datasets. However,
the resulting model could not recognise fish in the dataset that was not part of the training
set.

Other CNN models have also been adapted to robustly detect fish under a variety
of benthic background and illumination conditions. For instance, [183] and [220] used
GoogLeNet [221], while [222] used an ensemble of Region-based Convolutional Neural
Networks [223] that are linked in a cascade structure by Long Short-Term Memory net-
works [224]. In addition, Inception [225] and ResNet-50 [226] were examined in [227]
for fish detection and recognition based on weakly-labelled images. Furthermore, [228]
and [229] used Fast R-CNN (Region-based Convolutional Neural Network) [223] to de-
tect and count fish.

Table 3.4 demonstrates that state-of-the-art methods (e.g. YOLO and Fast R-CNN) can
achieve high accuracy in localisation tasks. These methods generally train object detectors
from a wide variety of training images [230, 231] in a fully supervised manner. The
drawback is that these models depend on instance-level annotations, e.g. tight bounding
boxes need to be drawn around fish in training datasets. This is time-consuming and
labour-intensive and makes the use of DL in marine research very challenging, if not
impossible. In Section 3.6.3 we discuss how this critical issue can be addressed using
weakly supervised localisation of objects, where only binary image-level labels showing
the existence or absence of an object type are needed for training.

Similar to fish classification, counting, and localisation, fish segmentation, i.e. detect-
ing the entire body of fish in an image is a critical task in marine research and applications.
In the next subsection, we discuss how DL can be used to perform fish segmentation and
how it is useful in marine research.

65



Chapter 3 Applications of Deep Learning in Fish Habitat Monitoring: A Tutorial and
Survey

T a
bl

e
3.

4:
Su

m
m

ar
y

of
re

ce
nt

D
L

re
se

ar
ch

w
or

ks
pe

rf
or

m
in

g
th

e
ta

sk
of

fis
h

lo
ca

liz
at

io
n

A
rt

ic
le

D
L

M
od

el
Fr

am
ew

or
k

D
at

a
A

nn
ot

at
io

n/
Pr

e-
pr

oc
es

si
ng

/A
ug

m
en

ta
tio

n
C

la
ss

es
an

d
L

ab
el

s
Pe

rf
.

M
et

-
ri

c
M

et
ri

c
Va

lu
e

C
om

pa
ri

so
ns

w
ith

ot
he

r
m

et
ho

ds
M

ar
in

e
A

ni
m

al
D

et
ec

tio
n

an
d

R
ec

og
ni

tio
n

w
ith

A
dv

an
ce

d
D

ee
p

L
ea

rn
in

g
M

od
el

s
[2

27
]

R
es

N
et

-1
0

C
N

N
N

A
T

he
da

ta
se

t
is

m
ad

e
of

73
vi

de
os

fr
om

th
e

pu
bl

ic
da

ta
se

ts
Fi

sh
4K

no
w

le
dg

e

E
ac

h
im

ag
e

w
as

an
no

ta
te

d
by

dr
aw

in
g

a
bo

un
di

ng
bo

x
1

cl
as

s
of

fis
h

F1
0.

07
%

N
A

Fi
sh

de
te

ct
io

n
an

d
sp

ec
ie

s
cl

as
si

fi-
ca

tio
n

in
un

de
rw

at
er

en
vi

ro
nm

en
ts

us
in

g
de

ep
le

ar
ni

ng
w

ith
te

m
po

ra
l

in
fo

rm
at

io
n

[1
28

]

Y
ol

o
-C

N
N

Te
ns

or
Fl

ow
T

he
da

ta
se

t
is

m
ad

e
of

tw
o

da
ta

se
ts

93
vi

de
os

fr
om

L
if

e-
C

L
E

F
20

15
fis

h
da

ta
se

t
A

nd
an

au
th

or
s-

cr
ea

te
d

da
ta

ba
se

co
nt

ai
ni

ng
44

18
vi

de
os

E
ac

h
im

ag
e

w
as

an
no

ta
te

d
by

dr
aw

in
g

a
bo

un
di

ng
bo

x
an

d
sp

ec
ie

s
na

m
e

15
cl

as
se

s
of

15
di

ff
er

en
tfi

sh
sp

ec
ie

s.
F1

L
C

F-
15

95
.4

7%
U

W
A

91
.2

%

C
om

pa
ri

so
n

w
ith

ot
he

r
st

at
e-

of
-t

he
-a

rt
ap

pr
oa

ch
es

A
ut

om
at

ic
fis

h
de

te
ct

io
n

in
un

-
de

rw
at

er
vi

de
os

by
a

de
ep

ne
ur

al
ne

tw
or

k-
ba

se
d

hy
br

id
m

ot
io

n
le

ar
n-

in
g

sy
st

em
[2

17
]

R
es

N
et

-
15

2
C

N
N

T e
ns

or
Fl

ow
T

he
da

ta
se

t
is

m
ad

e
of

11
0

vi
de

os
fr

om
tw

o
pu

bl
ic

da
ta

se
ts

Fi
sh

4K
no

w
le

dg
e

an
d

L
if

eC
L

E
F

20
15

fis
h

da
ta

se
t

E
ac

h
im

ag
e

w
as

an
no

ta
te

d
by

dr
aw

in
g

a
bo

un
di

ng
bo

x
15

cl
as

se
s

of
15

di
ff

er
en

tfi
sh

sp
ec

ie
s.

F1
87

.4
4%

an
d

80
.0

2%
re

-
sp

ec
tiv

el
y

N
A

Te
m

pe
ra

te
fis

h
de

te
ct

io
n

an
d

cl
as

si
-

fic
at

io
n:

a
de

ep
le

ar
ni

ng
ba

se
d

ap
-

pr
oa

ch
[1

29
]

Y
ol

oV
3

-
C

N
N

Py
to

rc
h

to
ta

l
of

27
23

0
im

ag
es

ca
t-

al
og

ue
d

in
to

23
di

ff
er

en
t

sp
ec

ie
s

fr
om

th
e

pu
bl

ic
da

ta
se

ts
Fi

sh
4K

no
w

le
dg

e

E
ac

h
im

ag
e

w
as

an
no

ta
te

d
by

dr
aw

in
g

a
bo

un
di

ng
bo

x
23

cl
as

se
s

of
23

di
ff

er
en

tfi
sh

sp
ec

ie
s.

m
A

P
86

.9
6%

N
A

U
nd

er
w

at
er

Fi
sh

D
et

ec
tio

n
U

si
ng

D
ee

p
L

ea
rn

in
g

fo
r

W
at

er
Po

w
er

A
pp

lic
at

io
ns

[2
19

]

Y
ol

oV
3

-
C

N
N

K
er

as
-

Te
ns

or
Fl

ow
A

ut
ho

rs
-c

re
at

ed
da

ta
ba

se
of

un
de

rw
at

er
vi

de
o

se
qu

en
ce

s
fo

r
a

to
ta

l
of

70
00

0
tr

ai
n/

te
st

fr
am

e

E
ac

h
im

ag
e

w
as

an
no

ta
te

d
by

dr
aw

in
g

a
bo

un
di

ng
bo

x
3

cl
as

se
s

of
fis

h
m

A
P

54
.7

4%
N

A

C
or

al
R

ee
f

Fi
sh

D
et

ec
tio

n
an

d
R

ec
og

ni
tio

n
in

U
nd

er
w

at
er

V
id

eo
s

by
Su

pe
rv

is
ed

M
ac

hi
ne

L
ea

rn
in

g:
C

om
pa

ri
so

n
B

et
w

ee
n

D
ee

p
L

ea
rn

-
in

g
an

d
H

O
G

+S
V

M
M

et
ho

ds
[1

83
]

G
oo

gL
eN

et
C

N
N

N
A

A
ut

ho
rs

-c
re

at
ed

da
ta

ba
se

co
nt

ai
ni

ng
13

00
0

fis
h

th
um

b-
na

ils
fr

om
vi

de
os

E
ac

h
im

ag
e

w
as

an
no

ta
te

d
by

dr
aw

in
g

a
bo

un
di

ng
bo

x
11

cl
as

se
s

of
8

di
ff

er
en

t
fis

h
sp

ec
ie

s.
F1

98
%

C
om

pa
re

H
O

G
+S

V
M

W
ith

D
ee

p
L

ea
rn

in
g

Fi
sh

id
en

tifi
ca

tio
n

in
un

de
rw

at
er

vi
de

o
w

ith
de

ep
co

nv
ol

ut
io

na
ln

eu
-

ra
ln

et
w

or
k

[2
20

]

G
oo

gL
eN

et
C

N
N

N
A

20
vi

de
os

fr
om

L
if

eC
L

E
F

20
15

fis
h

da
ta

se
t

E
ac

h
im

ag
e

w
as

an
no

ta
te

d
by

dr
aw

in
g

a
bo

un
di

ng
bo

x
15

cl
as

se
s

of
15

di
ff

er
en

tfi
sh

sp
ec

ie
s.

A
P

81
%

N
A

C
as

ca
de

d
de

ep
ne

tw
or

k
sy

st
em

s
w

ith
lin

ke
d

en
se

m
bl

e
co

m
po

ne
nt

s
fo

r
un

de
rw

at
er

fis
h

de
te

ct
io

n
in

th
e

w
ild

[2
22

]

R
N

N
-

L
ST

M
N

A
A

ut
ho

rs
-c

re
at

ed
da

ta
ba

se
co

nt
ai

ni
ng

18
un

de
rw

at
er

vi
de

o
se

qu
en

ce
s

fo
r

a
to

ta
lo

f
32

7
tr

ai
n/

te
st

fr
am

e

E
ac

h
im

ag
e

w
as

an
no

ta
te

d
by

dr
aw

in
g

a
bo

un
di

ng
bo

x
an

d
sp

ec
ie

s
na

m
e

1
cl

as
s

of
fis

h
F1

67
.7

6%
C

om
pa

ri
so

n
w

ith
R

-C
N

N
B

as
el

in
e

A
re

al
is

tic
fis

h-
ha

bi
ta

t
da

ta
se

t
to

ev
al

ua
te

al
go

ri
th

m
s

fo
r

un
de

rw
at

er
vi

su
al

an
al

ys
is

[2
4]

R
es

N
et

-5
0

C
N

N
Py

to
rc

h
A

ut
ho

rs
-c

re
at

ed
da

ta
ba

se
co

nt
ai

ni
ng

39
,7

66
im

ag
es

fo
r

20
ha

bi
ta

ts
fr

om
re

m
ot

e
co

as
ta

l
m

ar
in

e
en

vi
ro

nm
en

ts
of

tr
op

ic
al

A
us

tr
al

ia
an

d
sp

lit
to

su
b-

da
ta

se
t

fo
r

cl
as

si
fic

a-
tio

n,
co

un
tin

g,
lo

ca
liz

at
io

n,
an

d
se

gm
en

ta
tio

n.

E
ac

h
im

ag
e

w
as

an
no

ta
te

d
by

po
in

t-
le

ve
la

nd
se

m
an

tic
se

g-
m

en
ta

tio
n

la
be

ls

20
cl

as
se

s
of

20
di

ff
er

en
tfi

sh
ha

bi
ta

t.
M

A
E

0.
38

N
A

M
ar

in
e

O
rg

an
is

m
D

et
ec

tio
n

an
d

C
la

ss
ifi

ca
tio

n
fr

om
U

nd
er

w
at

er
V

i-
si

on
B

as
ed

on
th

e
D

ee
p

C
N

N
M

et
ho

d
[2

28
]

V
G

G
16

-R
C

N
N

N
A

T
he

da
ta

se
t

is
ob

ta
in

ed
fr

om
th

e
vi

de
o

pr
ov

id
ed

by
th

e
U

n-
de

rw
at

er
R

ob
ot

Pi
ck

in
g

C
on

-
te

st
,t

es
ts

et
co

nt
ai

ns
88

00
im

-
ag

es
.

E
ac

h
im

ag
e

w
as

an
no

ta
te

d
by

dr
aw

in
g

a
bo

un
di

ng
bo

x
3

cl
as

se
s

of
fis

h
m

A
P

91
.2

%
N

A

66



Chapter 3 Applications of Deep Learning in Fish Habitat Monitoring: A Tutorial and
Survey

3.4.4 Segmentation

Semantic segmentation task is to predict a label from a set of pre-defined object classes
for each pixel in an image [232]. In the context of marine research, fish segmentation
provides a visual representation of fish contour, which might be helpful for human expert
visual verification or to estimate fish size and weight. Table 3.5 lists a number of research
addressing the task of fish segmentation.

Saleh et al [24] developed a FCN model that performs fish Segmentation in realistic
fish-habitat images with a high accuracy. Labao et al [233] proposed a DL model that can
simultaneously localise fish, estimate bounding boxes around them and segment them us-
ing a unified multi-task CNN in underwater videos. Unlike previous approaches [234,235]
that relied on motion information to identify fish body, their proposed method predicts fish
object spatial coordinates and per-pixel segmentation using just video frames independent
of motion information. Their suggested approach is more resilient to camera motions
or jitters since it is not dependent on motion information, making it more suitable for
processing underwater videos captured by Autonomous Underwater Vehicles (AUVs).
Region Proposal Networks (RPN) [236] have been also used for fish segmentation in un-
derwater videos [125]. RPN is a FCN that generates boxes around identified objects and
gives them confidence scores of belonging to a specific class, simultaneously.

Computational efficiency is essential in the autonomy pipeline of visually-guided un-
derwater robots. For this reason, [28] developed SUIM-Net, a fully-convolutional encoder-
decoder model that balances the trade-off between performance and computational ef-
ficiency. On the other hand, for higher performance, [126] proposed Dual Pooling-
aggregated Attention Network (DPANet) to adaptively capture long-range dependencies
through a computationally friendly manner to enhance feature representation and improve
not only the segmentation performance, but also its computational resources and time.

All previously discussed models use fully-supervised methods that require a large
amount of pixel-wise annotations, which is very time-consuming and expensive, be-
cause a human expert must segment and label, for example, each fish in an image. To
overcome this serious issue, weakly-supervised semantic segmentation models are used.
These models do not need to be trained with pixel-wise annotation [238]. However, due
to a lower level of supervision, training weakly-supervised semantic segmentation mod-
els is often a more challenging task. Applying weakly labelled ground truth derived from
motion-based adaptive Mixture of Gaussians Background Subtraction, [237] managed to
get an average precision of 65.91%, and an average recall of 83.99%. Recently, several
other weakly-supervised methods have been introduced to overcome the cost of a large
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amount of pixel-wise annotations. These new methods include bounding boxes [239,240],
scribbles [241], points [9, 242], and even image-level annotation [178, 182, 243–245].
Since weakly-supervised methods are integral to the success of important DL-based seg-
mentation tasks, in Section 3.6.3, we discuss them further.

In the previous subsections, we discussed how DL is useful in a number of key applica-
tions in fish habitat monitoring. In the following Section, we discuss the many challenges
on the way of developing DL models for such applications.

3.4.5 Acoustic and Sonar Data

Acoustic and sonar data are valuable sources of information for monitoring fish habitats
and behaviours. Acoustic methods use sound waves to detect, identify, and quantify fish in
various aquatic environments [246]. Sonar systems emit sound pulses and receive echoes
from objects in the water, such as fish. By analyzing the characteristics of the echoes,
such as frequency, intensity, and shape, sonar systems can provide information about fish
size, shape, orientation, density, and movement.

Acoustic methods have several advantages over other techniques for fish monitoring,
such as visual observation or net sampling [247]. Acoustic methods can cover large areas
and depths quickly and efficiently; they can operate in turbid or dark waters where visual
methods are ineffective; they can provide continuous data over long periods of time; they
can minimize disturbance to fish and their habitats; and they can be integrated with other
sensors or platforms for multidisciplinary studies.

Acoustic and sonar data can be combined with other technologies such as GPS and en-
vironmental sensors to provide a more complete picture of fish behaviour and their habitat.
For example, the combination of acoustic and sonar data with GPS allows researchers to
track fish movements and habitat use, while the integration of environmental sensors can
provide information on water temperature, salinity, and other important environmental
factors that may influence fish behaviour.

One of the challenges of acoustic methods is to accurately classify fish species based on
their acoustic signatures [248]. Different species may have similar acoustic characteristics
due to their morphology or behaviour. Moreover, environmental factors such as noise,
reverberation, or multipath effects may degrade the quality of the acoustic data. Therefore,
advanced signal processing and machine learning techniques are needed to improve the
performance of acoustic classification. In addition, the deployment of acoustic and sonar
sensors in natural environments can be challenging and expensive, which may limit the
availability of data for the training and validation of DL models [249].
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Acoustic and sonar data combined with DL techniques offer a powerful tool for mon-
itoring fish habitats and behaviours in a non-invasive and efficient way [250]. By using
this tool, fisheries scientists and managers can gain insights into fish ecology, distribu-
tion, abundance, migration patterns etc., which can help them make informed decisions
for sustainable fisheries management.

3.4.6 Automatic Fish Phenotyping From Underwater Images

Automatic fish phenotyping, i.e. extracting their weight, size, and length, in their nat-
ural habitats can provide invaluable information in better understanding marine ecosys-
tems and fish ecology [58]. Although many studies have addressed fish monitoring in
aquaculture and fish farm settings [59, 192], monitoring fish for measurement in natu-
ral habitats remain mostly unexplored, and can be investigated in future research. This
research should address problems such as low visibility and light, fish occlusion and over-
lap, which are shared with aquaculture monitoring. However, other problems unique to
natural habitats such as cluttered background environments and underwater distance mea-
surement should be addressed too. One study addresses fish species identification in an
underwater video for marine monitoring applications, using a hierarchical CNN model
that incorporates targeted data augmentation techniques [251]. Automated imaging has
also been used to obtain phenotypic data on growth and body colour [252].

3.4.7 Visual Monitoring of Fish Behavior and Movements

Although some telemetry and satellite tracking devices can be used in limited settings
[253], fish monitoring in their natural habitats over a period of time is not achievable us-
ing these techniques mainly due to the hostile underwater signal communication medium
[174]. For instance for tracking fish movements, schooling, and behaviour, new visual
monitoring techniques should be devised. A possible direction for future studies is to
devise a better understanding of fish vision characteristics [136] and their implications in
the current and next generation of automated DL-based tracking systems [194] and ma-
rine object detection [195]. An example of an alternative tracking method is presented
in [254], where the image-based identification and tracking method for fish is designed
based on biological water quality monitoring. To improve the fish tracking task, some
techniques can also be combined with visual image enhancement algorithms. For in-
stance, when the image enhancement methods are used, the underwater images can be
corrected for distortion and noise, and the fish tracking task can be easily performed.
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In [255], the authors studied the potential of underwater fish monitoring by using visual
and underwater sensing methods.

Another challenging research area is developing novel underwater fish tracking algo-
rithms, using DL or other technologies, with low power consumption and real-time speed.
For this, various hardware technologies and techniques used in other domains such as
biomedical applications [47] can be explored. Of course, any automated vision-based
tracking system should be validated through real-world trials, which is a significant un-
dertaking requiring many resources, in order to ensure the accurate and real-time tracking
of fish.

There have been several recent studies on the visual monitoring of fish behaviour and
movements. For example, some studies surveyed the application of computer vision
technology in analyzing fish behaviour and fish monitoring [256–258]. Another study
demonstrated an integrated object detection and tracking pipeline as a noninvasive and
reliable approach to studying fish behaviour by tracking their movement under field con-
ditions [26]. Another study explores how fish behaviour can be used as a proxy to measure
the physiological states of fish under different environmental stressors, such as pollutants,
temperature changes, and social interactions [259].

3.5 Advantages and Disadvantages of the

Application of DL to Fish Habit Monitoring

Deep learning has been applied to various fields, including fish habitat monitoring [1].
The application of DL in fish habitat monitoring has several advantages that make it an
attractive option for researchers and practitioners. One of the main advantages is its ability
to handle complex data. DL models can learn complex patterns and relationships in the
data, making them ideal for analyzing large datasets with numerous variables [210]. This
ability is particularly useful in fish habitat monitoring, where numerous variables such as
water temperature, dissolved oxygen, and water quality can influence the fish’s behaviour
and habitat.

Another advantage of using DL in fish habitat monitoring is the potential to automate
the monitoring process. Traditional fish monitoring methods involve manual data collec-
tion and analysis, which can be time-consuming, labour-intensive, and expensive. With
DL, data can be automatically collected and analyzed in real time, allowing for faster and
more efficient monitoring. This automation can also reduce the likelihood of human error,
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leading to more accurate and reliable results.
However, the application of DL to fish habitat monitoring also has some disadvantages.

One of the main disadvantages is the need for large amounts of high-quality data to train
the DL models effectively. The quality of the data can have a significant impact on the
performance of the model, and the lack of high-quality data can lead to inaccurate results.

Another disadvantage is the complexity of the DL models themselves. DL models
are often complex and difficult to interpret, making it challenging to understand how
the model arrived at its conclusions. This lack of transparency can make it difficult for
researchers and practitioners to verify the accuracy of the model’s results.

In addition, DL models require significant computing power and storage, which can
be expensive and require specialized infrastructure. This requirement can be a barrier for
some researchers and practitioners who do not have access to the necessary resources.

Overall, while the application of DL to fish habitat monitoring has several advantages,
it also has some drawbacks that need to be considered. To maximize the benefits of DL
in fish habitat monitoring, it is crucial to address these challenges and develop strategies
to overcome them.

3.6 Challenges in Underwater Fish Monitoring

Underwater fish monitoring presents a series of challenges for DL, which have been the
focus of many research works [53]. In this section, we first introduce the major environ-
mental challenges faced when developing underwater fish monitoring models. We then
show that one of the approaches to properly address these environmental challenges is to
use DL. However, DL training for fish monitoring has its own challenges, which will be
discussed in detail.

3.6.1 Environmental challenges

In order to work in underwater environments, monitoring models must be able to recog-
nise objects and scenes in complex, non-trivial backgrounds. This presents both a chal-
lenge in the development and training of these models and in robustly testing them. The
main environmental challenges in underwater visual fish monitoring can be categorised
as follows:

1. The environment is noisy including very large lighting variation. An object viewed
from a distance is much less bright than a close-up object. These problems become
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more acute when the background is not uniform.

2. Underwater scenes are highly dynamic, i.e. the scene’s content and objects change
very quickly. The background can change from being completely occluded to being
visible and vice versa.

3. Depth and distance perception can be incorrect due to refraction. This is more
severe for short distances.

4. Images are affected by water turbidity, light scattering, shading, and multiple scat-
tering.

5. The image data are frequently under-sampled due to low-resolution cameras and
power constraints underwater.

One of the main approaches used in literature to address these challenges is for the
monitoring models to use hand-crafted features [79, 84, 87, 88, 92–96]. Hand-crafted fea-
tures are defined by a human to describe a fish image. For example, a low-level feature
can be the histogram of a texture or a Gabor filter response. As a more complex and
representative feature, a mid-level feature can be a Scale-Invariant Feature Transform
(SIFT) [90], or a Histogram of Oriented Gradient (HOG) [91]. However, human-defined
features cannot be applied to other datasets, and the definition of a human-defined feature
is a time-consuming task, which restricts real-time detection and requires manual effort.
Moreover, hand-crafted features are limited by human experiences, which may contain
noise and are difficult to design. For example, a SIFT descriptor doesn’t work well with
lighting changes and blur.

Therefore, a fish image is transformed into a feature space that a computer can un-
derstand. The feature space is often based on a combination of low-level image features
(for example, colour distribution and gradient), and other features in the image such as
edges, shapes, and textures. Models using hand-crafted features, however, do not perform
well under varying environmental conditions, and the feature space cannot be easily or
robustly created. Additionally, the features created are too low-level and cannot be easily
used for processing images from different sources.

An alternative way to build prediction models capable of working in the presence of
these significant environmental challenges is to use DNNs. However, training effective
DNNs require resolving some other challenges, which we discuss in the below subsec-
tions. We also describe some of the approaches in literature addressing them. The re-
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viewed approaches in addressing these common challenges can provide a quick reference
for future researchers developing DL-based fish monitoring models.

3.6.2 Model Generalisation

Improving the generalisation abilities of DNNs is one of the most difficult tasks in DL.
Generalisation refers to the gap between a model’s performance on previously observed
data (i.e training data) and data it has never seen before (i.e testing data). This is a fun-
damental problem, with implications for any applications using deep neural networks to
process image data, videos, etc. This challenge is even more pronounced when more
difficult tasks such as fish recognition in underwater environments.

Generalisation problem happens usually because during training the network over-fits
to the training data. In other words, the weights of the network are adapted to produce
a response that is best suited for reproducing the training examples. During testing, the
network produces a response that is a compromise between the different training exam-
ples. This mismatch is a common cause of poor performance on test data, which is often
referred to as a network over-fitting to the training data, even when the network has been
trained for many epochs. The reason it occurs is that the network ”memorises” the training
data during the training. The training data can become quite large, consisting of hundreds
of thousands or millions of examples. This makes the issue of network over-fitting quite
significant. In the last few years, there have been significant research efforts toward solv-
ing the problem of over-fitting to improve model generalisation.

Previous works have shown that it is possible to prevent the network from over-fitting
using techniques called regularisation [155]. There are also some theoretical techniques
to make the network more robust to training data. Below, we provide a brief overview of
some of these techniques and how they have been applied to solve the problem of deep
network over-fitting to training data, to improve generalisation in DL.

• Regularisation Term: It is hypothesised that neural networks with fewer weight ma-
trices can result in simpler models with the same capability as the complete model.
A regularisation term is, therefore, added to the model loss function to remove some
of the weight matrices components. The most popular methods of regularisation are
L1 and L2. For example, [130] showed that incorporating uncertainty regularisation
improves performance of their multi-task network with ResNet-50 [226] backend
to count fish in underwater images.

• Batch normalisation: Introduced in Section 3.2.2 as part of the convolutional layer
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in CNNs, batch normalisation was first introduced by [260] to decrease the effect
of internal covariate shift. Internal covariate shift is the shift in the mean and co-
variance of inputs and network parameters across a batch of examples. Internal
covariate shift can impede the training of deep neural networks. Batch normalisa-
tion is used in almost any DL model training, to improve the model generalisation.
In the fish monitoring domain, for instance, [28] proposed an optional residual skip
block consisting of three convolutional layers with batch normalisation and ReLU
non-linearity after each convolutional layer to perform effective semantic segmen-
tation of underwater imagery.

• Dropout: Introduced in Section 3.2.2 as a common operation in CNNs, dropout re-
duces the network dependency on a small selection of neurons and encourages more
useful and robust properties and features of the dataset to be learnt. When work-
ing with a complex neural network structure, dropout is frequently recommended
to introduce additional randomisation, which helps with the generalisation capabil-
ity of the network. For example, [150] claimed that the inclusion of dropout layer
has enhanced the overall performance of their proposed model for automatic fish
classification.

3.6.3 Dataset Limitation

Preparing training datasets is one of the central and most time-consuming bottlenecks in
developing DL models, which require a large amount of data, e.g. a variety of under-
water fish images in different environmental conditions, which should also be labelled
and analysed by humans for supervised learning. Due to these requirements, making a
large dataset is most of the time, very challenging, which makes the datasets limited and
small. However, when compared with DL models trained with a large dataset, the con-
vergence speed and training accuracy of the models trained with small datasets are much
lower. Generally, increasing the size of training datasets by adding more data to them is
the classic way to accelerate the training and improve the accuracy of DL models, but it
is expensive. Therefore, in recent years, researchers have tackled the dataset limitation
challenge by devising new ways described below.

Data Augmentation

Data augmentation is a technique to increase the number of labelled examples required
for DL training. It artificially enlarges the original training dataset by introducing various
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transformations such as translation, rotation, scaling, and even noise, to the original data
instances, to make new instances. It is particularly relevant to the challenge posed when
the quantity or quality of labelled data is insufficient to train a DL model. At the same
time, data augmentation can be used to reduce the probability of overfitting and increase
model generalisability. In contrast to the techniques listed above for improving model
generalisation, data Augmentation addresses overfitting from the source of the problem
(i.e. the original dataset). This is done under the notion that augmentations can extract ad-
ditional information from the original dataset by artificially increasing the size of the train-
ing dataset. It is also critical to consider data augmentation’s ”safety” (i.e. the possibility
of misleading the network post-transformation). For example, rotation and horizontal flip-
ping are typically safe data augmentation techniques for fish classification tasks [24, 67]
but not safe on digit classification tasks, due to the similarities between 6 and 9. A data
augmentation technique is to use the super-resolution reconstruction method [261] based
on Generative Adversarial Network (GAN) [262] to enlarge the dataset with high-quality
images. This has been previously used to improve small-scale fine-grained fish classifi-
cation [157], and to increase the model’s predictive performance (i.e. ability to generalise
to new data) [42] for underwater fish detection and automatic fish classification [140].

Using augmentation techniques such as cropping, flipping, colour changes, and ran-
dom erasing together can result in enormously inflated dataset sizes. For example, [28]
used rotation, width shift, height shift, shear, zoom and horizontal flip for semantic seg-
mentation of underwater imagery to significantly increase their dataset size. Another data
augmentation technique used during training DL models are scale jittering, which has
been used in [189] for assessing fish abundance in underwater videos. Gaussian filtering
to blur images and different degrees of rotation for fish recognition in underwater-drone
with a panoramic camera is another augmentation technique used in the marine monitor-
ing domain [152].

However, augmentation is not always favourable, as it might lead to large overfitting in
cases with very few data samples. As a result, it is critical to determine the best subset of
augmentation techniques to train your DL model using a limited dataset.

Transfer Learning

Transfer Learning is preserving information obtained while solving one problem, and
transferring the learned knowledge to another similar problem. For instance, one may
initially train a network on a large object dataset, such as ImageNet that includes 1000
different object classes, and then utilise the learned network parameters from that train-
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ing as the initial learning parameters in a new classification task, e.g. fish classification.
In most cases, just the weights in convolutional layers are transferred, rather than the
complete network, including fully connected layers. This is extremely useful since many
image datasets have low-level spatial features and properties that are better learnt in mas-
sive datasets. For example, [156] presented unsupervised knowledge transfer to use their
limited amount of training data in order to avoid time-consuming annotation for object
detection in marine environmental monitoring and exploration.

Hybrid Features

DL architectures have demonstrated excellent capabilities in capturing semantic knowl-
edge that is latent in image features. Handcrafted features, on the other hand, can provide
specific physical descriptions if they are carefully chosen. In addition, attributes of natural
images have been demonstrated to be described differently by CNN features and hand-
crafted features. This means a feature’s discriminative ability may behave differently on
different datasets. Therefore, these two types of features may complement each other for
better learning.

However, increasing feature dimensions by fusing hand-crafted and DL-generated fea-
tures can result in increased computational requirements. One way to avoid this is to ini-
tially utilise DL features for a particular dataset, and later add hybrid features to enhance
the performance. As a result, when working with difficult datasets, such as uncommon
and rare marine species, more sophisticated algorithms and techniques based on hybrid
features may be required. In fact, several research groups have used such strategies to
improve the performance of marine species recognition tasks.

For instance, [158] used texture- and colour-based hand-crafted features extracted from
their CNN training data to complement generic CNN-extracted features and achieved a
classification accuracy higher than when using only generic CNN features when classi-
fying corals. A combination of CNN and hand-designed features have also been used
in [159] for marine animal classification, again showing that their method achieves higher
accuracy than applying CNN alone. In another work, [160] showed that aggregation of
multiple features outperforms models using single feature-extraction techniques, for au-
tomated coral annotation in natural scenes .
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Weakly-Supervised Learning

DL methods [109] have consistently achieved state-of-the-art results in a variety of ap-
plications, specifically in fully supervised learning tasks like classification and regres-
sion [263, 264]. Fully supervised learning methods create predictive algorithms by learn-
ing from a vast amount of training patterns, where each pattern has a label showing its
ground-truth output [111]. Although the current fully supervised methods have been
very successful in certain activities [65, 265, 266], they come with a caveat of requir-
ing a large portion of the data to be labelled, and it is sometimes difficult or extremely
time-consuming to obtain ground-truth labels for the dataset. Thus, it is desirable to
develop learning algorithms that are able to work with less labelled data (i.e. weakly
supervised) [267, 268].

Weak supervision in particular can be very useful in underwater fish monitoring, where
the limited dataset size and the time- and cost-prohibitive nature of labelling limits achiev-
ing a useful dataset for developing effective, smart, and automated habitat monitoring
tools and techniques. A number of works in literature have already used weak supervi-
sion for underwater fish habitat monitoring. For example, [269] proposed a segmentation
model that can efficiently train on underwater fish images, not manually segmented for
training, but only labelled with simple point-level supervision. This work demonstrated
that in the marine monitoring context, weakly-supervised learning can effectively improve
the accuracy and speed of model development with limited dataset sizes and limited la-
belling budget.

Active Learning

Active learning is a sub-field of ML and, more broadly, of AI. In active learning, the
proposed algorithm is allowed to be ”inquisitive”, that is, it is allowed to pick the data
to learn, which in theory means the algorithm can do more with less guidance, similar to
weak supervision. Active learning systems are seeking to solve the constraint of labelling
by posing a questionnaire in the context of unlabeled examples to be labelled by an oracle
(e.g. a human annotator). In this manner, the goal of the active learner is to attain high
precision by using as few labelled examples as possible, thus minimising the expense of
acquiring labelled data; see Figure 3.5.

In many cases, the labels come for little or no cost, like the ”spam” label that is used
to mark spam emails, or the five-star rating that a user could post for a movie on a social
networking platform. Learning methods use these labels and scores to help screen your
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Figure 3.5: Schematic diagram of Active Learning

spam email and recommend movies that you might enjoy. In these cases, certain labels are
given free of charge, but for more sophisticated supervised learning tasks, such as when
you need to segment a fish in an underwater environment, this is not the case. For exam-
ple, in [161] active learning has been used for the classification of species in underwater
images from a fixed observatory. The authors proposed an active learning method that as-
signs taxonomic categories to single patches based on a set of human expert annotations,
making use of cluster structures and relevance scores. This active learning method, com-
pared to traditional sampling strategies, used significantly fewer manual labels to train a
classifier.

