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Abstract 14 

Macroalgae are a fundamental component of coastal ecosystems and play a key role in shaping 15 

community structure and functioning. Macroalgae are currently threatened by diverse stressors, 16 

particularly climate change and invasive species, but they do not all respond in the same way to the 17 

stressors.  Effective methods of collecting qualitative and quantitative information are essential to enable 18 

better, more efficient management of macroalgae. Acquisition of high-resolution images, in which 19 

macroalgae can be distinguished on the basis of their texture and colour, and the automated processing of 20 

these images are thus essential. Although ground images are useful, labelling is tedious. This study 21 

focuses on the semantic segmentation of five macroalgal species in high-resolution ground images taken 22 

in 0.5 x 0.5 m quadrats placed along an intertidal rocky shore at low tide. The target species, Bifurcaria 23 

bifurcata, Cystoseira tamariscifolia, Sargassum muticum, Sacchoriza polyschides and Codium spp., 24 

which predominate on intertidal shores, belong to different morpho-functional groups. The study explains 25 

how to convert vector-labelled data to raster-labelled data for adaptation to convolutional neural network 26 

(CNN) input. Three CNNs (MobileNetV2, Resnet18, Xception) were compared, and ResNet18 yielded 27 

the highest accuracy (91.9%). The macroalgae were correctly segmented, and the main confusion 28 

occurred at the borders between different macroalgal species, a problem derived from labelling errors. In 29 

addition, the interior and exterior of the quadrats were correctly delimited by the CNNs. The results were 30 

obtained from only one hundred labelled images and can be performed on personal computers, without 31 

the need to resort to external servers. The proposed method helps automation of the labelling process. 32 

33 
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36 

1. Introduction37 

Macroalgae are important primary producers on subtidal and intertidal rocky shores worldwide (Jenkins 38 

et al., 2008) and make a substantial contribution to carbon sequestration, nutrient cycling and global 39 

oxygen production (Bañolas et al., 2020; Macreadie et al., 2017). As ecosystem engineers, they modify 40 

habitat conditions, facilitating the existence and survival of other intertidal species and thus strongly 41 
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influencing the structure and functioning of coastal ecosystems (Purvaja et al., 2018). They also provide 42 

food, shelter and nursery grounds for many invertebrate and vertebrate species, including commercially 43 

important species (Smale et al., 2013). 44 

Macroalgae also provide various, highly valuable ecosystem services to humans (Beaumont et al., 2008; 45 

Quiros et al., 2018). They are highly nutritious and produce bioactive compounds used in fertilizers, food 46 

and medical and cosmetic products (Rebours et al., 2014). Macroalgae are also beginning to be 47 

considered as a renewable energy source and as an alternative to fossil fuels (algal biofuel) (Adeniyi et 48 

al., 2018; Debiagi et al., 2017). The main benefit of algal biofuel is that it is CO2 neutral as the CO2 49 

emitted to the atmosphere during biofuel combustion is equivalent to CO2 needed by the algae to grow 50 

and be converted into biofuel. In addition, compounds extracted from macroalgae can be used to 51 

neutralize harmful substances from water, at a much smaller cost than other methods. Some authors have 52 

reported that algal biofuel can be generated during the use of algae in wastewater treatment (Park et al., 53 

2011; Pittman et al., 2011).  54 

Coastal and nearshore loss of biodiversity is occurring as a consequence of diverse stressors, including 55 

climate change, habitat loss, eutrophication, overfishing, pollution and the introduction of non-native 56 

species (Griffiths et al., 2020; Hawkins et al., 2009). Intertidal species of macroalgae are vulnerable to 57 

these stressors because they are already close to their physiological tolerance thresholds during 58 

consecutive periods of emersion and immersion (Helmuth et al., 2006). Shifts in the distributional range 59 

of diverse intertidal macroalgae due to increased air and sea surface temperatures (SSTs) on the Atlantic 60 

shores of the Iberian Peninsula have been documented (Duarte et al., 2013; Lamela-Silvarrey et al., 2012; 61 