Few-Shot Learning

The scarcity of rare species images in training datasets is one of the main limitations
when addressing the automatic processing of wildlife images, especially in fish habitat
monitoring. Such limitations lead researchers to explore few-shot learning.

Few-shot learning is another sub-field of ML. It is closely related to active learning
since it aims to infer relationships between data from very few data samples. The central
concept is how one can learn from a small number of examples and apply this knowledge
to unlabelled data [270,271]. For example, you want to do animal identification in wildlife
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Figure 3.6: Schematic diagram of knowledge distillation

camera trap image datasets. However, since you have only a few labelled examples of
rare species, with only a few images in training datasets, you cannot train your model to
recognise these animals because you only have a few examples. In this case, few-shot
learning can be used to learn how to use the previously learned classifier to recognise
other features of objects on the image (e.g. shape) that might help you complete the task.
However, training on these new features should be done in a few-shot manner [272, 273].
The idea is to have a pre-trained model trained on a much larger dataset of different
species. Then, once a new species appears in the dataset of unlabelled images, you can
use this pre-trained model to find similarities between the new image and those that are
already in the dataset and label those that are similar to the target species.

In a pioneering study of using few-shot learning in processing underwater videos, [274]
used it to discriminate 20 coral reef fish species with a range of training datasets from 1
image per class to 30 images per class. Few-shot object detection has been also used to
localise wildlife using a camera trap in [275]. In another study, [276] proposed a data aug-
mentation method that applies constraints on the mixture of foreground and background
images based on species distributions. Therefore, after training a convolutional neural
network for species classification, the model can localise a new image to a species with
the help of the species distribution constraints in the mixture of foreground and back-
ground images. Similar techniques can be used in addressing the scarcity of sample data
for rare marine species in underwater videos.
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Adaptive Loss

The cross-entropy loss can be overwhelmed by the large class imbalance between fore-
ground and background classes in the dataset during the training of dense detectors. This
is because it is based on an implicit assumption of equal class priorities and does not dif-
ferentiate between easy or hard examples. Therefore, [277] proposed to use a weighted
cross-entropy loss, which assigns higher weights to the loss of hard samples and down-
weight easy examples, thus focusing the training on hard negatives. The adaptive focal
loss FL(pt) is derived from the entropy loss.

FL (pt) = −αt (1− pt)
γ log (pt)

where α balances the importance of positive and negative examples, pt is predicted prob-
ability, (1− pt)

γ is a modulating factor to the cross-entropy loss, and γ is a tunable focus-
ing parameter. It has been shown in [277] that adaptive focal loss improves the accuracy
compared to other losses for object detection on COCO test-dev [264].

In marine and fish habitat monitoring applications, it is very likely that strong class im-
balance happens when datasets are being collected. This is mainly because the collected
videos will have more examples of specific backgrounds such as coral reef, compared
to various species of fish of interest. To address these issues, in addition to techniques
such as adaptive loss mentioned above, other techniques developed for dealing with the
problem of long-tailed distribution of training data can be explored and adopted. These
include techniques such as those proposed in [278] where the authors proposed a class-
balanced loss to re-weight loss inversely with the adequate number of samples per class,
or by replacing the standard cross-entropy in [279] with label-distribution-aware margin
loss.

3.6.4 Biodiversity Challenges

In a recent article, [272] have discussed some challenges beyond dataset limitation, focus-
ing on biodiversity and how it can affect the deep learning-based automatic monitoring
of marine and fish habitats through computer vision. Specifically, they consider the im-
plications of three major universal rules of biodiversity, i.e. the distribution of species
abundance, species rarity, and ecosystem openness [272]. The authors discuss how these
rules bring about three main issues affecting the performance of deep learning algorithms
for underwater monitoring. They also discuss promising solutions to these issues, some
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of which were already discussed in subsection 3.6.3. Due to the importance of these is-
sues and the challenges they pose to fish habitat monitoring, we briefly discuss them here.
However, the reader is encouraged to refer to [272] for further details.

The first issue discussed is the imbalance of long-tail datasets, which is due to the
abundance of some species in the collected videos and datasets, while some other groups
may only be represented occasionally. Similarly, the second discussed issue is scarce data
due to species rarity, which is a prominent biodiversity issue. Both the ”long-tail datasets”
and the ”scarce data” issues, can cause a classifier to overfit the majority classes and fail
to detect or predict the minority classes [278]. One way to tackle this issue is by data
augmentation (see section 3.6.3) or Few-shot learning (see section 3.6.3). The other way
is in the training algorithms itself by modifying the loss function with respect to dataset
imbalances (see section 3.6.3).

The third challenge discussed is the ”open world” issue that deals with an open ecosys-
tem creatures. This results in the challenge of always having a new species that the ”closed
world” application is not trained on. This leads the model to misclassify the known
species especially when the goal is to detect and predict marine species at sea. [272]
discuss open-set learning as a way of solving such a problem. The objective of an open-
set recognition model is to classify all samples belonging to the training dataset correctly
while allowing it to ignore all samples of the novel classes [280].

3.7 Opportunities in Applications of DL to

Underwater Fish Monitoring

New methodologies and strategies should be developed to advance DL models for var-
ious underwater visual monitoring applications, including fish monitoring, and to bring
them closer to their terrestrial monitoring equivalents. In a previous study that was fo-
cused on the task of fish classification [1], we have discussed some of the future research
opportunities including (i) utilising Spatio-temporal data to add space and time domain
information to the current training algorithms that mainly learn fish images regardless of
their spatial and/or temporal correlation; (ii) Developing efficient and compact DL models
that can be deployed underwater for real-time parsing of the fish images at the collection
edge; (iii) Combining image data from multiple collection platforms for improved multi-
faceted learning; and (iv) Automated fish measurement and monitoring from underwater
captured images. Figure 3.7 shows application scenarios for deep learning in underwater
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Figure 3.7: Application scenarios for deep learning in underwater fish monitoring, in-
cluding ecological environment monitoring, aquaculture, and fishing. Deep
learning can be used to classify fish species, track their movement patterns,
monitor fish health, optimize feeding schedules, and identify schools of fish
for more sustainable fishing practices.

fish monitoring, including ecological environment monitoring, aquaculture, and fishing,
have been identified. Deep learning can be used to classify fish species, track their move-
ment patterns, monitor fish health, optimize feeding schedules, and identify schools of fish
for more sustainable fishing practices. In addition to the opportunities discussed in [1],
further research areas could include (i) Developing DL models that can handle a wider
range of image quality and visibility conditions, such as those encountered in murky or
low-light environments; (ii) Combining visual monitoring with other sensor modalities
such as acoustic sensing to improve detection and tracking accuracy; and (iii) Developing
robust data labelling and annotation methods for large-scale training datasets, which can
be difficult to obtain in underwater environments.

3.7.1 Knowledge Distillation for Underwater Embedded and
Edge Processing

DL models used for fish monitoring applications are usually very large containing mil-
lions of parameters and requiring extensive computational power. To deploy these models
on resource-limited devices and in resource-constrained environments such as undersea
monitoring sites, different hardware-enabled compression techniques such as quantising
and binarising DNN parameters [153] can be used, as discussed in [1]. Another method
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that has seen a lot of interest and attention for compressing large-scale DL models is
knowledge distillation.

Knowledge distillation is a technique for training a student (i.e. a small network) to
emulate a teacher (i.e. ensemble of networks), as shown in Figure 3.6. The primary
assumption is that in order to achieve a competitive or even superior performance, the
student model should imitate the teacher model. The main issue is, however, transferring
the knowledge from a large teacher to a smaller student. To that end, [281] proposed
model compression as a way to transfer knowledge from a large model into a small model
without sacrificing accuracy. In addition, several other model compression approaches
have been developed, and the community has shown an increasing interest in knowledge
distillation, due to its potentials [282–285].

A significant research opportunity lies in applying Knowledge distillation into embed-
ded devices and underwater video processors to achieve online and more effective surveil-
lance with high accuracy while using limited resources. This is particularly useful because
of the limitations of transferring data from underwater sensors and cameras, and due to
the challenging underwater communication in the Internet of Underwater Things [174].

3.7.2 Merging Image Data from Multiple Sources

As discussed in [1], to train more effective DNNs, multiple data collection platforms like
Autonomous Underwater Vehicles (AUVs) or inhabited submarines can give varied visual
data from the same monitoring subject. This can provide additional monitoring informa-
tion, such as fish distribution patterns. Although it is straightforward to combine multiple
data sources for training a DL network, several issues should be addressed in future re-
search. These include possible preprocessing on part of data to make it compatible with
the rest of the training dataset, class-wise weights (i.e. when you have an imbalanced
dataset), and the number of outputs of a network. In addition, multiple training data
sources, in particular, when using AUVs or submarines, incurs significant data collection
and manual labelling cost, which is not always viable.

For this reason, some researchers have focused on learning from data with the least
amount of human labelling. To reduce human-labelled data cost, several methods have
been proposed to train models on data that are unlabeled [286] or only have pseudo-
labels [287]. Future research can advance this further by developing faster and cheaper
annotating tools for underwater fish images.

84



Chapter 3 Applications of Deep Learning in Fish Habitat Monitoring: A Tutorial and
Survey

3.7.3 Prospective Research

Deep learning has proven to be an effective tool for analyzing and monitoring fish habitats
and behaviour. However, there are still several areas where research is needed to further
advance the use of DL in fish monitoring [1]. In this section, we discuss some prospective
research directions that can increase the performance and usability of DL-based visual
fish monitoring tasks.

1. Spatio-temporal data utilization: DL models mainly learn fish images regardless
of their spatial and temporal correlation. Utilizing spatio-temporal data can add
space and time domain information to the current training algorithms, leading to
improved accuracy and robustness of the models. One potential approach is to use
convolutional neural networks (CNNs) with 3D convolutions to learn both spatial
and temporal features from video data. Another approach is to use recurrent neural
networks (RNNs) to model temporal dependencies in sequential data, such as fish
movement trajectories [4].

2. Efficient and compact DL models: To deploy DL models underwater for real-
time parsing of fish images at the collection edge, compact and efficient models
are needed. The current state-of-the-art DL models are often computationally ex-
pensive and require large amounts of memory. Research can focus on developing
lightweight architectures that can be efficiently deployed on resource-constrained
devices [174]. One approach is to use knowledge distillation techniques to transfer
knowledge from a large pre-trained model to a smaller model while maintaining
performance.

3. Multi-platform data fusion: Combining image data from multiple collection plat-
forms, such as sonar and acoustic sensors, can improve the multi-faceted learning
of DL models. However, integrating data from different sources poses several chal-
lenges, including differences in data quality and format. Developing effective tech-
niques for data fusion, such as transfer learning and domain adaptation, can help
to overcome these challenges and improve the performance of DL models for fish
monitoring (see section 3.4.5).

4. Automated fish measurement and monitoring: Fish size and behaviour are impor-
tant indicators of ecosystem health. Manual measurement and monitoring of fish
can be time-consuming and expensive. DL models can automate this process by
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extracting size and behaviour features from underwater captured images [6]. Re-
search can focus on developing DL models that can accurately measure the fish size
and identify behavioural patterns, such as swimming speed and direction.

In summary, prospective research directions can expand the capabilities and effective-
ness of DL-based visual fish monitoring tasks. Utilizing spatio-temporal data, developing
efficient and compact models, multi-platform data fusion, and automated fish measure-
ment and monitoring are some of the areas that can lead to further advancements in the
field.

3.8 Summary and Conclusion

The goal of this article was to provide researchers and practitioners with a summary of
the contemporary applications of DL in underwater visual monitoring of fish, as well as
to make it easier to apply DL to tackle real challenges in fish-related marine science.

DL has progressed as a technology capable of providing unprecedented benefits to var-
ious aspects of marine research and fish habitat monitoring. We envision a future where
DL, complemented by many other advances in monitoring hardware and underwater com-
munication technologies [174], is widely used in marine habitat monitoring for (1) data
collection and feature extraction to improve the quality of automatic monitoring tools;
and (2) to provide a reliable means of surveying fish habitats and understanding their dy-
namics. We expect that such a future will allow marine ecosystem researchers and prac-
titioners to increase the efficiency of their monitoring efforts. To achieve this, we need
concentrated and coordinated data collection, model development, and model deployment
efforts. We also need transparent and reproducible research data and tools, which help us
reach our target sooner.
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Chapter 4

Transformer-based Self-Supervised
Fish Segmentation in Underwater
Videos

Underwater fish segmentation to estimate fish body measurements is still largely unsolved
due to the complex underwater environment. Relying on fully-supervised segmentation
models requires collecting per-pixel labels, which is time-consuming and prone to over-
fitting. Self-supervised learning methods can help avoid the requirement of large an-
notated training datasets, however, to be useful in real-world applications, they should
achieve good segmentation quality. In this Chapter, the first research question is ad-
dressed. Specifically, we introduce a Transformer-based method that uses self-supervision
for high-quality fish segmentation. Our proposed model is trained on videos without any
annotations to perform fish segmentation in underwater videos taken in situ in the wild.
We show that when trained on a set of underwater videos from one dataset, the proposed
model surpasses previous Convolutional Neural Network (CNN)-based and Transformer-
based self-supervised methods and achieves performance relatively close to supervised
methods on two new unseen underwater video datasets. This demonstrates the great
generalisability of our model and the fact that it does not need a pre-trained model. In
addition, we show that, due to its dense representation learning, our model is compute-
efficient. We provide quantitative and qualitative results that demonstrate our model’s
significant capabilities.
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4.1 Introduction

Fish segmentation is an important yet challenging task that plays a critical role in ma-
rine and aquaculture applications such as fish body measurements, fish breeding, fish
counting, and fishing-related activities. The goal of fish segmentation in underwater im-
ages and videos is to produce a pixel-wise mask for each fish in the video/image. This
mask can then be used to perform subsequent body measurements like length and width
of fish, or extract its body shape. However, the underwater environment usually bring
challenges such as blurry images, cluttered background, and similarity between fish and
its surrounding environment, which make the process of underwater fish segmentation
extremely difficult.

Previous methods for underwater fish segmentation [9, 125, 288, 289] mainly relied on
fully-supervised models that require human-generated segmentation masks for training.
These trained models usually perform well for a specific, small set of datasets, but their
performance drops when applied to other unseen datasets, e.g. from other underwater fish
habitats. In addition, it is usually difficult to obtain large, in-the-wild underwater datasets,
making it more challenging to produce models that generalise well.

To improve the generalisability of segmentation models and resolve the issue of lim-
ited access to large-scale underwater videos, self-supervised video segmentation (aka.
dense tracking) can be used. However, when applied to underwater scenarios, these self-
supervised models face additional challenges compared to their terrestrial counterparts,
due to the limited underwater optical view. Solving these challenges would help develop
new underwater optical/acoustic imaging or autonomous robot navigation systems.

To that end, the primary motivation of this work is to address the lack of an efficient
underwater fish segmentation method with good generalisability, which is important for
various applications such as marine biology, ocean conservation, and underwater robotics.
We are also motivated by the fact that self-supervised learning provides the advantage
of not requiring manually annotated data for training, which is highly beneficial in the
context of underwater video object segmentation, where the manual annotation is time-
consuming and costly. Our proposed method is also motivated and inspired by the strong
performance of the self-attention mechanisms of the Transformer models, which have not
been previously applied to underwater segmentation tasks.

Architectures based on Transformer models, such as Vision Transformer (ViT) [290],
have been shown to outperform standard Convolutional Neural Networks (CNNs) in many
tasks, especially for large datasets. Our method uses a contrastive formulation and a self-
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Figure 4.1: The natural visual artefact dynamics provide important cues about the com-
position of scenes, and how they change.

training objective to generate pseudo labels based on a transformed view of the original
video sequence, and learns to assign the features in the original view consistently with
the transformed view. The self-supervised loss also helps disambiguate the anchor points
spatially and between independent video sequences, ensuring their transformation equiv-
ariance. Overall, the goal of the method is to learn a representation of the frames that is
robust to different underwater scenes and can effectively segment objects in underwater
video.

Unlike previous underwater fish segmentation methods , our proposed method can
achieve high-quality underwater fish segmentation without a pre-trained model or any
annotations. Our work can also be seen as a specific instance of the more general segmen-
tation methods proposed in [12], in the domain of underwater fish video segmentation.

The research contributions are as follows:

• Introduction of a Transformer-based method that uses self-supervision for high-
quality fish segmentation.

• The proposed model is trained on videos without any annotations and surpasses
previous CNN-based and Transformer-based self-supervised methods.

• The model achieves performance relatively close to supervised methods on two new
unseen underwater video datasets, demonstrating its great generalizability.

• The model is compute-efficient due to its dense representation learning.
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The rest of the paper is organized as follows. Sec. 4.2 covers related works and provides
background information on the novel aspects of our work. Our model’s framework is
described in detail in Sec. 4.3. Sec. 4.4 presents our method for training and evaluating
our self-supervised learning model and the experimental setup and results, while detailed
discussions of our results are presented in Sec. 4.5. Finally, Sec. 4.6 concludes our paper.

4.2 Related Work

Video object segmentation (VOS) [291] without supervision has been an active area of
research in recent years. Several researchers [292] have exploited spatiotemporal infor-
mation in videos to learn dense feature representations. In this section, we briefly review
the research domains most relevant to our work.

Supervised And Unsupervised Learning. The process of learning can be either su-
pervised or unsupervised. In the case of supervised learning [1], we have a dataset, in
which each datum has a corresponding label. Therefore, the learning algorithm will be
trained in such a way that it assigns the right label to the data and does not deviate from
the specified label. In unsupervised learning [293] on the other hand, the dataset does not
include corresponding labels. Unsupervised learning tries to find the intrinsic structure in
the data. For instance, previous methods [294] have exploited the spatiotemporal ordering
of video frames to extract supervisory signals.

In this work, we focus on unsupervised learning. Our proposed method is a self-
supervised video object segmentation model trained on videos without any annotations.
Therefore, there are no supervising signals (labels) available for the learning process.
Hence, there is no explicit correspondence between a video and a label.

Representation learning is a class of machine learning approaches that model knowl-
edge or representations about data (i.e. decompose training samples into feature represen-
tations) [295]. Representations can be used to learn rules for classification or to represent
objects that can be used for a variety of tasks such as visual object recognition, semantic
understanding, and other tasks. Learning spatiotemporal representations from videos has
been extensively researched [296]. However, these studies mainly learn global feature
representations, not dense representations. Pinheiro et al. [297] proposed a view-agnostic
model for dense representations of static scenes through pixel-level contrastive learning.
In contrast to [297], which is limited to image sets of static scenes, our model learns dense
representations of dynamic scenes from videos.

Contrastive Learning is a popular form of self-supervised learning [298]. It assumes
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Figure 4.2: Our proposed framework consists of a single Transformer-based feature ex-
tractor that processes video sequences. Given a batch of unlabeled video
sequences x, two batches of different views v and v̂ are produced and are
then encoded into embeddings y and ŷ through the main branch fθ and the
second regularising branch fξ, respectively. The embeddings are fed to a mul-
tilayer perceptron (MLP) gθ to produce the projections z and ẑ to compute the
cross-view consistency loss LCV. The self-training loss LST learns space-time
embeddings between the anchors q and pseudo labels p (arg max of u, affini-
ties of ẑ w. r. t. anchors.). The two branches are identical in architecture with
shared weights. The encoders f are CoaT Transformer [33] backbones.

visual features are invariant under a certain set of data that has two or more views and
learns the representations to distinguish each view from the others. Contrastive learn-
ing approaches have also been applied to many visual classification problems in which
one learns the representations invariant to scale and rotation [299]. Contrastive learning
may also be thought of as a classification technique that classifies data by maximising
feature resemblances between an image and its augmented instance, while minimising
the resemblance between negative samples. For example, SimCLR [300] learns generic
representations of images from an unlabeled dataset. Momentum Contrast (MoCo) [301]
also exploits the negative samples on high-dimensional continuous inputs, such as images,
to build a large and consistent dictionary for learning visual representations by keeping a
memory bank of negative samples.

In contrast to manually augmenting the still images as in the existing contrastive meth-
ods [301], we utilize the natural visual artefact changes in a natural scene directly from
video data, i. e. temporally adjacent frames in videos.

Correspondence Learning aims at training a deep network by automatically predict-
ing correspondences between image pairs [302]. In this way, the network can be trained
with a limited number of image pairs, which eliminates the need for annotations. For
instance, Fig. 4.1 provides an example of a spatiotemporally correlated image pair in un-
derwater videos). When the input is a video stream, this approach is particularly useful
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Figure 4.3: Schematic graph of the serial block in CoaT Transformer [33]. Input fea-
ture maps are first down-sampled by a patch embedding layer and then flatten
the reduced feature maps into a sequence of image tokens. Multiple Conv-
Attention and Feed-Forward layers process the tokenized features, along with
a class token (a vector to achieve image classification).

and has recently been shown to yield interesting results [13]. Jabri et al. [11] used the
contrastive random walk to learn a representation for visual correspondence from raw
video. Araslanov et al. [12] took a step further by learning dense representations in a
fully convolutional manner.

In contrast to [11] that uses only intra-video self-supervision, our work is similar to
[303] by using both inter- and intra-video level consistency to learn more discriminatory
feature embeddings.

Vision Transformers (ViT). Transformers in machine learning are composed of mul-
tiple self-attention layers. They are primarily used in natural language processing and
often achieve impressive results [304]. For many computer vision applications, CNNs
have long been the gold standard [8], yet the convolution operator makes modelling long-
range interactions difficult. For this reason and due to their success in NLP, Dosovitskiy
et al. [290] introduced Vision Transformer (ViT) by applying self-attention mechanisms
to image patches to generate features for image classification. This approach obtained
state-of-the-art results on ImageNet.

Despite these promising results, there is still room for improvement in terms of segmen-
tation quality and generalizability to different underwater environments and fish species.

In our work, we explore attention over all possible patches in an image and the entire
image at once. We apply transformer-like architectures on patches and entire images. For
patches, we use 16×16 grids, so that the resulting transformations can be used to generate
an entire image. However, larger or smaller grids can also be used.
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4.3 Method

An overview of our model and its training procedure is presented in Fig. 4.2. Given
a batch of unlabeled video sequences, two batches of different views are produced and
are then encoded into embeddings through the main branch and the second regularising
branch. The two branches are identical in architecture with shared weights. The encoders
are CoaT Transformer [33] backbones. The embeddings are fed to a multilayer perceptron
(MLP) to produce the projections to compute a cross-view consistency loss, while a self-
training loss helps learn space-time embeddings between introduced anchors and pseudo
labels, which are explained in details below.

4.3.1 CoaT Transformer

Our feature encoder backbone is Co-scale conv-attentional image Transformers (CoaT)
[33]. CoaT is composed of two submodules: (1) a conv-attentional image transformer
(CAIT) module and (2) a co-scale feature attention network (CFAN) module. The CAIT
module uses a spatial transformer network and convolutional operations to produce a
co-scale feature pyramid from a single input image, and to realize relative position em-
beddings with convolutions in the factorized attention mechanism. The CFAN network
operates on top of CAIT-produced feature pyramid representations and dynamically se-
lects informative image parts to make decisions on what to encode and what to ignore for
scene understanding, allowing us to model spatial and semantic relationships at multiple
scales.

CFAN is composed of two sub-modules, a serial and a parallel block, which intro-
duce fine-to-coarse, coarse-to-fine, and cross-scale information into image transformers.
The serial block (shown in Fig. 4.3) models image representations at a downsized res-
olution, while a parallel block realizes a co-scale mechanism. Given an input image
I ∈ RH×W×C , each serial block down-samples the image features into lower resolution,
resulting in a sequence of four resolutions:

F1 ∈ R
H
4
×W

4
×C1 ,

F2 ∈ R
H
8
×W

8
×C2 ,

F3 ∈ R
H
16

×W
16

×C3 ,

F4 ∈ R
H
32

×W
32

×C4 .
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Since the CFAN module produces multi-scale feature attention maps from a single
image, it is a more computationally efficient and scalable method than the existing multi-
resolution encoder-decoder frameworks. In addition, since CFAN takes input in the form
of feature pyramid representation and produces a pyramid of feature attention maps, it
is more flexible than existing multi-resolution architectures that operate on fixed-sized
feature pyramids.

We, therefore, use CoaT as a feature encoder in the two branches of our model, main
and regularising. The main and regularising branches process two copies of the input
frame batch, each of which includes the identical collection of video sequences. We feed
the augmented version of each frame to the regularising branch, while the main branch

receives the original video frames (as shown in Fig. 4.2). For augmentation, we extract
random cropping and flipping, as described in Sec. 4.4.2. The regularising branch’s pur-
pose is to avoid the degenerate solutions that make the network encode positional cues
into a degenerate feature representation, as previously reported in [11].

4.3.2 Multilayer Perceptron (MLP)

We pass the output from the feature encoder through a multilayer perceptron (MLP) to
produce feature embeddings and to reduce the feature dimensionality from 512 to 128.
The multilayer perceptron (MLP) code implementation in PyTorch-like style is shown in
algorithm 1. The MLP consists of two standard Conv2d layers. The first layer is followed
by Layer Normalisation [305] and ReLU.

Algorithm 1: Multilayer Perceptron (MLP), PyTorch-like

1 import torch.nn as nn
2

3 class MLP(nn.Sequential):
4

5 def __init__(self, n_in, n_out):
6 super().__init__()
7

8 self.add_module("conv1", nn.Conv2d(n_in, n_in, 1, 1))
9 self.add_module("ln1", nn.LayerNorm(n_in))

10 self.add_module("relu", nn.ReLU(True))
11 self.add_module("conv2", nn.Conv2d(n_in, n_out, 1, 1))
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4.3.3 Anchor Sampling

To improve training efficiency and computational footprint [11], we obtain (n2) z-dimensional
feature embeddings by defining a spatially invariant grid of size n×n on the feature tensor
from the main branch z, and select one sample per grid cell (i. e. anchors k). This will
make the anchors spatially distinct and cover the full feature embeddings. We then share
these anchors with the regularising branch. Rather than computing pairwise distances be-
tween every feature vector in the batch, we compute the cosine similarities between the
embeddings of the anchors k and the current features z by:

qi,j =
exp(zi·kj/τ)∑
l exp(zi·kl/τ)

(4.1)

where τ ∈ R+ is a scalar temperature hyperparameter, z and k are features from the main
branch and the anchors, respectively, l indexes batch samples and i, j index the vector
dimension.

For the regularising branch features, we select only the predominant anchors [12] to
compute the cosine similarities as follows:

pi = argmax
j∈N (i)

exp(ẑi·kj/τ)∑
l exp(ẑi·kl/τ)

, (4.2)

where N (i) is the index set of the anchors that stem from the same video clip as the
feature vector with index i, and ẑ and k are features from the regularising branches and
the anchors, respectively.

Note that, in Eq. (4.1) we extract features from multiple videos in the training batch,
however, in Eq. (4.2) we extract features from the same video sequence only. This will
help our framework to simultaneously learn intra-video (within a single video clip), and
inter-video (between video clips) feature embeddings to preserve the fine-grained corre-
spondence associations as well as instance-level feature discrimination [306].

4.3.4 Loss Function

The goal of training our framework is to learn representation as similarity across views
(see Fig. 4.4) by computing pairwise affinities between features from the model’s two
branches and minimising the distance of the features extracted from the other temporally
close frames to the anchors. Therefore, the overall loss of the learning algorithm is given
by the following equations:
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Figure 4.4: Representation Learning as similarity across views by discriminating features
(i) spatially within individual frames and (ii) temporally, to represent each
frame in a video sequence in terms of the same feature set.

Cross-view consistency

We build the input to the regularising branch by augmenting the original video frames to
generate a random similarity transformation. The corresponding change in the features
output, i. e. segmentation, should be the same regardless of randomly flipping or scaling
the input frame. By using the cross-view consistency loss [12] in Eq. (4.3) we explicitly
facilitate this property.

LCV = −
∑

i∈R
log exp(zi·ẑi/τ)∑

l̸=i exp(zi·ẑl/τ)
, (4.3)

where R is the index set of the features extracted from the reference frames; τ ∈ R+

is a scalar temperature hyperparameter; and z and ẑ are features from the main and the
regularising branches, respectively.

Since z and ẑ are spatially coordinated, this association distinguishes the cosine simi-
larity between the corresponding features w. r. t. non-corresponding pairs.

Space-time self-training

After generating pseudo labels from the predominant anchor index for each feature from
the regularising branch, we use space-time self-training loss [12], shown in Eq. (4.4), to
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minimise the distance between the features extracted from the original view q defined by
Eq. (4.1), and pseudo labels p, based on Eq. (4.2).

LST = −
∑

i̸∈R
log T (qi, pi) , (4.4)

where R is the index set of the features extracted from the reference frames, while T (·) is
random similarity transform to spatially aligns q and p after random cropping and flipping.

Since the anchors are a subset of features sampled spatially and temporarily from the
video frames within the same view, this loss minimises the feature distance to the anchors
and stimulates an increased cosine similarity of the features to the anchors and a decreased
cosine similarity between the anchors themselves.

The final training objective is to minimise the combination of the above loss functions:

L = LCV + λLST , (4.5)

where λ is a hyperparameter that weights its contribution to the total loss.

4.3.5 Label Propagation

We use label propagation to predict semantic labels for all video clip frames from the
initial ground-truth label only. Label propagation is the task of classifying each individual
pixel in the frames of a video given only ground truth for the first frame. Following
previous work [12], we employ the representation as a similarity function for k-Nearest
Neighbour (KNN) prediction.

Algorithm 2 illustrates the label propagation we use in our work. We employ context

embeddings and masks acquired from previous frames to forecast the mask mt for the
current time-step t. We use the output from the CoaT Transformer [33] to obtain the
embedding for frame t. Then, we compute the cosine similarity of embedding et w. r. t.

all embeddings in context E , commonly used in correlation layers of optical flow net-
works [307]. Next, we compute local attention in a single operation by kNN-Softmax.
Finally, we update the oldest entries by replacing them with mt and et to the mask M and
embedding contexts E . For the remaining frames in the video clip, we repeat the same
process. Bilinear interpolation is used to bring the final object masks back to their original
resolution.
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Algorithm 2: Label Propagation
Input: Embeddings E and mask M from the first frame.
Output: Mask mt prediction for timestep t.

1 for t and frame in (frames) do
2 Computing embeddings et at timestep t;
3 Computing local spatial correlation between E and et;
4 Computing softmax between K-Nearest Neighbors;
5 Mask mt prediction for timestep t;
6 updating E and M;

Figure 4.5: Sample image from each of the three utilised datasets. From left: DeepFish
[17], Seagrass [10] , and YouTube-VOS [16]

4.4 Experiments

We present the method of training and evaluating our self-supervised learning model
for underwater video segmentation.We provide quantitative and qualitative results that
demonstrate our model’s generalization capabilities to a range of different underwater
habitats.

4.4.1 Datasets

We performed experiments using three publicly available datasets, i.e. DeepFish [17],
Seagrass [10] , and YouTube-VOS [16]. Fig. 4.5 demonstrates a sample image from each
dataset.

DeepFish [17] consists of a large number of videos collected for 20 different habitats in
remote coastal marine environments of tropical Australia. The video clips were captured
in full HD resolution (1920× 1080 pixels) using a digital camera. In total, the number of
video frames taken is about 40k

Seagrass [10] is comprised of annotated footage of Girella tricuspidata in two estu-
ary systems in south-east Queensland, Australia. The raw data was obtained using sub-
merged action cameras (HD 1080p). The dataset includes 9429 annotations and 4280

video frames. Each annotation includes segmentation masks that outline the species as a
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polygon.
YouTube-VOS [16] is a video object segmentation dataset that contains 4453 YouTube

video clips and 94 object categories. The videos have pixel-level ground truth annotations
for every 5th frame (6fps). For a fair comparison, we extracted only the videos that
contained fish, which include 130 videos and 4349 video frames in total.

We independently train our feature extractor on the DeepFish [17] dataset and evaluate
it on Seagrass [10] and YouTube-VOS [16].

4.4.2 Data Augmentation

In addition to natural variances in the video sequences, we use similarity transformations
to augment the training data (random cropping and flipping only), see Fig. 4.4. The
reason for using these extra augmentations is to augment the same input video to feed to
the second regularising branch to produce pseudo labels, see Sec. 4.3.1.

We also experimented with several spatial and pixel-level augmentations, e. g. sheer-
ing, rotations, RGB-Shift, and colour jittering. However, we did not observe a notable
change in accuracy. These augmentation methods are computationally expensive, because
both rotation and sheering require image padding, which needs to be removed afterwards.
Therefore, the video sequences were augmented with random flips and cropping only.

4.4.3 Implementation Details

Model training

We use a Transformer-based feature encoder as the backbone network for our feature
extractor (see Sec. 4.3.1). As a baseline, we adopt the ResNet-18 feature encoder [226] as
used in [11]. Similar to [303], we also remove the strides in the res3 and res4 blocks from
the ResNet-18 architecture. Both our proposed Transformer-based and baseline models’
weights were randomly initialised.

Our models were trained with an input resolution of 256 × 256 pixels. We scale the
lowest side of the video frames to 256 and then extract random crops of size 256 × 256.
We sample two video sets, B = 2 (of size T = 5 frames), therefore, B× T = 2× 5 = 10

frames are used per forward pass.
We found that for this problem set, a learning rate of 1 × 10−3 works the best. It took

around 300 epochs for all models to train on this problem. Our networks were trained on a
Linux host with a single NVidia GeForce RTX 2080 Ti GPU with 11 GB of memory, using
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Pytorch framework [308]. We used Adam optimiser [204] with β1 = 0.5, β2 = 0.999, and
ϵ = 1.0×10−08. We applied the same hyperparameter configuration for all of the models.
However, the optimum model configuration will depend on the application, hence, these
results are not intended to represent a complete search of model configurations. Our
training loop is shown in algorithm 3.