Lima et al., 2007). 62 

Given the ecological importance of macroalgae and the large number of uses that have been identified, 63 

obtaining information about their distribution and abundance is important for monitoring, managing and 64 

understanding coastal ecosystems, particularly in the context of global change, in which multiple stressors 65 

act together (Floor et al., 2018). Video and photographic monitoring have proven valuable ground-based 66 

and remote-sensing techniques for evaluating the cover and distribution of coastal organisms with high 67 

spatial and temporal resolution, by using satellites (Li et al., 2012; Sagawa et al., 2012; Topouzelis et al., 68 

2016; Wang et al., 2018; Wilson et al., 2019), UAVs (Duffy et al., 2018; Taddia et al., 2019; Tamondong 69 

et al., 2018; Ventura et al., 2018; Wang et al., 2019) or underwater drones (Kellaris et al., 2019; Martin-70 

Abadal et al., 2018; Moniruzzaman et al., 2019; Rahnemoonfar and Dobbs, 2019). Satellite monitoring is 71 

useful for mapping large areas as it provides wide coverage, spatio-temporal refreshment of a few days, 72 

often at visible and infrared wavelengths, and requires less input of time and labour than traditional 73 

surveys (Schroeder et al., 2019). However, because of the patchiness of macroalgae, especially on 74 

intertidal shores (Matias et al., 2015), many species are not recognizable at the resolution of satellite 75 

images, unless they cover large areas and are different colours (Brodie et al., 2018). Thus, studies based 76 

on aerial data only can monitor biomass or blooms of one species (Xing et al., 2019). Due to the rapid 77 

progress of these technologies, the spatial resolution of colour images and the size of image archives are 78 

increasing yearly. More sophisticated and efficient image processing algorithms and methods are 79 

therefore urgently needed. 80 

The use of photograph-based technology for monitoring coastal organisms, including macroalgae and 81 

seagrasses, is increasingly being reported. For instance, seaweeds and seagrasses have been mapped using 82 

optical processing techniques and textures (Kakuta et al., 2016). Local Binary Patterns (LBP) and 83 

Histogram of Oriented Gradients (HOG) have also been implemented as a feature extractor for 84 

segmentation of plant species in wetlands (Wang et al., 2018) or in underwater environments (Reus et al., 85 

2018). Calculation of indices such as the Normalized Difference Vegetation Index (NDVI), the Floating 86 

Algae Index (FAI) and the Seaweed Enhancing Index (SEI) can be also used for feature extraction 87 

(Siddiqui et al., 2019).  88 

Traditional image processing techniques for detecting and classifying macroalgae are being displaced by 89 

machine learning and deep learning methods, which provide more accurate results (O’Byrne et al., 2018; 90 

Reus et al., 2018). Deep learning based techniques are limited by the large numbers of samples needed to 91 
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train the classifier. To differentiate species of macroalgae, samples must be acquired using traditional 92 

approaches based on field data, such as diving or intertidal sampling, with in situ quadrats or line 93 

transects, which provide high accuracy and resolution, but which are time consuming and limited to small 94 

areas (Casal et al., 2013). 95 

The aim of this study was to automate the process of labelling high-resolution images to differentiate five 96 

macroalage: Bifurcaria bifurcata Linnaeus, Cystoseira tamariscifolia (Hudson) Papenfuss, Sargassum 97 

muticum (Yendo) Fensholt, Sacchoriza polyschides (Lightfoot) Batters, and Codium spp. The process was 98 

automated using semantic segmentation and convolutional neural networks (CNNs). To our best 99 

knowledge, no other works have previously addressed semantic segmentation of five macroalgal species 100 

at once from ground, aerial or satellite images. This paper presents a new method of converting labels 101 

(from polygons to raster images) and compares the results obtained with three different CNNs 102 

(MobileNetV2, Resnet18, Xception). This work is part of ALGANAT2000 project, which aims to 103 

monitor the spatio-temporal distribution of macroalgae in an intertidal coastal area within a marine 104 

protected area in Galicia (NW Spain) during 2019. 105 

106 

2. Material and Methods107 

2.1. Study area108 

The study was conducted in the Atlantic Islands National Park (Galicia, NW Spain), a terrestrial and 109 

marine reserve formed by four main archipelagos. The exposed intertidal area of Bufardo on the Illa de 110 

Monteagudo (area surrounding coordinates 42.23551° N, 8.89956 °W) belonging to the Illas Cíes 111 

archipelago was the selected as the sampling location (Figure 1). The location is a gently sloping rocky 112 

platform with the upper intertidal dominated by Pelvetia canaliculata Decaisne and Thuret, and the mid 113 

and low intertidal areas are dominated by conspicuous red, green and brown macroalgae, such as 114 

Asparagopsis armata Harvey, B. bifurcata, C. tamariscifolia, S. polyschides and Codium spp.  115 
116 

117 

Figure 1. Location of the Bufardo rocky shore in the Atlantic Islands National Park (Galicia, Spain). 118 
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The images of the five species (Figure 2) were acquired from 0.5 x 0.5 m quadrats placed on the low 119 

intertidal shore during low spring tides in July, August and September 2019. The area is emerged, and 120 

thus exposed to the air, for about 3-3.5 hours during low spring tides. Depending on the altitude at which 121 

the macroalgae occur on the shore, they experience different conditions of solar radiation and desiccation. 122 

Thus, macroalgae living on the upper shore are drier and absorb more heat than macroalgae inhabiting the 123 

lower shore.  124 

 125 

Figure 2. Target macroalgae used in the semantic segmentation. 126 

The images were acquired with a Fujifilm FinePix JV200 camera mounted on a tripod, with a top view 127 

perspective 0.7 m above the ground (see Figure 3). Because of the shape of the tripod, the base was also 128 

captured in each image. The square base delimited the labelling area, and the area outside of the base was 129 

labelled as the "out" class. 130 

 131 

Figure 3. Quadrat used for image acquisition. 132 

2.2. Methods 133 

Labelled data (in the form of manually digitized georeferenced vector polygons) and high-resolution 134 

images of macroalgae were used for semantic segmentation. Vector labelled data were adapted to raster 135 

labelled data following convolutional neural network (CNN) standards. The choice of CNN was justified 136 

by the higher success rate than those of other traditional methods based on texture analysis (O’Byrne et 137 

al., 2018), histogram of oriented gradients (HOG), local binary patterns (LBP) (Reus et al., 2018). In 138 

addition, pre-trained CNNs also enable more efficient feature extraction, with a faster design process than 139 

traditional techniques (assembly of successive masks with successive tests). The analysis was approached 140 

from the perspective of data analysis, and the system improved as new CNN architectures become 141 

available without the entire work process having to be redesigned. The workflow of the method is 142 

represented in Figure 4. 143 
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 144 

Figure 4. Workflow 145 

2.2.1. Label adaptation for CNN 146 

Conventional labelling of vector objects with a geographic information system (GIS) is not suitable for 147 

CNN-based semantic segmentation. The conventional method consists of creating a vector file layer with 148 

polygons labelled with the class. These polygons are delimited, by an expert, on the background image 149 

collected in the field. Apart from their topological attributes, the only condition for labelling is that the 150 

polygons must contain only one class of pixels. The expert selects which pixels to polygonise (for training 151 

the subsequent class). As a result, the expert classification is considered ground truth and consists of a 152 

labelled vector layer.  153 

CNN for semantic segmentation only allows images (raster data) as input for both ground truth and 154 

labelled data. In addition to the data type, the labelling content is distinct and must obey the following 155 

rules: 156 

• All pixels in the image must be labelled. Unlabelled pixels are assigned as “others”. The “others” 157 

class may include macroalgae that are not of interest for the study, e.g. sand, rocks and 158 

unidentified objects. 159 

• All pixels of the objects must be labelled in their corresponding class. The “others” class must 160 

not include pixels representing objects belonging to any class. 161 

In order to fulfil these requirements for CNN training, each image was re-labelled accordingly. The re-162 

labelling procedure depended on the following scenarios that can occur in each image-labelled data: 163 