Algorithm 3: Main Training Loop
Input: Unlabeled video sequences.
Output: Trained weights for the backbone network.

1 for each mini-batch do
2 Extract deep features of the video frames;
3 Regularising branch produces pseudo labels;
4 for each video in the mini-batch do
5 // Transformer-based encoder
6 Extract feature embeddings (anchors) k;
7 Compute affinity to anchors q (Eq. (4.1));
8 Compute pseudo labels q (Eq. (4.2));
9 // Loss Computation

10 Compute Cross-view consistency LCV (Eq. (4.3));
11 Compute Space-time self-training LST (Eq. (4.4));
12 Compute total loss L (Eq. (4.5));

13 Back-propagate all the losses in this mini-batch;

Inference

At the inference time, we compute dense correspondences for video propagation us-
ing the learned encoder’s representation. The encoder’s representation is the trained
weights for the backbone network (see Sec. 4.3.1 and Algorithm 3). We predict the whole
video frames segmentation masks using Label Propagation (Sec. 4.3.5). Given the ini-
tial ground-truth segmentation mask of the first frame, we label propagate the rest of the
frames in the video without the need for the rest of ground-truth annotations. The labels
are propagated in the feature space. The labels in the first frame are one-hot vectors,
whereas the labels propagated are Softmax distributions.

4.4.4 Evaluation Metrics

In the context of video segmentation, there are two popular evaluation metrics that can be
used to assess the performance of a self-supervised learning model:
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1) The Jaccard’s index (J ): This metric measures the overlap between the predicted
segmentation mask and the ground truth mask, and is calculated as the ratio of the inter-
section of the two masks to their union. A higher J score indicates a better segmentation
performance. In mathematical notation, the Jaccard index can be represented as follows:
J (A,B) = |A∩B|

|A∪B| , where A and B are the predicted segmentation mask and the ground
truth mask, respectively.

2) Dice coefficient (F): It is a measure of the overlap between the predicted and ground
truth segmentations, and is calculated as the ratio of the intersection of the two segmenta-
tions to their sum. The Dice score ranges from 0 to 1, with a value of 1 indicating perfect
overlap between the predicted and ground truth segmentations, and a value of 0 indicating
no overlap. It is calculated as F = 2|A∩B|

|A|+|B| , where A and B are the predicted segmentation
mask and the ground truth mask, respectively.

Here, we report the mean average of J&F , and the mean and recall of both Jm and
Fm, with an IoU threshold of 0.5.

4.4.5 Compared Methods

We evaluated the performance of our method against five other methods for self-supervised
video object segmentation and one fully-supervised method. All of these methods used
the same feature extraction network, ResNet18 CNN [12]. The self-supervised methods
are: CRW [11], DenseFlow [12], MAST [13], Colorize [14], CorrFlow [15].

The Fully supervised fully convolutional neural network (FCN) method is based on the
FCN8 architecture developed by Shelhamer et al. [232]. It uses the true per-pixel class
labels to fully supervise the training process. The FCN method is efficient and can handle
imbalanced datasets, where the number of pixels belonging to a certain class is much
smaller than the number of pixels belonging to other classes. In our case, the number of
pixels corresponding to the fish is much smaller than the number of pixels corresponding
to the background. The comparison with the fully-supervised method aims to demonstrate
the advantages of our trainable self-supervised deep-learning-based method.

For fair comparisons with our model, we used the authors’ code and training approach
for these self-supervised methods. To guarantee the experiment’s objectivity, we trained
the five methods on DeepFish [17] and applied the author-provided model and network
training parameters.
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4.4.6 Quantitative Comparisons

The comparison results for Seagrass [10] and YouTube-VOS [16] are summarized in Ta-
ble 4.1 and Table 4.2, respectively. The best results for each metric are in bold.

Compared to the second highest method [12], our approach reaches a higher J&Fm

score by 4.5% and 3.1% on Seagrass and YouTube-VOS, respectively. This is mainly
caused by using self-attention mechanisms that can extract high-level spatial features for
segmenting long-range video sequences. Moreover, the self-attention layers can be used
to model the dependency among multiple temporal steps, which is helpful for the seg-
mentation of objects having large motions.

We also compared our method against a fully supervised method. Fully supervised
video object segmentation involves the identification and segmentation of a specific object
within a video sequence, where the object of interest has been predetermined and the
model has been trained on a comprehensive dataset of annotated video frames. To train
a model for this task, it is necessary to acquire a collection of annotated video frames,
comprising a significant number of frames that have been manually labelled to show the
pixels corresponding to the targeted object.

Manually segmenting the objects of interest in each video frame requires a high an-
notation budget. An annotation budget refers to the amount of time and resources that
are allocated for the process of annotating data, which involves labelling and categorizing
data in a consistent and structured way. In the context of segmenting a single fish in an
image, the annotation budget would depend on various factors such as the complexity
of the task, the number of images that need to be annotated, and the resources available
for the annotation process. According to Saleh et al. [17], segmenting a single fish in an
image took about 2 minutes. Given that, fully supervised training of a single video that
contains only 100 frames would cost 200 minutes.

We report the FCN for semantic segmentation [232] as a fully-supervised learning
method in Table 4.1 and Table 4.2. The fully-supervised method has a higher J&Fm

score on Seagrass and YouTube-VOS. However, our method does not require annotated
frames. Furthermore, because a self-supervised approach does not require an annotation
budget, the annotation budget can be spent on other tasks. By removing the annotation
bottleneck, our method aims to reduce the cost of the process of annotating data. Fur-
thermore, a reduced annotation budget might be a more feasible approach in situations
where the resources are limited. For example, when a large number of objects are present
in a video, manual annotation would be prohibitively expensive. The reduction in the
annotation budget would free up resources and make the task more feasible.
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Table 4.1: Performance Comparison on Seagrass [10] dataset between our model and five
state-of-the-art models (CRW [11] DenseFlow [12] MAST [13] Colorize [14]
CorrFlow [15]).

Method Backbone J&F(Mean) ↑ J (Mean) ↑ J (Recall) ↑ F(Mean) ↑ F(Recall) ↑

CRW [11] ResNet-18 43.2 38.9 40.4 46.2 50.8

DenseFlow [12] ResNet-18 45.5 40.2 41.0 50.7 54.7

MAST [13] ResNet-18 40.3 37.1 38.7 43.8 48.5

Colorize [14] ResNet-18 34.9 34.5 35.1 40.8 47.9

CorrFlow [15] ResNet-18 39.4 36.8 36.9 42.7 47.2

Ours Transformer 50.0 41.5 43.3 58.1 65.4

Fully-supervised [232] ResNet-18 64.7 52.4 55.7 71.4 79.1

Table 4.2: Performance Comparison on YouTube-VOS [16] dataset between our model
and five state-of-the-art models (CRW [11] DenseFlow [12] MAST [13] Col-
orize [14] CorrFlow [15]).

Method Backbone J&F(Mean) ↑ J (Mean) ↑ J (Recall) ↑ F(Mean) ↑ F(Recall) ↑

CRW [11] ResNet-18 59.9 58.6 71.5 57.8 68.7

DenseFlow [12] ResNet-18 60.2 60.9 72.7 59.5 70.0

MAST [13] ResNet-18 57.4 57.9 68.1 56.9 65.2

Colorize [14] ResNet-18 53.7 54.1 65.9 55.4 64.8

CorrFlow [15] ResNet-18 56.4 55.9 66.7 54.3 64.8

Ours Transformer 63.3 63.9 74.0 62.7 69.6

Fully-supervised [232] ResNet-18 79.3 78.2 89.3 70.5 83.7

4.4.7 Qualitative Results

To visually inspect the segmentation results to ensure that the model is correctly identi-
fying the desired objects in the image, we compared the performance of our model with
a CNN-based encoder baseline [12] model on the YouTube-VOS (rows 1 and 4) and and
Seagrass (rows 2-3) datasets in Fig. 4.6. Our model was able to effectively distinguish be-
tween objects and backgrounds and handle occlusions better than the baseline model, as
shown in the qualitative results. An apparent advantage of our model shown in the bottom
panel is its ability to segment multiple and overlapping fish, in the scene, where its CNN
counterpart fails. Fig. 4.6 also shows that our model is stable and can effectively locate
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the fish in long videos despite complex scenes. Here, our model managed to segment up
to frame number 80 based on the first frame. The CNN-based method, on the other hand,
has the problem of failing to predict the segmentation in some situations when there is
vagueness between the foreground object and the background, or when there are complex
transformations in the videos. Whereas our method shows a strong ability to differentiate
pixels with similar intensities. Furthermore, these results show that our proposed method
can work on datasets with very small objects (see Videos 2 and 3 in Fig. 4.6).

To further demonstrate the efficacy of our method, Fig. 4.7 and Fig. 4.8 show a com-
parison between our model and five state-of-the-art self-supervised models (CRW [11],
DenseFlow [12], MAST [13], Colorize [14], CorrFlow [15]) applied to the YouTube-
VOS [16], and Seagrass [10] datasets.

4.4.8 Ablation Study

To further investigate the effect of our proposed transformer-based video segmentation
framework, we performed an ablation study. In this study, we compared the baseline CNN
model (no transformers) [12] and our Transformer-based feature encoder, with different
types of transformers. For these comparisons, we used different configurations of video
features, Transformers, and MPL layers, to find out which combination results in the best
performance. We report only results with best configurations.

Table 4.3 reports the segmentation accuracy for four different models in terms of J&Fm

metric, in addition to the base-line CNN [12] and our proposed models.In this Table,
the second line is the Fast Fourier Convolution model in [309]. The third line refers to
the Transformer for Semantic Segmentation introduced in [310], while the fourth line
reports the MetaFormer-based architecture called PoolFormer [311]. The fifth line is
for Cross-Covariance Image Transformer (XCiT) [312]. Based on the evaluation in Ta-
ble 4.3, our Transformer-based model significantly outperforms the baseline and other
meta-architecture methods in the context of both datasets.

In addition to the ablation studies presented in this chapter, we recognize the potential
value of conducting further studies on various hyper-parameters of our proposed model.
While these additional studies are beyond the scope of our current research, we plan
to explore them in future work. For instance, we believe that conducting an ablation
study on the cross-view loss parameter (λ) could reveal its impact on the performance
of our model. Similarly, analyzing the effects of different numbers of sampled videos
(B) and frames per video (T ) could provide insights into the optimal settings for these
parameters. Furthermore, investigating the impact of varying the size of the sampling grid
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Figure 4.6: Qualitative comparison between our model and a CNN-based encoder base-
line [12] model applied on the YouTube-VOS (rows 1 and 4) [16], and Sea-
grass (rows 2 and 3) [10] datasets. The representation learned by our model
effectively distinguishes between objects and background ambiguity and is
robust to occlusions.
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Figure 4.7: Qualitative comparison between our model and five state-of-the-art models
(CRW [11], DenseFlow [12], MAST [13], Colorize [14], CorrFlow [15]) ap-
plied on Seagrass [10] (rows 1-3), and the YouTube-VOS [16] (rows 4 and 5)
datasets. The yellow rectangle highlights instances where the other methods
did not correctly identify the fish body or a significant part of it.

Figure 4.8: Qualitative comparison between our model and five state-of-the-art models
(CRW [11], DenseFlow [12], MAST [13], Colorize [14], CorrFlow [15]) ap-
plied on the YouTube-VOS [16] dataset. The blue rectangle highlights in-
stances where the other methods did not accurately identify the contour of the
fish’s body.
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Table 4.3: Ablation study for other models on Seagrass [10] and YouTube-VOS [16]
datasets.

J&Fmean

Method Seagrass [10] YouTube-VOS [16]

Baseline [12] 45.5 60.2
FFC [309] 46.2 60.6
Segmenter [310] 41.5 52.7
PoolFormer [311] 42.8 54.9
XCiT [312] 43.7 56.8
Transformer (ours) 50.0 63.3

of the anchors could shed light on the sensitivity of our model to this hyper-parameter.
We believe that these additional ablation studies could provide valuable insights into the
behaviour of our model and further strengthen our findings.

4.4.9 Failure Case

In our experiments, we noticed that in a few cases, part of the background is mistakenly
segmented as fish. For two examples, see Fig. 4.9. We envision that the attention model
could potentially be enhanced by incorporating additional modalities to improve perfor-
mance on tasks where the input contains objects that are similar to the background. These
extra data modalities could include depth or motion information. This can be particularly
useful in cases where the object and the background are highly similar in terms of colour
or texture. We also find that when there is heavy occlusion from seagrass, the model can-
not segment the whole fish’s body correctly. Some instances of this problem are shown in
Fig. 4.10.

Figure 4.9: Failure case of our model applied to one frame from the YouTube-VOS [16]
dataset. Our model similar to all other studied models failed to differentiate
between the fish and the background.
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Figure 4.10: Failure case of our model applied on a sequence of video frames from the
Seagrass [10] dataset. Our model failed due to heavy occlusion from sea-
grass.

4.5 Discussion

Underwater video object segmentation is challenging due to low visibility, variable light-
ing, refraction and reflection, dynamic backgrounds, and deformation of objects caused
by the refraction of light through water. These factors can make it difficult to accurately
segment objects in underwater video. The main aim of this study was to propose an end-
to-end self-supervised deep learning method for underwater fish segmentation that ad-
dresses all these challenges while significantly improving the state-of-the-art techniques
using innovative approaches. Here, we describe some of the general and specific chal-
lenges we faced when designing our model and explain how innovative solutions were
used to resolve these challenges to develop a strong model.

4.5.1 Model Innovations and Strengths

We aimed to develop an approach that is robust to different underwater scenes. Previous
methods have used fully-supervised learning methods, which rely on extensive annotation
and are hard to apply to a wide range of underwater video applications. In contrast, our
proposed method utilizes self-supervised learning to avoid the problem of reliance on
large datasets and manual labelling requirements.

In addition, our model innovatively addressed the degenerate solutions, also known as
overfitting or overgeneralization, which is a common concern in deep learning and can be
especially important in the context of object segmentation. Degenerate solutions can oc-
cur when a model is overly complex or has too many parameters, which can lead to poor
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generalization performance on new data. In our initial experiments, we found that with-
out using a regularization branch (Fig. 4.2 second branch), the model tended to quickly
converge on a trivial solution, which has also been observed by other researchers [11].
Our analysis suggested that the network was encoding positional cues into a degenerate
feature representation. We believe that this may be due to the limited spatial invariance
of current CNN implementations and the use of padding, which provides a predictable
and stable pattern. To prevent the model from finding such shortcut solutions, our innova-
tive solution was to replace the CNN with a Transformer, which provides a self-attention
mechanism. The self-attention mechanism allows transformers to attend to different parts
of an input sequence and weigh their contributions to the final output. Another innovation
in our model was to use spatial jittering when sampling anchors instead of a fixed off-
set. These two novel modifications prevented our model from converging on degenerate
solutions and improved generalization performance on new data, which is a significant
advantage of our technique compared to prior video segmentation models.

Our anchor sampling technique was also novel. Anchor sampling is used for selecting a
set of anchor points or regions within an image or video that are used as reference points
for object detection or segmentation tasks. The choice of anchor points or regions can
have a significant impact on the performance of the model, as they serve as the basis
for the model’s predictions. We derived all anchors from a single frame, known as the
reference frame. Our method also used pseudo labels and a self-training loss function
(described in Sec. 4.3.4) to align the representations of the other frames with the reference
frame, which originated from the same video. This ensured that our model is able to
accurately segment objects in the underwater videos despite the challenging environment.

Furthermore, inspired by class-specific representations in other contexts [313], another
novel aspect of our model is computing the affinity between features and anchors extracted
from multiple videos in the training batch using the equation provided in Sec. 4.3.3. This
method only selects dominant anchors for self-training from the same video sequence as
the feature, which means that the features will be attracted to anchors only from the same
video. The distance between anchors and features from different video sequences will
also increase due to the contrastive formulation of the affinity. This design allows the
method to implement inter-video discrimination, which makes our model stronger.

Computational efficiency achieved through our innovative use of a grid sampling ap-
proach is another innovation in our model. Using griding to extract anchors can lead to
significant computational and memory savings. For example, using a grid of size 8 × 8

with an image size of 32 × 32 pixels will result in a computational and memory-saving
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factor of 16. This is particularly valuable when considering the storage costs of the affini-
ties u, which have a size of B · T · h · w × B · N2, with respect to B and T . Also, we
compute feature affinities in parallel rather than sequentially. This allows us to train our
model on a single 11GB GPU, and achieve real-time inference, which is crucial for online
video processing applications.

We also utilised other novel approaches for our model development to make it more
practical. First, the order of the frames in a sequence within a training batch is not impor-
tant and can be randomly selected, because our method does not rely on assumptions
about motion continuity. Additionally, the method does not use any momentum net-
work or queue buffers, which can make the training process more stable. In terms of
data augmentation, the method only uses similarity transformations and does not require
appearance-based augmentations such as photometric noise. Instead, it relies on learning
natural changes in appearance directly from video data. Overall, these practical consider-
ations make the proposed method a simple and stable solution for object segmentation in
underwater videos.

4.6 Conclusion and Future Work

In conclusion, the self-supervised learning method proposed in this study has demon-
strated strong performance in underwater fish segmentation, outperforming previous mod-
els and achieving results comparable to fully-supervised methods.

The proposed method has several strengths that can benefit the field of underwater
video analysis. It is able to effectively segment fish in real-world underwater videos,
while not requiring a pre-trained model. It is also computationally efficient, making it
suitable for edge devices. Additionally, the use of self-supervised learning allows for
the model to be trained without the need for extensive manual annotation, which can be
time-consuming and prone to overfitting.

One way that others in the field can benefit from this work is by using it as a starting
point for developing self-supervised learning approaches for other underwater video tasks,
such as object tracking and counting. Also, our proposed model can be used as a generic
tool for fish habitat monitoring, which is essential in marine ecology.

Despite its advantages, the main limitation of our model is that it only focuses on
underwater fish segmentation, and cannot identify fish species. Another limitation of our
study is the scarcity of its training data. We rely on existing publicly available training
data and a relatively small number of test videos to evaluate our model. However, we
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hope that this work inspires further research on larger datasets.
Future research could address some of the limitations of our study. One potential di-

rection is to extend our model not only to segment but to also identify fish species. This
could be achieved by collecting and annotating a larger dataset with multiple fish species,
or by incorporating additional features such as size, which can better differentiate be-
tween different species. Another future research direction is to extend our model to other
underwater objects such as corals, plants, or other marine animals. This needs collecting
additional training data and labelling and adapting the model architecture or loss function
to handle the different characteristics of these objects. Yet another potential direction is
to explore the use of additional modalities, such as depth data or multispectral imagery,
to improve the segmentation results. These additional modalities could be included in the
model architecture or loss function to evaluate their impact on the segmentation perfor-
mance.

Overall, this work has the potential to contribute to the field of underwater video anal-
ysis and assist in tasks such as marine and aquaculture farm monitoring, species distribu-
tion, stock management, and fishing enforcement.
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Chapter 5

How to Track and Segment Fish
without Human Annotations: A
Self-Supervised Deep Learning
Approach

Tracking fish movements and sizes is crucial for understanding their ecology and be-
haviour. Knowing where fish migrate, how they interact with their environment, and how
their size affects their behaviour can help ecologists develop more effective conservation
and management strategies to protect fish populations and their habitats. Deep learning is
a promising tool to analyze fish ecology from underwater videos. However, training deep
neural networks (DNNs) for fish tracking and segmentation requires high-quality labels,
which are expensive to obtain. In this Chapter, the first research question is also addressed.
Specifically, we propose an alternative unsupervised approach that relies on spatial and
temporal variations in video data to generate noisy pseudo-ground-truth labels. We train
a multi-task DNN using these pseudo-labels. Our framework consists of three stages: (1)
an optical flow model generates the pseudo labels using spatial and temporal consistency
between frames, (2) a self-supervised model refines the pseudo-labels incrementally, and
(3) a segmentation network uses the refined labels for training. Consequently, we perform
extensive experiments to validate our method on three public underwater video datasets
and demonstrate its effectiveness for video annotation and segmentation. We also evaluate
its robustness to different imaging conditions and discuss its limitations.
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5.1 Introduction

Automatic tracking and segmentation of individual fish have a wide variety of applica-
tions in ecological behavioural analysis [1, 26, 314–316]. Understanding and predicting
animal motion in the wild would bring significant benefits in many research and indus-
try domains [317–320]. However, the movement and motion of animals in their natural
environments is highly complex. Multiple factors can contribute to the complexity of in-
dividual movements. The animals are not always visible in a video, which makes tracking
and segmentation difficult. Multiple animals may be in the same video, complicating the
segmentation task. These challenges often require advanced computational methods.

Several studies have tried to address these challenges [9, 24, 42, 198, 321]. Such stud-
ies rely heavily on pixel-level annotations to train or improve their Deep Neural Net-
work (DNN). These annotations are expensive and time-consuming, especially for fish
segmentation in the wild. The key underlying assumption of most of the current au-
tomated methods [24, 151, 170, 194] is that the training data is usually paired with the
ground truth that comes from a video that contains a large number of fish. Although
ground truth is still expensive, obtaining a large number of video sequences is necessary,
because achieving accurate results using a small number of sample videos is very difficult.

This study was motivated by the importance of the challenges faced when trying to an-
notate and segment animals in videos in the wild. Unlike in controlled conditions, where
animals are easily distinguishable from the background, fish are difficult to distinguish in
realistic videos [10, 17], even with domain knowledge. This is due to large variations in
animal appearance, lighting conditions, and background.

Our approach aims to develop an unsupervised method for fish tracking and segmen-
tation without the need for human annotations, by leveraging spatial and temporal varia-
tions in video data using known techniques of background subtraction and optical flow, as
shown in Fig. 5.1. Specifically, we propose to generate pseudo labels based on unlabelled
video data. The use of pseudo labels can benefit various learning-based algorithms since it
can significantly reduce the labelling cost. The key to the proposed method is to leverage
the intrinsic temporal consistency between consecutive frames to improve the generated
labels by refining them with a self-supervised model. We propose to train a DNN to
segment individual fish based on the generated pseudo-labels. As long as the pseudo-
labels are generated in a way that they have similar structure and appearance to real ones,
the model can learn to understand the underlying structure from the pseudo-labels. In
general, the more realistic the pseudo-labels, the better the segmentation accuracy. We
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Figure 5.1: Combining background subtraction and optical flow demonstrate how both
levels work in concert to preserve object boundaries and temporal coherence
throughout the video. Please refer to Sec. 5.3 for details.

include a short video of our model’s prediction at https://youtu.be/Z5G7YBoL3eM and
https://youtu.be/8LOKsVSiY9U.

The main contributions of this paper are listed as follows:

• Propose to use pixel-level pseudo labels generated by an optical-flow model and
background subtraction to learn the segmentation and tracking of individual fish
automatically without manual interaction.

• Demonstrate that using self-supervised refinement, we can further improve the ac-
curacy of the pseudo labels for fish tracking and segmentation.

• Evaluate our method on three public datasets with different image quality.

• Discuss the limitations of the current model and our future research directions.

The rest of the paper is organized as follows. Sec. 5.2 covers related works and provides
background information on the novel aspects of our work. Our model’s framework is
described in detail in Sec. 5.3. Sec. 5.4 presents our method for training and evaluating
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our model. The experimental setup and results are presented in Sec. 5.5, while detailed
discussions of our results are presented in Sec. 5.6. Finally, Sec. 5.7 concludes our paper.

5.2 Related Work

In this section, we briefly review the research domains most relevant to our work.
Video object segmentation is a task that is used to locate and segment each target

object [322–324]. The target object to be segmented can either be a class of interest in
the videos or the moving objects of interest. Object segmentation is generally categorized
into two categories: segmentation with instance-level semantics and segmentation without
instance-level semantics, which is the main objective of this paper. Therefore, this study
focuses on generating labels without human intervention. Some segmentation methods for
moving objects have been developed by using background subtraction techniques [325–
327]. Several of these approaches are based on the assumption that the scene is locally
constant [328,329]. This means that the background in one frame is assumed to be similar
to the background in the next frame or only a few pixels away. In order to use this
assumption, they estimate the local background and threshold it according to the similarity
threshold to identify foreground regions. However, this method is known to be sensitive to
illumination changes, and may even lose all detail within the image due to over-estimating
the local background. Another approach to segmentation uses the detection of optical flow
to define motion boundaries [330–333].

Optical flow predicts the relative motion of objects in two consecutive frames of a
video [332, 333]. It gives a dense correspondence between frames, but at the cost of
being limited to rigid objects, and computation entangled. Additionally, optical flow can
only work within scenes where the movement of the camera is significantly lower than
the movement of the object [330, 331, 334]. This can be seen as a limitation, as the
background subtraction method can be used in a wider range of applications. However,
the key element of optical flow is that it can also be used for background subtraction
[335,336]. By tracking the movement of the pixels between frames, we can determine the
background. If a pixel that is part of the background does not match the static background
within a given threshold, then that pixel is determined to be an instance of an object.

Another segmentation approach is based on the detection of visual motion. It is based
on the fact that moving objects in the scene induce consistent changes to the flow of pixels
in a region [331, 334]. However, due to substantial displacements or occlusions, their
calculated optical flow may contain considerable inaccuracies [337–339]. In our method,
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we address these issues and enhance both estimated optical flow and object segmentation,
simultaneously.

Video object tracking is the task of assigning a consistent label for each individual
object in the scene as it moves [340,341]. This tracking is generally divided into multiple
steps, including detection of the object of interest, tracking of the moving object in the
scene, and then associating labels between frames. The tracking task, therefore, consists
of identifying the bounding box of the object over several video frames and, at the same
time, updating the location of the object in the image [342, 343]. This can be done based
on a similarity metric between different frames [344, 345]. The idea of such a metric
is to find the closest objects in the frame with an overlapping bounding box. This can
be performed at either the pixel level or at the region level. The major drawback of this
method is the computation time [346, 347] that is needed to compute all the similarities
between all the different frames. On the other hand, if the computational resources are
available, this method has been proven to be useful when tracking fast-moving objects
and when the objects are not occluded in the frame [348,349]. In our method, we produce
the rotating 2D object bounding box from each instance mask of the object over several
video frames.

Supervised And Unsupervised Learning. Supervised learning has been used to build
object detection [350–352], video object segmentation [323, 324] and video object track-
ing [341, 342]. These methods require extensive human annotation and therefore are not
suitable for video annotation in the wild. To reduce the labelling costs of data, unsuper-
vised learning has emerged as a powerful technique for the learning of video data. In
the traditional image domain, unsupervised methods are expected to outperform their su-
pervised counterparts [24, 198, 321, 353, 354] due to their potential to train data without
labels.

The idea behind many of the unsupervised DNN models is to learn a feature repre-
sentation from unlabelled data [355–357]. Then, a DNN model can be applied to the
learned feature representation to produce the output. For example, in the domain of video
segmentation [9, 125, 288, 289], DNNs have been used to learn a representation from the
difference between a pair of unlabelled videos [11,12,303] and from warped frames [358].

In this work, we focus on unsupervised learning. Our proposed method will generate
labels referred to as pseudo-labels to train a multi-task supervised DNN for video object
segmentation and video object tracking.
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Figure 5.2: Our proposed framework consists of three main components: generate
pseudo-labels, unsupervised pseudo-labels refinement, and segmentation net-
work. The proposed segmentation model trains with the generated pseudo-
labels, which are refined with self-supervised training. Please refer to Sec. 5.3
for details.

5.3 Framework

The overall framework can be divided into three stages as shown in Fig. 5.2. The first stage
is to generate pseudo-labels using background subtraction and optical flow for both videos
and still images. The second stage is to train a self-supervised model to refine the pseudo-
labels using their spatial structure. In the last stage, the refinement of the video and
still-image versions are applied jointly to train the segmentation network and to predict
the final label. The segmentation network’s training behavior closely matches supervised
training because we employ improved pseudo-labels. As a result, the network’s training
process is more reliable than that of current unsupervised learning techniques [3, 11, 12,
303]. In the following subsections, we describe the details of these three components and
the corresponding loss functions.

5.3.1 Background Subtraction

As a first step to generating pseudo labels, background subtraction is performed on the
video frames. A clean background image is estimated for every video sequence by com-
puting the median of the first 10 frames of the video sequence along the first axis. This is
to average out any distracting elements that come in front of the clean background. Then,
each video frame is subtracted from the clean background to create the mask sequence.
After the subtraction, all the foreground pixels take on a value of 1, and pixels belonging
to any background region have 0 values using Adaptive Gaussian Thresholding [359].

Adaptive Gaussian Thresholding is used instead of one global value as a threshold be-
cause it sets a pixel’s threshold based on a local region surrounding it. As a consequence,
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we obtain various thresholds for various areas inside the same image, which produces
better results for images with varying illumination.

This background subtraction step is crucial in eliminating any stationary elements or
shadows from the video sequences that might disturb the next step, optical flow.

5.3.2 Optical Flow

The next step of pseudo-label generation is to compute the optical flow using Recurrent
All-Pairs Field Transforms (RAFT) [360]. However, optical flow is frequently inaccurate
at object boundaries, in which we want our segmentation to be accurate exactly at these
borders. Therefore, we consider video segmentation from background subtraction and op-
tical flow estimation simultaneously. Using pixel level and temporal information sources,
the segmentation algorithm is improved by removing the artifacts induced by background
subtraction and optical flow. We demonstrate how both levels work in concert to preserve
object boundaries and temporal coherence throughout the video. The key is that we need
to remove motion blurs while preserving the motion of the fish boundaries.

To achieve the pseudo labels, we first deconstruct a pair of video frames, xt and xt+1,
and estimate a mask mt and mt+1 with the background subtraction method as described in
section Sec. 5.3.1. The segmented masks mt, mt+1 are used to synthesize frames x̂t and
ˆxt+1 by warping xt and xt+1 with mt, mt+1, respectively. The optical flow [360] takes two

frames x̂t and ˆxt+1, and produces a motion vector v̂ between them. This motion vector
is used to compute the magnitude and angle of the motion. Specifically, the pixels with a
motion vector v̂ outside mt (and mt+1) are assigned the value of the background and the
pixels with a motion vector v̂ inside mt (and mt+1) are reassigned the object. We denote
the reassigned images as x̂∗

t and ˆx∗
t+1 and use them as input for our segmentation step, as

shown in the top panel of Fig. 5.2.
We show the optical flow results for the three video datasets with and without back-

ground subtraction of frames xt and xt+1 in Fig. 5.4, Fig. 5.5, and Fig. 5.6. A mask
mt+1 that better distinguishes the background from the foreground from the optical flow
step is then refined with our proposed unsupervised refinement method in the next sec-
tion. A sample optical flow comparison video before and after background subtraction is
available at https://youtu.be/8LOKsVSiY9U.
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Figure 5.3: Sample image from each of the four utilised datasets. From left: Seagrass
[10], DeepFish [17], YouTube-VOS [16], and Mediterranean Fish Species
[34]

5.3.3 Unsupervised Refinement

The second stage in our method is cumulative pseudo-label refining via unsupervised
historical moving averages (MVA) [361] using DeepLabv3 [362] network for semantic
segmentation and Conditional Random Fields (CRF) [363] by minimising the F-score
until the MVA predictions reach a stable state. The CRF can ”sharpen” initial location
predictions to make them more accurate and consistent with edges and parts of the source
image that have a constant colour.

Given the pseudo-labels of the previous step, we train the network for 50 epochs. The
number of epochs is low to avoid a significant over-fitting of the network to the noisy
pseudo-labels. Then, the network is reinitialized with trained weight to predict a new set
of pseudo-labels to train on again.

Let D be the set of training examples and M be the network model. By M(x, p) we
denote the mask prediction of model M over pixel p of image x ∈ D. During this stage,
a historical moving average (MVA) from the last training stage is composed as follows:

MVA(x, p, k) = (1− α) ∗ CRF (M(x, p)) + α ∗ MVA(x, p, k − 1),

where M(x, p) is the network mask prediction, k is the epoch number, α is a positive real
factor, and CRF is the Conditional Random Fields (CRF) [363].

We use Lβ = 1 − Fβ as an image-level loss function w.r.t. each training example x.
F-score (Fβ ) is the harmonic mean of precision and recall of the prediction output of
pixel p over image x w.r.t. the pseudo-labels, that use a positive real factor β as follows:

Fβ =
(
1 + β2

) precision · recall
β2 precision + recall

.

The network is retrained until the MVA reaches a stable state, as shown in the middle
panel of Fig. 5.2. By doing so, the quality of pseudo-labels is improved over time.
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Figure 5.4: Sample optical flow results for Seagrass [10]. From left, the original image,
optical flow without background subtraction, optical flow with background
subtraction, mask overlay.

5.3.4 Segmenting Objects by Locations

Our last stage is training a supervised segmentation model using the refined pseudo-labels
from the previous stage. The supervised model is based on Segmenting Objects by Loca-
tions (SoloV2) [364]. SoloV2 is an updated version of Solo [365], a previous method for
instance segmentation. The idea is to dynamically segment objects by location.

Given an image as input, the network generates the object mask, then the object mask
generation is decoupled into a mask kernel prediction and mask feature learning. Further-
more, matrix non-maximum suppression (MNMS) is applied to reduce inference over-
head. Specifically, SoloV2 is composed of two modules: (1) Dynamic Instance Seg-
mentation and (2) Matrix non-maximum suppression (MNMS). The dynamic instance
segmentation scheme dynamically segments objects by locations by learning the mask
kernels and mask features separately. The mask kernels are predicted dynamically by
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Figure 5.5: Sample optical flow results for DeepFish [17]. From left, the original image,
optical flow without background subtraction, optical flow with background
subtraction, mask overlay.

the FCN [232] when classifying the pixels into different location categories, then con-
structing a unified mask feature representation for instance-aware segmentation. The
non-maximum suppression process is achieved by performing NMS with a parallel ma-
trix operation in one shot to reduce inference overhead and suppress duplicate predictions.
Compared to the widely adopted multi-class NMS [366], where the sequential and recur-
sive operations result in non-negligible latency, the parallel non-maximum suppression
with matrix operation can achieve similar performance with much lower latency. The
parallel processing strategy performs the inference for the MNMS on-the-fly and enables
processing at a high frame rate (34 frames per second). For more details, we refer the
readers to [364].
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Figure 5.6: Sample optical flow results for YouTube-VOS [16]. From left, the original
image, optical flow without background subtraction, optical flow with back-
ground subtraction, mask overlay.

5.3.5 Rotating Bounding-box

From each instance mask that we predicted from the previous stage, we are able to pro-
duce the rotating 2D object bounding box. The minimum bounding rectangle (MBR)
technique is used to obtain a rotated bounding box from a binary mask of the object. We
used OpenCV [367] to find the minimum area of a rotated rectangle. It takes the binary
mask of the object as an input and returns a Box2D structure that contains the following
information: (centre (x, y), (width, height), angle of rotation). The output of this step is
used to track the objects as discussed in the following section.
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Figure 5.7: Sample fish trajectory results. Zoom-in for better view. See also a short video
of fish trajectory results at https://youtu.be/Z5G7YBoL3eM.

5.3.6 Online Tracking

We used Simple Online and Real-Time Tracking (SORT) [368] as an online tracking
framework that focuses on frame-to-frame prediction and association. The bounding box
position and size are only used for both motion estimation and data association. Kalman
filter [369] is used to handle the motion estimation and the Hungarian method [370] is
used for data association.

Motion estimation is used to propagate a targets identity into the next frame. The
inter-frame displacements of each object are approximated with a linear constant velocity
estimation. The detected bounding box is used to update the target state where the Kalman
filter [369] solves the velocity components. The state of each target is estimated as:

x = [h, v, s, r, ĥ, v̂, ŝ]T ,

where h and v represent the horizontal and vertical pixel location of the center of the
target, while s and r represent the scale and the aspect ratio of the targets bounding box,
respectively. Here, ĥ, v̂, ŝ are for the source.

Data association is assigning new detections to existing targets. Each targets bounding
box is estimated by predicting its new location in the current frame. The intersection-over-
union (IOU ) distance between each detection and each forecasted bounding box from
the existing targets is used to calculate the assignment cost matrix. The assignment cost
matrix is then resolved using the Hungarian technique [370] to produce the fish trajectory
as shown in Fig. 5.7.
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5.4 Method

This section describes our method in detail. Our method is based on three main com-
ponents: the pseudo labels generation, the unsupervised learning method to refine the
generated pseudo labels and the DNN for fish tracking and segmentation. Fig. 5.2 shows
the algorithm flow diagram for the fish tracking and segmentation framework.

5.4.1 Datasets

We performed experiments using four publicly available datasets, i.e. Seagrass [10],
DeepFish [17], YouTube-VOS [16], and Mediterranean Fish Species [34]. Fig. 5.3 demon-
strates a sample image from each dataset.

Seagrass [10] is comprised of annotated footage of Girella tricuspidata in two estuary
systems in south-east Queensland, Australia. The raw data was obtained using submerged
action cameras (HD 1080p). The dataset includes 4280 video frames and 9429 annota-
tions. Each annotation includes segmentation masks that outline the species as a polygon.

DeepFish [17] consists of a large number of videos collected from 20 different habi-
tats in remote coastal marine environments of tropical Australia. The video clips were
captured in full HD resolution (1920 × 1080 pixels) using a digital camera. In total, the
number of video frames taken is about 40k.

YouTube-VOS [16] is a video object segmentation dataset that contains 4453 YouTube
video clips and 94 object categories. The videos have pixel-level ground truth annotations
for every 5th frame (6fps). For a fair comparison, we extracted only the videos that
contained fish, which include 130 video clips and 4349 video frames in total.

Mediterranean Fish Species [34] consists of a large number of images collected from
20 different Mediterranean fish species. In total, the number of images is about 40k. The
dataset was split into two subfolders, training and test sets. The training set contains 34k
and the test set contains 6k images. The image resolution ranges between (220 × 210

pixels) and (1920× 1080 pixels). The original images are stored in an RGB file format in
subfolders as a class label.

We train our feature extractor on all of the four datasets and evaluate it on the video
datasets only, Seagrass [10], DeepFish [17], and YouTube-VOS [16].
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5.4.2 Pseudo Labeling

To train our supervised model, which was explained in Sec. 5.3.4, we first generate pseudo
labels for the image dataset, Mediterranean Fish Species [34] and the video datasets,
Seagrass [10], DeepFish [17], and YouTube-VOS [16].

Image Dataset

Since our image dataset [34] is curated from static images of different fish species, our
framework discussed in Sec. 5.3 was not applicable to this dataset. Therefore, we used
DeepUSPS [361] as an unsupervised saliency prediction network for a pseudo-labels gen-
eration. DeepUSPS is trained on the unlabelled MSRA-B dataset [371] for predicting
salient objects. And it is an unsupervised learning method that produces pseudo labels
with high intra-class variations, which is useful for the training of the supervised model.

However, DeepUSPS is only good in pseudo prediction for a single object in the im-
age that is not disturbed by additional intricate details, which is not ideal for the more
challenging video datasets [10, 16, 17].

Video Datasets

Unlike our image dataset, our video datasets contain both multiple objects in a single
frame as well as across multiple frames. Therefore, we adapted our pseudo-label genera-
tion framework discussed in Sec. 5.3 that is capable of predicting multiple salient objects
in the same video clip and handling the case of a cluttered background. This pseudo-label
generation framework aims to tackle the issue of single-image datasets by generating
more pseudo labels with intra-class variations in image space.

The Pseudo-label generation framework consists of three steps:

1. Obtain salient objects by performing background subtraction using Adaptive Gaus-
sian Thresholding [359], as explained in Sec. 5.3.1.

2. Enhance the obtained salient object boundaries from the previous step with optical
flow using RAFT [360], as explained in Sec. 5.3.2.

3. Apply cumulative pseudo-label refining via unsupervised historical moving aver-
ages (MVA) [361], as explained in Sec. 5.3.3.

In this way, we can get pseudo labels for video datasets, Seagrass [10], DeepFish [17],
and YouTube-VOS [16], which are used to train the supervised model.

125



Chapter 5 How to Track and Segment Fish without Human Annotations: A
Self-Supervised Deep Learning Approach

5.4.3 Model training

Our models were trained with an input resolution of 256 × 256 pixels. We scale the
lowest side of the video frames to 256 and then extract random crops of size 256 × 256.
We sample two video sets, B = 2 (of size T = 5 frames), therefore, B× T = 2× 5 = 10

frames are used per forward pass.
We found that for this problem set, a learning rate of 1 × 10−3 works the best. It took

around 300 epochs for all models to train on this problem. Our networks were trained on a
Linux host with a single NVidia GeForce RTX 2080 Ti GPU with 11 GB of memory, using
Pytorch framework [308]. We used stochastic gradient descent (SGD) optimiser [204]
with an initial learning rate of 0.01, which is then divided by 10 at 27th and again at 33th
epoch. We use light augmentation (resizing, grayscale). Following [364, 372], a scale
jitter is used, where the shorter image side is randomly sampled from 640 to 800 pixels.

We applied the same hyperparameter configuration for all of the models. However, the
optimum model configuration will depend on the application, hence, these results are not
intended to represent a complete search of model configurations.

5.4.4 Inference

During tracking, we extract frames from the input video, forward each frame through the
network, and obtain the fish category score from the classification branch. Initially, to
filter out predictions with low confidence, we use a threshold of 0.1 and perform convolu-
tion on the mask feature using corresponding predicted mask kernels. Then, after having
applied a per-pixel sigmoid, we binarise the output of the mask branch at the threshold of
0.5. The final step is the Matrix NMS, which fits the output mask with the Min-max box.

Our model operates online without any adaptation to the video sequence. On a single
NVidia GeForce RTX 2080 Ti GPU, we measured an average speed of 34 frames per
second.

126



Chapter 5 How to Track and Segment Fish without Human Annotations: A
Self-Supervised Deep Learning Approach

Figure 5.8: Sample images from our model
results for DeepFish [17],
From left, the original image,
the ground truth, the predicted
image.

Figure 5.9: Sample images from our model
results for Seagrass [10], From
left, the original image, the
ground truth, the predicted im-
age.
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Figure 5.10: Sample images from our
model results for YouTube-
VOS [16], From left, the
original image, the ground
truth, the predicted image.

Figure 5.11: Sample images for failure
cases, From left, the original
image, the ground truth, the
predicted image.
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5.5 Experiments

We report experimental results for our model’s trained representation on 50% of the Deep-
Fish, Seagrass, YouTube-VOS datasets and the train set of the Mediterranean Fish Species
dataset. We then evaluate it on the other 50% of the first three datasets. We provide quan-
titative and qualitative results that demonstrate our model’s generalization capabilities to
a range of different underwater habitats.

5.5.1 Results

We summarize our main results on Seagrass [10], DeepFish [17] and YouTube-VOS [16]
datasets in Table 5.1. The quantitative results for all datasets were obtained using the
COCO dataset [264] evaluation script. The average precision (AP ), the average recall
(AR), and Intersection over Union (IoU ) were measured for the predicted bounding boxes
and segmentation masks in the output images obtained from the trained SoloV2 [364], as
explained in Sec. 5.3.4 in detail.

The AP .50 and AP .75 values were measured with the IoU thresholds of 0.5 and 0.75,
respectively. The APM and ARM values show the average of the AP and AR values for
10 IoU thresholds of .50 : .05 : .95, respectively. Averaging over IoUs rewards detectors
with better localization. The APL and ARL values show the AP and AR values over a
large area (> 962). This area is measured as the number of pixels in the segmentation
mask. We observed that the performance of the proposed model is stable across these
three datasets. This validates the proposed model’s ability to generalize well to unseen
videos in other environments.

To the best of our knowledge, there is no previous work reporting detection and seg-
mentation evaluation for these datasets. To compare our proposed unsupervised method
to a supervised approach, SoloV2 [364] results on the three datasets are reported with the
authors’ implementation in Table 5.2. This Table shows the results of a fully supervised
model with the original labels, not our generated pseudo-label.

The close accuracy results of our proposed unsupervised method compared to the origi-
nal supervised SoloV2 [364] in both the detection and segmentation experiments, validate
our generative approach. Moreover, our results indicate that the proposed model is not
heavily influenced by different underwater habitats. The performance is on par for Deep-
Fish [17] and Seagrass [10]. Seagrass [10] is relatively challenging since the fish are not
as easy to visually detect as in the other datasets. In some cases, the proposed model is
not as good as the fully supervised approaches. However, the main purpose of this study
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is to develop an unsupervised method for fish tracking and segmentation. We believe that
our proposed approach is more stable during training than other unsupervised methods
that do not include a dedicated pseudo-label generation step.

Table 5.1: Comparison of *unsupervised* detection and segmentation on Seagrass [10],
DeepFish [17] and YouTube-VOS [16] datasets.

Dataset APM AP .50 AP .75 APL ARM ARL

Evaluating Detection:

Seagrass [10] 22.1 72.5 13.7 38.2 61.4 61.3
DeepFish [17] 11.7 35.0 05.3 19.3 34.5 57.1
YouTube-VOS [16] 23.6 43.2 18.4 26.9 46.1 57.5

Evaluating Segmentation:

Seagrass [10] 12.0 37.6 05.2 20.8 31.2 52.0
DeepFish [17] 31.2 75.0 24.4 43.8 56.6 59.4
YouTube-VOS [16] 15.4 33.0 12.2 19.2 33.8 42.2

Qualitative results of our algorithm for DeepFish [17], Seagrass [10] and YouTube-
VOS [16] datasets are shown in Fig. 5.8, Fig. 5.9 and Fig. 5.10, respectively. We also
include additional examples of failure cases in Fig. 5.11. Overall, especially for non-
rigid objects, the proposed algorithm produces favourable outcomes in the majority of
images. This is despite the fast movements or crowded and complicated backgrounds
causing these images to frequently have significant distortion. See also a short video of
our model’s prediction at https://youtu.be/Z5G7YBoL3eM.

5.5.2 Ablation Study

We performed an ablation study to demonstrate the proposed approach’s effectiveness in
generating pseudo labels. Specifically, we analyzed the contribution of the vital compo-
nent in the proposed method, the optical flow with background subtraction (Sec. 5.3.2).
In addition, we evaluated the segmentation network training with refined pseudo-labels
(Sec. 5.3.4) for different epochs. The results reported in Table 5.3 are for the unsuper-
vised segmentation based on optical flow without background subtraction as a baseline.
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Table 5.2: Comparison of *supervised* detection and segmentation on Seagrass [10],
DeepFish [17] and YouTube-VOS [16] datasets.

Dataset APM AP .50 AP .75 APL ARM ARL

Evaluating Detection:

Seagrass [10] 32.4 82.2 13.0 34.9 68.5 72.4
DeepFish [17] 12.2 41.8 04.3 20.9 41.0 68.0
YouTube-VOS [16] 25.9 56.2 21.6 32.8 54.1 69.9

Evaluating Segmentation:

Seagrass [10] 18.0 56.4 07.8 31.2 36.8 68.0
DeepFish [17] 46.8 72.5 36.6 50.7 64.9 72.1
YouTube-VOS [16] 23.1 49.5 18.3 28.8 40.7 53.3

And the results reported in Table 5.4 are for the four epochs trials with the same random
seeds, please refer to Sec. 5.4.3 for the details.

It is apparent from the results that the segmentation accuracy of our proposed method
has improved significantly when compared to that of the baseline method. We also note
that the accuracy of the models also depends on the number of epochs used in the train-
ing. We observe from the results shown in Table 5.4 that the segmentation accuracy de-
creases after 100 epochs. The reason for this is the over-fitting of the network to the noisy
pseudo-labels. While the training losses for both the baseline and our model decreased,
the segmentation accuracy for our model was still greater than that for the baseline.

As part of our ablation study, we experimented with other different threshold values in
addition to (0.1 and 0.5) values in Sec. 5.4.4. Our findings revealed that the performance
of our proposed approach was not significantly impacted by the choice of threshold value.

5.6 Discussion

Fish segmentation and tracking are notoriously difficult tasks, especially for small fish in
video data where the background, lighting conditions and fish shape can vary significantly.
In particular, for real data, the quality of ground truth labels varies from video to video
since it is difficult to annotate the animal’s entire path. Therefore, our model aims to
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Table 5.3: Comparison of *unsupervised* segmentation based on optical flow without
background subtraction.

Dataset APM AP .50 AP .75 APL ARM ARL

Evaluating Segmentation:

Seagrass [10] 05.0 23.8 03.1 14.7 19.7 29.5
DeepFish [17] 15.3 44.8 13.6 33.5 42.7 37.4
YouTube-VOS [16] 07.2 23.8 07.4 11.9 26.1 33.0

generate a pseudo ground truth by leveraging temporal consistency between frames and
improving its quality based on self-supervised learning. The key to our proposed model
is to leverage the intrinsic temporal consistency between consecutive frames by using the
optical flow and background subtraction method to improve the generated labels. This
is especially important when the fish is moving quickly and not in the same location
in the consecutive frames, as is the case in natural data. Tracking fish in video data is
also challenging because their motion is very irregular and small fish may not be visible
throughout the entire dataset. The other problem is that segmentation and tracking are
time-consuming tasks, especially when dealing with large datasets.

Our model outperforms the baseline method (the optical flow without background sub-
traction) with higher AP values in most of the cases. Our approach can utilize temporal
consistency to produce consistent labels. In the case of the DeepFish dataset [17], we ob-
served that our proposed unsupervised model results in higher accuracy compared to the
Seagrass dataset [10]. This is mainly due to the more challenging videos in the Seagress
dataset [10] compared to the video data in DeepFish [17]. Furthermore, we show that
for different video datasets, our model shows similar accuracy. Therefore, we can expect
that the accuracy would be similar when tested under the same conditions but in new
underwater video datasets.

In addition, the segmentation accuracy does not degrade after training with supervised
training, and training converges in only a few epochs, as shown in Table 5.4. In our
experiments, we found that the segmentation quality has a significant impact on tracking
performance. This is because the quality of the produced object bounding box has a high
impact on tracking performance. Even in this case, we still achieved decent results.

We also analyzed the robustness of our proposed model with respect to the environ-
mental conditions. We observed degradation of the model’s performance when several
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Table 5.4: Comparison of *unsupervised* segmentation for different epochs:
50,100,150,300

Dataset APM AP .50 AP .75 APL ARM ARL

50 epochs:

Seagrass [10] 12.4 33.6 07.2 20.4 28.4 47.2
DeepFish [17] 32.0 68.6 30.8 34.8 53.6 56.2
YouTube-VOS [16] 15.8 34.0 13.8 19.8 33.8 42.2

100 epochs:

Seagrass [10] 12.0 37.6 05.2 20.8 31.2 52.0
DeepFish [17] 31.2 75.0 24.4 43.8 56.6 59.4
YouTube-VOS [16] 15.4 33.0 12.2 19.2 33.8 42.2

150 epochs:

Seagrass [10] 12.0 36.0 04.8 20.4 30.0 48.8
DeepFish [17] 30.4 69.8 23.2 32.4 54.2 56.8
YouTube-VOS [16] 15.2 34.0 14.0 20.2 32.8 41.0

300 epochs:

Seagrass [10] 10.8 33.6 04.0 18.8 28.0 46.4
DeepFish [17] 29.8 70.0 22.4 31.8 53.0 55.6
YouTube-VOS [16] 15.2 33.8 14.4 23.0 32.0 40.0

fish were heavily occluded, like in Fig. 5.11. However, our proposed model is still able to
estimate the fish mask in some parts as long as they are part of the animal body. One of
the main challenges in this task is the large variability in the size and shape of fish, as well
as the variation in the shape of the fish’s body. While it is possible to identify a certain
shape of fish, it is not always possible to determine the number of fish in the image.

Given a set of unlabeled video collections, the main limitation of our study is that it
is only capable of segmenting foreground items and cannot distinguish between distinct
object instances or semantic classes. Occasionally, the whole object or parts of the object
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may not be segmented out. Our model’s performance is highly influenced by the charac-
teristics of training videos, the coverage of object categories, and the motion of both the
camera and the objects, similar to other data-driven learning techniques. Our results are
based on a few assumptions. One is that a small subset of semantically similar objects
(e.g., all fish) exists in the scene, and these objects are likely to share the same motion
feature or to be semantically similar. These assumptions are reasonable if the objects are
within a certain size range, they all belong to the same class, and most of them share
similar colours, shapes, and sizes. Another limitation of our approach is that we used a
relatively large number of videos with a relatively small number of object categories (for
instance compared to ImageNet). This allows our model to segment objects of all shapes
and colours with only a handful of training examples.

One other limitation of our current framework is that, in some cases, it is unable to
detect all the objects that appear in the video. In future work, we intend to study how
to develop a detection-based model that is able to detect all the objects appearing in a
given scene. Therefore, in the next step, we should look for a more robust and generic
objectness model that is able to generalize across a variety of object categories, and a
variety of background types. Further work could be conducted on more fine-grained
object segmentation, especially with new video datasets.

Moreover, background subtraction is a process of detecting foreground from video
streams and has drawn much attention due to its applications in multiple domains such as
automated video surveillance, Human-Machine Interaction (HMI), content-based video
coding, anomaly detection, visual analysis of human activities, visual observation of ani-
mals, and target tracking. However, the robustness of background subtraction is affected
by various challenges such as illumination variations, shadows, dynamic background,
camouflage, intermittent object motion, moving cameras, night videos, low frame rate,
and bootstrapping. Additionally, the influence of illumination variation, change in the ap-
pearance of moving objects, and the presence of abrupt motion, occlusion and shadow can
also cause the background compensation method to fail to detect moving regions resulting
in moving objects escaping detection. These are some scenarios where the background
subtraction method may fail to accurately detect motions.

5.7 Conclusion

We proposed a novel unsupervised method for tracking and segmenting fish in videos
in the wild. Our results demonstrate that our proposed pseudo-label generation method
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that combines optical flow with background subtraction followed by an unsupervised re-
finement network, leads to accurate segmentation results when used to train a supervised
segmentation DNN. We showed that this segmentation approach can be used for effective
tracking. We tested our model on three challenging datasets with the results indicating
that our method could be a valuable candidate for assisting in the video processing of
fish behaviour. Future work can extend our approach to other animal species that are
commonly found in aquatic environments. Another important direction is to extend this
model to other fields, for example, tracking-by-detection for autonomous driving.
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Chapter 6

Adaptive Uncertainty Distribution in
Deep Learning for Unsupervised
Underwater Image Enhancement

One of the main challenges in deep learning-based underwater image enhancement is
the limited availability of high-quality training data. Underwater images are difficult to
capture and are often of poor quality due to the distortion and loss of colour and con-
trast in water. This makes it difficult to train supervised deep learning models on large
and diverse datasets, which can limit the model’s performance. In this Chapter, the sec-
ond research question is addressed. Specifically, we explore an alternative approach to
supervised underwater image enhancement. Therefore, we propose a novel framework
called Uncertainty Distribution Network (UDnet), which learns to adapt to Uncertainty
Distribution in its unsupervised reference map (label) generation to produce enhanced
output images. UDnet is composed of three main parts. A raw underwater image is first
adjusted for contrast, saturation, and gamma correction; one of these adjusted images is
then randomly fed to (1) a statistically guided multi-colour space stretch (SGMCSS) mod-
ule that generates a reference map to be used by (2) a U-Net-like conditional variational
autoencoder (cVAE) module, to extract features for feeding to (3) a probabilistic adap-
tive instance normalization (PAdaIN) block that encodes feature uncertainties for final
enhanced image generation. We use the SGMCSS module to ensure visual consistency
with the raw input image and to provide an alternative to training using a ground truth im-
age. Hence, UDnet does not need manual human annotation and can learn with a limited
amount of data to achieve state-of-the-art results. We evaluated UDnet on eight publicly-
available datasets. The results show that it yields competitive performance compared to
other state-of-the-art approaches in quantitative as well as qualitative metrics. Our code

136



Chapter 6 Adaptive Uncertainty Distribution in Deep Learning for Unsupervised
Underwater Image Enhancement

is publicly available at https://github.com/alzayats/UDnet.
Chapter 6 differs from the previous two chapters, Chapters 4 and 5, in that it intro-

duces a new technique called the adaptive uncertainty distribution technique. While the
research in Chapters 4 and 5 focused on using self-supervised techniques for label gen-
eration, Chapter 6 explores the use of this new technique to improve the performance of
the models. The adaptive uncertainty distribution technique was adopted because it offers
several advantages over traditional self-supervised techniques. For example, it allows the
model to better handle uncertainty in the data by adaptively adjusting the distribution of
uncertainty based on the data. This can lead to improved performance and more accurate
label generation.

6.1 Introduction

One of the main challenges faced in deep learning-based underwater image enhancement
is the lack of large datasets of high-quality underwater images. Unlike many other ter-
restrial domains, such as natural images, there are relatively few high-quality underwater
images available for training deep learning models. This makes it challenging to train
accurate models for enhancing underwater images. Additionally, the unique properties of
water, such as refraction and absorption, make it challenging to apply image enhancement
techniques that have been developed for other domains [174].

Underwater environments are challenging due to the extreme range of colour and con-
trast, especially when compared to images acquired in controlled environments, where a
vast majority of existing underwater image enhancement algorithms were trained. When
natural light enters the water from the air, it can be scattered multiple times as it travels
through the water. This scattered light forms the background light that illuminates the un-
derwater scene. In addition to the background light, the light that is directly reflected off
objects in the scene also travels to the camera. The total light that is perceived by the cam-
era is the sum of these two components: the background light and the directly reflected
light. This is what creates the colours and details that we see in underwater images, see
Fig. 6.1 left image. Moreover, different wavelengths of light are absorbed and scattered at
different rates as they travel through water. Blue light, with its shorter wavelength, is less
absorbed and scattered than other colours, which is why it can travel the longest distance
through water. As a result, when we look at objects underwater, the blue light is the most
dominant, giving the images a blueish tint, as can be seen in Fig. 6.1 right image.

Moreover, objects immersed in water typically appear pale and blurry, making it hard
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to recognize features. Also, colours are washed out, reducing contrast and visual infor-
mation. This effect is known as the aberration of refraction and it is due to the variation
in the refractive index of water as the light passes through it.

Figure 6.1: (Left) Natural light entering the water is scattered multiple times, forming the
backscattering for the underwater scene. The light directly reflected off ob-
jects in the scene also travels to the camera, and the total light perceived is the
sum of these two components, creating the colours and details in underwa-
ter images. (Right) Different wavelengths of light are absorbed and scattered
differently as they travel through water. Blue light travels the longest dis-
tance due to its shorter wavelength, making underwater objects appear blue in
colour.

When light travels from one medium to another, it bends, or refracts, due to the change
in the speed of light in the new medium. This can cause the light to be focused at a
different point than where it would be focused in the absence of refraction, resulting in
distortion of the image. Aberration of refraction is particularly significant in underwater
photography, where the refractive index of water is different from that of air. Due to the
refraction, colourful underwater objects appear pale, and contrast is lost between the sea
objects and backgrounds.

Furthermore, there is an imbalance between colour channels, depending on the wave-
length range of light that has travelled through the water. This effect is known as colour

cast and is typically caused by incorrect white balance, which is the process of adjusting
the colours in an image so that objects that are supposed to be white are actually rendered
as white. If the white balance is not correct, the colours in the image may appear unnatural
or distorted.

Due to these difficulties, underwater image enhancement is a challenging problem that
requires specific considerations and the development of specialized algorithms and tech-
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niques. These algorithms and techniques aim to improve the quality of images taken
underwater and can account for correcting distortion caused by water, improving colour
accuracy, and increasing the overall contrast and sharpness of the image. There are a va-
riety of techniques used for underwater image enhancement, including colour correction
, contrast enhancement, and noise reduction.

While traditional image enhancement methods such as histogram equalization do a
reasonable job of improving the visual quality of underwater images, current traditional
methods struggle with the complexity of underwater images. Despite the difficulties,
there is an ever-increasing need for high-quality enhancement of underwater images. For
example, underwater robots require high-quality images with proper colour and contrast
to accurately perform automated tasks like object detection and target recognition. For
example, Fig. 6.2 shows how the underwater image enhancement model increases under-
water robots’ capacity to visually perceive their surroundings.

Underwater robots are often used in a variety of applications, including oceanic ge-
ological exploration, resource exploitation, ecological research, and others. However,
their visual perception is often affected by environmental factors such as water clarity,
light conditions, and the presence of particles or other objects in the water. These fac-
tors can make it difficult for underwater robots to accurately perceive and interpret their
surroundings, which can limit their ability to perform their intended tasks. To overcome
this, researchers are developing various approaches to improve the visual perception of
underwater robots, such as using advanced imaging sensors and software for image en-
hancement and object recognition. However, specialized hardware platforms and cameras
can be expensive with a high power demand, which is not suitable for underwater robots
especially when they perform edge processing.

Due to its importance, underwater image enhancement has been an active area of re-
search, despite its many challenges. Early methods relied on histogram equalization and
contrast stretching and were not able to achieve effective results. Recently, much progress
has been made in the field of underwater image enhancement. For instance, [373] has
shown that convolutional neural network (CNN) based image enhancement algorithms
perform well on underwater images, achieving enhanced images with improved contrast
and colour reproduction. The work in [374] introduced a CNN-based image enhance-
ment framework for underwater images that is able to automatically determine optimal
enhancement parameters, resulting in images with both high quality and low computa-
tional cost. This method has achieved state-of-the-art performance compared to prior
works in image enhancement for underwater images. However, the main limitation of all
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previous methods is that they are trained in a supervised manner with a set of potential
reference images (labels), which is reliant on a human to manually select the best one
as the ground truth. Yet another limitation of these works is the limited high-quality and
realistic underwater image datasets for their training.

To address these limitations, in this work, we explore an alternative approach to su-
pervised underwater image enhancement. Specifically, we propose a novel unsupervised
framework that removes the need for human-selected labels. The unsupervised random
labels (reference map images) are generated by an SGMCSS module. This reference
map generation module is an iterative multi-scale statistically guided multi-colour space
stretch that improves the visual quality of the auto-generated reference image. Multi-scale
statistically guided means that the stretch modules adaptively increase the contrast of im-
ages by regulating histogram distribution in distinct colour spaces. This is essential to the
training process of the proposed model since it needs to both model the uncertainty and
the statistical similarity between the input image and the reference image. The output of
the reference map generator is used by a U-Net-like cVAE to extract a better representa-
tion of image features, which are fed to a PAdaIN block. This block can be viewed as a
form of Bayesian feature learning, in which learning happens automatically through back-
propagation. In contrast to prior work in underwater image enhancement [375], we use
PAdaIN to transform the global enhancement statistics of input features. We also leverage
it to encode uncertainty in the label image distributions, which can result in better image
quality.

Our main contributions are summarized as follows:

• We propose a probabilistic unsupervised underwater image enhancement frame-
work that leverages an encoder-decoder network that learns the uncertainty distri-
bution of the underwater images from a pair of raw and reference images.

• To improve the visual quality of the reference image, we develop a multi-scale
statistically guided multi-colour space stretch module.

• We show that while our method does not need manual human annotation it outper-
forms state-of-the-art supervised models on several datasets.

The rest of this paper is organized as follows. In Sec. 6.2, we review the related work
on underwater image enhancement. In Sec. 6.3, we describe the architecture and different
components of our proposed framework in detail. We describe the dataset and the exper-
imental setup used in our work, while presenting our results and evaluations in Sec. 6.4.
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Figure 6.2: Sample enhancement results achieved using our proposed underwater image
enhancement model. A typical example application of our method is increas-
ing underwater robots’ capacity to visually perceive their surroundings by im-
proving their ability in detecting image features and key points. The right
column shows images before enhancement, while the left are images after
enhancement. The bottom images show key points detected using the SIFT
method, before and after enhancement. Please refer to Sec. 6.4.7 for details.
Best viewed online for colour and details.

The detailed discussions of our results are presented in Sec. 6.5. Finally, we provide
concluding remarks and directions for further research in Sec. 6.6.

6.2 Related Work

One of the main approaches for enhancing underwater images is called prior-based, which
uses a physical-model-based method to improve the accuracy of image enhancement.
Physical-model-based methods aim to improve underwater images by using visual cues
to estimate the optical parameters that affect the images. By applying these parameters in
reverse, the original, unaltered images can be reconstructed. Examples of the visual cues
used in these methods include the red channel prior [376], the underwater dark channel
prior [377], and the underwater light attenuation prior [378]. One example of the use of
light attenuation prior is a dehazing algorithm proposed by Chiang et al. [379]. Galdran et
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al. [376] proposed another method that is a variation of the Dark Channel Prior approach
that uses red channel information to calculate the depth of underwater images. Berman
et al. [380] looked at using various spectral profiles of different water types and calcu-
lated two global parameters: the attenuation ratios of the blue-red and blue-green colour
channels. Another prior-based method, called Sea-thru, was developed by Akkaynak et

al. [381] and uses RGBD images as input to estimate backscatter and the attenuation
coefficient.

Another approach to underwater image enhancement is known as the model-free method,
which enhances the images without taking into account the degradation process that they
have undergone. Examples of such methods include traditional contrast-limited adaptive
histogram equalization , white balance which adjusts the overall colour balance of an
image to compensate for the blueish tint that is often present in underwater images, and
Retinex [382]. In some cases, these methods may be combined or enhanced with addi-
tional techniques, such as fusion-based approaches or multi-scale strategies , to improve
their performance. In other cases, these methods may improve image quality by adjusting
pixel values. One such example is [383], which proposes an unsupervised colour cor-
rection (UCM) technique. It uses white balance to even out the different colours, and
then it makes the image’s contrast higher. Another technique called adaptive histogram
enhancement, builds on UCM and uses Rayleigh distribution stretching to make images
clearer and reduce over-enhancement. These methods can make underwater images look
brighter and clearer.

Deep learning-based methods are the third category of approaches to enhancing under-
water images. These methods use training data to automatically extract useful informa-
tion from the images and apply it to enhance it. Deep-learning-based image enhancement
methods can be divided into convolutional neural networks (CNNs) and generative ad-
versarial networks (GANs). One example of the use of CNN is the study by Sun et

al. [384]. They proposed a CNN model that utilized an encode-decoder framework for
removing noise from underwater images. Li et al. [385] developed a lightweight CNN
model that incorporates information about the underwater scene to synthesize degraded
images. They also proposed a model that uses information about light transmission to
improve the quality of degraded images in specific regions. Another example is the use of
a GAN proposed by Li et al. [386], to generate synthetic underwater images in an unsu-
pervised manner. This approach allows for the training of an enhancement network using
the synthetic data. Another example is the weakly supervised method proposed by Li et

al. [387], which reduces the need for paired data. Additionally, Guo et al. [388] enhanced
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degraded underwater images using a multi-scale dense GAN. Islam et al. [18] introduced
FUnIE-GAN, a GAN model inspired by U-Net that is effective at improving colour and
sharpness in underwater images.

In contrast to previous studies, our approach integrates probabilistic-based methods
into deep-learning-based methods, which automatically learn the uncertainty distribution
of underwater images. Specifically, our deep learning method includes conditional varia-
tional autoencoders (cVAEs). A variational autoencoder (VAE) is a type of deep learning
generative model that can create new data that is similar to its training data. A VAE
consists of two parts: an encoder, which maps the input data to a low-dimensional latent
space, and a decoder, which maps the latent space back to the original input space. The
encoder and decoder are trained together to maximize the likelihood of the generated data,
while also enforcing a regularization constraint on the latent space, which encourages the
model to learn a compact and meaningful representation of the input data.