• The expert only polygonised the largest or most relevant macroalgae. In this option, the other 164 

pixels must be manually analysed and assigned to the corresponding class (whether macroalgae 165 

or “others”). 166 

• The expert polygonised both large and small objects. In this case, only the data corresponding to 167 

ground and no relevant species need to be labelled “others”. In this option, the process could be 168 

performed automatically by rasterizing the polygons. 169 

Considering that the option used for each image was not known, the re-labelling process was performed 170 

manually. In addition, due to the image acquisition method used, macroalgae were labelled exclusively in 171 

a region of interest (ROI) in the images. In this case, the ROI in each image was the area enclosed by the 172 

quadrat, and the area outside of the quadrat was labelled "out", regardless of whether it included 173 

macroalgae or not. In the example, from the picture acquired (Figure 5.a), only four polygons 174 

corresponding to three different classes were labelled when the expert polygonised the largest relevant 175 

macroalgae (Figure 5b). In this case the polygons did not cover all pixels corresponding to each 176 

macroalga. A label was then assigned to each pixel (Figure 5c). The contours of the macroalgae were 177 

more detailed than those of the respective polygons. 178 
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 179 

Figure 5. Types of labelled data: a) geo-referenced and acquired data, b) polygons labelled and selected 180 

for training in GIS software, c) raster data for training a semantic segmentation CNN. Classes are 181 

represented by different colours. 182 

2.2.2. Semantic segmentation 183 

Semantic segmentation and object detection are classification methods that can be applied to image 184 

segmentation and labelling (Ruiz-Santaquiteria et al., 2020). Although both methods are based on deep 185 

learning, semantic segmentation aims to assign classes to each pixel of the image while the detector 186 

frames the detected objects in a bounding box. This bounding box is defined by a fixed number of 187 

vertices that frequently cover several pixels that do not correspond to the class detected. Such 188 

misclassification is usual in complex scenarios with contiguous classes, as in the case of distribution of 189 

macroalgae. Semantic segmentation delineates the classes more precisely, because it is a pixel-based 190 

classification, and it was therefore selected as the classification method for this research. 191 

In this paper, we compared the performance of three CNNs in relation to semantic segmentation: 192 

MobileNetV2, Resnet18, Xception. These networks each represent different architectures and perform 193 

well in segmentation/classification problems. In addition, the training cost of all three CNN is low, both 194 

in computational cost and number of labelled samples, as indicated by the number of hidden layers and 195 

adjustable parameters. Labelling a large number of samples is a tedious manual task that requires time 196 

from biologists familiar with differentiation of macroalgal species. In addition, many laboratories and 197 

professionals do not have access to expensive servers to train more complex neural networks, and they are 198 

limited to employ personal computers. The characteristics of the different CNNs are summarised below: 199 

• MobilNetv2. This CNN is specially designed for operating on mobile devices, and the ratio 200 

between accuracy and cost of training is therefore particularly high. It consists of 53 layers and 201 

only 3.5 million adjustable parameters and is based on an inverted residual structure in which the 202 

shortcut connections are between the thin bottleneck layers (Sandler et al., 2018). 203 

• ResNet18. This is the shallowest of the Deep Residual Networks. It has 18 layers and 11.7 204 

million adjustable parameters. The most important aspect of this CNN is that, during training, it 205 

can skip layers if it considers that feature extraction does not contribute relevant information (He 206 

et al., 2016). 207 

• Xception. This is an evolution of Inception architecture. It has 71 layers and 22.9 million 208 

adjustable parameters, and is thus the deepest of the networks used in this study. This CNN is 209 

based entirely on depth-wise separable convolution layers (Chollet, 2017). 210 

Images for semantic segmentation with CNN must have minimum dimensions according to the feature 211 

extractor (224x224x3 pixels for MobilNetv2 and ResNet18, and 299x299x3 pixels for Xception). In the 212 

present study, the dimensions of the acquired images were 4288 x 3216 x 3 pixels. Given this high 213 

resolution, the images contained a great deal of detail, facilitating manual labelling by experts. 214 