Variational autoencoders (VAEs) and conditional VAEs have been widely used in com-
puter vision tasks. Unlike traditional encoders that output a single value for each latent
state attribute, VAEs formulate the encoder to describe a probability distribution for each
attribute. To effectively train a VAE, both a regularizer and a reconstruction loss must
be implemented. These tools penalize any inconsistencies between the VAE’s posterior
and prior distributions of the latent representation. VAEs and cVAEs have been used in a
variety of applications related to underwater image enhancement. For instance, in some
studies, VAEs were utilized to model the background of images for salient object detec-
tion , while in others they were employed to learn motion sequence generation . Some
researchers have even used VAEs to denoise images and predict multiple deprojected in-
stances of images and videos. Additionally, VAEs have been combined with contrastive
learning to identify and enhance salient features. Overall, VAEs have proven to be useful
for generating diverse solutions in a variety of settings.

6.3 Method

This section describes the various components and concepts utilized to build our Un-
certainty Distribution Network (UDnet). As shown in Fig. 6.3, UDnet is composed of
three abstract building blocks including a reference map generation block that uses a sta-
tistically guided multi-colour space stretch module, a feature extractor block that uses
a cVAE, and a probabilistic adaptive instance normalization block. All of these blocks
and their underlying components and concepts will be discussed in detail below, how-
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Figure 6.3: The architecture of UDnet is composed of three abstract modules: the refer-
ence maps generation module, the feature extractor module, and the PAdaIN
module. The input is a three-dimensional underwater image with pixel val-
ues ranging from 0 to 1. UDnet generates a random enhanced reference map
image from the input image, and uses a U-Net-based cVAT feature extrac-
tor to map input images to representations, which are then transformed by
the PAdaIN module to create the enhanced image. In the training phase, the
feature extractor is used to calculate the posterior distribution, and random
samples from this distribution are used to transform the enhancement repre-
sentation. In the testing phase, a single degraded image is used as the input
and random samples from the Prior distribution are used to generate the en-
hanced output image. The detailed structure of each module is described in
subsequent subsections of the paper.

ever, the reader is encouraged to investigate the full detail of our implementation code at
https://github.com/alzayats/UDnet.

6.3.1 Reference Maps Generation

The main challenge when training deep learning networks for underwater image enhance-
ment is the limited availability of reference maps (labels) for degraded input images. To
address this issue, we auto-generated reference maps based on Underwater Image En-
hancement Benchmark Dataset (UIEBD) [20], which contains real-world underwater im-
ages and corresponding reference maps generated using 12 state-of-the-art enhancement
algorithms.
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Autogenration of three reference maps from the input image

In the original UIEBD, volunteers were asked to compare the enhanced results and sub-
jectively select the best one as the final reference image. However, our reference map
generation process uses the same intuition without human intervention. Using the de-
graded input image (original image), as shown in the first step of Fig. 6.3, we generate
three enhanced reference maps by three enhancement algorithms, one of which is ran-
domly selected to introduce uncertainty into our training dataset. It is worth mentioning
that adding more enhanced reference maps did not increase the model accuracy as dis-
cussed in more detail in Sec. 6.4.8.

The three methods that we chose to introduce uncertainty into the dataset were con-
trast and saturation adjustment, as well as gamma correction on the original images.
These methods were chosen because they can effectively simulate the distortions com-
monly found in underwater images, such as changes in contrast, saturation, brightness,
and colours. As shown in Eq. (6.1), the contrast and saturation adjustment were per-
formed using a linear transformation formula, where the adjustment coefficient α was
the same for all pixels for contrast adjustment and varied for each pixel for saturation
adjustment.

y = (x−m)× α + x, (6.1)

where x and y refer to the degraded and enhanced images, respectively, m denotes the
mean of each channel, and α is the adjustment coefficient.

Our approach has several advantages, including saving time and increasing reliability
compared to using human observers to generate reference maps. We evaluated the effec-
tiveness of the generated reference maps in Sec. 6.4.5 and Sec. 6.4.6 by comparing the
enhanced results to the subjective selections made by volunteers in the original UIEBD
dataset. Our goal was to create uncertain labels that would reflect the uncertainty in the
ground truth recording, rather than significantly altering the original labels. To achieve
this, we utilized a Statistically Guided Multi-Colour Space Stretch (SGMCSS) or Colour
Correction module.

Statistically Guided Multi-Colour Space Stretch for Colour Correction

The colour correction module’s goal is to improve the colour and contrast of the refer-
ence maps generated. This is obtained by transforming the reference map Red Green
Blue (RGB) values to the optimal RGB values, which involves determining the proper
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camera white-balance for colour-neutral subjects, as well as removing the effects of lens
flare and red-green chromatic aberration. This could be useful when dealing with over-
saturated images. The colour correction module is designed for the case where the mean
and standard deviation of the red green and blue colour values are known. This module
uses a non-parametric approach to colour correction [374], which is able to accommodate
new statistical distributions of the pixel values in the red, green and blue colour channels.
The colour correction module consists of two main components: a dual-statistic balance
module and a multi-colour space stretch module.

In the dual-statistic balance module, the image is processed by two different modules
that use statistics of the image (average and maximum values) to correct its colour balance.
The output is then enhanced using two residual-enhancement modules to recover lost
details.

The first residual-enhancement module is based on Grey World (GW) theory. The Gray
World theory is a method for colour correction in images. It is based on the assumption
that the average colour of objects in a perfect image is grey, which means that the average
values of the R, G, and B channels are equal. This means that the scale factors for each
channel, eR, eG, and eB, can be determined using the GW theory:

xGW = Conv1×1(x)⊗ A,

where A = [ 1
AR

, 1
AG

, 1
AB

] ∈ R3×1, Ac denotes the average value of c channel in the original
image, and ⊗ denotes pixel-wise multiplication.

The second residual-enhancement module is based on the White Patch (WP) algorithm.
The White Patch algorithm is another method for colour correction in images. It is based
on the assumption that the maximum response of the RGB channels in an image is caused
by a white patch in the scene. This white patch is assumed to reflect the colour of the light
in the scene, so the largest value in the RGB channels is used as the source of light. Based
on this hypothesis, the scale factors for each channel can be expressed as:

xWP = Conv1×1(x)⊗M,

where M = [ 1
MR

, 1
MG

, 1
MB

] ∈ R3×1, Mc denotes the maximum value of c channel in
original image..

The two residual-enhancement results are merged and passed to the stretch module as
follows:

xDSB = Conv3×3(x
GW )⊕ Conv3×3(x

WP ),

where xDSB represents the result enhanced by the dual-statistic balance module.
In the multi-colour space stretch module, the image is transformed into different
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colour spaces (HSI and Lab) and processed by a trainable module to improve contrast.
The original image is also enhanced and added to the stretched version as follows:

xfinal = Conv3×3(x
r)⊕ Conv3×3(x

h)⊕ Conv3×3(x
l),

Where xr, xh, xl denote the histogram stretched pixel value in RGB, HSI, and Lab colour
spaces, respectively.

The H channel of the HSI colour space is preserved without any changes. The output is
then converted back to the RGB colour space and merged together by going through 3×3

convolutional layer and pixel-wise add up. Overall, this technique can improve the visual
quality of the reference map that will be passed to the next building block of UDNet, i.e.
the feature extractor module (see Fig. 6.3), by correcting colour balance and enhancing
contrast.

6.3.2 Feature Extraction

The next abstract building block of UDNet, as shown in Fig. 6.3, is its feature extractor
block. UDnet uses a two-branch U-Net-based feature extractor to map the input images to
representations. These representations are then fed into the PAdaIN module, which trans-
forms the enhancement statistics of the input to create the enhanced image as explained
in 6.3.3.

The training branch of the feature extractor is used to construct posterior distributions
using the raw original underwater image and its corresponding reference map image as
inputs. The test branch, on the other hand, is used to estimate the prior distribution of a
single raw underwater image.

The PAdaIN block is used to encode the uncertainty in the input image, allowing UD-
Net to generate multiple enhanced versions of the image that capture the different possible
interpretations of the original image. To achieve this, UDnet uses a prior/posterior block
to build the distribution of possible enhancements. This block is designed to construct
both a mean and a standard deviation distribution, using 1× 1 convolutions to transform
the input data matrix into a series of distributions that capture the uncertainty in the input
image.

In the training stage, the input image and its corresponding reference image are used to
learn the posterior distributions of the latent codes as follows:

a ∼ Nm

(
µ (y,x) ,σ2 (y,x)

)
, (6.2)
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b ∼ Ns

(
m (y,x) ,v2 (y,x)

)
, (6.3)

where a and b are two random samples from the mean and standard deviation posterior
distributions, Nm and Ns are the N -dimensional Gaussian distribution of the mean and
standard deviation, and y and x are the reference image and the raw input image, respec-
tively.

Once these distributions have been constructed, random samples are extracted from
them and injected into the PAdaIN module, where they are used to transform the statistics
of the received features.

In the testing stage, the latent codes generated for PAdaIN are determined only by the
input image to learn the prior distributions of the latent codes as follows:

a ∼ Nm

(
µ (x) ,σ2 (x)

)
, (6.4)

b ∼ Ns

(
m (x) ,v2 (x)

)
, (6.5)

where a and b are two random samples from the mean and standard deviation prior dis-
tributions, Nm and Ns are the N -dimensional Gaussian distribution of the mean and stan-
dard deviation, respectively and x is the raw input image.

The UDnet model is applied multiple times to the same input image in order to generate
multiple enhancement variants. This is done by re-evaluating only the PAdaIN module
and the output block, without retraining the entire model, which makes UDNet very effi-
cient. The resulting diverse enhancement samples are then used for Maximum Probability
estimation that takes the enhancement sample with the maximum probability as the final
estimation.

Loss Function

The training process for UDnet follows the standard procedure for training a cVAE model,
which involves minimizing the variational lower bound. However, our approach has an
additional step of finding a meaningful embedding of enhancement statistics in the latent
space. This is achieved through the use of a posterior network (as shown in Fig. 6.3),
which learns to recognize posterior features and map them to posterior distributions of
the mean and standard deviation. Random samples from these distributions can be used
to formalize the enhanced results. This approach allows for the incorporation of uncer-
tainty into the enhancement process, which can improve the accuracy and reliability of
the resulting images.
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During the training process, the PAdaIN module is used to predict the enhanced image
by receiving random samples a and b from Eq. (6.2) and Eq. (6.3), respectively. The
enhancement loss (Eq. (6.6)) is calculated based on the differences between the predicted
image and the reference map, and is used to penalize the model if the output deviates from
the reference.

Le = Lmse + λLvgg16, (6.6)

where Lmse denotes the mean square error loss and Lvgg16 denotes the perceptual loss
[389], λ refers to a weight parameter.

The mean square error loss Lmse and the perceptual loss Lvgg16 are two common metrics
used to evaluate the performance of image enhancement algorithms. The mean square
error loss measures the average squared difference between the predicted and reference
images, while the perceptual loss, which was introduced by Johnson et al. [389], measures
the differences between the high-level features of the predicted and reference images. The
weight λ is used to control the relative importance of these two loss terms in the overall
enhancement loss Le. For example, if λ is set to a high value, the model will be more
heavily penalized for large differences between the predicted and reference images, while
if λ is set to a low value, the model will be less sensitive to such differences. The specific
values of λ used in the training process will depend on the characteristics of the dataset
and the desired performance of the model.

In addition to minimizing the enhancement loss Le, the training process for UDnet also
involves using Kullback-Leibler (KL) divergences DKL to align the posterior distributions
with the prior distributions (Eq. (6.7) and Eq. (6.8)).

Lm = DKL (Nm (x) ∥Nm (y,x)) , (6.7)

Ls = DKL (Ns (x) ∥Ns (y,x)) , (6.8)

where m and s are the mean and the standard deviation, respectively. KL divergence is a
measure of the difference between two probability distributions and can be used to com-
pare the posterior distributions learned by the model with the prior distributions that are
assumed to represent the distribution of latent variables in the training data. By minimiz-
ing the KL divergences between the posterior and prior distributions, the model is able to
learn a more accurate representation of the latent space, which can improve the quality of
the enhanced images.

The total loss function used for training UDnet is the weighted sum of the enhancement
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loss Le and the KL divergences DKL between the posterior and prior distributions,

L = Le + β(Lm + Ls), (6.9)

where β is a weight parameter, whose value depends on the dataset’s characteristics and
the model’s desired performance. By minimizing this total loss function, L, the model is
able to learn an effective mapping from the input degraded images to the corresponding
enhanced images, while also aligning the posterior and prior distributions in the latent
space. This allows the model to generate high-quality enhanced images while also incor-
porating uncertainty into the enhancement process.

6.3.3 Probabilistic Adaptive Instance Normalization (PAdaIN)

The final abstract building block of UDNet, as shown in Fig. 6.3 is PAdaIN block. The
goal of UDnet is to adjust the appearance of underwater images, such as the colours and
contrasts, without altering the content of the image. This is important because it allows
the enhanced images to be more visually appealing and easier to interpret, without com-
promising the integrity of the original image. Therefore, We use a probabilistic adaptive
instance normalization (PAdaIN) to capture these properties.

The proposed PAdaIN method [375] is based on the AdaIN algorithm [390], which
is commonly used for style transfer in image processing. AdaIN adjusts the mean and
standard deviation of the features of the content image to match those of the style image,
effectively changing the appearance of the content image without altering its content.
This approach is useful for underwater image enhancement because it allows the model
to adjust the appearance of the image without changing its content, which is important for
maintaining the integrity of the original image.

However, AdaIN relies on the availability of known content and style images, which
is not always the case in underwater image enhancement processes. To address this is-
sue, PAdaIN introduces random samples from the posterior distributions of the mean and
standard deviation as the parameters of the AdaIN operation, which can be formulated as:

PAdaIN (x) = b

(
x− µ (x)

σ (x)

)
+ a, (6.10)

where b and a are two random samples from the posterior distributions of the mean and
standard deviation, respectively.

These posterior distributions are learned using a cVAE, which was described in 6.3.2.
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This allows PAdaIN to generalize the AdaIN algorithm and apply it to underwater image
enhancement without the need for known content and style images. Overall, PAdaIN is
able to capture the important appearance-related features of the input image and use them
to generate enhanced images that maintain the integrity of the original image.

It is worth noting that in contrast to other approaches that consider the variance of the
image, such as GAN, PAdaIN is based on the statistical distribution of the image features,
which are invariant to transformations like colour transformation. This is done by condi-
tioning the network on training images and their reference map, which, along with the use
of a differentiable approximation of the uncertainty, make UDnet easily trainable with a
single backward pass.

6.3.4 Uncertainty Distribution

Overall, through its novel structure, UDNet learns to adapt to uncertainty distribution.
Here, uncertainty distribution refers to the inherent uncertainty that can exist in the im-
age enhancement process, because different images need different types of enhancements
such as contrast, saturation, gamma, or other enhancements. The main idea behind UDnet
is to better incorporate this uncertainty in the enhancement process. This is motivated by
the fact that the true clean image is often unavailable, and that there is a degree of uncer-
tainty in the labels used to train the image enhancement models. Existing deterministic
learning-guided methods [391] are unable to capture this uncertainty, and therefore, have
to make compromises between different possible enhancement results.

To address this issue, UDnet uses an implicit variable z to represent the uncertainty in
the enhancement process. This variable could represent human subjective preferences, or
the parameters of the camera or enhancement algorithms used to capture or generate the
ground truth images, which could affect the outcome of the enhancement process. By
taking this uncertainty into account, UDnet is able to more accurately capture the range
of possible enhancements, rather than trying to determine a single ”correct” result. This is
particularly useful in situations where the true, unaltered image is not available or cannot
be accurately reproduced.

The goal of UDNet is to learn a mapping from the low-quality input image x to the
clean image y that takes into account the uncertainty represented by z. This can be for-
malized as follows:

p (y |x) ≈ p (y |zmax,x) , zmax ∼ p (z |x) , (6.11)
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where p (z |x) denotes the distribution of uncertainty, and zmax denotes the sample with
the maximum probability.

Eq. (6.11) represents the probabilistic framework underlying UDnet. In this equation,
p (y |zmax,x) is the probability of the clean image y given the sample with the maximum
probability zmax and the low-quality input observation x. p(z|x) is the probability of
the uncertainty variable given the observation. The goal of the model is to learn these
probability distributions from the training data and then use them to generate enhanced
images that incorporate uncertainty into the enhancement process. By doing so, UDnet
is able to (1) provide users with multiple alternative enhancement results to choose from,
or (2) improve the accuracy and reliability of the final enhancement result by taking the
enhancement sample with the maximum probability as the final estimation, without user
intervention.

6.4 Experiments

In this section, we perform several experiments to evaluate the performance of our pro-
posed method. We will first describe the utilized datasets, evaluation metrics and imple-
mentation details. Then, we quantitatively and qualitatively evaluate our model against
10 popular image enhancement models on 8 public datasets. Finally, we will demonstrate
the significance of our work through a visual perception improvement test.

6.4.1 Datasets

We used eight publicly available datasets for our model’s performance verification. These
datasets are: EUVP [18], UFO [19], UIEBD [20], DeepFish [24], FISHTRAC [25],
FishID [26], RUIE [27], SUIM [28]. Details of these datasets can be found in Table 6.1.
In EUVP [18], UFO [19], and UIEBD [20], there are many paired images and unpaired
images which were divided as shown in Table 6.1. The paired images are the ones that
have ground truth. The rest of the datasets have only unpaired images. In our experiment,
we used only UIEBD [20] for training in an unsupervised way without the ground truth.
We used the other datasets for performance evaluation.

6.4.2 Evaluation Metrics

Evaluation metrics for image enhancement are often based on natural image statistics.
Perceptual and structural image qualities can be judged in different ways. We employ
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Table 6.1: The datasets used in our research. The numbers represent the number of images
in sets

Datasets
Train Test

Paired Unpaired Paired Unpaired

EUVP [18] 3700 3140 515 -

UFO [19] 1500 - 120 -

UIEBD [20] 800 - 90 60

DeepFish [24] - 3200 - 600

FISHTRAC [25] - 600 - 71

FishID [26] - 7093 - 6897

RUIE [27] - 2904 - 726

SUIM [28] - 1525 - 110

four full-reference evaluation metrics and three no-reference evaluation metrics for eval-
uating the quantitative performance of our image enhancement model. Specifically, 1)
The full-reference evaluation metrics consist of Peak Signal-to-Noise Ratio (PSNR) [21],
Structural Similarity (SSIM) [21], Most Apparent Distortion (MAD) [22], and Gradi-
ent Magnitude Similarity Deviation (GMSD) [23], which are used for paired test sets
(EUVP [18], UFO [19], UIEBD [20]). A higher PSNR or a lower MAD score means
that the output image and the label image are closer in perceptual content, while a higher
SSIM or a lower GMSD score means that the two images are more structurally sim-
ilar. 2) The no-reference evaluation metrics are: Underwater Image Quality Measure
(UIQM) [29], Multi-scale Image Quality Transformer (MUSIQ) [30], and Natural Im-
age Quality Evaluator (NIQE) [31] which are used for unpaired test sets (DeepFish [24],
FISHTRAC [25], FishID [26], RUIE [27], SUIM [28]). The UIQM is the linear combi-
nation of three underwater image attribute measures: the underwater image colourfulness
measure (UICM), the underwater image sharpness measure (UISM), and the underwater
image contrast measure (UIConM). A higher UIQM and MUSIQ or a lower NIQE score
suggests a better human visual perception. However, it is worth noting that these no-
reference metrics cannot accurately reflect the quality of an image in some cases [392],
so scores of UIQM, MUSIQ, and NIQE are only provided as references for our study. We
will present enhanced unpaired images in the visual comparisons section for readers to
appraise.
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6.4.3 Implementation Details

Our models were trained with an input resolution of 256×256 pixels. We scale the lowest
side of the image to 256 and then extract random crops of size 256× 256. We found that
for this problem set, a learning rate of 1× 10−4 works the best. It took around 500 epochs
for the model to train on this problem and the batch size was set as 10. Our networks were
trained on a Linux host with a single NVidia GeForce RTX 2080 Ti GPU with 11 GB of
memory, using Pytorch framework. The training is carried out with ADAM optimizer,
and the loss function, as explained in 6.3.2, is a combination of the Mean Squared Error
(MSE) Lmse, the perceptual loss Lvgg16 [389], and Kullback-Leibler (KL) divergences
Lkl.

In order to boost network generalisation, we augment the training data with rotation,
flipping horizontally and vertically. Following [375], we adopt 1× 1 convolutions to
broadcast the samples to the desired number of channels before input to PAdaIN with a
latent space of a 20-dimensional N .

6.4.4 Compared Methods

To have a comprehensive and fair evaluation of our model, we compare it to 10 previous
studies including six conventional unsupervised methods (CLAHE [393], IBLA [394],
RGHS [395], UCM [383], UDCP [377], ULAP [378]) and four deep-learning-based
methods (PIFM [373], PUIEnet [375], USLN [374], Wavenet [391]). The comparison
with conventional unsupervised methods aims to demonstrate the advantages of our train-
able unsupervised deep-learning-based method.

We applied these conventional unsupervised approaches directly to the test sets. We
used the respective studies’ code and training approach for the deep learning-based meth-
ods. To guarantee the experiment’s objectivity, we trained the four deep-learning-based
methods on UIEBD [20] and applied the author-provided model and network training
parameters.

6.4.5 Quantitative Comparisons

The comparison results for all paired test sets are summarized in Table 6.2. We report the
average scores of the four full-reference metrics (PSNR, SSIM, MAD, GMSD). Table 6.2
demonstrates that our proposed method outperforms all six conventional unsupervised
methods and all four deep-learning-based methods in all four full-reference metrics on
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Figure 6.4: Visual comparisons on challenging underwater images sampled from paired
datasets, i.e. EUVP [18], UFO [19], and UIEBD [20]. The name on the right
of each row refers to the enhancement method used.

the EUVP dataset and shows great performance on the UFO dataset. Our model achieves
the highest PSNR, SSIM scores on EUVP, and the lowest MAD, GMSD scores on EUVP,
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Figure 6.5: Visual comparisons on challenging underwater images sampled from Deep-
Fish [24], FISHTRAC [25], and FishID [26]. The name on the right of each
row refers to the method. We also include a short video of our model’s predic-
tion at https://youtu.be/k4ASsGze5p8 and https://youtu.be/NV5GH-GG 3c.
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Figure 6.6: Visual comparisons on challenging underwater images sampled from RUIE
[27], and SUIM [28]. The name on the right of each row refers to the method.
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UFO. In addition, we also found that

• Although our model was trained in an unsupervised way, it still outperformed the
fully supervised deep-learning-based models trained on UIEBD dataset on EUVP
and UFO.

• This result shows that our proposed unsupervised deep-learning-based method is
better than conventional ones at preserving structural information and contrast preser-
vation, which suggests the superiority of our trainable model.

• Our model’s performance is slightly lower than fully supervised methods on UIEBD
dataset. However, this is because fully supervised methods were trained on the
images and ground truth labels acquired from the UIEBD.

• Even without any extra labels, our model outperforms models that are trained on
the UIEBD dataset on the two metrics of MAD and GMSD for paired datasets.

We also provided quantitative comparisons for unpaired test sets in Table 6.3, which
demonstrate that our model achieves the highest NIQE on FISHTRAC, FishID, RUIE,
SUIM, and the second-best UIQM score on DeepFish, FISHTRAC, SUIM. These results
also show that

• Deep-learning-based models cannot outperform conventional approaches in no-
reference evaluation metrics, in contrast to full-reference evaluation metrics.

• The quantitative results suggest that our method can generalize well on unseen
datasets even without ground truth.

According to the results presented in Table 6.4, our proposed method, UDnet, demon-
strates superior performance in underwater image enhancement when compared to other
published works on four datasets: UIEBD, EUVP, UCCS and UIQS. Specifically, UD-
net achieved the highest average values for PSNR, SSIM, UIQM and UCIQE metrics on
these datasets. For instance, on the UIEBD dataset, UDnet achieved the highest UIQM
and UCIQE values while on the EUVP dataset, it achieved the highest PSNR, UIQM and
UCIQE values. Similarly, on the UCCS dataset, UDnet achieved the highest UIQM and
UCIQE values and on the UIQS dataset, it achieved the highest UCIQE value. These
results indicate that UDnet is a robust method for enhancing underwater images.

Our method, UDnet, achieves better performance than other methods due to the effec-
tive combination of several components. The cVAE module is able to learn a compact and
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informative representation of the underwater image content, which helps to preserve im-
portant details during the enhancement process. The PAdaIN module is able to adaptively
adjust the style of the enhanced image to match the target domain, resulting in more nat-
ural and visually pleasing results. Finally, the multi-colour space stretch module is able
to effectively enhance the contrast and colour of the underwater images by stretching the
colour histogram in multiple colour spaces. These components work together to produce
high-quality enhanced underwater images.

6.4.6 Qualitative Comparisons

Underwater images possess several unique characteristics. They have more texture con-
tent and low luminance and contrast compared to terrestrial images. Therefore, it is impor-
tant to assess human visual perception in terms of image content enhancement in under-
water images, especially in terms of colour enhancement. In order to gain more insights
into the effectiveness of our proposed UDnet, we performed comprehensive investigations
and comparisons among all eight datasets using the ten previous methods introduced.

Fig. 6.4 demonstrates three example raw input images of each of the three paired
datasets in the first row, along with the enhanced image outputs from the 10 aforemen-
tioned studies and our UDNet. This comparison has a two-fold purpose:

• To demonstrate the effectiveness of the deep-learning-based methods in the no-
reference settings.

• To showcase the superiority of our unsupervised method, which has enhanced the
underwater scenes without ground truth for training.

Furthermore, to prove the superiority of our model in handling unpaired images, we
show visual comparisons of randomly selected underwater images from the five afore-
mentioned unpaired datasets in Fig. 6.5, and Fig. 6.6. We also include a short video of
our model’s prediction at https://youtu.be/k4ASsGze5p8 and https://youtu.be/NV5GH-
GG 3c.

As Fig. 6.5 shows, the obvious light limitation of the raw image results in low con-
trast. For example, UDCP and ULAP models tend to make the image darker, while others
such as UCMeven introduce reddish colour. In comparison, our model increases both
brightness and contrast, making the details of the image clear. The input image samples
given in Fig. 6.6 mostly suffer from obvious green deviation, which cannot be resolved
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by most models. For example, CLAHE, IBLA, and ULAP fail to remove the green devia-
tion. In comparison, our model removes the greenish colour and makes the image colours
balanced.

Overall, our qualitative comparison results show:

• Even when the ground truth label of the paired images is added to enhance visual
quality, some of the previous methods show problems such as over-enhancement,
lack of contrast, and saturation.

• Some of the models’ output images from the paired dataset have over- or under-
enhanced backgrounds, while some have no change in the background. However,
the output image of our model does not show such problems.

• Some of the models’ output images’ background pixels are saturated. However, our
model has not suffered from the over- or under-saturation problem.

Figure 6.7: Comparison of image feature and key points matching before (left) and after
(right) image enhancement with our model. From the top: the original images,
matched feature points, and SIFT keypoints. The images are from RUIE [27]
dataset.
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Table 6.5: Ablation study: comparison against different model variants on UIEBD dataset
in terms of average PSNR and SSIM values

Model variant PSNR ↑ SSIM ↑
w/o colour 22.01 0.791

All colour 21.73 0.784

Multi-label 22.12 0.795

w/o VGG 21.89 0.789

Full Model 22.23 0.812

6.4.7 Visual Perception Improvement

One of the main objectives of underwater image enhancement is to increase underwater
robots’ capacity to visually perceive their surroundings. This is essential for robots to
make autonomous decisions in complex underwater scenarios. To evaluate our model’s
performance in visual perception improvement, we used feature detection and matching
to assess its capability in improving the visual perception of underwater images. Fea-
ture detection and matching are commonly used techniques in many computer vision
applications, such as structure-from-motion, image retrieval, object detection, and image
stitching. Here, we use Scale-Invariant Feature Transform (SIFT), which helps locate the
local features in an image (keypoints), and Random Sample Consensus (RANSAC) [396],
which is used to match feature points. These methods are used to compare the visual
perception of an underwater image before and after enhancement. Fig. 6.7 depicts the re-
sult for two consecutive frames from RUIE [27] dataset, (blue 01.jpg) and (blue 02.jpg).
These show that the numbers of matched points between the two image frames increase
from 74 (before the enhancement) to 594 after the enhancement. At the same time, the
number of SIFT keypoints also dramatically increases as a result of the enhancement,
significantly improving the visual perception of the environment.

6.4.8 Ablation Study

For a more in-depth analysis of the proposed method, we analyzed the effect of its differ-
ent components and stages including its colour correction module, adding extra reference
maps to the original three maps, and VGG loss. The quantitative comparisons are pre-
sented in Table 6.5, where

• w/o colour means that UDnet is trained without the colour correction module.
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• All colour means that UDnet is trained with a colour correction module in all in-
puts, not just the reference map generation stage.

• Multi-label means that UDnet is trained with 6 extra generated enhanced reference
maps.

• w/o VGG means that UDnet is trained without VGG loss.

We used PSNR, and SSIM to evaluate the results on UIEBD, which are shown in Ta-
ble 6.5. Compared to the ablated model variants, the full model achieves the best quanti-
tative performance on both metrics. The qualitative comparisons are presented in Fig. 6.8.
Overall, the conclusions drawn from the ablation study are:

Figure 6.8: ABLATION STUDY: The qualitative comparison of the contributions of mul-
tiple stages of the proposed framework on the UIEBD dataset. (a) Input, (b)
ground truth, (c) w/o colour, (d) All colour, (e) Multi-label, (f) w/o VGG, (g)
Full Model.

1. Without the colour correction module, the proposed model generates unsatisfactory
results (see Fig. 6.8(c)). The enhanced image still has low contrast. For example, it
has no contrast at the bottom of the image and in the green part, which both belong
to the sea bed region.

2. With the colour module in all inputs, the model performs better, see Fig. 6.8(d).
The image is not as dark as w/o the colour module. However, the model still under-
enhances the detailed information at the bottom of the image and the green parts.

3. Adding more reference maps to the original three generated by contrast and satura-
tion adjustment, and gamma correction,does not improve the quality of the output
images (see Fig. 6.8(e)).
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4. When UDnet is trained without VGG loss, the quality of the generated image is de-
graded (see Fig. 6.8(f)). The reduced performance as presented in Table 6.5 demon-
strates that the VGG loss can make the model learn more information about the
original underwater scene from the labels and improve the visual quality of output.

6.5 Discussion

A variety of deep learning-based techniques have been proposed to enhance underwater
images. Most of these techniques are based on supervised learning that requires a large
amount of manually labeled ground truth images. In this work, we propose a novel unsu-
pervised underwater image enhancement framework, which leverages an encoder-decoder
network that works by adaptively enhancing the input image with the statistical informa-
tion of a randomly selected reference image at train time. This means that we leverage the
probabilistically enhanced reference image to obtain a more robust enhancement of that
image. This enables the network to adaptively enhance the input image at training time
using a stochastic approach.

The potential applications of underwater image enhancements are broad and varied.
For example, improved accuracy and reliability of underwater image enhancement could
be beneficial in a range of fields, including:

• Environmental monitoring: Better-quality underwater images could be used to track
changes in marine ecosystems, such as coral reefs, and monitor the health of aquatic
species.

• Marine biology: Enhanced underwater images could provide more detailed infor-
mation about the behaviour and habitats of marine animals, which could be useful
for research and conservation efforts.

• Underwater archaeology: Improved image quality could make it easier to identify
and study artifacts and structures in underwater archaeological sites.

In addition to these applications, our proposed UDNet can be used for automatically
generating reference maps for training other models for underwater image enhancement.
Furthermore, our approach could be extended to other domains where reference maps are
difficult to obtain, such as medical imaging [8] or satellite image enhancement. In medical
imaging, for example, reference maps are often difficult to obtain due to the complexity
and variability of human anatomy. Automatically generated reference maps could help
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to improve the accuracy and reliability of medical image enhancement, which could be
beneficial for diagnostic and therapeutic purposes. Similarly, in the field of satellite image
enhancement, reference maps are often difficult to obtain due to the large spatial and
temporal scales involved. Automatically generated reference maps could improve the
accuracy and reliability of satellite image enhancement techniques, which could be useful
for applications such as environmental monitoring and disaster response.

6.6 Conclusion

In this work, we presented a novel unsupervised deep learning approach for underwater
image enhancement, which is a challenging problem due to the random distortion and low
contrast of underwater images. Our proposed UDNet framework leverages an encoder-
decoder network that adaptively enhances the input image with the statistical information
of a randomly selected reference image during training. The results of our experiments
show that our approach outperforms ten popular underwater image enhancement methods
in seven common metrics, both for paired and unpaired input images across eight public
datasets. This demonstrates the effectiveness of our proposed approach in enhancing
underwater images.

One of the strengths of our approach is its unsupervised learning nature, which enables
it to be applied in situations where ground truth data is not available. The model’s strong
generalization ability in handling unpaired datasets, as demonstrated in this study, is a tes-
tament to its robustness. Additionally, the proposed UDNet has the potential to be applied
in a variety of fields, including environmental monitoring, marine biology, and underwa-
ter archaeology, which can greatly benefit from the improved accuracy and reliability of
underwater images.

However, our model also has some limitations. One of the difficulties in enhancing
underwater images is the presence of backscatter, particularly at far distances. Although
we have used state-of-the-art image enhancement algorithms to process raw underwater
images, backscatter can still be present in some cases, which affects the performance
of our model. Additionally, some existing algorithms use inaccurate image formation
models or assumptions that limit their performance in enhancing underwater images.

In future work, we plan to address these limitations by exploring the effectiveness of
other CNN architectures in the underwater image enhancement problem. We also plan
to improve the visual quality of enhanced images and the accuracy of reference maps by
using a multi-resolution approach, which can help capture different types of features in
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the underwater environment at various resolutions. This can lead to better overall image
quality and improved capture of the nuances of the underwater environment.