Unfortunately, the amount of computer resources that must be allocated for network training increases 215 

with the image size. In order to train the networks on a conventional computer, the images were re-sized 216 

maintaining the aspect ratio to 1000 x 750 x 3 pixels. This resolution still retained a high level of detail in 217 

the images. CNNs were adapted from image classification for semantic segmentation using DeepLabV3 218 

(Chen et al., 2018) in Matlab. 219 
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2.2.3. Data augmentation and distribution 220 

The data set was also modified by data augmentation. Data augmentation allows the training set to be 221 

extended to automatically generate new samples through small modifications of the original set. In this 222 

case, data augmentation was applied from reflections on the X and Y axes, 20-pixel translations in both 223 

axes and rotations with angles less than 25º. 224 

One aim of the data acquisition process was to obtain a representative number of images of each species. 225 

Nevertheless, the percentage occupation of each image was unbalanced (Table 1), which is a typical 226 

problem in semantic segmentation. Although almost all classes were of the same order of magnitude, 227 

relative to other species, there were very few samples of S. muticum. The “out” class included a larger 228 

number of pixels, as it appeared in all images outside the ROI. The imbalance between classes can be 229 

minimized by assigning weights to the pixels according to the quantity in the training set. For the 230 

validation and testing sets, balanced sample sets were chosen so that the results were as balanced as 231 

possible. In total, 130 images were labelled and distributed as follows: 90 images for training, 10 images 232 

for validation and 30 images for testing. 233 

Table 1. Number of pixels per class. 234 

Class 
Total number of 
pixels (106) 

Training number of 
pixels (106) 

Validation number of 
pixels (106) 

Testing number of 
pixels (106) 

“out” 58.93 41.16 4.47 13.29 

B. bifurcata 6.28 4.46 0.47 1.34 

C. tamariscifolia 4.96 3.50 0.68 0.77 

S. muticum 1.36 0.59 0.30 0.47 

S. polyschides 8.33 6.10 0.59 1.63 

Codium spp 5.89 3.43 0.46 2.00 

“others” 11.76 8.25 0.52 2.99 

 235 

2.2.4. Training 236 

The network was trained on a laptop computer (GPU NVIDIA GTX1050 4GB GDDR5, CPU i7-237 

7700HQ 2.8Ghz and 16GB RAM DDR4). The hyperparameters were chosen experimentally through 238 

several tests, maximizing the performance and minimizing the overfitting. The hyperparameters that 239 

obtained a better result for training were as follows: optimization method, sgdm; learning rate, 0.001; 240 

momentum, 0.9; L2 regularization, 0.005; and max epochs, 15. The mini batch size was set at 4 limited 241 

by the amount of memory of the graphic card. The time consumed by each training was around 150 min. 242 

The programming language used was Matlab. All training sessions converged satisfactorily (Figure 6). 243 

 244 

Figure 6. Variation in the loss during the training process 245 

3. Results 246 
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Table 2. Overall accuracy obtained on training, validation and test sets. 247 

 Train Val Test 

ResNet18 93.7% 90.6% 91.9% 

MobileNetV2 91.4% 85.0% 88.4% 

Xception 90.9% 84.7% 87.3% 

 248 

Overall accuracy obtained on training, validation and test sets are shown in Table 2. Overfitting was 249 

detected among the training and validation sets, although it was reduced in the testing set. The difference 250 

between the validation and test sets is due to the difference in the number of pixels per class. Although 251 

the overfitting was reduced with the adjustment of the hyperparameters, it was not completely eliminated. 252 

The remaining overfitting was considered acceptable in view of the results, both qualitative and 253 

quantitative. The best result was obtained with Resnet18, although the performance was not the same for 254 

all classes. The confusion matrices for training the three different CNNs are shown in Tables 3 to 5. The 255 

best result was obtained with Resnet18, although the performance was not the same for all classes.  256 

ResNet18 produced better segmentation of the B. bifurcata, S. muticum, S. polyschides, and “out” classes. 257 