In conclusion, our proposed unsupervised deep learning approach for underwater image
enhancement provides a significant improvement in enhancing underwater images. The
framework’s strong generalization ability, its potential applications in various fields, and
its unsupervised learning nature make it an attractive solution for researchers in the field
to apply to the challenging problem of underwater image enhancement. However, there
is still room for improvement, and future work will focus on addressing the limitations of
the current approach and improving the visual quality of enhanced images.
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Chapter 7

MFLD-net: A Lightweight Deep
Learning Network for Fish
Morphometry using Landmark
Detection

Monitoring the morphological traits of farmed fish is pivotal in understanding growth,
estimating yield, artificial breeding, and population-based investigations. Currently, mor-
phology measurements mostly happen manually and sometimes in conjunction with in-
dividual fish imaging, which is a time-consuming and expensive procedure. In addi-
tion, extracting useful information such as fish yield and detecting small variations due to
growth or deformities, require extra offline processing of the manually collected images
and data. DL and specifically Convolutional Neural Networks (CNNs) have previously
demonstrated great promise in estimating fish features such as weight and length from
images. However, their use for extracting fish morphological traits through detecting fish
keypoints (landmarks) has not been fully explored. In this Chapter, the third research
question is addressed. Specifically, we developed a novel DL architecture that we call
Mobile Fish Landmark Detection network (MFLD-net). We show that MFLD-net can
achieve keypoint detection accuracies on par or even better than some of the state-of-the-
art CNNs on a fish image dataset. MFLD-net uses convolution operations based on Vision
Transformers (i.e. Patch embeddings, Multi-Layer Perceptrons). We show that MFLD-net
can achieve competitive or better results in low data regimes while being lightweight and
therefore suitable for embedded and mobile devices. We also provide quantitative and
qualitative results that demonstrate its generalisation capabilities. These features make
MFLD-net suitable for future deployment in fish farms and fish harvesting plants.
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7.1 Introduction

Morphology is an important metric in the production of farmed fish because it can be used
to determine the weight and overall size of a fish. These variables are key to animal health
and welfare and are used for phenotype analyses in advanced breeding programs. In aqua-
culture, determining the morphology is a frequent task crucial for selecting fish for culture
as well as developing and testing novel fish strains. Furthermore, fish morphological traits
are valuable resources for artificial breeding [397], functional gene mapping [398], and
population-based investigations [399]. Morphology helps identify when fish are mature
enough to produce eggs or sperm. When determining the growth and maturity of fish, a
number of specific morphological traits may be evaluated including the distance from the
tip of the mouth to the posterior midpoint of the caudal fin, or the depth of the body from
the posterior base of the dorsal fin to anterior of the anal fin [35]. However, traditional
manual fish morphology measurement methods are inefficient and time-consuming. A
typical fish measuring process includes measuring the fish’s weight using a digital scale,
measuring its body lengths with a ruler and then recording these values. Not only is this
process inefficient and labour-intensive, but it is also prone to human error.

An automatic tool can help aquaculturists and animal health and welfare authorities
to save time and reduce costs by quickly characterising fish morphology and predicting
their overall quality in a fast, accurate, and cost-effective manner. Furthermore, the tool
would improve the quality of information available to fish farmers and may unlock niche
information, because the system can be used at scale. A promising technique to automate
this measurement process is computer vision used along with machine learning to capture
fish images and automatically extract fish morphology.

A few previous works [400–402] have used computer vision and traditional image pro-
cessing techniques to segment [400, 402] or make a 3D model [401] of the fish body to
then use classical machine learning methods e.g. regression [400, 401] for weight and/or
length extraction. Although these studies have achieved significant results, they have
involved a complex image processing and feature engineering process to suit their exper-
imental conditions. In contrast, more recent research has been motivated by the outstand-
ing performance of Deep Learning (DL)-based Convolutional Neural Networks (CNNs)
in processing images, without the need for complex image processing and/or feature en-
gineering steps [198, 321, 403]. In [198, 321], the authors have used a CNNs to predict
fish body weight by feeding fish images to a segmentation CNN to extract the fish-body
area. These studies have utilised both the entire fish body (i.e. fish outline) and excluded
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fins and tails for weight estimation through mass-area estimation models. In [403], the
authors have also explored the use of CNN for estimating the weight and length of fish
but they have utilised different CNN architectures. Specifically, the authors have imple-
mented a SegNet-like CNN architecture with an image resolution of 512×512 to estimate
the correlation between body measurements and body weight, carcass weight, and carcass
yield.

Additionally, researchers have used CNNs for predicting morphological characteristics
such as overall length and body size by detecting keypoints on the fish body [404, 405],
similar to the proposed method in this research. However, [405] has proposed a CNN
classifier to detect only two keypoints, the fish head, and tail fork regions, to measure the
fish body length. On the other hand, [404] has used two neural networks, i.e. a Faster
R-CNN [236] to first detect the fish in the image and then a Stacked Hourglass [406] to
detect specific keypoints on the initially-detected fish, which makes the proposed method
complex and expensive. In a more recent study, [407] proposed a CNN for marine ani-
mal segmentation with good results on a self-curated dataset. However, the 207.5 million
trainable parameters of their network make it unsuitable for usage in embedded systems or
on mobile computing devices for easy deployment in fish farms. To the best of our knowl-
edge, previously published studies that use deep learning to predict fish’s morphological
traits are complex and large. This renders them unsuitable for use within embedded and
mobile devices for commercial use at scale and for easy integration into fish farms. This
is because these devices, which are usually designed for resource-constrained environ-
ments, have limited computational and power budgets making them incapable of running
large networks such as the one proposed in [407]. To address the lack of a lightweight but
efficient fish morphological measurement tool, we develop a new Deep Learning (DL)
model for fish body landmark detection using CNNs.

CNNs have dominated the design of DL systems used for computer vision tasks for
many years. However, architectures based on emerging Transformer models, such as
Vision Transformer (ViT) [290], have been shown to outperform standard convolutional
networks in many of these tasks, especially when large training datasets are available.
These recent advances motivated us to explore transformer-based architectures for de-
veloping lightweight but efficient fish landmark detection networks for automatic fish
morphometric analyses.

Vaswani et al. first [304] suggested transformers for machine translation, and they
have subsequently become the standard solution for many Natural Language Processing
(NLP) applications. Since then, there have been several attempts to incorporate convolu-
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tional network characteristics into transformers, making the Vision Transformers (ViT).
Recently, the use of patch embeddings for the first layer of the network has spawned a
new paradigm of ”isotropic” designs, i.e., those having identical sizes and shapes across
the network. These models resemble repeating transformer’s encoder blocks, but instead
of self-attention and Multi-Layer Perceptron (MLP) operations, alternative operations are
used. For example, Bello et al. [408] introduced a two-dimensional relative self-attention
mechanism replacing convolutions as a stand-alone computational primitive for image
classification. ResMLP [409] built upon multi-layer perceptrons for image classification
by a simple residual network that alternates between a linear layer and a two-layer feed-
forward network.

Because of its capacity to capture long-distance interactions, self-attention has been
widely adopted as a computational module for modelling sequences [410]. For exam-
ple, Ramachandran et al. [411] replaced all instances of spatial convolutions with a form
of self-attention applied to a CNN model to produce a fully self-attentional model that
outperforms the baseline on ImageNet classification.

Inspired by the strong performance of Vision Transformers, we investigated utilizing
some of ViT’s architectures using convolution operations. Specifically, we studied the
use of Patch Embeddings [290], Multi-Layer Perceptrons (MLP-Mixer) [412], and Iso-
metric architectures [413]. In order to apply a transformer to greater image sizes, patch
embeddings aggregate together small areas of the image into single input features. Then,
MLP-Mixer works directly with the patches as input, separating the mixing of spatial and
channel dimensions, while keeping the network’s size and resolution constant (i.e Isomet-
ric). In this work, we utilize these techniques to modify a standard CNN’s architecture to
a simple model that is similar in spirit to the ViT using convolutions operations, but does
not need a pre-trained model and can generalise well when trained on a small dataset.

Our proposed network, which we named MFLD-net is implemented to estimate land-
marks (keypoints) on the fish body to better understand and estimate its morphology.
MFLD-net can assist ecologists and fisheries managers with the fast, efficient, accurate,
and non-invasive prediction of the size and other morphological aspects of the fish. This
provides them with the capacity to make informed management decisions. To evaluate our
model, we use an image dataset of Barramundi (Lates calcarifer), also known as Asian
seabass. We also compare our results to several baseline models to show the performance
of MFLD-net.

In summary, the contributions of this work are as follows:

1. We propose a simple CNN network that estimates the position of known keypoints
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in a fixed-size fish image.

2. Due to our architectural innovations, our proposed model is fast and compact, while
requiring small training data. These make our system suitable for deployment in
aquaculture farms.

3. We compare our results with several baselines, including U-net [32], ResNet-18
[226], ShuffleNet-v2 [414], MobileNet-v2 [415], and SqueezeNet [416].

4. We provide an evaluation of our model on 60% of our fish image dataset to quantify
its generalisation and robustness.

The rest of the paper is organized as follows. Sec. 7.2 presents our method for training
and evaluating our model. Our model’s framework is described in detail in Sec. 7.2.1.
The experimental setup and results are presented in Sec. 7.3, while detailed discussions
of our results are presented in Sec. 7.5. Finally, Sec. 7.6 concludes our paper.

7.2 Materials and methods

We ran three main experiments to test and optimize our proposed model. First, we trained
our network (MFLD-net) on only 40% of our dataset. Next, we tested its predictive per-
formance on the dataset test subset described below. Finally, we compared our MFLD-net
to five models from [32, 226, 414–416]. We assessed both the inference speed and pre-
diction accuracy of each model as well as their training time and generalisability. When
comparing these models we incorporated the number of model parameters, the model
size on the hard disk, and the model image throughput per second. We applied the same
configuration for each of the six investigated models in order to hold the training routine
the same for all models. The models are also trained using the same data augmentations,
without affecting their performance.

Figure 7.1 shows a high-level flow diagram that outlines the key steps involved in our
proposed method. The flow diagram consists of eight main steps: data collection, annota-
tion, data splitting, model development, training, validation, testing, and evaluation. The
flow diagram illustrates how we developed and tested our novel deep learning network
for fish morphometry using landmark detection. The following sections describe in detail
the materials and methods used in this work.
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Figure 7.1: A flow diagram that outlines the key steps involved in our proposed method.
The flow diagram consists of eight main steps: Data collection: Collection
of fish images using a high-performance CMOS industrial camera. Annota-
tion: Manual annotation of the images for 16 keypoints per fish. Data split-
ting: Random splitting of the annotated dataset into training and validation
sets (70% and 30% respectively) and a test set (60%). Model development:
Development of the Mobile Fish Landmark Detection network (MFLD-net)
using convolution operations based on Vision Transformers, including patch
embeddings and multi-layer perceptrons. Training: Training of the MFLD-net
on the training set. Validation: Validation of the MFLD-net on the validation
set to ensure that it is not overfitting to the training set. Testing: Testing of
the MFLD-net on the test set and comparison of its performance to five other
state-of-the-art baseline models. Evaluation: Evaluation of the MFLD-net’s
performance, including detection accuracies and generalization capabilities.
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Figure 7.2: Proposed MFLD-net architecture, which is similar in spirit to the ViTs, but
uses convolutions operations for keypoints estimation.

7.2.1 Model Architecture

We propose the Mobile fish landmark detection network (MFLD-net), a novel end-to-
end keypoint estimation model designed as a lightweight architecture for mobile devices.
We apply the architecture to address some of the main issues of current methods such
as accuracy and efficiency on mobile and static keypoint estimation. The detailed ar-
chitecture of MFLD-net is shown in figure 7.2. It builds upon Convolutional Neural
Networks (CNNs) [413], Vision Transformer architecture [290], and Multi-Layer Per-
ceptrons (MLP-Mixer) [412]. Additionally, MFLD-net adapts a hybrid method for pro-
cessing confidence maps and coordinates that provides accurate detection for estimating
keypoint locations.

To achieve higher robustness and efficiency, our architecture leverages the use of patch
embedding [290], spatial/channel locations mixing [412], as well as a combination of
CNNs that have the same size and shape throughout the network, i.e. are Isometric [413].

Isometric Architecture

Our model architecture is based on Isometric Convolutional Networks [413], which are
made up of several similar blocks with the same resolution across the model. Archi-
tectures that are ”Isometric” have the same size and shape throughout the network and
maintain a fixed internal resolution throughout their entire depth (see figure 7.2).
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Sandler et al. [413] have demonstrated that the resolution of the input picture has only a
minimal impact on the prediction quality of modern CNNs. Instead, the trade-off between
accuracy and the number of multiply-adds required by the model is mostly determined by
the internal resolution of intermediate tensors. Also, model accuracy can be improved
further without the use of additional parameters given a fixed input resolution.

Therefore, our model has two main attributes: (1) No pooling layers while still main-
taining a high receptive field. (2) Isometric networks have a high degree of accuracy while
needing relatively little inference memory. These attributes make our model lightweight,
hence suitable for edge processing on mobile and low power devices, such as drones and
robots, which are commonplace across various industries ranging from agriculture [153]
to marine sciences [417]. This lightweight design does not, however, compromise ac-
curacy due to its use of an isometric architecture. In an era of mobile processing [174],
there is a significant need for lightweight, yet powerful and effective keypoint estimation
models.

Patch Embedding

Inspired by the Vision Transformer architecture [290], we experiment with applying patch
embeddings directly to a standard CNN. To do so, we divide an image into patches and
feed a CNN tensor layout patch embeddings to preserve locality. In an NLP application,
image patches are processed similarly to tokens (words). Patch embeddings enable all
downsampling to occur simultaneously, lowering the internal resolution and therefore
increasing the effective receptive field size, making it simpler to combine sparse spatial
information. The key advantage of using CNN instead of Transformer is the inductive
bias of convolution [418, 419] such as translation equivariance and locality. Therefore,
CNN is well-suited to vision tasks because it generalises well when trained on a small
dataset. We implemented Patch embeddings as convolution with 3 input channels, 256
output channels, kernel size of 4, and stride of 4, followed by 8 ConvBlocks, as can be
seen in fig. 7.2.

ConvBlock

Our architecture is made of 8 ConvBlocks, each consisting of depthwise convolution (i.e.
mixing spatial information) as in Multi-Layer Perceptrons (MLP-Mixer) [412], and Spa-
tial Dropout [420] for strongly correlated pixels, followed by pointwise convolution (i.e.
mixing the per-location features). Each of the convolutions is followed by Gaussian error
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Figure 7.3: A schematic diagram of the multi-task loss function used for training MFLD-
net.

linear units (GELU) [421] activation and BatchNorm. We found that for the task of key-
point estimation, architectures with a fewer number of layers result in better performance.
We also added residual connections between Conv layers. We use a dropout with a rate
of 0.2 to prevent overfitting. The structure of our ConvBlock can be seen in the bottom
panel of fig. 7.2.

Hybrid Prediction and a Multi-Task Loss Function

Fully Convolutional Networks (FCNs) are good at transforming one image to produce
another related image, or a set of images while preserving spatial information. There-
fore, for our keypoint task, instead of using FCN to directly predict a numerical value of
each keypoint coordinate as an output (i.e. regressing images to coordinate values), we
modified FCN to predict a stack of output heatmaps (i.e. confidence maps), one for each
keypoint. The position of each keypoint is indicated by a single, two-dimensional, sym-
metric Gaussian in each heatmap in the output, and the scalar value of the peak reflects
the prediction’s confidence score.

Moreover, our network not only predicts heatmaps but also predicts scalar values for
coordinates of each keypoint. Therefore, during the training process, we have a multi-task
loss function, which consists of two losses, i.e. JensenShannon divergence for heatmaps
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and Euclidean distance for coordinates (see figure 7.3). The first loss measures the dis-
tances between the predicted heatmaps and the ground-truth heatmaps, while the second
loss measures the distances between the predicted coordinates and the ground-truth coor-
dinates. Then, we take the average of the two losses as the optimisation loss.

Figure 7.4: Sample images from the four data collection sessions, which are all used in
our experiments.

7.2.2 Datasets

We performed experiments using a dataset of Barramundi (Lates calcarifer), also known
as Asian seabass. These fish were photographed in a laboratory setting. The dataset
was collected in four data collection sessions using the same experimental data collection
setup but under four different environmental, i.e. lighting, conditions. Figure 7.4 demon-
strates a sample image from each of the four data collection trials. In total, 2500 images
were collected, each of which was photographed on a conveyor belt with normal ambient
lighting. The images were recorded from above using a High-performance CMOS indus-
trial camera (see figure 7.4). All barramundi were provided by the aquaculture team from
James Cook University, Townsville, Australia.

To demonstrate the robustness of our network, we trained and validated our network
on only 40% of the dataset. This training subset was further split into randomly selected
training and validation sets, with 70% training examples and 30% validation examples.
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The other 60% of the collected dataset was used only for testing the model and comparing
its performance to five other state-of-the-art baseline models [32, 226, 414–416].. The
images were manually annotated for 16 kepoints as shown in figure 7.5-middle. For each
fish, ground truth keypoints have the form [(x1, y1), ..., (xk, yk)], where (xi, yi) represents
the ith keypoint location. Each ground truth object also has a scale s which we define as
the square root of the object segment area. For each fish, our developed keypoint detector
model outputs keypoint locations (see figure 7.5-right). Predicted keypoints for each fish
have the same form as the ground truth, i.e. [x1, y1, ..., xk, yk].

We recognize that the imaging setup used in our study was in a laboratory setting and
may not fully represent the conditions of a real-world fishery. Factors such as lighting,
background, and fish movement may vary significantly between a laboratory setting and
a fishery. We chose to use a laboratory setting for our data collection to have a controlled
and consistent environment, which reduces noise and variability in the images and im-
proves the quality of the data for effective model development. This setup also facilitates
the important annotation process, which requires manual labelling of 16 keypoints for
each fish image to train the deep learning models.

We acknowledge that using a laboratory setting for our data collection has some limi-
tations. One of the main challenges is transferring our model to a fishery setting, where
the imaging conditions may vary significantly from our laboratory setup. For example, a
fishery setting may have different lighting conditions, backgrounds and environments, as
well as different fish species, sizes and shapes. These factors may affect the performance
and accuracy of our model and the baseline models.

To address these issues and make our model as generalisable as possible, we used four
different lighting conditions for our data collection, which simulate some of the variations
that may occur in a fishery setting. In addition, we collected data from various fish sizes
and in different orientations to augment our data collection. Furthermore, all our data was
collected using a high-performance CMOS industrial camera, which is a common choice
for other monitoring activities at fisheries [422].

To deploy our model to real-world fisheries setting, one approach is to perform site-
specific model tuning using our baseline MFLD-Net. This means that, before deployment
to a new setting, we collect some new data and retrain our model to adjust it to the new
environment as well as task conditions. This adjustment is much faster and more efficient
than developing a new model for the new setting. The newly added data can diversify
the model’s generalisation capabilities and gradually improve its performance in a wider
set of environments. To perform this adjustment quicker, one approach is to use self-
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supervised learning techniques to shorten the time required for a large amount of data
labelling, and to add more data from other sources to improve our model.

Figure 7.5: Point annotations in a sample fish image (X) (left). The points in the training
(Y) are inflated and highlighted for visibility, but only the centre pixel and
its class label are collected and used (middle). The predicted Heatmap of the
model (right).

7.2.3 Data Augmentation

To improve the training of our network and examine its robustness to rotation, translation,
scale, and noise, we apply spatial and pixel level augmentation to our training data for all
models using Albumentations library [423]. In particular, we apply the following image
transformations:

1. Randomly flip an image horizontally with a probability of 0.5.

2. Randomly flip an image vertically with a probability of 0.5.

3. Randomly shift and scale an image with shift limit of 0.0625◦, scale limit of 0.20◦

with a probability of 0.5.

4. Randomly rotate an image with a rotation limit of 20◦ with a probability of 0.5.

5. Randomly blur an image with blur limit of 1 with a probability of 0.3.

6. Randomly RGB-Shift an image with R-shift limit of 25, G-shift limit of 25, B-shift
limit of 25 with a probability of 0.3. These augmentations help to further ensure
robustness to shifts in lighting.

We did not apply any of the image transformation operations to our validation or test sets.

7.2.4 Performance Metrics

The following metrics were used to optimise and evaluate the model and to compare the
quality of the predicted keypoint locations:
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Euclidean distance measures the distance of the keypoints based on their coordinates
(i.e the line segment between the two points), and does not depend on how the ground
truth has been determined [424]. The best value of 0 indicates that the predicted keypoint
is exactly at the same coordinate of the ground truth keypoint.

We calculate the sum of the squared Euclidean distance of the difference between two
feature vectors, i.e., the predicted feature vector and the ground truth feature vector. This
represents the total difference between the two feature vectors. The Euclidean distance is

d(g, p) =

√√√√ n∑
i=1

(vgi − vpi )
2, (7.1)

where g and p are two sets of points in Euclidean n-space for ground truth and prediction,
respectively. vgi , v

p
i are Euclidean vectors, starting from the origin of the space (initial

point) for the ground truth and prediction, respectively. n is the number of keypoints.

Jensen-Shannon divergence is a distance measure between two distributions, such
as the difference between the predicted and ground truth point distributions [425]. It can
therefore be used to quantify the accuracy of the predicted keypoints. The lower this value
is, the better the model performs.

This distance is calculated based on the Kullback-Leibler divergence (KLD) [426],
where the inputs for the summation are probability distribution pairs. The KLD for two
probability distributions, P and Q and when there are n pairs of predicted p, and ground
truth g, can be expressed as:

KLD(P ||Q) =
n∑

i=1

pi(x)log

(
pi(x)

qi(x)

)
, (7.2)

to measure the difference between two probability distributions over the same variable
x and indicate the dissimilarity between the distributions. The best value is 0. Utilising
KLD, JSD can be expressed as follows:

JSDM(P ||Q) =

√
KLD(p ∥ m) +KLD(q ∥ m)

2
, (7.3)

where m is the point-wise mean of p and q.
This is a measure of the difference between two probability distributions P and Q. As

can be seen from the formula, the best value of 0 indicates no difference between the
distributions.
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Object Keypoint Similarity (OKS) OKS keypoints estimation serves the same pur-
pose as Intersection over Union (IoU ) as in object detection. It is determined by dividing
the distance between expected and ground truth points by the object’s scale [427]. This
gives the similarity between the keypoints (or corners) of the two detected boxes. The re-
sult is between 0 and 1, where 0 means no similarity between the keypoints, while perfect
predictions will have OKS=1. The equation is as follows:

OKS =

∑
i exp (−d2i /2s

2k2
i ) δ (vi > 0)∑

i δ (vi > 0)
, (7.4)

where di is the Euclidean distance between the detected keypoint and the corresponding
ground truth, vi is the visibility flag of the ground truth, s is the object scale, while kis

represents a per-keypoint constant that controls falloff.
To compute OKS, we pass the di through an unnormalized Gaussian with standard

deviation kis. For each keypoint, this yields a keypoint similarity that ranges between 0
and 1. These similarities are averaged over all labelled keypoints. Given the OKS, we can
compute Average Precision (AP ) and Average Recall (AR) just as the IoU allows us to
compute these metrics for box/segment detection.

Both equations 7.1 and 7.3 have been used for model training and optimisation, and
also used to compare different models’ performance as in table 7.1. Equation 7.4 was
used as a final evaluation metric for all the models used in this study.

7.2.5 Model training

We trained six different models on the training subset. The models used for training are U-
net [32], ResNet-18 [226], ShuffleNet-v2 [414], MobileNet-v2 [415], SqueezeNet [416]
and our proposed lightweight network MFLD-net. For each experiment, we set our model
hyperparameters to the same configuration for all models. All the models were trained
with 224× 224 resolution input and 56× 56 heatmap resolution output except U-net [32]
with 224× 224 resolution for both input and output (see figure 7.6). Each model has two
outputs (heatmap and coordinates), where two losses were applied as shown in figure 7.3.

We found that for this problem set, a learning rate of 1 × 10−3 works the best. It
took around 50 epochs for all models to train on this problem and the learning rate was
decayed by γ = 0.1 every 30 epochs. Our networks were trained on a Linux host with
a single NVidia GeForce RTX 2080 Ti GPU using Pytorch framework [308]. The batch
size we used was 64. We used Adam optimiser [204] with β1 = 0.9, β2 = 0.999, and
ϵ = 1.0 × 10−08. We applied the same hyperparameter configuration for all six models.
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Figure 7.6: Sample output heatmap from each of the 6 networks used in this work.

The optimum model configuration will depend on the application, hence, these results are
not intended to represent a complete search of model configurations.

Because we only used the training subset (n = 1000 images) for training and validation,
during optimization, we heavily augmented our training set, challenging the model to
learn a much broader data distribution than that in the training set. We applied several
image transformations for data augmentation as specified in section 7.2.3.

We regarded the model to be converged when the validation loss stopped improving
after 50 epochs. Only for the best performing version of the models, we calculated val-
idation error as the Euclidean distance between predicted and ground-truth picture co-
ordinates and Jensen-Shannon divergences between heatmaps and centres of the target
Gaussians, which we assessed at the end of each epoch during optimization. Figure 7.7
shows the training and validation losses for our proposed network.

7.2.6 Model evaluation

Deep Learning (DL) models are typically evaluated for their predictive performance (i.e.
ability to generalize to new data), using a sub-sample of annotated data (test set) that
is not used for training or validation. A test set is typically used to avoid overfitting
the model hyperparameters to the validation set, which can result in biased performance
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measurements. Therefore, we used only 40% of our dataset for training and left the other
60% of its images for testing the model’s predictive performance using metrics described
in section 7.2.4.

Precision and Recall Object Keypoint Similarity (OKS) [427] was used as a perfor-
mance metric (see section 7.2.4 for more details). As explained, the following 6 metrics
are usually used for characterising the performance of a keypoint detector model. We,
therefore, used them.

• Average Precision (AP ):

– AP ( at OKS = .50 : .05 : .95 (primary metric))

– AP .50 ( at OKS = .50 )

– AP .75 ( at OKS = .75 )

• Average Recall (AR):

– AR ( at OKS = .50 : .05 : .95)

– AR.50 ( at OKS = .50)

– AR.75 ( at OKS = .75)

Figure 7.7: The two different losses, i.e. coordinate (Equ. 7.1) and heatmap (Equ. 7.3)
prediction losses are shown along with the total loss for both training and
validation.

184



Chapter 7 MFLD-net: A Lightweight Deep Learning Network for Fish Morphometry
using Landmark Detection

Figure 7.8: Example keypoints estimation predicted by the proposed network and a state
of the art CNNs.

7.3 Results

To fully evaluate our model and compare it with other methods, we ran experiments to op-
timize our approach and compared it to the five aforementioned models in terms of image
throughput (speed), accuracy, inference time, and generalization ability. We benchmarked
these models using the test subset (see section 7.2.2 for details).

We applied the same training configuration for all of the six models, meaning that the
models are all trained using the same dataset and data augmentations as explained in
section 7.2.5.

7.3.1 Performance Comparison

Table 7.1 shows comparative results based on the number of parameters of a model, the
model size on the hard disk, and the model throughput in image per second. In addition,
the coordinates loss (Equ. 7.1), heatmap loss (Equ. 7.3), and the average of both losses
are shown. All the tests were conducted on a desktop computer with a single NVidia
GeForce RTX 2080 Ti GPU.

Overall, the results summarized in table 7.1 show that our network (MFLD-net) outper-
forms other networks, achieving the lowest number of parameters (47x fewer parameters
than U-net [32]), the smallest size on the hard disk, and the second-highest through-
put after SqueezeNet [416]. Also, our model has a lower average loss than U-net [32],
ShuffleNet-v2 [414], and MobileNet-v2 [415]. The small number of parameters as well as
the very compact size of our model while having a high throughput makes it an appealing
solution for many problems such as real-time mobile fish video processing and portable
autonomous systems [1].
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Table 7.1: Performance Comparison to other models.

Network
# Params

(x106)
Size

(MB)
Throughput
(img/sec) Coords 1

Losses
HeatMap 2 Avg. 3

U-net [32] 31.04 124.3 201 0.024 0.355 0.190
ResNet-18 [226] 12.85 51.5 404 0.028 0.090 0.059
ShuffleNet-v2 [414] 3.06 12.5 170 0.047 0.153 0.100
MobileNet-v2 [415] 4.10 16.7 205 0.041 0.137 0.089
SqueezeNet [416] 2.33 9.4 551 0.027 0.078 0.052

MFLD-net (ours) 0.65 2.7 480 0.039 0.120 0.080

To examine the efficacy of our model generalisation, we compared its performance with
randomly initialized weights, against the five benchmark models with randomly initialized
weights to provide a direct comparison. We show in table 7.2 that our MFLD-net model
achieves good generalisation with few training examples and without the use of transfer
learning when combined with strong data augmentation. Overall, the results summa-
rized in Table 7.2 show that our network (MFLD-net) outperforms ShuffleNet-v2 [414],
MobileNet-v2 [415], and SqueezeNet [416] achieving AP = 0.967, while being compet-
itive with U-Net and ResNet, despite having substantially fewer parameters. This shows
the effectiveness and generalisability of our MFLD-net model.

Table 7.2: Performance comparison using the OKS metric on the test datasets.

Network AP AP .50 AP .75 AR AR.50 AR.75

U-net [32] 0.968 0.990 0.990 0.983 0.999 0.999
ResNet-18 [226] 0.970 0.990 0.990 0.985 0.999 0.999
ShuffleNet-v2 [414] 0.949 0.990 0.990 0.968 0.999 0.999
MobileNet-v2 [415] 0.952 0.990 0.989 0.967 0.999 0.996
SqueezeNet [416] 0.964 0.990 0.990 0.975 0.999 0.999

MFLD-net (ours) 0.967 0.990 0.990 0.983 0.999 0.999

1This loss corresponds to the coordinates loss (Equ. 7.1).
2This loss corresponds to heatmap loss (Equ. 7.3).
3This loss corresponds to the average of both losses (Equ. 7.1 and Equ. 7.3).

186



Chapter 7 MFLD-net: A Lightweight Deep Learning Network for Fish Morphometry
using Landmark Detection

Figure 7.9: Fish body measurement used in this study.

7.3.2 Qualitative Results

To further confirm our model generalization on the unseen images, we perform a quali-
tative experiment on the test subset, with sample results shown in figure 7.8. This figure
clearly shows that our network performs better than the previous methods. The other
methods have the problem of misclassifying the pixels with a similar intensity of one
colour as the other colour, whereas our method shows a strong ability to differentiate pix-
els with similar intensity. We can also clearly see that the proposed method can work on
images with different lighting conditions.

7.4 Fish Morphometry

Morphometry is the study of the size and shape of organisms and their variation. Fish
morphometry is a useful tool for fishery science, as it can help identify different species,
populations, stocks, and growth patterns of fish [428]. Fish morphometry can be per-
formed using traditional methods, such as measuring various body parts with a ruler or
a caliper, or using advanced methods, such as image analysis, and deep learning. These
methods provide an efficient approach to extract more information on the shape and vari-
ation of fish, automatically and cost-effectively.
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Figure 7.10: The distribution pair plots for the four body measurements (total length, stan-
dard length, body depth, and head length) used to describe the morphometry
of fish.
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Table 7.3: Performance Comparison of various DL models in measuring four important
fish morphological traits. The mean absolute difference (MAD), and the stan-
dard deviation of the difference (SDD) between the manual and DL measure-
ments in (mm) are shown. The Best Two Results are shown In RED and BLUE
Colours.

Network
Total Length Standard Length Body Depth Head Length

MAD SDD MAD SDD MAD SDD MAD SDD

U-net [32] 10.57 10.67 08.00 08.64 06.23 06.04 06.58 06.77

ResNet-18 [226] 10.07 10.64 09.28 09.82 09.06 09.31 12.96 12.03

ShuffleNet-v2 [414] 14.11 14.95 12.31 12.05 11.90 11.21 15.48 15.70

MobileNet-v2 [415] 15.45 15.04 14.33 14.78 16.73 16.87 11.80 12.89

SqueezeNet [416] 10.07 10.04 09.28 09.64 09.06 09.20 12.96 11.38

MFLD-net (ours) 09.25 07.60 08.27 09.74 07.62 07.34 06.57 06.57

7.4.1 Fish body measurement used in this study

In this study, we used four body measurements to describe the morphometry of fish: total
length, standard length, body depth, and head length. These important morphological
measurements are widely used in monitoring fish, for example, its growth [429]. The
four measurements automated using our approach are depicted in 7.9 and are defined as
follows:

Total length is the overall length of the fish, measured from the tip of the snout to
the end of the tail fin. This measurement is important for determining the overall size
of the fish, which is relevant for various ecological and management purposes, such as
estimating growth rates, biomass, and abundance.

Standard length is the length of the fish from the tip of the snout to the end of the
vertebral column, excluding the caudal fin. This measurement is more appropriate for
comparing the body proportions and shape of fish among different species or populations,
as it removes the variation introduced by the size of the tail fin.

Body depth is the maximum vertical distance between the dorsal and ventral body
surfaces, usually measured at the midpoint of the body length. This measurement reflects
the thickness or robustness of the fish body, which can be related to its feeding habits,
swimming ability, and reproductive strategy.

Head length is the distance from the tip of the snout to the posterior margin of the
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operculum, which covers the gills. This measurement is relevant for assessing the size
and shape of the head, which can provide information on the feeding behaviour, sensory
perception, and phylogenetic relationships of the fish.

Therefore, the combination of these four measurements can provide a comprehensive
description of the size, shape, and body structure of fish, which can be useful for various
research and management applications. Figure 7.10 shows these measurements distribu-
tion pair plots based on the automatic measurements captured by MFLD-Net. These plots
are essential to show the distribution and correlation of these measurements, which can
provide insights into the fish’s morphometry and body structure.