Accurate identification of the "out" class led to good ROI delimitation. MobileNetV2 produced better 258 

segmentation of the Codium spp and “others” (mainly composed of sand) classes, but produced very 259 

similar results to ResNet18. Xception produced by far the best results for the C. tamariscifolia class. In 260 

the confusion matrices, the success rates were lowest for the C. tamariscifolia and S. muticum classes, 261 

which yielded more confusion than the other classes. Specifically, C. tamariscifolia was confused with 262 

the “others” classes by 0.296, and S. muticum was confused with the “others” by 0.197, and with C. 263 

tamariscifolia by 0.141. The colours of these classes were similar; in addition, very few samples of the S. 264 

muticum class were available for training. Good success rates were obtained for the remaining classes, 265 

and the confusion between them was minimal. 266 

The most notable results for semantic segmentation with ResNet18 were the areas classified as 267 

macroalgae outside the ROI (Figure 7). However, these areas corresponded to macroalgae that were well 268 

classified and with continuous macroalgae within the ROI. In addition, although the centres of the 269 

macroalgae were well defined, the borders were quite irregular and not well defined. The borders did not 270 

fit properly, mainly in dark areas, overlapping areas between macroalgae or when a small macroalga was 271 

surrounded by another macroalga. 272 

Resnet18 produced the best segmentation of macroalgae. It was foreseeable that MobileNetv2 would not 273 

perform particularly well, given the fewer configurable parameters. However, Xception did not produce 274 

better results, despite being a much deeper CNN with the capacity to extract more complex features. The 275 

Xception network only outperformed the other CNNs in the accuracy of segmenting the C. tamariscifolia 276 

class (one of the classes for which ResNet18 produced the least accurate results), but at the cost of 277 

increasing confusion about the S. muticum class, for which relatively poor results were obtained. 278 

Very high success rates were obtained for the segmentation of most classes (including three different 279 

macroalgal species). ResNet18 learned the texture and colour patterns of different species, regardless of 280 

factors that led to changes, such as the time out of water between acquisitions. Although the B. bifurcata 281 

and Codium spp classes were of similar texture, they were easily distinguished by their colour. The S. 282 

polyschides class did not coincide in colour or texture with any of the other classes. Low success rates (of 283 

around 60%), were only obtained for the C. tamariscifolia and S. muticum classes, possibly  due to the 284 

similar colour and texture  of these species. 285 

 286 

Table 3. Confusion matrix for ResNet18.  287 

ref\pred “out” 
B. 

bifurcata 
C. 

tamariscifolia 
S. 

muticum 
S. 

polyschides 
Codium 
spp 

“others” 

“out” 0.962 0.004 0.001 0.001 0.012 0.010 0.009 

B. bifurcata 0.003 0.921 0.002 0.009 0.001 0.007 0.058 
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C. tamariscifolia 0.004 0.020 0.590 0.042 0.017 0.032 0.296 

S. muticum 0.015 0.008 0.197 0.618 0.018 0.004 0.141 

S. polyschides 0.008 0.003 0.004 0.000 0.939 0.019 0.026 

Codium spp 0.003 0.010 0.012 0.002 0.026 0.912 0.034 

“others” 0.008 0.025 0.032 0.004 0.025 0.052 0.854 

 288 

Table 4. Confusion matrix for MobileNetV2.  289 

ref\pred “out” 
B. 

bifurcata 
C. 

tamariscifolia 
S. 

muticum 
S. 

polyschides 
Codium 
spp 

“others” 

“out” 0.902 0.008 0.005 0.004 0.023 0.027 0.032 

B. bifurcata 0.007 0.907 0.006 0.007 0.002 0.014 0.058 

C. tamariscifolia 0.003 0.016 0.606 0.039 0.009 0.013 0.314 

S. muticum 0.031 0.006 0.121 0.601 0.005 0.008 0.229 

S. polyschides 0.016 0.003 0.007 0.000 0.899 0.027 0.048 

Codium spp 0.007 0.007 0.009 0.003 0.020 0.926 0.028 

“others” 0.012 0.016 0.034 0.004 0.018 0.044 0.871 

 290 

Table 5. Confusion matrix for Xception.  291 

ref\pred out 
B. 

bifurcata 
C. 

tamariscifolia 
S. 

muticum 
S. 

polyschides 
Codium 
spp 

“others” 

“out” 0.908 0.012 0.008 0.001 0.019 0.021 0.031 

B. bifurcata 0.004 0.884 0.020 0.000 0.001 0.014 0.077 

C. tamariscifolia 0.006 0.019 0.725 0.003 0.009 0.031 0.206 

S. muticum 0.017 0.014 0.500 0.266 0.003 0.010 0.190 

S. polyschides 0.016 0.011 0.008 0.000 0.878 0.026 0.060 

Codium spp 0.009 0.010 0.027 0.001 0.019 0.899 0.036 

“others” 0.011 0.023 0.076 0.002 0.017 0.042 0.829 

 292 
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 293 

Figure 7. Results of semantic segmentation with ResNet18. The acquired image was superimposed on 294 

colours representing each class.  295 

 296 

4. Discussion 297 

In this paper, we report a CNN-based segmentation procedure for macroalgae, which yielded a success 298 

rate > 90% for all three CNNs tested. One of the key reasons for the high success rate in classifying the 299 

species was the use of high-resolution ground images collected in the field. The images were reduced in 300 

order to save time and computational resources, to a final resolution of 1000 x 750 pixels, which was high 301 

relative to the examples reported in the literature. By contrast, underwater images used to segment 302 

seagrass coverage were reduced to 512 x 256 pixels in previous studies (Weidmann et al., 2019). The 303 

study findings show that the proposed resolution satisfactory differentiated the five species and the 304 

interior/exterior zones of each quadrat. At the same time, a laptop workstation was adequate for training 305 

the CNNs at this resolution, and computational resources from external servers were not required.  306 

Although the accuracy rate was similar to that obtained in other studies with satellite, aerial and 307 

submarine sources, the present study aimed to differentiate five different macroalgae and it is, therefore, 308 

not generally comparable to other studies concerning the detection of single species. The accuracy 309 

achieved in number of CNN-based studies is very variable: 99.4% (Zhou et al., 2019), 97.0% (Wang et 310 

al., 2019), 95.8% (Rahnemoonfar and Dobbs, 2019), 95.0% (Martin-Abadal et al., 2018) and 90.1% 311 

(Arellano-Verdejo et al., 2018). These studies usually based on satellite and airborne data have only 312 

focused on detecting the predominant macroalgal species given the low resolution relative to ground data. 313 

Their technical complexity is considerably lesser than the presented in this work. They segmented of one 314 

macroalgae class from the bottom, often sand or water, without differentiation between macroalgal 315 

species. Differentiating between different macroalgal species is feasible when broad taxonomic groups 316 
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are considered, e.g. green, red and brown algae (Andrefouet et al., 2004; Kotta et al., 2018).  The findings 317 

of the present study showed that colour attributes were not sufficient for correct classification, as C. 318 

tamariscifolia and S. muticum are very similar in colour and only differ in texture. Depending on the 319 

classification scale, the texture feature is not extractable from satellite and aerial images due to the lower 320 

resolution of these. In addition, the same species can display notable differences in colour depending on 321 

the morphology, thickness of thalli and cellular architecture, which determine pigment densities, 322 

absorption, and thus reflectance spectra (Vogelmann and Björn, 1986). Environmental conditions, such as 323 

the emersion time and intensity of solar radiation, also contribute to differences in pigmentation within 324 

and between macroalgal species (Dieter et al., 2003). The resolution of images obtained by underwater 325 

drones is higher than that of airborne data, and the colour is modified relative to images taken outside the 326 

water; however, the modification affects all species equally (O’Byrne et al., 2018). Macroalgal species 327 

should be able to be differentiated by these characteristics (resolution and colour), and therefore texture, 328 

in underwater images. Nevertheless, most studies based on underwater images and also studies based on 329 

satellite and aerial images have only focused on detecting single macroalgal species (Gonzalez-Cid et al., 330 