We are presenting these plots to demonstrate the effectiveness of our approach in auto-
matically extracting these important morphological measurements from fish images. The
automatic measurements captured by MFLD-Net can provide accurate and consistent re-
sults, which can save time and effort compared to manual methods.

7.4.2 Quantitative Comparison

In the quantitative comparison of fish morphometry, it is important to compare the accu-
racy and precision of the DL measurements. Here, accuracy refers to how close the DL
measurements are to their true manual measurements, while precision refers to the degree
of consistency or reproducibility of results.

To assess accuracy and precision, the following metrics have been used in this study:
the mean absolute difference (MAD), and the standard deviation of the difference (SDD)
between the manual and DL measurements.

MAD is the average absolute difference between two values (accuracy). It is calculated
by taking the sum of the absolute differences between each value and dividing it by the
number of values. The formula for calculating MAD is:

MAD =
1

n

n∑
i=1

|(xi − yi)|

where n is the total number of observations, xi and yi are the values of the i− th observa-
tion in two different samples (here manual and DL measurements), and the vertical bars
indicate absolute value.

SDD is a statistical measure that describes the amount of variation or dispersion be-
tween two sets of data. Specifically, it measures how spread out the differences between
the two sets of data are (i.e. precision). SDD is calculated by taking the square root of the
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variance of the differences using the following formula:

SDD =

√∑n
i=1(xi − yi − x̄+ ȳ)2

n− 1

where x and y are the two sets of data, n is the number of observations in each set, and x̄

and ȳ are the means of the two sets.
Table 7.3 compares the performance of our MFLD-net model to other models in mea-

suring fish morphometric traits such as total length, standard length, body depth, and
head length. MAD and SDD between manual and deep learning (DL) measurements are
reported in mm for each model. The top two results are highlighted in red and blue.

The MFLD-net model, proposed in this study, outperforms the others with MAD values
of 9.25 and 6.57 for total length and head length. It also performs well for standard length
and body depth with MAD values of 8.27 and 7.62, highlighted in blue. In addition, its
SDD values are competitive with other models.

The U-net model shows the second-best performance and the ResNet-18 model per-
forms well for standard length and body depth with MAD values of 9.28 and 9.06 but per-
forms poorly for head length. The ShuffleNet-v2 and MobileNet-v2 models have higher
MAD and SDD values for all traits. The SqueezeNet model performs well for total length
but has high MAD values for standard length and head length.

7.5 Discussion

Fish morphology determination is required for both selecting and evaluating novel fish
strains for cultivation. The most widely used method to characterise fish is by observation
of their overall appearance. An experienced observer can determine a fish’s size, weight,
possibly sex, and even its condition. The traditional observation method to evaluate fish
morphology includes weighing fish, measuring lengths with a ruler or calipers and or
some other aspect of the fish, and then recording these observations. This observation
process is slow, labour-intensive, and highly prone to human error.

A possible solution could automate the fish observation process if an accurate mobile
system is developed that can be deployed in the field and in fish farms. This fish mor-
phometric tool could quickly measure various fish features and morphological traits from
fish images captured online or offline using a camera. The tool also collects the morpho-
logical data, and then uses it for analysis and producing a final report. Such a tool is very
useful to aquaculture and fish farms and could provide a new way to select, evaluate, and
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analyze fish and other aquaculture animal products.
In this paper, we developed a novel deep learning algorithm for accurate fish mor-

phometric measurements from fish images. To efficiently measure various fish mor-
phological traits, we developed a fish-specific landmark detection model that could ac-
curately localise keypoints (landmarks) on the fish body (for example see figure 7.8).
These landmarks can be then used to rapidly measure various fish traits including their
weight, length, head shape, and body shape. In addition, the fish landmarks can be
used to describe shape variation, deformation and differential development in various fish
species [35, 429].

We build our land-mark detection model upon the most widely-used deep learning
variant, i.e. CNN. A number of factors can significantly influence CNNs performance.
These factors include the size of the network (including the number of layers, number of
kernels, and their width), the number of input features, and the size of the training set. In
addition, the use of the convolution layers affects the size and complexity of the network
but can help to decrease the error rate and improve prediction accuracy. However, there
is no clear mechanism to arrive at the optimal convolutional architecture for a specific
task. The architecture selection involves choosing important hyperparameters such as the
network structures and the training time.

Through experimentation and using our experience in developing deep learning algo-
rithms, we designed a lightweight CNN with a short training time and high generalis-
ability to make it suitable for fast deployment and real-time mobile applications in fish
farms. Our experiments showed that MFLD-net best performances can be achieved by
(i) increasing the size of the kernel to 9, (ii) including more input dimensions by Patch
embeddings, and (iii) reducing the number of convolution layers to 8. The reduction in
the number of convolution layers resulted in a model with fewer parameters that achieved
better generalisation capabilities compared to the state-of-the-art models.

To train and evaluate our model performance, we collected a dataset containing 2500

harvested or sedated fish images. These images were manually annotated for important
landmarks on the fish body. We used a combination of data augmentation techniques to
improve the networks performance in a low data regime. In our experiments, the input
images were scaled to a size of 224 × 224, and the output was the position of each fish
landmark. These landmarks (keypoints) were indicated by a single, two-dimensional,
symmetric Gaussian heatmap, where a scalar peak value reflects the prediction’s confi-
dence score. The quantitative and qualitative experimental results showed that our pro-
posed model while being significantly lighter, can outperform some and be competitive
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with other state-of-the-art models. We also showed that our model has a high general-
isation capability and does not need transfer learning even when using a small training
dataset.

The main limitation of our study is that all the samples for training and testing are taken
from a similar source, even though, they were slightly different, due to being collected in
different conditions and by different operators. Another limitation is the use of a single
fish species in our dataset. Since there are a variety of different species and sizes of fish
in the aquaculture industry, there is a need to test the model for more than one species.
However, our aim in this study was to build a proof of concept, which can be extended in
future works to other species. Our presented results indicate that our developed MFLD-
net model trained using images from a single species could be generalised to detect fish
of different species and in different environments. This could be the subject of future
research.

Furthermore, we should emphasize that our model is not designed to classify fish
species, but rather to detect landmarks on fish bodies that can be used for morphometric
analysis. However, it is possible to extend our model to handle different fish species by us-
ing techniques such as multi-task learning or domain adaptation. For example, multi-task
learning could be used to train our model to simultaneously detect landmarks and classify
fish species, while domain adaptation techniques could be used to adapt our model to new
fish species with minimal additional training data. These are potential avenues for future
research and development of our model.

In addition, in future work, the model can be trained with images of other objects, or
images captured from different fish species. It is worth noting that, collecting new fish
images and annotating them is a time-consuming and expensive exercise. This was the
case, even in our data collection trials, where fish images were collected when the fish
passed on a conveyor belt and under a camera capturing videos.

While the proposed MFLD-net method has shown promising results in laboratory set-
tings, there are several potential limitations and challenges that must be considered when
deploying this method in real-world aquaculture farms. These include factors such as
hardware requirements, scalability, and adaptability to different fish species.

In addition, developing new low-cost, low-power, and high-speed mobile devices has
been an evolving research area in many applications such as agriculture [153], and ma-
rine science [174, 417]. These devices need a lightweight and fast network, such as the
proposed model in this work. Therefore, an interesting future research project is to de-
velop a low-cost mobile device to perform fish morphology estimation using the proposed
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network.

Figure 7.11: Position of most of the landmark points used to describe shape variation in
M. novemaculeata from seven geographically distinct rivers. See [35] for an
explanation of variables measured. The figure is from [35].

7.6 Conclusion

In conclusion, our research demonstrated the potential of using a vision transformer-
inspired CNN for fish landmark detection and morphology measurement. Our proposed
model outperforms existing deep learning models in terms of accuracy and speed while
using fewer parameters, making it suitable for deployment on mobile and resource-constrained
devices. This advancement brings us closer to practical applications in the rapidly grow-
ing aquaculture and fisheries industries. Future research will focus on testing the model
on a wider range of aquaculture animals and exploring other CNN architectures for fish
landmark detection.

194



Chapter 8

Prawn Morphometrics and Weight
Estimation from Images using Deep
Learning for Landmark Localization

Accurate weight estimation and morphometric analyses are useful in aquaculture for op-
timizing feeding, predicting harvest yields, identifying desirable traits for selective breed-
ing, grading processes, and monitoring the health status of production animals. How-
ever, the collection of phenotypic data through traditional manual approaches at industrial
scales and in real-time is time-consuming, labour-intensive, and prone to errors. Digital
imaging of individuals and subsequent training of prediction models using Deep Learning
(DL) has the potential to rapidly and accurately acquire phenotypic data from aquaculture
species. In this Chapter, the third research question is addressed. Specifically, we applied
a novel DL approach to automate weight estimation and morphometric analysis using the
black tiger prawn (Penaeus monodon) as a model crustacean. The DL approach comprises
two main components: a feature extraction module that efficiently combines low-level
and high-level features using the Kronecker product operation; followed by a landmark
localization module that then uses these features to predict the coordinates of key mor-
phological points (landmarks) on the prawn body. Once these landmarks were extracted,
weight was estimated using a weight regression module based on the extracted landmarks
using a fully connected network. For morphometric analyses, we utilized the detected
landmarks to derive five important prawn traits. Principal Component Analysis (PCA)
was also used to identify landmark-derived distances, which were found to be highly cor-
related with shape features such as body length, and width. We evaluated our approach
on a large dataset of 8164 images of the Black tiger prawn (Penaeus monodon) collected
from Australian farms. Our experimental results demonstrate that the novel DL approach
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outperforms existing DL methods in terms of accuracy, robustness, and efficiency.

8.1 Introduction

The farming of marine prawns (shrimp) is one of the most important and largest aquacul-
ture production sectors globally [430]. As in any animal production sector, the acquisition
of industrial-scale data on weight and other commercially relevant phenotypic traits is im-
portant, as this data can improve yields and economic efficiency [431] through informing
pond management, feeding, grading and selective breeding processes [432]. However, the
current collection of this data is manual using traditional weight and morphometric anal-
yses that are often invasive, time-consuming, labour-intensive, and prone to human error.
Therefore, there is a need for the development of automated, fast, and accurate methods
for weight estimation and associated morphometric analyses.

Computer vision and image analysis enabled by Deep Learning (DL) have emerged as
promising techniques for solving various problems in the Internet of Underwater Things
(IoUT) [174] and equally in aquaculture [1,321]. In particular, image analysis can be used
to identify prawn species, detect prawns in images, measure prawn length, and estimate
prawn weight [433]. However, existing methods have some limitations, such as requiring
high-quality images with uniform backgrounds, relying on hand-crafted features that may
not capture complex variations, or using simple regression models that may not generalize
well to different conditions [434]. Moreover, most of these methods do not consider the
morphological characteristics of prawns that affect their weight distribution.

In this paper, we propose a novel Deep Learning [9, 17] approach for automated mor-
phometric analyses and weight estimation of prawns from digital images. Our approach
consists of two main components: a Kronecker product-based feature extraction module
(KPFEM), and a landmark localization module (LLM). The KPFEM uses the Kronecker
product operation [435] to combine low-level and high-level features from different con-
volutional layers efficiently. The LLM predicts the coordinates of key points on the prawn
body using a localization network. For weight estimations, we have designed a weight
regression module (WRM) that works based on the extracted landmarks using a fully con-
nected network. We also use the landmarks generated by the LLM component to perform
morphometric analysis. To the best of our knowledge, this is the first work that applies
the Kronecker product operation for feature extraction in morphometrics analysis. More-
over, this is the first work that uses a localization network for landmark detection in prawn
images.
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The main contributions of our paper are as follows:

1. We introduce a novel feature extraction method based on Kronecker product that
can capture rich semantic information from different scales from the prawn image
while offering advantages such as reduced model parameters that make it well-
suited for resource-constrained devices in aquaculture settings, and improved per-
formance compared to traditional CNNs.

2. We apply a deep network for landmark localization that can handle occlusions and
deformations better than existing methods. This is essential in scenarios such as
bulk aquaculture product monitoring.

3. We design a weight regression model that incorporates morphometric features de-
rived from landmarks to improve weight prediction accuracy.

4. We perform morphometric shape analyses on five important prawn traits derived
from landmark data, and also use Principal Component Analysis (PCA) to find
landmarks correlated with shape features.

5. We evaluate our approach on a large dataset of prawn images and show that it
outperforms existing methods in accuracy, robustness, and efficiency.

8.2 Method

Our proposed deep learning architecture is shown in Fig. 8.1 with two distinct outputs,
one for prawn weight, and the second for landmark identification and applied morphome-
tric analyses.

The KPFEM serves as a feature extraction module and utilizes Kronecker convolution
operation in a novel network architecture to extract features from the input prawn image.
The resulting feature map is then passed to the LLM, which uses a deep learning-based
approach to detect 12 landmarks on the prawn body.

The predicted landmarks are then used to calculate the distances between any 12 land-
marks, resulting in a total of (12(12− 1)/2 = 66) possible distances. These distances are
then fed to the WRM, which uses a deep learning-based approach to predict the weight of
the prawn. The 12 detected landmarks are also used to perform morphometric analysis of
the prawn. The following subsections provide further details on the role and importance
of each of the aforementioned modules in reaching the overall goal of our architecture,
i.e. automatic weight estimation and morphometric analysis from prawn images.
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Figure 8.1: An overview of our proposed network architecture used for landmark detec-
tion from images that can be used for weight estimation and morphomet-
ric analyses. Our architecture consists of two main modules: a Kronecker
product-based feature extraction module (KPFEM) and a subsequent land-
mark localization module (LLM). These are followed by a weight regression
module (WRM). The KPFEM module is responsible for extracting features
from the input image using Kronecker product-based convolutional layers,
while the LLM module localizes the landmarks of the prawn using the ex-
tracted features. The WRM module regresses the weight of the prawn based
on the detected landmarks. This multi-stage approach has shown promising
results for accurate prawn weight and morphometric estimation from images.

8.2.1 Kronecker product-based feature extraction module
(KPFEM)

The first module in our architecture is based upon the Kronecker convolution operation
implemented within several Kronecker Convolution Layers (KCL), which are explained
in detail below. We also provide an explanation of the advantages that KCL provides for
our architecture, compared to conventional CNNs.

Kronecker Convolution Layer

One of the main strengths of this work, which makes it suitable for developing a reliable
tool for the challenging task of prawn image analysis, is leveraging the Kronecker con-
volution operation in a unique way to extract more informative features from the input
image, resulting in more accurate landmark detection and weight estimation.

The Kronecker convolution operation is based on the Kronecker product which is a
mathematical operation that takes two matrices and produces a new matrix that is formed
by multiplying each element of the first matrix with the second matrix. In the context of
convolutional neural networks, the Kronecker product is used to create a weight tensor
that is a Kronecker product of two smaller tensors, one that represents the filters in the
convolutional layer and another that represents the input image, to create a large weight
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tensor. This weight tensor is then used to compute the convolution between the input
image and the filter.

In contrast to standard convolutional layers, which apply a single filter across all input
channels to find local spatial relationships between input features, the Kronecker convo-
lution operation applies a filter that captures both spatial and higher-order information
across all input channels. This makes it an effective approach for feature extraction in
multi-channel inputs such as RGB images.

The Kronecker product can be written as follows:

[A1]
(n×n)

⊗
[

F1

]
( s
n
× d

n
×k×k)

+ . . .+ [An]
(n×n)

⊗
[

Fn

]
( s
n
× d

n
×k×k)

=


H


(s×d×k×k)

. (8.1)

where matrix A ∈ Rn×n and the filter matrix F and the weight matrix H have the same
dimensions: s channels, d filters, and k × k kernel size.

The Kronecker Convolution Layer (KCL) uses the Kronecker product to arrange con-
volution filters in a way that reduces the number of parameters by a factor of 1/n. We
explain how this works for different values of n in Eq. 8.1. When n = 1, we have a real-
valued convolution and the Kronecker product is just a scalar multiplication. The filter
matrix F has the same size as the weight matrix H, which is s× d× k × k.

When n = 2, we have a complex-valued convolution and the Kronecker product is
between two matrices. The filter matrices F1 and F2 are half the size of H, and they
contain the filters for each complex component. The algebra is done with matrices A1

and A2. This way, we use half as many parameters as in the real case. When n > 2, we
can extend this idea by using smaller filter matrices for each dimension. The size of H
does not change, but the parameter size decreases with higher values of n.

The weight tensor H in the KCL layer is obtained by summing Kronecker products
between two groups of learnable matrices. Specifically, it can be expressed as:

H =
n∑

i=1

Ai ⊗ Fi, (8.2)
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where Ai is a n × n matrix that describes the algebra rules, and Fi is a s
n
× d

n
× k × k

matrix representing the i-th batch of filters. These filters are arranged according to the
algebra rules to construct the final weight matrix.

Algorithm 4 is a pseudocode implementation of Kronecker Product Convolution us-
ing PyTorch-like syntax. The algorithm takes two input tensors: A, a 2D tensor of shape
(height, width), and F, a 4D tensor of shape (num filters, num channels, filter height,
filter width), and performs Kronecker product convolution on them. The output ten-
sor has a shape of (num filters, num channels, output height, output width), where
output height and output width are calculated based on the size of A and the filter size.

The algorithm works by first computing the Kronecker product of A and F, which is
a block matrix of shape (num filters, num channels, filter height, filter width).
This is achieved by expanding the dimensions of A and F and multiplying them element-
wise. The resulting block matrix is then reshaped to the desired output shape.

Algorithm 4: Kronecker Product, PyTorch-like

1 import torch
2

3 def kronecker_product(self, A, F):
4 mtx1 = torch.Size("torch.tensor"(A.shape[-2:]) * "torch.tensor"(F.

shape[-4:-2]))
5 mtx2 = torch.Size("torch.tensor"(F.shape[-2:]))
6 res = A.unsqueeze(-1).unsqueeze(-3).unsqueeze(-1).unsqueeze(-1) *
7 F.unsqueeze(-4).unsqueeze(-6)
8 mtx0 = res.shape[:1]
9 out = res.reshape(mtx0 + mtx1 + mtx2)

10 return out

Standard Convolutional Layer

A standard convolutional layer convolves the input x ∈ Rt×s with the filter tensor W ∈
Rs×d×k×k to generate the output y ∈ Rd×t, as follows:

y = Conv(x) = W ∗ x+ b, (8.3)

where s is the input channels dimension, d the output, k is the filter size, and t is the
input and output dimension. The bias term b has negligible impact on the number of
parameters, resulting in a complexity of O(sdk2).

The KCL layer is a convolutional layer that uses a weight tensor H to organize its
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filters, which is constructed by summing Kronecker products. The layer can be defined as

y = KCL(x) = H ∗ x+ b, (8.4)

where H is a learnable tensor with dimensions s×d×k×k. The two groups of learnable
matrices used to construct H are denoted as An and Fn, which are combined through
Kronecker products to create H, (see Eq. (8.1) and Eq. (8.2)). The value of n can be
set by the user to specify the real or hypercomplex domain, and controls the degree of
freedom of An and Fn. The number of parameters in the KCL layer is reduced by a
factor of 1/n compared to a standard convolutional layer in real-world problems, because
typically sdk2 ≫ n3. During training, the matrices An and Fn are learned and used to
construct H. The dimensions of Fn are s

n
× d

n
× k× k for squared kernels, and s

n
× d

n
× k

for 1D kernels. Hence, The KLC complexity of the weight matrix can be approximated
to O(sdk2/n).

KCL advantages compared to standard convolution

Compared to standard convolutional layers, using KCL brings several advantages. As
discussed, firstly, the KCL layer reduces the number of parameters by a factor of 1/n in
real-world problems, where n is the hyperparameter that specifies the desired domain. For
example, for RGB images that have n = 3, the network number of parameters is reduced
by 66%. This reduction in parameters can lead to faster training and inference times,
as well as reduced memory usage, making KCL well-suited for resource-constrained de-
vices. Secondly, KCL allows for weight sharing among different channels in multidimen-
sional data, such as colour images, which enables capturing latent intra-channel relations
that standard convolutional networks may ignore due to the fixed structure of the weights.
This can result in better performance in tasks that involve correlated channels. Finally,
the KCL layer can be easily integrated into any convolutional model by replacing stan-
dard convolution or transposed convolution operations, and the hyperparameter n pro-
vides high flexibility to adapt the layer to any kind of input. Overall, the KCL layer offers
a promising alternative to standard convolutional layers and has the potential to improve
the performance of convolutional neural networks in various applications.

Feature Extraction Structure

The proposed KPFEM module is composed of 14 KCLs that extract features from the
input prawn image. As shown in Fig. 8.1 each layer is followed by a rectified linear unit
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(ReLU) activation function and every second layer is followed by a max pooling operation
to reduce the spatial dimension of the feature maps. The module has ”skip connections”,
which allow information to flow through the network more efficiently by skipping over
certain layers that might otherwise impede the flow of information.

8.2.2 Landmark Localization Module (LLM)

The landmark localization module takes the extracted features generated by the KPFEM
module and predicts the locations of the landmarks. Therefore, for our keypoint detection
task, instead of using FCN to directly predict a numerical value of each keypoint coor-
dinate as an output (i.e. regressing images to coordinate values), we modified FCN to
predict a stack of output heatmaps (i.e. confidence maps), one for each keypoint. The
position of each keypoint is indicated by a single, two-dimensional, symmetric Gaussian
in each heatmap in the output, and the scalar value of the peak reflects the prediction’s
confidence score.

Moreover, our proposed LLM not only predicts heatmaps but also predicts scalar val-
ues for coordinates of each keypoint. Therefore, during the training process, we have a
multi-task loss function, which consists of two losses, i.e. JensenShannon divergence for
heatmaps and Euclidean distance for coordinates. The first loss measures the distances
between the predicted heatmaps and the ground-truth heatmaps, while the second loss
measures the distances between the predicted coordinates and the ground-truth coordi-
nates. Then, we take the average of the two losses as the optimization loss.

As demonstrated in Fig. 8.1, the LLM output is a set of predicted landmark coordinates,
using which also a distance matrix is produced to feed to the next module in our proposed
architecture.

8.2.3 Weight Regression Module (WRM)

The final component of our architecture is the weight regression module which is made
up of a multilayer perceptron (MLP) that consists of five layers of nodes: an input layer,
three hidden layers, and an output layer. Each node in the hidden layers applies the ReLU
activation function to the weighted sum of inputs from the previous layer.

The weight regression module takes the output of the landmark localization module,
which includes the predicted locations of the landmarks, and measures 66 distances be-
tween any 12 landmarks to predict the weight. We use the distances between the land-
marks to estimate significant traits such as total length, body length, carapace length, and
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length-width ratios. These measurements are typically made between easily distinguish-
able landmarks. The distances between them are assigned a trait name and then used as
inputs for a pre-trained regression model that maps these estimates to the prawn weight.
Specifically, we generated morphological measurements using a combination of methods
from previous studies and those that were possible within the constraints of the available
images. For the morphometric shape analysis, we used 8,164 photographed specimens
to estimate 66 morphometric distances derived from 12 landmarks. These distances were
then used by the weight regression module to predict the prawn weight directly from the
landmarks. This is a practical and useful application of our model. We trained our model
using a mean squared error (MSE) loss to minimize the difference between the predicted
weight and the ground-truth weight. This ensures that our model is accurate and reliable
for predicting prawn weights based on landmark information.

Figure 8.2: Keypoints (landmarks) of interest marked on the body of The Black Tiger
Prawn (Penaeus monodon)

8.3 Experiments

In this section, we present the experimental setup and results of our proposed approach for
automated morphometric analysis and weight estimation of prawns from images. We first
describe the dataset used for the experiments and the data preprocessing steps. Next, we
provide details on the training and evaluation of our approach and compare it to existing
methods. Finally, we analyze the results and discuss the strengths and limitations of our
approach.

8.3.1 The Dataset

We collected images of 8164 individual Black Tiger Prawns (Penaeus monodon) from an
aquaculture farm in Australia. The images were captured using a digital camera under
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natural lighting and saved as JPG files. We used ImageJ software to annotate each image
with 12 landmarks that correspond to prawn size and shape (Fig. 8.2). The landmark
positions were defined based on a previous study [436] and adapted to our image quality.

To evaluate the reliability of the landmark data, we measured 300 images twice by one
operator (O1) and once by another operator (O2) and computed the intraclass correlation
coefficient (ICC) for each landmark pair using R software. The ICC values ranged from
0.96 to 0.99, indicating high agreement between operators. The annotated images contain
12 specific and homologous points on the prawn body, including eyes, antennae, and tail.
For a complete list of the 12 landmarks, see Table 8.1. We then derived 5 traits from these
landmarks, which are listed in Table 8.2 and used for morphometric analyses in Sec. 8.4.4.

The dataset, therefore, includes for each image, the 12 ground-truth landmark coordi-
nates, and morphometric measurements obtained from the annotated coordinates on im-
ages. The dataset was divided into three parts: training, validation, and testing. We used
the training dataset to train the Deep Learning models, the validation dataset to assess
model performance during training, and the testing dataset to evaluate the performance
of the trained models. The ground truth landmarks for each prawn image had the form
[(x1, y1), .., (xk, yk)], where (xi, yi) represented the ith landmark location. Our model
was then trained to predict keypoint locations for each prawn image as shown in Fig. 8.2.
The predicted landmark had the same form as the ground truth.

Using a well-curated and annotated dataset is critical for the success of Deep Learning-
based morphometric analysis. It provides the models with sufficient training data to learn
shape information from the images and accurately identify landmark points. To achieve
this, we carefully curated the dataset to ensure a balanced representation of different
prawn species and body shapes, to enhance the robustness of the results. We also pre-
processed the images to make sure they were of similar size and resolution and to elimi-
nate background noise and other distractions that could impact the accuracy of landmark
identification.

8.3.2 Evaluation Metrics

In this section, we describe the performance metrics used to optimize and evaluate the
model and compare the quality of the predicted keypoint locations.
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Table 8.1: Lists of the 12 landmarks used in our analysis and their descriptions
Landmark
number

Landmark Description

1 Placed on the most anterior point of the antennal scale

2 Placed on the most anterior point of the tail

3 Placed on the most posterior point of the tail

4 Placed on the junction of the carapace and abdomen placed at the most dorsal

point

5 Placed on the midway along the carapace on the ventral side of the prawn

6 Placed on the junction of the carapace and abdomen placed at the most ventral

point

7 Placed dorsally on the midpoint of the first abdominal segment

8 Placed ventrally on the midpoint of the first abdominal segment

9 Placed dorsally on the midpoint of the third abdominal segment

10 Placed ventrally on the midpoint of the third abdominal segment

11 Placed dorsally on the midpoint of the last abdominal segment

12 Placed ventrally on the midpoint of the last abdominal segment

Euclidean distance

The first metric is the Euclidean distance, which measures the distance of the keypoints
based on their coordinates and does not depend on how the ground truth has been deter-
mined. A value of 0 indicates that the predicted keypoint is exactly at the same coordinate
as the ground truth keypoint. We calculate the sum of the squared Euclidean distance
of the difference between two kyepointsi.e., the predicted keypoint and the ground truth
human-annotated keypoint This represents the total difference between the two points.
The equation for Euclidean distance is shown in Equation 8.5,

d(g, p) =

√√√√ n∑
i=1

(vgi − vpi )
2, (8.5)

where g and p are two sets of points in Euclidean n-space for ground truth and prediction,
respectively, vgi , v

p
i are Euclidean vectors starting from the origin of the space (initial

point) for the ground truth and prediction, respectively, and n is the number of keypoints.
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Table 8.2: Important prawn traits, their descriptions, and their corresponding landmark
coordinates from Table 8.1

Trait Landmark
Coordinates

Trait Description

Total length 1-3 From the most anterior point of the antennal

scale to the most posterior point of the tail

Body length 1-2 From the most anterior point of the antennal

scale to the most anterior point of the tail

First abdominal segment height 7-8 From the dorsal midpoint to the ventral

midpoint on the first abdominal segment

Third abdominal segment height 9-10 From the dorsal midpoint to the ventral

midpoint on the third abdominal segment

Last abdominal segment height 11-12 From the dorsal midpoint to the ventral

midpoint on the last abdominal segment

Jensen-Shannon divergence

The second metric is the Jensen-Shannon divergence, which is a distance measure be-
tween two distributions and can be used to quantify the accuracy of the predicted key-
points distribution compared to the ground-truth keypoints distribution. The lower the
value, the better the model performs. This distance is calculated based on the Kullback-
Leibler divergence (KLD) and can be expressed as shown in Equation 8.6.

KLD(P ||Q) =
n∑

i=1

pi(x)log

(
pi(x)

qi(x)

)
, (8.6)

where the KLD for two probability distributions P and Q, and when there are n pairs of
predicted p, and ground truth q.

The Jensen-Shannon divergence (JSD) is then calculated using Equation 8.7,

JSDM(P ||Q) =

√
KLD(p ∥ m) +KLD(q ∥ m)

2
, (8.7)

where m is the point-wise mean of p and q. The JSD measures the difference between
two probability distributions, with a value of 0 indicating no difference between the dis-
tributions.

206



Chapter 8 Prawn Morphometrics and Weight Estimation from Images using Deep
Learning for Landmark Localization

Object Keypoint Similarity (OKS)

The third metric use to evaluate the performance of our landmark detection model is the
Object Keypoint Similarity (OKS), which is determined by dividing the distance between
expected and ground truth points by the object’s scale. OKS keypoints estimation serves
the same purpose as Intersection over Union (IoU ) as in object detection. This gives the
similarity between the keypoints of the two detected boxes, with a result between 0 and
1, where 0 means no similarity between the keypoints, while perfect predictions will have
OKS=1. The equation for OKS is shown in Equation 8.8.

OKS =

∑
i exp (−d2i /2s

2k2
i ) δ (vi > 0)∑

i δ (vi > 0)
, (8.8)

where di is the Euclidean distance between the detected keypoint and the corresponding
ground truth, vi is the visibility flag of the ground truth, s is the object scale, while ki

represents a per-keypoint constant that controls falloff.
Equations 8.5 and 8.7 were used for model training and optimization and also used to

compare different models’ performance, as shown in Table 8.3. Equation 8.8 was used as
a final evaluation metric for all the models used in this study, as shown in Table 8.4.

Precision and Recall

Object Keypoint Similarity (OKS) [427] was used as a performance metric (see section
8.3.2 for more details). As explained, the following 6 metrics are usually used for charac-
terising the performance of a keypoint detector model and were applied in our study.

• Average Precision (AP ):

– AP ( at OKS = .50 : .05 : .95 (primary metric))

– AP .50 ( at OKS = .50 )

– AP .75 ( at OKS = .75 )

• Average Recall (AR):

– AR ( at OKS = .50 : .05 : .95)

– AR.50 ( at OKS = .50)

– AR.75 ( at OKS = .75)
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8.3.3 Model training

In this section, we will describe the process of training our Deep Learning model to iden-
tify landmarks in prawn images. Our model architecture, which was described in Section
8.2, was trained using the aforementioned large dataset of annotated prawn images. The
training process consisted of several key steps, including data preprocessing, model se-
lection, and hyperparameter tuning.

Data Preprocessing

Before the training process can begin, the image data must be preprocessed to ensure that
it is suitable for input into the Deep Learning model. This includes resizing the original
image size of 1000× 331, to a consistent size of 320× 320, normalizing the pixel values,
and converting the images to grayscale if necessary. In addition, the annotated landmark
locations must be converted into a format that can be used by the model, such as a heatmap
or a set of points. We applied some image transformation operations to our training set
with certain probabilities. These operations are: Horizontal flip: 0.5, Vertical flip: 0.5,
Shift and scale: 0.5 (shift limit = 0.0625◦, scale limit = 0.20◦), Rotation: 0.5 (rotation
limit = 20◦), Blur: 0.3 (blur limit = 1), RGB-shift: 0.3 (R-shift limit = 25, G-shift limit
= 25, B-shift limit = 25). These operations help to improve the robustness of our model
to lighting changes. We did not transform the images in our validation or test sets in any
way.

The ground truth landmarks for each prawn image are represented in the form of
[(x1, y1), .., (xk, yk)], where (xi, yi) denotes the location of the ith landmark. In the train-
ing process, both the original (xi, yi) values and the converted heatmap derived from these
values are utilized in the loss function.

Model Selection

Once the data has been preprocessed, the next step is to select a model architecture that
is suitable for our problem. There are a variety of Deep Learning models that can be
used for image landmark identification. In this work, we have selected six models for our
experiments: U-net [32], ResNet-18 [226], ShuffleNet-v2 [414], MobileNet-v2 [415],
SqueezeNet [416], and our proposed KPFEM.
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Hyperparameter Tuning

Once the model architecture has been selected, the next step is to tune the hyperparameters
to achieve optimal performance. This includes selecting the optimal batch size, learning
rate, and number of epochs. The hyperparameters are selected using a combination of
grid search and cross-validation to ensure that the model is generalizing well and not
overfitting to the training data. For this problem set, we chose a learning rate of 1× 10−3

as the best option. All models took about 200 epochs to train on this problem and we
reduced the learning rate by γ = 0.001 after every 50 epochs. We also used Adam
optimiser [204] with β1 = 0.9, β2 = 0.999, and ϵ = 1.0 × 10−08. We applied these
hyperparameters to all six models. The best model configuration may vary depending on
the application, so these results do not cover all possible model configurations.

We split the dataset into three sets: ”Train”, ”Validation”, and ”Test”, comprising 40%,
20%, and 40% of the data, respectively. We trained all models on the Train subset of
the data with the same hyperparameters. All models had two outputs (heatmap and co-
ordinates) with two losses (see Sec. 8.3.2). All models took 320 × 320 input images and
produced 56× 56 output heatmaps except U-net which had 320× 320 output images.