2017; Moniruzzaman et al., 2019). 331 

The features extracted from one species were easier to obtain and learn with a classifier based on artificial 332 

intelligence, as the macroalgal classes shared more features with each other than with non-macroalgal 333 

classes such as rock, sand and seawater. However, when the macroalgal class no longer corresponded to 334 

one species (as in this study) and was divided into five classes, the difficulty for the algorithm increased 335 

in relation to both finding and in extracting distinctive features. More advanced techniques than simple 336 

Support Vector Machines or Artificial Neural Networks were thus required. Classic image processing 337 

techniques such as LBP lack the ability to learn complex features and thus produce poorer results than 338 

those obtained with CNNs.  The accuracy of segmentation of single seagrass species only reaches 85.0% 339 

with LBP techniques, but increases to 93.4% with CNN (Wang et al., 2018; Reus et al., 2018). 340 

The CNNs under study proved very useful for segmentation of the five macroalgae considered. Although, 341 

in theory, a large number of labelled images was required, in practice the number of pixels was more 342 

important for semantic segmentation. Given the high resolution of the images used, the number of pixels 343 

was sufficient to train a CNN with only 100 images, which can be obtained quickly. From these 100 344 

labelled images, and after training, infinite images can be labelled without further human intervention. 345 

However, the labelling process for training must be conducted carefully, as CNNs can learn labelling 346 

errors. Confusion at the borders of macroalgae (Figure 7) was due to labelling errors of the images 347 

(Vogelmann and Björn, 1986). For human observers, the centre of the algae is easy to segment and label 348 

manually, as with CNN segmentation. However, the borders of many algae overlap and it is not easy to 349 

define outlines to separate them. Because of these errors in the labelled images, the errors were also learnt 350 

by the CNN and replicated in the segmentation. These types of errors tend to be minimized when the data 351 

are tagged by different people. 352 

The acquisition time is slower with ground imaging than in satellite and drone-based methods, because 353 

the quadrat has constantly to be moved to a new location for each new image. In addition, the area 354 

covered by each image was only 0.25 m2. Nevertheless, ground images are required in order to provide 355 

reference data to train models and map data obtained with other automated instruments. This study 356 

focused on the exclusive use of RGB photographic images to minimize pre-processing time by fusing 357 

information and acquisition efforts. Because of the high success rates obtained, other types of data, such 358 

as spectroradiometer data (Hu, 2009), multispectral-hyperspectral images (Fauzan et al., 2017; Li et al., 359 

2012; Taddia et al., 2019; Zacharias et al., 1992) and environmental data (De Oliveira et al., 2006), were 360 

not included. 361 

 362 

5. Conclusion and future work 363 

This study involved a CNN-based semantic segmentation of high-resolution ground images of five 364 

different macroalgae inhabiting rocky shores. The study findings demonstrate that vector-labelled 365 

samples can be adapted for use with CNNs. Of the three different CNNs compared, ResNet18 produced 366 
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the best results, i.e. 91.9% accuracy. Most of the samples were correctly labelled, although there was a 367 

tendency for some macroalgae outside the ROI to be labelled, and the borders between macroalgal 368 

species were diffuse. Although theoretically considered an error, in practice segmentation of macroalgae 369 

outside the ROI is not problematical, as long as the classification is correct, as in this case. Definition of 370 

borders is also a problem experienced by human observers. The proposed method is therefore considered 371 

a suitable alternative for the automation of sample labelling. 372 

The study findings demonstrated that automation of the labelling process is possible with only 100 high-373 

resolution images obtained in the field, without the need for other types of data. A further step will be to 374 

apply the method to data obtained from UAVs. Nevertheless, further research is required to determine the 375 

minimum resolution needed to guarantee correct results and for transfer to learning between UAV and 376 

ground images, which differ in resolution and, therefore, in texture and colour. The use of UAVs, together 377 

with the findings presented here, will facilitate the rapid acquisition and mapping of macroalgal cover on 378 

intertidal rocky shores, with a high degree of automation. Use of these methods could greatly improve the 379 

management of coastal areas.  380 
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