Training

The final step in the training process is to train the model using the preprocessed data
and the optimized hyperparameters. The model is trained using a supervised learning ap-
proach, where the ground truth landmark locations are used to calculate the loss function
and update the model parameters. The training process is repeated until the model has
reached convergence or a maximum number of epochs has been reached. We used Py-
torch framework [308] on a Linux host with a single NVidia GeForce RTX 2080 Ti GPU
and a batch size of 64.

Once the model was trained, it was evaluated on the test subset of the dataset to assess
its performance in identifying landmarks in new, unseen images. The evaluation metrics,
described in the evaluation metrics section (Sec. 8.3.2), are used to quantify the accuracy
of the model and provide insight into its strengths and weaknesses.

8.4 Results

In this section, we present the results of our experiments on prawn landmark detection,
used for weight estimation and morphometric analyses from images using our proposed
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approach. We conducted experiments to optimize our method and assess its perfor-
mance against the five other models that we mentioned earlier, based on image throughput
(speed), accuracy, inference time, and generalization ability. The test subset was used to
measure these models (see section 8.3.1 for more information).

8.4.1 Landmark Detection

Table 8.3 presents a comparative analysis based on several metrics, including the number
of floating-point operations (FLOPs), the number of parameters, model size, and through-
put in images per second, as well as the coordinates loss (Equ. 8.5), heatmap loss (Equ.
8.7), and the average of both losses. It is worth noting that, the actual throughput of a net-
work is the number of instances it can process in one second with the optimal batch size.
It is obtained by dividing the total number of instances processed by the total time taken to
process them and can vary depending on various factors such as the model’s complexity,
the input data size, and the available hardware resources.

Table 8.3: Landmark Detection Performance Comparison of our model compared to five
benchmark models.

Network
FLOPs
(x106)

#Params
(x106)

Size
(MB)

Throughput
(img/sec) Coords

Losses
HeatMap Avg.

U-net [32] 16.52 31.04 124.3 201 0.024 0.355 0.190
ResNet-18 [226] 2.62 12.85 51.5 404 0.028 0.090 0.059
ShuffleNet-v2 [414] 0.44 3.06 12.5 170 0.047 0.153 0.100
MobileNet-v2 [415] 0.67 4.10 16.7 205 0.041 0.137 0.089
SqueezeNet [416] 0.92 2.33 9.4 551 0.027 0.078 0.052

KPFEM (ours) 0.01 0.39 1.6 562 0.023 0.084 0.0053

The experimental results shown in Table 8.3, were conducted on a desktop computer
equipped with a single NVidia GeForce RTX 2080 Ti GPU. These results demonstrate that
our proposed network which is based on our KPFEM feature extraction method outper-
forms other networks in several aspects, including having the lowest number of parame-
ters (47 times fewer parameters than U-net [32]), the smallest size on the hard disk, and the
second-highest throughput, following SqueezeNet [416]. Moreover, our model exhibits a
lower average loss than other popular models, including U-net [32], ShuffleNet-v2 [414],
and MobileNet-v2 [415].

The low number of parameters, small model size, and high throughput of our model
make it a promising solution for many real-time applications, such as mobile prawn video
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processing and portable phenotyping systems [1]. However, there are some limitations
that must be taken into consideration when interpreting the results. First, our experi-
ments were conducted on a single GPU, which may not represent the complete profile
performance, and may vary on other hardware configurations. Second, the dataset used
for the experiments was limited in size and scope, and therefore, further studies on more
diverse datasets are necessary to validate the effectiveness and generalizability of our ap-
proach. Future work will focus on addressing these limitations and further improving the
efficiency and accuracy of our approach.

Table 8.4 shows the performance of our model on the test subset of the dataset com-
pared to benchmark models in landmark detections, using the OKS evaluation metric. To
assess the generalization effectiveness of our model, we compared the performance of
our model with randomly initialized weights, against the other models with randomly ini-
tialized weights as well to provide a direct comparison. Table 8.4 demonstrates that our
proposed model performs well in generalization with only 40% of the data and without
the use of transfer learning, when combined with robust data augmentation techniques.

The overall outcome depicted in Table 8.4 indicates that our proposed network sur-
passes both ShuffleNet-v2 [414] and MobileNet-v2 [415] in terms of landmark detection
performance, with an accuracy of AP = 0.986, while still competing with SqueezeNet
[416] even though it has substantially fewer parameters. It is noteworthy that our model
attains this high accuracy with only 0.39M parameters and without relying on transfer
learning. These results clearly demonstrate the effectiveness and generalisability of our
KPFEM-based model.

Table 8.4: Performance comparison using the OKS metric on the test dataset.

Network AP AP .50 AP .75 AR AR.50 AR.75

U-net [32] 0.981 0.990 0.990 0.974 0.999 0.999
ResNet-18 [226] 0.984 0.990 0.990 0.982 0.999 0.999
ShuffleNet-v2 [414] 0.957 0.990 0.990 0.979 0.999 0.999
MobileNet-v2 [415] 0.963 0.990 0.989 0.979 0.999 0.996
SqueezeNet [416] 0.971 0.990 0.990 0.983 0.999 0.999

KPFEM (ours) 0.986 0.990 0.990 0.985 0.999 0.999
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Figure 8.3: Example of threshold segmentation. From left to right: (a) original image, (b)
segmented prawn body, (c) overlay of the segmentation on the original image.

8.4.2 Weight Estimation

We compared our proposed approach with two existing methods for prawn weight es-
timation: the traditional linear regression method [199], and a Deep Learning-based
method [437] based on shape or contour features for weight estimation. In the shape
or contour features method for prawn weight estimation, the prawn body is segmented
from the image using a threshold segmentation process. This process involves selecting
a threshold value that separates the pixels in the image into two groups: foreground and
background. The pixels with intensity values above the threshold are classified as fore-
ground pixels, which belong to the prawn body, while the pixels with intensity values
below the threshold are classified as background pixels. This is demonstrated in Fig. 8.3.

After segmenting the prawn body, the next step is to estimate its weight. One way to
do this is to count the number of pixels in the segmented region, which is assumed to be
proportional to the prawn weight. This pixel count is then correlated to the actual weight
of the prawn using a linear regression model, e.g using a mathematical model similar to
[199] for fish weight estimation. Another approach is to use Deep Learning, e.g. a neural
network [437] that predicts the prawn’s weight based on the pixel count. However, these
methods have some limitations. For example, it assumes that the relationship between
pixel count and prawn weight is linear. Additionally, this method does not take into
account the shape and position of the prawn body, which can vary from one image to
another.

These methods were compared against our proposed approach for prawn weight es-
timation, which involves generating 66 possible distances from the 12 landmarks and
feeding them into a weight regression module. We generated a distance matrix as seen
in Fig. 8.4 using the 12 predicted landmarks. This distance matrix contains the pairwise
Euclidean distances between all possible pairs of the 12 landmarks, resulting in a total of
(12(12− 1)/2 = 66) possible distances. These distances are then fed to the WRM, which
uses a deep learning-based approach to predict the weight of the prawn. Our proposed
approach of using the distance matrix as features for prawn weight estimation has sev-
eral advantages over traditional methods such as the segmentation method. It takes into

212



Chapter 8 Prawn Morphometrics and Weight Estimation from Images using Deep
Learning for Landmark Localization

Figure 8.4: Top: Image of a prawn with the 66 possible distances between its 12 land-
marks marked. Bottom: The resulting distance matrix plot computed from
these distances.

account the spatial relationships between the landmarks, providing a more accurate esti-
mation of prawn weight. Furthermore, our approach is less sensitive to variations in the
prawn’s posture or orientation, which can significantly affect the accuracy of traditional
methods.

Table 8.5 shows the comparison results. Our proposed approach achieved the lowest
mean absolute error (MAE) and mean squared error (MSE) values and the highest Co-
efficient of determination among the three methods. Specifically, our approach achieved
an MAE of 0.649 g, an MSE of 0.986 g, and a Coefficient of determination of 0.934,
which outperformed the other two methods. These results demonstrate the effectiveness
and superiority of our proposed approach for prawn weight estimation.

In addition to evaluating the overall performance of our proposed weight estimation
approach, we also used visualizations to further understand our model’s performance and
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Table 8.5: Comparison of prawn weight estimation methods using mean absolute error
(MAE) in grams, mean squared error (MSE) in grams, and coefficient of deter-
mination (R2)

Method MAE (g) MSE (g) Coefficient of determination
Linear Regression 0.893 1.848 0.825
Deep Learning-based Method 0.880 1.713 0.896
Proposed Approach 0.630 0.735 0.952

identify areas for improvement. Specifically, we used Fig. 8.5 to visualize the relation-
ships between the predicted and the true weight values. The plot in Fig. 8.5 shows the
relationship between predicted weight and true weight for three different methods: Lin-
ear Regression, Deep Learning-based Method, and the Proposed Approach. The plot can
provide information about the accuracy and precision of the different methods. For ex-
ample, if the points on the plot fall close to the diagonal line (y = x), then the predicted
weights are close to the true weights, indicating a high level of accuracy. Additionally, if
the points are tightly clustered around the diagonal line, then the method is precise in its
predictions.

Based on the plots in Fig. 8.5, it appears that the Proposed Approach has a higher
correlation between predicted and true weight values compared to the Linear Regression
and Deep Learning-based methods. This can be seen by the tighter clustering of points
around the line of best fit. The presence of outliers in the Linear Regression and Deep
Learning-based methods may be affecting the overall correlation.

Outliers can affect correlation in a number of ways. They can either increase or de-
crease the correlation coefficient depending on their location relative to the regression
line. An outlier that is near where the regression line might normally go increases the
correlation value, while an outlier away from the regression line decreases it.

Figure 8.5: Plot showing the relationship between predicted weight and true weight for
three different methods. From left to right: results for the Linear Regression
method, Deep Learning-based Method, and our Proposed Approach.
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8.4.3 Ablation Study on Weight Estimation

Our proposed model uses 66 distances as its features to predict the prawn weights. To in-
vestigate the impact of dimensionality reduction on our proposed approach, we conducted
an ablation study using Principal Component Analysis (PCA). The purpose of PCA was
to reduce the high number of dimensions/features per observation, which in our case were
the 66 possible distances between the 12 landmarks marked on a prawn. We applied PCA
to the distance matrix and reduced the number of components to 2, 5, and 10. We then
used the reduced feature sets to predict the weight of prawns. The results are shown in
Table 8.6.

Surprisingly, we found that using the full set of 66 distances without PCA resulted
in better weight estimation results. This suggests that PCA was not necessary for this
particular task and that the high-dimensional feature space was important for accurately
capturing the information needed for prawn weight estimation. This finding is also in
agreement with the observation shown in Table 8.6, which demonstrates the more features
used, the lower the MAE and MSE of the model.

Table 8.6: Comparison of weight estimation results using PCA with a different number of
components.

Method MAE (g) MSE (g) Coefficient of determination
PCA (n = 2) 0.784 0.851 0.915
PCA (n = 5) 0.765 0.842 0.924
PCA (n = 10) 0.724 0.816 0.931
No PCA 0.630 0.735 0.952

8.4.4 Morphometric Analyses

In our proposed deep learning model, we detect keypoints (landmarks) on the prawn body
to achieve highly accurate weight estimations. By detecting and analysing these land-
marks, other important physical characteristics of the prawn, such as its length, width,
and shape, can be extracted. The best part is that this morphometric analysis is essentially
a byproduct of the weight estimation process. This represents a significant value-add for
aquaculture and fisheries managers, who can now obtain valuable morphometric informa-
tion about their prawn populations without incurring additional expenses or resources.

Morphometric analyses refer to the measurement of various physical features of an
organism, such as length, width, and area. These measurements are essential for under-
standing the biology of the organism and can be used to identify and classify different
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species while understanding their growth rate and possible body deformities. Morphome-
tric information can also be used to study and identify specific traits that are desirable for
selective breeding or commercial purposes.

Traditionally, morphometric analyses involve having a human operator measure and
manually record various morphology traits on the animal body. This is a slow and ineffi-
cient process that cannot be easily scaled. Automated morphometric analyses facilitated
using deep-learning-based computer vision and image processing, on the other hand, of-
fer several benefits over traditional manual measurements. Firstly, they are much faster
and more efficient, allowing researchers and operators to process larger stock/data quan-
tities in a shorter amount of time. This is particularly important when dealing with large
populations/datasets, as manual measurements are time-consuming and error-prone. Ad-
ditionally, automated morphometric analyses are more objective, as they are not subject
to human bias or error.

We performed a morphometric shape analysis on five important prawn traits derived
from landmark data. These traits are shown in Table 8.2 and include total length, body
length, the first abdominal segment height (First ASH), the third abdominal segment
height(Third ASH), and the last abdominal segment height (Last ASH). We used the land-
mark data obtained from our model to calculate these five traits for each individual prawn
and plotted their distributions in Fig. 8.6. We also computed the correlation matrix among
the traits and visualized it as a heatmap in Fig. 8.7. The results show that total length and
body length are highly correlated (r = 0.99), and so are the First and Third, and Third
and Last ASH (r = 0.93). The other traits had high correlations as well. These patterns
reflect the variation in shape and size among the prawns.

The accuracy of measurements is critical for the quantitative comparison of prawn mor-
phometry, where accuracy refers to the closeness of measurements to the true value. To
assess accuracy, this study utilized the mean absolute difference (MAD) between manual
and DL measurements.

The MAD is a measure of accuracy that calculates the average absolute deviation be-
tween two values. It is obtained by dividing the sum of absolute deviations between each
value by the number of values. The mathematical expression for MAD is:

MAD =
1

n

n∑
i=1

|(xi − yi)|

where n is the total number of observations, xi and yi are the values of the i − th obser-
vation in two different samples, and the vertical bars denote absolute value.
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Figure 8.6: The distribution pair plots for the five important prawn traits from Table 8.2,
i.e. Total length, Body length, First abdominal segment height ”First ASH”,
Third abdominal segment height ”Third ASH”, Last abdominal segment
height ”Last ASH”
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Figure 8.7: The correlation heatmap for the five important prawn traits from Table 8.2, i.e.
Total length, Body length, First abdominal segment height ”First ASH”, Third
abdominal segment height ”Third ASH”, Last abdominal segment height
”Last ASH”
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Table 8.7 presents a performance comparison of various deep learning (DL) networks
in terms of their ability to accurately measure morphometric features. The table shows the
mean absolute difference (MAD) in millimetres between manual and DL measurements
for total length, body length, first ASH, third ASH, and last ASH. The results indicate that
our proposed KPFEM-based network outperforms other networks such as U-net, ResNet-
18, ShuffleNet-v2, MobileNet-v2, and SqueezeNet in terms of MAD for all morphometric
features. This suggests that our approach is more accurate in measuring morphometric
features compared to other DL networks used for landmark detection.

Table 8.7: Morphometric Analyses Performance Comparison: Mean Absolute Difference
(MAD) between Manual and DL Measurements (mm)

Network Total length Body length First ASH Third ASH Last ASH

U-net [32] 1.81 1.83 1.73 1.72 1.51
ResNet-18 [226] 1.72 1.85 1.71 1.64 1.43
ShuffleNet-v2 [414] 2.34 2.22 2.15 2.15 2.02
MobileNet-v2 [415] 2.23 2.24 2.04 2.12 1.94
SqueezeNet [416] 2.14 1.93 1.94 1.85 1.74

KPFEM (ours) 1.61 1.54 1.53 1.45 1.31

8.4.5 Principal Component Analysis (PCA)

In addition to our aforementioned analysis, we also performed PCA on the predicted land-
marks from our model to analyze the morphometric shape of prawns. PCA is a statistical
technique commonly used for dimensionality reduction and identifying patterns in data.
By reducing the dimensionality of the data, PCA allows us to identify the principal com-
ponents (PCs) that explain the most variability in the data.

We chose to use PCA in our analysis as a data-driven approach to analyze prawn shape
variation in the predicted landmark data. Even though we have ground truth measure-
ments of body size for the prawns, PCA allows us to understand the PCs and explain vari-
ability in the data and how it represents the major sources of shape variation in prawns.
This provides a complementary and holistic view of the shape variation beyond individual
distance measurements.

It is important to note that the results obtained from PCA are based on the predicted
landmark data, which may have some inaccuracies. However, we believe that the pre-
dicted landmark data still provide valuable insights into the shape variation among prawns
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and can be used as a proxy for understanding the morphometric characteristics of the
prawns. This is especially important because collecting manual landmarks is impractical
at large scales.

The PCA analysis revealed that the first two principal components (PC1, PC2) ac-
counted for 94.2% of the total variability in the data, while the next four PCs, accounted
for only 2.6% of variability. Detailed variability results are shown in Table 8.8.

Table 8.8: Explanation of Variability by Various Principal Components (PCs)
PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 191.24 23.63 19.22 14.78 11.42 10.17
Proportion of Variance 0.916 0.026 0.014 0.006 0.004 0.002
Cumulative Proportion 0.916 0.942 0.956 0.962 0.966 0.968

The results for the first two PCs are also shown in Fig. 8.8. In the left panel, the circles
represent individual prawns with their dataset ID shown next to them. Their positions on
the plot are determined by their scores on PC1 (Dim1) and PC2 (Dim2). The cos2 values
measure the quality of representation of the individuals by the principal components.

PC1 accounted for the highest proportion of the variation (91.6%) among the landmarks
and was used as a representation of the overall size of the prawns. The positive loadings
of PC1 indicate that an increase in PC1 scores corresponds to an increase in the distance
between landmarks 1 and 3, which represents the total length of the prawn. PC1 can be
used as an indicator of overall size, and the higher variance accounted for by PC1 may be
due to the presence of a wide range of sizes in the samples.

PC2 (Dim2) explained 2.6% of the total variation among landmarks and represents the
proportionate body width/shape of the prawns. The extremes on the PC2 axis on Fig.
8.8(left) represent a very thin/elongated body shape at the low end and a thick/fatty shape
at the high end.

Figure 8.8)(right) illustrates how different variables (distances) contribute to the varia-
tion in shape among prawns with respect to the two main PCs, i.e. PC1 and PC2. Here,
each of the arrows shows one of the distances, e.g. d 1 5 designates the distance between
landmark 1 and 5, and how it relates to the two PCs.

In conclusion, our PCA analysis of the predicted landmark data revealed that PC1 rep-
resents the overall size and PC2 represents the proportionate body width/shape of the
prawns. These findings provide important insights into our targeted morphometric char-
acteristics of prawns and lay a foundation for further research on the genetic and environ-
mental factors that affect prawn morphology [438].
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Figure 8.8: PCA Analysis. In the left panel, the circles represent individual prawns with
their dataset ID shown next to them. Their positions on the plot are determined
by their scores on PC1 (Dim1) and PC2 (Dim2). The cos2 values measure
the quality of representation of the individuals by the principal components.
The right panel illustrates how different variables (distances) contribute to the
variation in shape among prawns with respect to the two main PCs. Here, each
of the arrows shows one of the distances, e.g. d 1 5 designates the distance
between landmark 1 and 5, and how it relates to the two PCs.

8.5 Discussion

Fish and prawns have distinct morphological characteristics that can affect the accuracy
of landmark detection. For example, fish have a more elongated body shape and a variety
of fin shapes and sizes, while prawns have a more compact body shape and distinctive
features such as antennae and claws. These differences in morphology can make it chal-
lenging to accurately detect landmarks using a single model that is designed to work for
both fish and prawns.

To address this challenge, separate models were developed for fish and prawn landmark
detection tasks. These models were specifically designed to account for the unique mor-
phological characteristics of each species, allowing for more accurate landmark detection.
By developing separate models, we were able to improve the performance of our land-
mark detection system and provide more reliable results for both fish and prawn species.
The accurate estimation of weight and other morphological features of individuals being
farmed in aquaculture is crucial data that when acquired on industrial scales can improve
crop manage- ment, support decision-making, and be embedded in product grading and
processing activities. Traditional methods of monitoring and acquiring morphological
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data from aquaculture animals are laborious, hence the need for developing automated
methods using computer vision and deep learning. In this paper, we proposed a novel
approach that uses a Kronecker product-based feature extraction module and a landmark
localization module. We utilized these efficient modules to extract important landmarks
on the prawn body in a highly accurate, fast, and efficient way to perform accurate weight
estimation and morphometric analysis of prawns from images. Our work is the first that
applies the Kronecker product operation for feature extraction in morphometrics analysis
and uses a localization network for landmark detection in prawn images.

Our deep learning-based image processing approach can be a valuable tool for im-
proving the efficiency and profitability of aquaculture and fisheries operations, while also
promoting sustainable practices and minimizing environmental impacts. Our approach
helps researchers and managers obtain accurate measurements of prawn size, weight, and
other morphological features without invasive or time-consuming manual methods. This
allows potentially for more efficient monitoring of populations, aiding in informed deci-
sions about stocking densities, feeding regimes, and harvesting schedules. Noninvasive
and accurate weight data can also provide critical information for managing prawn popu-
lations and predicting future yields, enhancing decision support.

Our approach has several strengths. First, it is fully automated, which saves time and re-
duces manual labour. Secondly, it is accurate and robust, enabling reliable prawn weight
estimation even in challenging environments. Thirdly, our use of Deep Learning tech-
niques to extract features from prawn images is a promising area of research that has
shown great potential for morphometric analyses.

However, our approach also has limitations. It heavily relies on the quality of input
images, and low-quality images may not provide enough information for accurate prawn
weight estimation. Additionally, large-scale annotated datasets are needed for training
our Deep Learning architecture, which may be difficult to obtain in some situations.

In future work, we aim to address these limitations by exploring new approaches to
handle low-quality images and developing efficient and automated methods for acquiring
and annotating large-scale datasets. Furthermore, we will investigate the application of
our approach to other species of aquatic animals and explore the potential for using it for
other applications such as automated disease diagnosis and monitoring. We believe that
our work can significantly contribute to prawn aquaculture management and production,
opening up new opportunities for Deep Learning applications in aquatic animal research
and aquaculture engineering.
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8.6 Conclusions

We proposed a novel Deep Learning approach for automated morphometric analyses and
weight estimation of prawns from images. Our approach consisted of two main mod-
ules: a Kronecker product-based feature extraction module that efficiently combined low-
level and high-level features to be used in the second landmark localization module to
accurately detect landmarks on the prawn body. We showed that the use of Kronecker
product-based feature extraction can lead to significant model improvements compared
to conventional convolution-based feature extractors. We also demonstrated that this re-
sulted in a significantly higher image processing throughput for our model, compared to
the state-of-the-art convolution-based models.

We evaluated our approach on a large-scale dataset of farmed prawn images. We ap-
plied our approach to two important applications, i.e. weight estimation, and morphomet-
ric analyses of prawns. Our experimental results showed that our approach outperformed
existing methods in terms of accuracy, robustness, and efficiency. The proposed approach
provided accurate weight estimation and morphometric analysis, which are critical for
prawn aquaculture management and production.

8.6.1 CO2 Emission Related to Experiments

Experiments were conducted using a private infrastructure, which has a carbon efficiency
of 0.432 kgCO2eq/kWh. A cumulative of 500 hours of computation was performed on
the hardware of type RTX 2080 Ti (TDP of 250W). Total emissions are estimated to be
54 kgCO2eq of which 0 percents were directly offset. Estimations were conducted using
the MachineLearning Impact calculator presented in [439].

More in detail, in Table 8.4, we compare our proposed model with a ResNet-18 for
landmark detection. We find that our model reduces both training time and carbon emis-
sions by 25%. The ResNet-18 takes about 20 hours and emits 2.16 kgCO2eq, while our
model takes about 15 hours and emits 1.62 kgCO2eq. Carbon emissions are a major con-
cern for training large deep-learning models. Therefore, we believe that our method is a
small step towards more efficient and eco-friendly models.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

This thesis presented several novel DL methods for underwater image processing and
analysis. The main contributions of this thesis are:

• A comprehensive review of existing Computer Vision and DL research on fish iden-
tification in marine environments from 2003 to 2021.

• Two novel methods for fish segmentation and tracking in underwater videos using
self-supervised learning and optical flow models.

• A novel framework called UDnet that adapts to Uncertainty Distribution in its un-
supervised reference map generation to produce enhanced underwater images.

• Two novel DL architectures for fish landmark detection and prawn weight estima-
tion from images using convolution operations based on Vision Transformers and
Kronecker product operation.

The experimental results showed that the proposed methods achieved state-of-the-art per-
formance on various underwater image datasets and demonstrated their effectiveness, ro-
bustness, efficiency, and generalisability. The methods also addressed some of the chal-
lenges of applying DL to underwater image processing such as data scarcity, annotation
cost, domain adaptation, and uncertainty handling. The methods also provided some in-
sights into the field of marine habitat monitoring and suggested some future directions for
using DL for underwater image processing. This thesis aimed to bridge the gap between
DL and underwater image processing, and to facilitate the advancement of both fields.
The main contributions and findings of this thesis are summarized as follows:
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In Chapter 2, a review of existing Computer Vision and Deep Learning research on fish
identification in marine environments from 2003 to 2021 was provided. Key concepts of
Deep Learning were overviewed and various studies that used this technique were eval-
uated. The main challenges of applying Deep Learning to underwater image processing
were discussed and some solutions were suggested. Some insights into the field of marine
habitat monitoring were offered and some future directions for using Deep Learning for
underwater image processing were proposed.

In Chapter 3, an exploration of how DL techniques can be applied to monitor underwa-
ter fish habitats was provided. A tutorial on the key concepts and steps of DL development
for marine scientists who want to learn and apply DL to their own problems was provided.
A comprehensive survey of existing DL methods for fish habitat monitoring tasks such
as classification, counting, localisation, and segmentation was conducted. The perfor-
mance and limitations of various DL techniques using publicly available underwater fish
datasets were compared. Some open challenges and opportunities for future research in
this domain were discussed.

In Chapters 4 and 5, the first research question was addressed. Two novel methods
for fish segmentation and tracking in underwater videos were presented. The first method
used a Transformer-based model that learned from self-supervision on unlabelled videos.
The model achieved high-quality fish segmentation in underwater videos captured in situ
in the wild. The model outperformed previous self-supervised methods and was close
to supervised methods on two new unseen underwater video datasets. The model also
showed great compute-efficiency and generalisability. The second method proposed a
three-stage framework that used an optical flow model to generate pseudo labels based
on spatial and temporal consistency between frames. A self-supervised model refined
the pseudo-labels incrementally. The refined labels were used to train a segmentation
network. No human annotations were required during the training or inference. The
method was validated on three public underwater video datasets and demonstrated its
effectiveness and robustness.

In Chapter 6, the second research question was addressed. A novel framework called
Uncertainty Distribution Network (UDnet) that adapts to Uncertainty Distribution in its
unsupervised reference map generation to produce enhanced output images was intro-
duced. This chapter addressed the second research question. UDnet consists of three
main parts: a statistically guided multi-colour space stretch module, a U-Net-like con-
ditional variational autoencoder module, and a probabilistic adaptive instance normaliza-
tion block. UDnet does not require manual human annotation and can learn with a limited
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amount of data to achieve state-of-the-art results. UDnet was evaluated on eight publicly-
available datasets and showed competitive performance compared to other state-of-the-art
approaches.

Finally, in Chapters 7 and 8, the third and last research question was addressed. Two
novel DL architectures for fish landmark detection and prawn weight estimation from im-
ages were proposed. The first architecture was called Mobile Fish Landmark Detection
network (MFLD-net), which used convolution operations based on Vision Transformers.
MFLD-net could achieve keypoint detection accuracies on par or better than some of the
state-of-the-art CNNs on a fish image dataset. MFLD-net was lightweight and suitable for
embedded and mobile devices, and could learn with a limited amount of data. MFLD-net
also showed great generalisation capabilities. The second architecture was a novel DL
approach for automated weight estimation and morphometric analysis of prawns from
images. The approach consisted of three main components: a feature extraction module
that leveraged the Kronecker product operation to combine low-level and high-level fea-
tures, a landmark localization module that predicted the coordinates of key points on the
prawn body using a localization network, and a weight regression module that estimated
the prawn weight based on the extracted features and landmarks using a fully connected
network. The approach was evaluated on a large-scale dataset of prawn images collected
from various farms and environments. The experimental results demonstrated that the
approach outperformed existing methods in terms of accuracy, robustness, and efficiency.

In conclusion, the proposed deep learning architectures provide new and effective tools
for analyzing visual data in marine and aquaculture environments. I hope that the methods
proposed in this thesis will inspire further research and development in this field, leading
to new applications and discoveries.

9.2 Limitations and Research Scope

Limitations and assumptions are inherent in any research and can affect the generalizabil-
ity or applicability of the research findings. In the context of this thesis, some potential
limitations and assumptions that may affect the generalizability or applicability of the
research findings could include:

• The datasets used to evaluate the proposed methods may not be representative of all
underwater environments and scenarios, limiting the generalizability of the results
to other datasets or scenarios.

226



Chapter 9 Conclusion and Future Work

• The proposed methods may rely on certain assumptions about the characteristics
of the underwater environment, such as lighting conditions, water clarity, or fish
behaviour, which may not hold in all scenarios.

• The performance of the proposed methods may be affected by factors such as the
quality and quantity of training data, the choice of hyperparameters, or the archi-
tecture of the deep learning models, which may limit their applicability to other
datasets or scenarios.

The chosen scope of the research is justified by the need to address specific challenges
in marine and aquaculture computer vision, such as fish segmentation, trajectory tracking,
image enhancement, landmark detection, weight estimation and morphometric analyses.
These challenges are important for various applications such as fish monitoring, stock
assessment, aquaculture management and environmental protection. By focusing on these
specific challenges and proposing novel deep learning architectures to address them, this
thesis aims to advance the field of marine and aquaculture computer vision and provide
practical solutions that can facilitate various applications.

9.3 Future Work

The methods presented in this thesis have demonstrated the potential of deep learning
architectures for various challenges and tasks related to marine and aquaculture computer
vision. However, there are still many opportunities for further research and improvement
in this field. Some of the possible directions for future work are:

• Extending the self-supervised methods for fish segmentation and tracking to other
underwater objects such as coral reefs, algae, and marine debris. This would en-
able a more comprehensive analysis of underwater scenes and ecosystems, as well
as facilitate tasks such as habitat monitoring, biodiversity assessment, and environ-
mental impact evaluation.

• Exploring different ways of incorporating Uncertainty Distribution into the refer-
ence map generation process to improve the quality and diversity of the enhanced
output images. This could involve using different types of uncertainty measures,
such as aleatoric or epistemic uncertainty, or applying different strategies for sam-
pling or combining uncertain reference maps. This would allow for more realistic
and robust image enhancement under various underwater conditions.
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• Applying the Vision Transformer-based architecture for fish landmark detection to
other tasks such as fish species recognition, pose estimation, and behaviour analy-
sis. This would leverage the advantages of Vision Transformers over convolutional
neural networks, such as better scalability, generalization, and interpretability, for
more complex and high-level underwater image processing and analysis tasks.

• Developing more efficient and accurate methods for prawn weight estimation and
morphometric analysis using deep learning that can handle occlusion, deformation,
and illumination variation. This could involve using different types of input data,
such as depth maps or thermal images, or applying different techniques for data
augmentation or regularization. This would improve the performance and reliability
of prawn weight estimation and morphometric analysis systems for aquaculture
management and quality control purposes.

• Evaluating the proposed methods on larger and more diverse underwater image
datasets collected from different regions, seasons, and depths. This would test the
scalability and robustness of the proposed methods across different underwater en-
vironments and scenarios, as well as provide more insights into their strengths and
limitations.

In addition to these specific directions based on the methods presented in this thesis,
there are also some general directions that could be explored in future research on under-
water image processing and analysis using deep learning:

• Investigating the potential of using multi-modal data such as acoustic signals, depth
maps, and temperature sensors to complement the visual information for underwa-
ter image processing and analysis.

• Incorporating additional modalities: The use of multiple modalities, such as sound
and environmental data, can provide complementary information that enhances the
accuracy and robustness of the proposed methods.

• Addressing occlusions and complex background conditions: The proposed methods
can be extended to address occlusions and complex background conditions, which
are common challenges in underwater environments.

• Considering multi-species interactions: The proposed methods can be applied to
analyze interactions between multiple species, which can provide valuable insights
into ecological dynamics and environmental changes.
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• Expanding the scope of applications: The proposed methods can be applied to a
wide range of marine and aquaculture applications, such as underwater robotics,
ocean exploration, and marine conservation.

• Improving interpretability and explainability: The proposed methods can be fur-
ther improved to enhance interpretability and explainability, which are crucial for
gaining insights and understanding the underlying mechanisms of the analyzed phe-
nomena.

Overall, I believe that the proposed deep learning architectures have great potential for
advancing the field of marine and aquaculture computer vision, and I look forward to
seeing further research and development in this area.
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[171] H. Måløy, A. Aamodt, and E. Misimi, “A spatio-temporal recurrent network for
salmon feeding action recognition from underwater videos in aquaculture,” Com-

puters and Electronics in Agriculture, vol. 167, p. 105087, 12 2019.

[172] Y. Peng, N. Kondo, T. Fujiura, T. Suzuki, Wulandari, H. Yoshioka, and E. Itoyama,
“Classification of multiple cattle behavior patterns using a recurrent neural net-
work with long short-term memory and inertial measurement units,” Computers

and Electronics in Agriculture, vol. 157, pp. 247–253, 2 2019.

[173] J.-L. Xu, S. Hugelier, H. Zhu, and A. A. Gowen, “Deep learning for classification
of time series spectral images using combined multi-temporal and spectral
features,” Analytica Chimica Acta, vol. 1143, pp. 9–20, 1 2021. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0003267020311429

249

http://www.mdpi.com/2072-4292/5/4/1809
http://ieeexplore.ieee.org/document/7952320/
https://linkinghub.elsevier.com/retrieve/pii/S0003267020311429


Bibliography

[174] M. Jahanbakht, W. Xiang, L. Hanzo, and M. R. Azghadi, “Internet of Underwater
Things and Big Marine Data Analytics - A Comprehensive Survey,” IEEE

Communications Surveys and Tutorials, vol. 23, no. 2, pp. 904–956, 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9328873/
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